Abstracts
Résumé
Le personnel enseignant des cégeps et des universités est de plus en plus confronté à des outils d’intelligence artificielle (IA), notamment des outils proposés par leurs établissements ou utilisés par les étudiants et les étudiantes. Or, l’utilisation pédagogique de ces outils exige une certaine compréhension de leur fonctionnement, surtout lorsqu’il est question d’en identifier les limites ou les risques éthiques. À l’heure actuelle, il n’existe aucune mesure précise du niveau de littératie de l’IA du personnel enseignant du postsecondaire. Cette étude propose un questionnaire de 25 items pour mesurer ce niveau de littératie, à partir d’une version initiale de 29 items. Un échantillon de 395 enseignants et enseignantes a été recruté via des listes institutionnelles dans des cégeps et des universités. Des analyses factorielles (exploratoire et confirmatoire) ont été réalisées et ont permis de détecter trois facteurs, soit les connaissances techniques liées à l’IA, la capacité à utiliser des outils d’IA en contexte pédagogique et le niveau de sensibilité aux enjeux éthiques.
Mots-clés :
- enseignant,
- enseignement supérieur,
- intelligence artificielle,
- littératie
Abstract
Teaching staff in colleges and universities deal with the growing presence of artificial intelligence (AI) tools, for instance offered by their institution or used by their students. However, the pedagogical use of these tools requires some knowledge about how they work, especially when it comes to address their limitations and recognize the ethical risks they carry. As of today, there is no precise way to measure the level of AI literacy of higher education teachers. This study proposes a questionnaire with 25 items to address this issue, based on a first draft of 29 items. A sample of 395 teachers was recruited through mailing lists of colleges and universities. Exploratory and confirmatory factorial analyses were conducted and allowed the detection of three latent variables: technical knowledge related to AI, level of sensitivity to ethical concerns, and capacity to use AI tools in a pedagogical setting.
Keywords:
- artificial intelligence,
- higher education,
- literacy,
- teacher
Resumo
O corpo docente dos cégeps (Colégios de Ensino Geral Profissional) e das universidades confronta-se, cada vez mais, com ferramentas de inteligência artificial (IA), seja por meio de ferramentas propostas pelas suas instituições ou utilizadas pelos próprios estudantes. No entanto, a utilização pedagógica dessas ferramentas exige uma certa compreensão do seu funcionamento, sobretudo para identificar as suas limitações ou os riscos éticos associados. Atualmente, não existe nenhuma medida precisa do nível de literacia em IA dos docentes do ensino pós-secundário. Este estudo propõe um questionário de 25 itens para medir esse nível de literacia, a partir de uma versão inicial de 29 itens. Uma amostra de 395 docentes foi recrutada por meio de listas institucionais em colégios e universidades. Foram realizadas análises fatoriais (exploratória e confirmatória), que permitiram identificar três fatores: conhecimentos técnicos relacionados à IA, nível de sensibilização para questões éticas e capacidade de utilizar ferramentas de IA em contexto pedagógico.
Palavras chaves:
- docente,
- ensino superior,
- inteligência artificial,
- literacia
Appendices
Liste des références
- Achim, A. (2020). Esprit et enjeux de l’analyse factorielle exploratoire. The Quantitative Methods for Psychology, 16(4), 213-247. https://doi.org/10.20982/tqmp.16.4.p213
- Alhwaiti, M. (2023). Acceptance of Artificial Intelligence Application in the Post-Covid Era and Its Impact on Faculty Members’ Occupational Well-being and Teaching Self Efficacy: A Path Analysis Using the UTAUT 2 Model. Applied Artificial Intelligence, 37(1), 2175110. https://doi.org/10.1080/08839514.2023.2175110
- Baron, G.-L. (2019). Les technologies dans l’enseignement scolaire : Regard rétrospectif et perspectives. Les Sciences de l’éducation - Pour l’Ère nouvelle, 52(1), 103‑122. https://doi.org/10.3917/lsdle.521.0103
- Berger, J.-L. (2021). Analyse factorielle exploratoire et analyse en composantes principales : Guide pratique. https://hal.science/hal-03436771/document
- Bernaud, J.-L. (2014). Chapitre 2. Méthodologie psychométrique : Élaborer et valider des tests et des questionnaires psychologiques. Dans Méthodes de tests et questionnaires en psychologie (p. 69‑111). Dunod. https://www.cairn.info/methodes-de-tests-et-questionnaires-en-psychologie--9782100587957-p-69.htm
- Blok, S., Trudeau, J. & Cassidy, R. (2022). Artificial Intelligence Competency Framework. Pôle IA Concordia-Dawson. https://poleia.quebec/en/wp-content/uploads/2022/07/PIA_ConcordiaDawson_AICompetencyFramework.pdf
- Bougaïeff, A. (1984). L’Avenir des A.P.O., c’est le « folkware ». Bulletin de l’APOP, 3(2).
- Boughton, B., Williamson, F., Lin, S., Taylor, R., Beetson, J., Bartlett, B., Anderson, P. & Morrell, S. (2022). Measuring adult English literacy improvements in First Nations communities in Australia. International Journal of Training Research, 20(3), 248‑263. https://doi.org/10.1080/14480220.2022.2032268
- Bruneault, F., Laflamme, A. S. & Mondoux, A. (2022). Former à l’éthique de l’IA en enseignement supérieur : Référentiel de compétence [Prépublication]. Pôle montréalais d’enseignement supérieur en intelligence artificielle. https://doi.org/10.31235/osf.io/38tfv
- Cégep à distance. (s. d.). Tableau de bord – Le projet. Site Web de Cégep à distance. https://cegepadistance.ca/le-cegep-a-distance-2/la-recherche-au-cegep-a-distance/tableau-de-bord-le-projet/
- Cetindamar, D., Kitto, K., Wu, M., Zhang, Y., Abedin, B. & Knight, S. (2022). Explicating AI Literacy of Employees at Digital Workplaces. IEEE Transactions on Engineering Management, 1‑14. https://doi.org/10.1109/TEM.2021.3138503
- Chai, C. S., Wang, X. & Xu, C. (2020). An Extended Theory of Planned Behavior for the Modelling of Chinese Secondary School Students’ Intention to Learn Artificial Intelligence. Mathematics, 8(11), 2089. https://doi.org/10.3390/math8112089
- Collin, S. & Marceau, E. (2023). Enjeux éthiques et critiques de l’intelligence artificielle en enseignement supérieur. Éthique publique, 24(2). https://doi.org/10.4000/ethiquepublique.7619
- Comrey, A. L. & Lee, H. B. (1992). A first course in factor analysis (2e éd.). Erlbaum.
- Conseil de l’innovation du Québec. (2024). Prêt pour l’IA. https://conseilinnovation.quebec/wp-content/uploads/2024/02/Rapport_IA_CIQ-1.pdf
- Conseil supérieur de l’éducation. (2024). Intelligence artificielle générative en enseignement supérieur : Enjeux pédagogiques et éthiques. https://www.cse.gouv.qc.ca/wp-content/uploads/2024/04/50-0566-RP-IA-generative-enseignement-superieur-enjeux-ethiques.pdf
- Daguet, H., & Wallet, J. (2012). Du bon usage du « non-usage » des TICE. Recherches & éducations, 6, 3553. https://doi.org/10.4000/rechercheseducations.958
- Deeva, G., Bogdanova, D., Serral, E., Snoeck, M. & De Weerdt, J. (2021). A review of automated feedback systems for learners: Classification framework, challenges and opportunities. Computers & Education, 162. https://doi.org/10.1016/j.compedu.2020.104094
- Elmqaddem, N. (2019). Augmented Reality and Virtual Reality in Education. Myth or Reality ? International Journal of Emerging Technologies in Learning (iJET), 14(03), 234. https://doi.org/10.3991/ijet.v14i03.9289
- Fabrigar, L. R., Wegener, D. T., MacCallum, R. C. et Strahan, E. J. (1999). Evaluating the Use of Exploratory Factor Analysis in Psychological Research. Psychological Methods, 4(3), 272-299. https://doi.org/10.1037/1082-989X.4.3.272
- Gerbault, J. (2012). Littératie numérique : Les nouvelles dimensions de l’écrit au 21ième siècle. Recherches en didactique des langues et des cultures, 9(2). https://doi.org/10.4000/rdlc.3960
- Giraud, J. (1957). Comment enseigner par les moyens audio-visuels. Fernand Nathan.
- Hargittai, E. (2005). Survey Measures of Web-Oriented Digital Literacy. Social Science Computer Review, 23(3), 371‑379. https://doi.org/10.1177/0894439305275911
- Hien, H. T., Cuong, P.-N., Nam, L. N. H., Nhung, H. L. T. K. & Thang, L. D. (2018). Intelligent Assistants in Higher-Education Environments: The FIT-EBot, a Chatbot for Administrative and Learning Support. Proceedings of the Ninth International Symposium on Information and Communication Technology - SoICT 2018, 69‑76. https://doi.org/10.1145/3287921.3287937
- Holgado–Tello, F. P., Chacón–Moscoso, S., Barbero–García, I. & Vila–Abad, E. (2010). Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Quality & Quantity, 44(1), 153‑166. https://doi.org/10.1007/s11135-008-9190-y
- Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrica, 30(2), 179‑185.
- Irwing, P. & Hughes, D. J. (2018). Test Development. Dans P. Irwing, T. Booth et D. J. Hughes (dir.), The Wiley Handbook of Psychometric Testing (1re éd., p. 1‑47). Wiley. https://doi.org/10.1002/9781118489772.ch1
- Jung, S. & Lee, S. (2011). Exploratory factor analysis for small samples. Behavior Research Methods, 43(3), 701‑709. https://doi.org/10.3758/s13428-011-0077-9
- Karaca, O., Çalışkan, S. A. & Demir, K. (2021). Medical artificial intelligence readiness scale for medical students (MAIRS-MS) – development, validity and reliability study. BMC Medical Education, 21(1), 112. https://doi.org/10.1186/s12909-021-02546-6
- Kim, S.-W. & Lee, Y. (2022). The Artificial Intelligence Literacy Scale for Middle School Students. Journal of the Korea Society of Computer and Information, 27(3), 225‑238. https://doi.org/10.9708/JKSCI.2022.27.03.225
- Lagakis, P. et Demetriadis, S. (2021). Automated essay scoring: A review of the field. 2021 International Conference on Computer, Information and Telecommunication Systems (CITS), 1‑6. https://doi.org/10.1109/CITS52676.2021.9618476
- Lombard, F. (2007). Du triangle de Houssaye au tétraèdre des TIC : comprendre les interactions entre les savoirs d’expérience et ceux de recherche. Dans B. Charlier & D. Peraya (dir.), Transformation des regards sur la recherche en technologie de l’éducation (p. 137‑154). De Boeck Supérieur. https://doi.org/10.3917/dbu.charl.2007.01.0137
- Long, D. & Magerko, B. (2020). What is AI Literacy ? Competencies and Design Considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1‑16. https://doi.org/10.1145/3313831.3376727
- Luo, J. (2024). How does GenAI affect trust in teacher-student relationships ? Insights from students’ assessment experiences. Teaching in Higher Education, 1-16. https://doi.org/10.1080/13562517.2024.2341005
- Ministère de l’Éducation nationale et de la Jeunesse. (2024). Intelligence artificielle et éducation – Apports de la recherche et enjeux pour les politiques publiques. https://edunumrech.hypotheses.org/files/2024/02/MEN_DN E_brochure_IA_2024_web_fr.pdf
- Mohammadyari, S. & Singh, H. (2015). Understanding the effect of e-learning on individual performance: The role of digital literacy. Computers & Education, 82, 11‑25. https://doi.org/10.1016/j.compedu.2014.10.025
- Ng, D. T. K., Leung, J. K. L., Chu, S. K. W. & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041
- Nunnally, J. C. (1967). Psychometric Theory. McGraw-Hill.
- OCDE. (2013). Perspectives de l’OCDE sur les compétences 2013 : Premiers résultats de l’Evaluation des compétences des adultes. OECD. https://doi.org/10.1787/9789264204096-fr
- Raby, C. (2005). Analyse du cheminement qui a mené des enseignants du primaire à développer une utilisation exemplaire des technologies de l’information et de la communication en classe. [Thèse de doctorat, Université du Québec à Montréal]. https://tel.archives-ouvertes.fr/edutice-00000750
- Sandu, N. & Gide, E. (2019). Adoption of AI-Chatbots to Enhance Student Learning Experience in Higher Education in India. 2019 18th International Conference on Information Technology Based Higher Education and Training (ITHET), 1‑5. https://doi.org/10.1109/ITHET46829.2019.8937382
- Schumacker, R. E. et Lomax, R. G. (2010). A Beginner’s Guide to Structural Equation Modeling (3e éd.). Routledge.
- Shrestha, N. (2021). Factor Analysis as a Tool for Survey Analysis. American Journal of Applied Mathematics and Statistics, 9(1), 4‑11. https://doi.org/10.12691/ajams-9-1-2
- Siemens, G. (2013). Learning Analytics: The Emergence of a Discipline. American Behavioral Scientist, 57(10), 1380‑1400. https://doi.org/10.1177/0002764213498851
- Sleeman, D. & Brown, J. S. (1982). Intelligent tutoring systems. Academic Press.
- Tabachnick, B. G. & Fidell, L. S. (2007). Using multivariate statistics (5e éd.). Allyn & Bacon.
- Thomas, A., Tazouti, Y., Hoareau, L., Luxembourger, C., Hubert, B., Fischer, J. & Jarlégan, A. (2021). Development of a French-language early literacy scale: Structural analysis and links between the dimensions of early literacy. Journal of Research in Reading, 44(2), 379‑399. https://doi.org/10.1111/1467-9817.12344
- Touretzky, D., Gardner-McCune, C., Martin, F. & Seehorn, D. (2019). Envisioning AI for K-12: What Should Every Child Know about AI ? Proceedings of the AAAI Conference on Artificial Intelligence, 33, 9795‑9799. https://doi.org/10.1609/aaai.v33i01.33019795
- Union européenne. (2022). Lignes directrices éthiques sur l’utilisation de l’intelligence artificielle (IA) et des données dans l’enseignement et l’apprentissage à l’intention des éducateurs. https://op.europa.eu/en/publication-detail/-/publication/d81a0d54-5348-11ed-92ed-01aa75ed71a1/language-fr
- Wang, B., Rau, P.-L. P. & Yuan, T. (2022). Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 1‑14. https://doi.org/10.1080/0144929X.2022.2072768
- Wenger, E. (1986). Artificial intelligence and tutoring systems: Computational approaches to the communication of knowledge. Morgan Kaufmann.
- Williams, R., Ali, S., Devasia, N., DiPaola, D., Hong, J., Kaputsos, S. P., Jordan, B. et Breazeal, C. (2022). AI + Ethics Curricula for Middle School Youth: Lessons Learned from Three Project-Based Curricula. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-022-00298-y
- Zawacki-Richter, O., Marín, V. I., Bond, M. & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators ? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0
- Zhao, L., Wu, X. & Luo, H. (2022). Developing AI Literacy for Primary and Middle School Teachers in China: Based on a Structural Equation Modeling Analysis. Sustainability, 14(21), 14549. https://doi.org/10.3390/su142114549