Résumés
Résumé
Le développement professionnel (DP) des enseignants constitue un des moyens les plus efficaces pour améliorer la qualité de l’éducation et les préparer à de nouvelles réalités (Mukamurera, 2014). Face à l’arrivée de l’intelligence artificielle (IA) générative, plusieurs anticipent la nécessité de former les enseignants pour assurer un usage responsable de cette technologie émergente tout en constituant aussi une solution pour améliorer le parcours en DP des enseignants. Cette revue de littérature cherche donc à comprendre dans quelle mesure l’IA peut valoriser le DP des enseignants. Pour ce faire, 24 articles ont été analysés à partir des 7 caractéristiques de DP des enseignants de Darling-Hammond et al. (2017). L’IA peut valoriser dans une certaine mesure les caractéristiques de DP des enseignants, mais ses effets sur la pratique des enseignants nécessitent plus d’approfondissement. Pour de futures recherches, il est recommandé d’analyser la valorisation des caractéristiques de Darling-Hammond et al. (2017) par l’IA à l’aide du modèle SAMR à savoir dans quelles mesures ces caractéristiques pourraient être (S) substituées, (A) accrues, (M) modifiées ou (R) redéfinies par l’IA et quels effets ces changements pourraient avoir sur l’agentivité des enseignants (Puentedura, 2013).
Mots-clés :
- intelligence artificielle,
- enseignants,
- développement professionnel,
- formation,
- technologies éducatives
Abstract
Professional development (PD) for teachers is one of the most effective ways of improving the quality of education and preparing them for new realities (Mukamurera, 2014). Faced with the arrival of generative artificial intelligence (AI), many anticipate the need to train teachers to ensure responsible use of this emerging technology while also providing a solution for improving teachers' PD pathways. This literature review therefore seeks to understand the extent to which AI can enhance teachers' PD. To this end, 24 articles were analyzed based on the 7 teacher PD characteristics of Darling-Hammond et al. (2017). AI can value teachers' PD characteristics to some extent, but its effects on teachers' practice require further investigation. For future studies, it is recommended that Darling-Hammon et al.’s (2017) characteristics be analyzed for their value through AI trained with the SAMR model in view of uncovering the extent to which such characteristics could be (S) substituted, (A) enhanced, (M) modified or (R) redefined by AI use as well as the effects such changes could have on teacher’s agency.
Keywords:
- artificial intelligence,
- teachers,
- professional development,
- training,
- educational technologies
Resumen
El desarrollo profesional (DP) de los docentes constituye una de las formas más efectivas para mejorar la calidad de la educación y prepararlos para nuevas realidades (Mukamurera, 2014). Ante la llegada de la Inteligencia Artificial (IA) generativa, muchos anticipan la necesidad de formar a los docentes para garantizar un uso responsable de esta tecnología emergente al tiempo que también se presenta como una solución para mejorar el recorrido de DP de los docentes. Esta revisión bibliográfica busca, por tanto, comprender en qué medida la IA puede enriquecer el DP de los docentes. Para ello, se analizaron 24 artículos a partir de las 7 características del DP docente propuestas por Darling-Hammond et al. (2017). La IA puede en cierta medida fortalecer las características del DP de los docentes, pero sus efectos sobre la práctica docente requieren una investigación más profunda. Para futuras investigaciones, se recomienda analizar cómo la IA puede potenciar las características de Darling-Hammond et al. (2017) con ayuda del modelo SAMR, con el fin de descubrir en qué medida estas características podrían ser (S) sustituidas, (A) aumentadas, (M) modificadas o (R) redefinidas por la IA (Puentedura, 2013), así como los efectos que dichos cambios podrían tener en la agencia del docente.
Palabras clave:
- inteligencia artificial,
- docentes,
- desarrollo profesional,
- formación,
- tecnologías educativas
Resumo
O desenvolvimento profissional dos professores (DP) é uma das formas mais eficazes de melhorar a qualidade da educação e de os preparar para novas realidades (Mukamurera, 2014). Perante a chegada da Inteligência Artificial (IA) generativa, muitos antecipam a necessidade de formar os professores para garantir uma utilização responsável desta tecnologia emergente, constituindo também uma solução para melhorar os percursos de DP dos professores. Por conseguinte, esta revisão da literatura procura compreender em que medida a IA pode melhorar o DP dos professores. Para este fim, foram analisados 24 artigos com base nas 7 características de DP dos professores de Darling-Hammond et al. (2017). A IA pode, em certa medida, valorizar as características do DP dos professores, mas os seus efeitos na prática dos professores exigem uma investigação mais aprofundada. Para investigação futura, recomenda-se que se analise a valorização das sete características de Darling-Hammond et al. (2017) pela IA, utilizando o modelo SAMR, para determinar em que medida estas características podem ser (S) substituídas, (A) aumentadas, (M) modificadas ou (R) redefinidas pela IA e quais os efeitos que estas alterações podem ter na capacidade de ação dos professores (Puentedura, 2013).
Palavras chaves:
- inteligência artificial,
- professores,
- desenvolvimento profissional,
- formação,
- tecnologias educativas
Veuillez télécharger l’article en PDF pour le lire.
Télécharger
Parties annexes
Bibliographie
- AI for Teachers. (2023). Comparative European evaluation report. https://www.ai4t.eu/wp-content/uploads/2024/07/AI4T_WP3_D3.3_Comparative-European-Evaluation-Report.pdf
- Andler (2023). Intelligence artificielle, intelligence humaine : la double énigme. Gallimard.
- Bartolomé, A., Castañeda, L., et Adell, J. (2018). Personalisation in educational technology: The absence of underlying pedagogies. International Journal of Educational Technology in Higher Education, 15(14). https://doi.org/10.1186/s41239-018-0095-0
- Berkeley Library. (2023, 26 octobre). Education 268: First-Year Doctoral Seminar-Education Research and Practices: Find Articles.
- Boulay, M. F., Hamel, C. et Hamel, S. (2023, 16 avril). Core Features of Effective Professional Development for Teachers: What Should PD Programs be Aligned With? [Présentation]. AERA Annual Meeting, Chicago, IL, États-Unis.
- Bosch, N., D’Mello, S. K., Baker, R. S., Ocumpaugh, J., Shute, V., Ventura, M., et Zhao, W. (2016, 9-15 juillet). Detecting Student Emotions in Computer-Enabled Classrooms. IJCAI International Joint Conference on Artificial Intelligence, New York, NY, États-Unis. https://www.ijcai.org/Proceedings/16/Papers/615.pdf
- Burleson, W., et Picard, R. W. (2007). Gender-Specific Approaches to Developing Emotionally Intelligent Learning Companions. IEEE Intelligent Systems, 22(4), 62‑69. https://doi.org/10.1109/MIS.2007.69
- Celik, I. (2023). Towards Intelligent-TPACK: An empirical study on teachers’ professional knowledge to ethically integrate artificial intelligence (AI)-based tools into education. Computers in Human Behavior, 138. https://doi.org/10.1016/j.chb.2022.107468
- Celik, I., Dindar, M., Muukkonen, H., et Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends, 66(4), 616-630. https://doi.org/10.1007/s11528-022-00715-y
- Chaipidech, P., Srisawasdi, N., Kajornmanee, T., et Chaipah, K. (2022). A personalized learning system-supported professional training model for teachers' TPACK development. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100064
- Chen, Y., et Xu, S. (2022). Cultivation Method Analysis for Teachers’ Teaching Ability Driven by Artificial Intelligence Technology. Advances in multimedia, 2022. https://doi.org/10.1155/2022/5298291
- Chounta, I. A., Bardone, E., Raudsep, A., et Pedaste, M. (2022). Exploring teachers’ perceptions of Artificial Intelligence as a tool to support their practice in Estonian K-12 education. International Journal of Artificial Intelligence in Education, 32(3), 725-755. https://doi.org/10.1007/s40593-021-00243-5
- Collin, S., Lepage, A., et Nebel, L. (2023). Enjeux éthiques et critiques de d’intelligence artificielle en éducation : une revue systématique de la littérature. Canadian Journal of Learning and Technology, 49(4), 1-29. https://doi.org/10.21432/cjlt28448
- Conseil de l’innovation du Québec (2024). Prêt pour l’IA : réflexion collective sur l’encadrement de l’IA. https://conseilinnovation.quebec/wp-content/uploads/2024/02/Rapport_IA_CIQ.pdf
- Conseil supérieur de l’éducation et Commission éthique en sciences et technologies (2024). Intelligence artificielle générative en enseignement supérieur : enjeux pédagogiques et éthiques. https://tinyurl.com/26x43e9x
- Conseil supérieur de l’éducation (2014). Le développement professionnel, un enrichissement pour toute la profession enseignante. https://www.cse.gouv.qc.ca/wp-content/uploads/2014/06/50-0483-AV-developpement-professionnel.pdf
- Cukurova, M., Kralj, L., Hertz, B., et Saltidou, E. (2024). Professional Development for Teachers in the Age of AI. http://www.eun.org/news/detail?articleId=11193331
- Dai, Y. (2023). Negotiation of epistemological understandings and teaching practices between primary teachers and scientists about artificial intelligence in professional development. Research in Science Education, 53(3), 577-591. https://doi.org/10.1007/s11165-022-10072-8
- Dai, Y., Chai, C. S., Lin, P. Y., Jong, M. S. Y., Guo, Y., et Qin, J. (2020). Promoting students’ well-being by developing their readiness for the artifcial intelligence age. Sustainability, 12(16), 6597. https://doi.org/10.3390/su12166597
- Darling-Hammond, L., Hyler, M. E., et Gardner, M. (2017). Effective teacher professional development. https://tinyurl.com/baeep8xj
- Deng, H., Jia, W., et Chai, D. (2022). Discussion on Innovative Methods of Higher Teacher Education and Training Based on New Artificial Intelligence. Security and Communication Networks, 2022. https://doi.org/10.1155/2022/3899413
- Desimone, L. M., et Garet, M. S. (2015). Best practices in teacher's professional development in the United States. Psychology, Society, & Education, 7(3), 252-263. https://ojs.ual.es/ojs/index.php/psye/article/view/515
- Desimone, L. M. (2009). Improving impact studies of teachers’ professional development: Toward better conceptualizations and measures. Educational researcher, 38(3), 181-199. https://doi.org/10.3102/0013189X08331140
- Ding, Y. (2021). Performance analysis of public management teaching practice training based on artificial intelligence technology. Journal of Intelligent & Fuzzy Systems, 40(2), 3787-3800. https://doi.org/10.3233/JIFS-189412
- Fidan, M. et Gencel, N. (2022). Supporting the Instructional Videos with Chatbot and Peer Feedback Mechanisms in Online Learning: The Effects on Learning Performance and Intrinsic Motivation. Journal of Educational Computing Research, 60(7). https://doi.org/10.1177/07356331221077901
- Gaudreau, N., et Nadeau, M. F. (2015). Enseigner aux élèves présentant des difficultés comportementales : dispositifs pour favoriser le développement des compétences des enseignants. La nouvelle revue de l'adaptation et de la scolarisation, (4), 27-45. https://doi.org/10.3917/nras.072.0027
- Hamel, C., Laferrière, T., Turcotte, S., et Allaire, S. (2013). Un regard rétrospectif sur le développement professionnel des enseignants dans le modèle de l’École éloignée en réseau. Sticef (Sciences et technologies de l'information et de la communication pour l'éducation et la formation), 20, 1-30. https://constellation.uqac.ca/id/eprint/3327/1/Hamel_etal_sticef_2013.pdf
- Hew, K. F., Lan, M., Tang, Y., Jia, C., et Lo, C. K. (2019). Where is the “theory” within the field of educational technology research? British Journal of Educational Technology, 50(3), 956-971. https://doi.org/10.1111/bjet.12770
- Holmes, W., et Porayska-Pomsta, K. (2023). The ethics of artificial intelligence in education. Routledge Taylor.
- Hrastinski, S., Olofsson, A. D., Arkenback, C., Ekström, S., Ericsson, E., Fransson, G., Jaldemark, J., Ryberg, T., Öberg, L.-M., Fuentes, A., Gustafsson, U., Humble, N., Mozelius, P., Sundgren, M., et Utterberg, M. (2019). Critical Imaginaries and Reflections on Artificial Intelligence and Robots in Postdigital K-12 Education. Postdigital Science and Education, 1(2), 427 445. https://doi.org/10.1007/s42438-019-00046-x
- Hu, J. (2021). Teaching evaluation system by use of machine learning and artificial intelligence methods. International Journal of Emerging Technologies in Learning (iJET), 16(5), 87-101. https://www.learntechlib.org/p/220079/
- Jain, G. P., Gurupur, V. P., Schroeder, J. L., et Faulkenberry, E. D. (2014). Artificial intelligence-based student learning evaluation: A concept map-based approach for analyzing a student’s understanding of a topic. IEEE Transactions on Learning Technologies, 7(3), 267-279. https://doi.org/10.1109/TLT.2014.2330297
- Kasepalu, R., Prieto, L. P., Ley, T., et Chejara, P. (2022, February). Teacher artificial intelligence-supported pedagogical actions in collaborative learning coregulation: A wizard-of-oz study. Frontiers in Education, 7, 736194. https://doi.org/10.3389/feduc.2022.736194
- Kennedy, M. M. (2016). How does professional development improve teaching? Review of educational research, 86(4), 945-980. https://doi.org/10.3102/0034654315626800
- Korthagen, F. (2017). Inconvenient truths about teacher learning: Towards professional development 3.0. Teachers and teaching, 23(4), 387-405. https://doi.org/10.1080/13540602.2016.1211523
- Kuleto, V., Ilić, M. P., Bucea-Manea-Țoniş, R., Ciocodeică, D. F., Mihălcescu, H., et Mindrescu, V. (2022). The Attitudes of K–12 Schools’ Teachers in Serbia towards the Potential of Artificial Intelligence. Sustainability, 14(14), 8636. https://doi.org/10.3390/su14148636
- Lameras, P., et Arnab, S. (2021). Power to the teachers: an exploratory review on artificial intelligence in education. Information, 13(1), 14. https://doi.org/10.3390/info13010014
- Lampos, V., Mintz, J., et Qu, X. (2021). An artificial intelligence approach for selecting effective teacher communication strategies in autism education. npj Science of Learning, 6(1), 25. https://doi.org/10.1038/s41539-021-00102-x
- Lee, D., et Yeo, S. (2022). Developing an AI-based chatbot for practicing responsive teaching in mathematics. Computers & Education, 191, 104646. https://doi.org/10.1016/j.compedu.2022.104646
- Lepage, A., et Roy, N. (2023). Une recension des écrits de 1970 à 2022 sur les rôles de l’enseignant et de l’intelligence artificielle dans le domaine de l’IA en éducation. Médiations et médiatisations, (16), 9-50. https://doi.org/10.52358/mm.vi16.304
- Lessard, C. (2021). Évaluation des effets du développement professionnel des acteurs de l’éducation : rapport de recherche. Centre national d’étude des systèmes scolaires. https://cnam.hal.science/hal-03245284/
- Li, B., Fei, Y., et Liu, H. (2021). An artificial intelligence based model for evaluation of college students’ ability and characteristics through teaching evaluation. Journal of Intelligent & Fuzzy Systems, 40(2), 3397-3407. https://doi.org/10.3233/JIFS-189378
- McStay, A. (2020). Emotional AI, soft biometrics and the surveillance of emotional life: An unusual consensus on privacy. Big Data & Society, 7(1). https://doi.org/10.1177/2053951720904386
- Moher, D., Stewart, L., et Shekelle, P. (2016). Implementing PRISMA-P: recommendations for prospective authors. Systematic reviews, 5, 1-2. https://doi.org/10.1186/s13643-016-0191-y
- Mukamurera, J. (2014). Le développement professionnel et la persévérance en enseignement. Dans L. Portelance, S. Martineau et J. Mukamurera (dir.), Le développement professionnel et la persévérance en enseignement. Développement et persévérance professionnels dans l’enseignement : oui, mais comment? (p. 12-33). Presses de l’Université du Québec.
- Newman, M., et Gough, D. (2020). Systematic Reviews in Educational Research: Methodology, Perspectives and Application. Dans O. Zawacki-Richter, M. Kerres, S. Bedenlier, M. Bond, et K. Buntins (dir.), Systematic Reviews in Educational Research (p. 3-22). Springer VS.
- Phillips, T. M., Saleh, A., et Ozogul, G. (2022). An AI toolkit to support teacher reflection. International Journal of Artificial Intelligence in Education, 1-24. https://doi.org/10.1007/s40593-022-00295-1
- Parlement de l’Union européenne (2023). Législation sur l’IA. https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
- Porayska-Pomsta, K. (2016). AI as a methodology for supporting educational praxis and teacher metacognition. International Journal of Artificial Intelligence in Education, 26, 679-700. https://doi.org/10.1007/s40593-016-0101-4
- Puentedura, R. R. (2013). SAMR and TPCK: An introduction. Sous licence CC BY-NC-SA. https://tinyurl.com/yv2kpvtx
- Sailer, M., Bauer, E., Hofmann, R., Kiesewetter, J., Glas, J., Gurevych, I., et Fischer, F. (2023). Adaptive feedback from artificial neural networks facilitates pre-service teachers’ diagnostic reasoning in simulation-based learning. Learning and Instruction, 83. https://doi.org/10.1016/j.learninstruc.2022.101620
- Samarakou, M., Fylladitakis, E. D., Früh, W. G., Hatziapostolou, A., et Gelegenis, J. J. (2015). An advanced eLearning environment developed for engineering learners. International Journal of Emerging Technologies in Learning, 10(3), 22–33. https://doi.org/10.3991/ijet.v10i3.4484
- Tao, B., Díaz, V., et Guerra, Y. (2019). Artificial intelligence and education, challenges and disadvantages for the teacher. Arctic Journal, 72(12), 30-50. https://tinyurl.com/yc549rur
- UNESCO. (2024). Orientations pour l’intelligence artificielle générative dans l’éducation et la recherche. https://doi.org/10.54675/HBCX3851
- Vlasova, E. Z., Avksentieva, E. Y., Goncharova, S. V., et Aksyutin, P. A. (2019). Artificial intelligence-The space for the new possibilities to train teachers. Espacios, 40(9), 17. https://ksra.eu/wp-content/uploads/2020/06/1999678332b84d1e3c79887e91b0e3293c4f.pdf
- Zawacki-Richter, O., Marín, V. I., Bond, M., et Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
- Zhu, W., Marquez, A., et Yoo, J. (2015). “Engineering economics jeopardy!” Mobile app for university students. Engineering Economist, 60(4), 291-306. https://doi.org/10.1080/0013791X.2015.1067343