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Karaṇakesarī of Bhāskara: a 17th-century
table text for computing eclipses

Clemency Montelle and Kim Plofker

1. INTRODUCTION

The Karaṇakesarī of Bhāskara (fl. 1681) is a set of astronomical tables along with
a short accompanying versified text for computing the circumstances and

details of lunar and solar eclipses. This text is divided into two chapters (adhi-
kāras): the candraparvan or lunar eclipse which contains thirteen verses, and the
sūryaparvan or solar eclipse which contains seven verses (although the manu-
scripts we have seen are not unanimous on this point). The text is both a supple-
ment to the tables and a guide for using them. Its last verse tells us that this work
was composed in Saudāmikā (a locality probably in Gujarāt) and the second
verse indicates that its epoch is year 1603 of the Śaka era (1681 CE). The tables
are computed for the terrestrial latitude ϕ = 22;35,39◦, as discussed in the ana-
lysis of verse 1.5 in section 4 below.

Figure 1: Excerpt from Karaṇakesarī tables, Poleman 4946 (Smith Indic MB) XIV f. 4v (MS. P1)
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2 karaṇakesarī of bhāskara

We know of at least a dozen extant manuscripts of the Karaṇakesarī.1 The ones
we have consulted for our present study are the following:

• For the tables:

– Poleman 4946 (Smith Indic MB) XIV ff. 3–11 (denoted MS. P1)
– Poleman 4946 (Smith Indic MB) XXVII ff. 2-3 (MS. P2)
– Poleman 4946 (Smith Indic MB) XXVIII 1f (MS. P3)
– Rajasthan Oriental Research Institute (RORI) Jodhpur 12792 (MS. R2)

• For the text:

– Baroda 11268 (MS. B), whose colophon asserts that it was copied in the
14th day of the bright half of Aśvina in year 1819 (of the Saṃvat era),
which the scribe calls a Saturday; indeed it corresponds to Saturday 2
October, 1762 CE.2

– RORI Jodhpur 12814 ff. 1v–2v (MS. R1), allegedly copied for his own
use by Bhāī Īcchārāma on the 15th day of the bright half of Phalguna
Saṃvat 1925, a Friday; this converts to 28 March 1869 CE, which how-
ever was a Sunday.

An additional manuscript (RORI Jaipur 9757 (MS. J), copied on day 8 of the dark
half of Jyeṣṭha in Saṃvat 1818, a Thursday: i.e., Thursday 25 June 1761 CE) con-
tains worked examples of the Karaṇakesarī procedures for two eclipses before
1750 CE (see section 3). Unless otherwise noted, all manuscript readings in the
tables part refer to MS. P1 (of which figure 1 shows a sample leaf).

While most tables pertaining to eclipses form part of comprehensive table
texts on astronomical prediction in general, the Karaṇakesarī is a less common
instance of a work devoted exclusively to this topic (Pingree 1981, 46). Its tables
describe characteristics of the celestial bodies implicated in eclipses: elongations
between them, their apparent diameters, ‘deflection’, and parallax, as well as
other relevant phenomena such as eclipse duration and magnitude. Appended
to the eclipse computation tables but not discussed in the text are a set of addi-
tional tables concerning astrological phenomena.

Our critical edition of the verse text portion attested in MSS. B and R1 is in-
cluded as Appendix B, at the end of which we supply transcriptions and identi-
fications of the titles of all the tables. Preceding it is Appendix A, a brief gloss-
ary of the Sanskrit technical terms used in our exposition. Section 4 contains a

1 See Pingree (1970–1994, 328) and Pin-
gree (1968, 70), in which Pingree notes four
other works entitled Karaṇakesarī ; it is unclear
whether these works are related to the tables
under consideration here.

2 For the relation of Indian calendars to
Common Era dates, see Knudsen and Plofker
(2011, 57–65) and the discussion of verse 1.2 in
section 4 below.
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clemency montelle and kim plofker 3

complete transliteration and translation of the Karaṇakesarī ’s edited text, accom-
panied by a ‘Verse Analysis’ and ‘Technical Analysis’ for each verse or group of
verses. The former specifies the metre(s) used as well as any notable features
of the composition or the manuscript readings, while the latter explains to the
best of our understanding the technical procedures described therein. While we
briefly summarise each of the associated tables and draw on their content to ex-
plain the verses, we have not attempted to critically edit or thoroughly analyze
the tables or their titles and notes; we hope to undertake this task in a future pub-
lication. In the present discussion, wherever we have quoted these prose titles
or notes we have transcribed them as they appear in the manuscript, without
correcting their orthography.

In the edited text as well as in the transliteration, translation and commentary
we employ the following editorial conventions:

• Square brackets [ ] indicate an editorial addition or proposed reconstruc-
tion of missing text.

• Angle brackets ⟨ ⟩ indicate manuscript readings that we discard as incor-
rect.

• We use the word kesarī ‘mane-bearer, lion’ with a dental sibilant in our
standard form of the work’s title Karaṇakesarī, but we do not emend the
lexically accepted variant keśarī with a palatal sibilant where it appears in
the manuscripts.

• Scribal variants of nāgarī orthography which are emended silently and not
noted in the critical apparatus (except where the meaning of the original
reading may be ambiguous) include the following: anusvāra for a conjoined
nasal, omitted visarga, virāma or avagraha, misplaced daṇḍas, reversed con-
junct consonants (e.g., adba for abda), conjunct consonants that we cannot
reproduce in our nāgarī typesetting, doubled consonants after r or across
a pāda break, routinely confused consonant pairs (e.g., ba for va, ṣa for kha),
and all forms of koṣṭa for koṣṭha ‘table entry’.

• Fragments of Sanskrit words or compounds in nāgarī are indicated with a
small circle ◦ at the breakpoint.

• Folio breaks are indicated by a single vertical stroke
∣∣.

• In the critical apparatus, text followed by a single square close-bracket ]
indicates the edited version of the manuscript reading that follows it.

• The symbol x within nāgarī text indicates an akṣara (syllable) that is illegible
in the manuscript.

history of science in south asia 2 (2014) 1–62



4 karaṇakesarī of bhāskara

• Numerals in sexagesimal or base-60 notation are shown with a semicolon
separating their integer and fractional parts, and commas separating their
successive sexagesimal digits. The superscripts s and ◦ and ′ indicate zo-
diacal signs (i.e., 30-degree arcs of longitude), degrees and minutes of arc,
respectively.

2. BASIC ECLIPSE RECKONING IN THE INDIAN TRADITION

GEOCENTRIC GEOMETRY OF ECLIPSES

Eclipse reckoning is one of the most important functions of Indian astronomy.
Indian calendars are fundamentally keyed to the ritually significant instants

of luni-solar opposition and conjunction or full and new moon, the so-called
parvans (syzygies) at which lunar and solar eclipses respectively occur (the term
may also be used for the eclipse phenomenon itself). The Indian ‘lunar day’ or
tithi, of which there are exactly thirty in a synodic lunar month between two
successive conjunctions or oppositions, is defined so that the parvans occur at
the ends of the fifteenth and the thirtieth tithi. The regular solar day, on the other
hand, is the time between two successive sunrises (or midnights), conventionally
divided into 60 equal time-units called ghaṭikās or nāḍīs.

Sun

Earth

Moon

Sun

Earth

Moon

Figure 2: Lunar eclipse configurations showing qualitative effects of variations in the distances of
the moon and sun from the earth
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clemency montelle and kim plofker 5

A lunar eclipse takes place at a full moon or opposition when the earth in-
terposing between the moon and the sun darkens the moon with its shadow. It
is visible everywhere on earth where the moon is above the horizon. As shown
(greatly exaggerated) in figure 2, the apparent sizes of the disks of the moon and
the shadow are affected by small periodic changes in the geocentric distances of
the moon and the sun. When the moon is farther from the earth, its disk looks
smaller and so does the cross-section of the shadow cone where it intersects the
moon’s orbit. When the sun is closer to the earth, the earth’s shadow cone is
shorter, which also decreases the size of the shadow disk that the moon passes
through.

A solar eclipse occurs at new moon (conjunction) when the moon interposes
between the earth and the sun, preventing the sun’s rays from reaching some
points on the earth. It is visible only from a narrow strip of terrestrial localities
because the much smaller moon cannot block sunlight from an entire hemisphere
of the earth. Observers outside that strip, whose placement varies according to
the relative positions of the earth, moon and sun, will not notice any obscuration
of the sun’s disk. Both lunar and solar eclipses may be either total, implying that
the disk of the eclipsed body is at some point completely obscured, or partial if
some fraction of it always remains clear.

Observers who can see a solar eclipse will perceive its position in the sky
differently depending on the amount of lunar parallax at their locality: i.e., the
apparent displacement of the geocentric position of the moon against its back-
ground of stars due to the fact that the observer is not on the straight line between
the moon and the earth’s center. This phenomenon is illustrated on the left side
of figure 3, which shows the ‘depressing’ effect of the parallax angle p appearing
to shift the moon downwards, i.e., closer to the local horizon of the observer at P.
The parallactic shift is zero for the moon at the observer’s zenith and increases
to its maximum as the moon gets closer to the observer’s horizon. (Parallax shift
for the sun is much smaller because of the sun’s greater distance, and is generally
ignored in eclipse computation.)

COMPUTING ECLIPSE DATA IN INDIAN ASTRONOMY

Indian astronomy texts typically place the bulk of their eclipse computation al-
gorithms in their discussion of lunar eclipses, which precedes a shorter treat-
ment of solar ones. They enumerate around a dozen separate eclipse elements
to be determined by computation; the seventh-century astronomer Brahmagupta
cites fourteen in the lunar eclipse chapter of his Brāhmasphuṭasiddhānta (4.1–3)
(Dvivedī 1901–1902, 72). These include time of apparent syzygy (velā), dura-
tion of eclipse (sthiti), instant of first contact (sparśa), instant of release (mokṣa),
duration of totality (vimarda), beginning of totality (sanmīlana, nimīlana), end of
totality (unmīlana), magnitude of obscuration (grāsa), obscuration at a given time

history of science in south asia 2 (2014) 1–62



6 karaṇakesarī of bhāskara

O

P p

Z

ecliptic

horizon

moon

V

Figure 3: Effect of parallax angle p on perceived position of the moon viewed from earth’s surface

(iṣṭagrāsa), ‘shadow’ or apparent diameter of earth’s shadow (chāyā), direction
of impact (diś), colour of eclipsed body (varṇa), inclination to cardinal directions
(valana), and graphical projection or diagram (parilekha). Of course, this list also
implies knowledge of other necessary quantities, such as apparent diameters and
velocities of the luminaries at a desired time.

Occurrence. The astronomer is chiefly concerned to determine whether,
when and how an eclipse at a particular syzygy will appear in the sky at his
own locality. Eclipses are more rare than syzygies because the moon’s orbit
and the apparent orbital path of the sun (the so-called ecliptic) are slightly
inclined to each other: as long as the moon is sufficiently displaced in celestial
latitude north or south of the plane of the ecliptic, it passes through opposition
or conjunction without ever intercepting the earth’s shadow or sun’s disk,
respectively. The elongation of the moon’s position from an orbital node, i.e.,

history of science in south asia 2 (2014) 1–62



clemency montelle and kim plofker 7

one of the two diametrically opposed points at which its orbit intersects the
ecliptic, determines its latitude. The latitude in turn determines the so-called
eclipse limits within which an eclipse is possible (see verse 1.2 in section 4
below) and whether the eclipse will be partial or total.

WE

S

NDirection 

of lunar

motion 

on orbit

shadow

Figure 4: The moon at first contact, mid-eclipse,
and end of totality in a total lunar eclipse, as seen
in the sky by a south-facing observer

Phases. There are five phases of a
total eclipse considered significant by
Indian astronomers: the moments of
sparśa, sanmīlana, mid-eclipse or ma-
dhya, unmīlana and mokṣa. The first,
third and fourth of these phases are
illustrated in the diagram of a total
lunar eclipse in figure 4. In a par-
tial eclipse, by definition, there is no
period of totality so sanmīlana and
unmīlana do not occur.

Magnitude. The amount of ob-
scuration of the eclipsed body, or ec-
lipse magnitude, is a linear quantity
measured along the diameter of the
eclipsing disk. It depends on the ap-
parent diameters of the eclipsed and
eclipsing disks (which are inversely
proportional to their angular velocities) as well as on the lunar latitude (see verses
1.3–4).

Deflection. In figure 4 the moon’s passage through the shadow is tilted with
respect to the cardinal directions: this is the so-called valana ‘inclination, deflec-
tion’, which is deemed especially significant for astrological purposes. This fea-
ture has antecedents in ancient West Asian astronomy and its Greek successors,
where it is known as prosneusis ‘inclination, pointing’. In the Indian tradition,
the valana is divided into two components (see verses 1.5–7):

• akṣavalana accounting for the southward sag of the body’s projection onto
the celestial equator from the east-west prime vertical circle, proportional
to the local terrestrial latitude and the so-called nata or depression of the
luminaries from the meridian or the zenith;

• ayanavalana representing the skew between the celestial equator and the
ecliptic at that position, computed based on the ecliptic declination of a
point determined by the sun’s position with respect to the equinoxes and
solstices. (Consequently, its celestial longitude has to be adjusted for pre-
cession or the slow motion of the equinoxes and solstices over time.)

The total valana is the algebraic sum of these two components.

history of science in south asia 2 (2014) 1–62



8 karaṇakesarī of bhāskara

Parallax. In most early astronomy, the moon’s parallax was computed as a
single function of its zenith distance (Montelle 2011, 123–125). In the Indian tra-
dition, however, two components of lunar parallax are computed independently;
indeed, there is no general term in Sanskrit for ‘parallax’ per se, or the angle here
termed p. The two orthogonal parallax components are based on the coordin-
ates of celestial longitude and latitude with respect to the ecliptic or apparent
orbital path of the sun (see verses 2.3–6). The right side of figure 3 illustrates
them for the moon positioned approximately on the ecliptic. Longitudinal par-
allax (lambana) along the ecliptic is determined chiefly by the distance of the body
from the nonagesimal V, a point on the ecliptic 90◦ west of the ascendant or inter-
section point of the ecliptic with the eastern horizon. Latitudinal parallax (nati)
perpendicular to the ecliptic is based on the zenith distance of the nonagesimal,
hence dependent on the situation of the ecliptic with respect to the local zenith
Z. Each of these components is considered to have a theoretical maximum more
or less equivalent to the angular distance the moon moves in 4 ghaṭikās of time,
i.e., about 53 arcminutes (a little under 18 digits). This arc is in fact approxim-
ately the maximum lunar parallax attested in other ancient astronomy traditions
(Montelle 2011, 125, 241–244).

Diagram. The valana and magnitude for any eclipse are to be depicted in a
graphical representation: namely, a diagram or set of diagrams portraying its
characteristics and key phases (see verses 1.10–13). Careful instructions are usu-
ally given for geometrically constructing the disks of the obscuring and obscured
bodies, the directions of the ecliptic and lunar orbit, and the trajectory of the ec-
lipsed body in the diagram. Most works also enumerate the varying colours of
the eclipsed body. Various shades of reds, blacks, and browns are mentioned
(e.g., dhūmra, kṛṣṇa, kapila, rakta) and are often correlated to the phases of the ec-
lipse, or sometimes to its position in the sky. These are presumably intended to
help determine the astrological significance of the event.

3. RELATIONSHIPS BETWEEN TABLES AND TEXTS

The verses of the Karaṇakesarī text have a different emphasis than those found
in the Sanskrit astronomical genres of treatises and handbooks (siddhāntas

and karaṇas), whose versified algorithms and parameters constitute a standalone
system of computation for astronomical prediction. The primary role of the Kara-
ṇakesarī ’s verses, on the other hand, is to support a set of tables; to this end,
much of their content concerns the selection and manipulation of table entries to
produce a desired result. These verses, along with the titles and marginal notes
found in the tables themselves, offer insight into the complex interplay between
numerical data and text.

However, the Karaṇakesarī ’s approach remains closely connected to those of

history of science in south asia 2 (2014) 1–62



clemency montelle and kim plofker 9

earlier works in the siddhānta and karaṇa genres, in both direct and subtler ways.
We consider some of these connections below.

DEPENDENCE OF THE KARAṆAKESARĪ ON EARLIER TEXTS

Bhāskara’s parameters for mean lunar and nodal motion are typical of the
‘school’ in Indian astronomy known as the Brāhmapakṣa, dating from at least
the 7th century CE. Moreover, his assumption that the precession correction was
zero in year 444 of the Śaka era (see verse 1.9 below) was shared by such earlier
authors as Parāśara, Pṛthūdakasvāmin, and Āmarāja.3

In addition to this common scientific heritage, the Karaṇakesarī relies directly
on previous compositions for much of its textual content. Two of its sources that
can be confidently identified, due to the author’s own acknowledgement or to
obvious borrowing, are both karaṇa texts consisting solely of verses with no ac-
companying sets of tables: namely, the Karaṇakutūhala of Bhāskara II (Mishra
1991, Balacandra Rao and Uma 2008, epoch 1183 CE) and the Grahalāghava of Ga-
ṇeśa (Jośī 2006, Balacandra Rao and Uma 2006, epoch 1520 CE). The Karaṇakesa-
rī ’s indebtedness to these works manifests itself in a number of different ways:
Bhāskara may excerpt phrases or entire pādas and integrate them into his text,
paraphrase an existing algorithm or technique, or use data extracted from an-
other text as a basis from which to compute one of his tables.

For instance, one of his table titles explicitly states that its numerical data is
based on a work called the Siddhāntarahasya, a well-known alternative name for
the Grahalāghava (Pingree 1970–1994, 2, 94):

atha karaṇakesarigraṃthokte siddhāṃtarahasye sūryeṃdvoḥ parvana-
yanārthe caṃdrasya koṣṭakā . . .
Now, tables of the moon for the sake of computation of eclipses of the
sun and the moon in the Siddhāntarahasya as expounded in the book
Karaṇakesarī. (MS. P1, f. 4r)

Similarities in parts of the accompanying text as well as the procedures described
confirm this dependence. For instance, Bhāskara’s description of parallax and his
application of parallax to produce true half-durations (see verses 2.5–6) parallel
the procedures set out in the Grahalāghava.

The inspiration that our author derived from the Karaṇakutūhala is partic-
ularly evident in his description of the graphical projection of an eclipse, as
well as his determination of parallax. Karaṇakesarī 1.10–13 contains several pā-
das identical to ones in Bhāskara II’s section on graphical projection. The Kara-
ṇakesarī ’s table for determining longitudinal parallax (see verse 2.3) is based on
a much briefer versified table in Karaṇakutūhala 5.4–5: the Karaṇakesarī linearly

3 See Pingree (1981, 13–16) for parameter
values and Pingree (1972) for a discussion of

precession in Indian astronomy.
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10 karaṇakesarī of bhāskara

interpolates between the Karaṇakutūhala’s nine specified values to produce a cor-
responding value for each of its 90 degrees of argument.

In addition, Bhāskara has drawn from non-astronomical sources in construct-
ing his verses: for example, verse 2.1 imparts aphoristic wisdom lightly para-
phrased from literary classics or traditional Subhāṣita works (proverbs and epi-
grams; see footnote 27).

INTERDEPENDENCE OF THE KARAṆAKESARĪ ’S TABLES AND TEXT

Bhāskara’s verses are intended both to supplement and to explain the tables:
most of the text makes no sense without the information contained in the layout
and headings of the tables, and the tables would be useless without crucial para-
meters and computational steps supplied by the text (or, in many cases, lacking
in the text and presumably supplied by the user’s own knowledge). The focus
of the prescribed procedures shifts back and forth between computational al-
gorithms in the verses and the numerical entries in the tables: while many verses
directly refer to operations with tabular values, others merely clarify the concepts
being discussed or specify procedures that are unconnected with the table data.
Conciseness of expression is also balanced against practical convenience in the
user’s computations.4

Thus the Karaṇakesarī is in some sense not so much a self-contained set of
tables as an abbreviated handbook or karaṇa with some computational proced-
ures and parameters replaced by table entries.

MS. J’S WORKED EXAMPLES FOR USING THE KARAṆAKESARĪ

RORI Jaipur 9757 (MS. J), a 1761 manuscript of 6 folia, is written in a mixture
of regular technical Sanskrit and an early modern Indo-Aryan vernacular.5 It
consists of two detailed udāharaṇas or worked examples of calculations with the
Karaṇakesarī tables according to the procedures described in its text. The first of
these is for a lunar eclipse whose date is given (f. 1r) as Wednesday, the fifteenth
tithi of the bright half of Āśvina in Saṃvat 1801, Śaka 1666. If the Śaka year is
taken as expired rather than current, this appears to correspond to Wednesday
21 October 1744 CE, to which a (partial) lunar eclipse is also assigned by modern

4 For example, the construction of the
graphical projection of an eclipse in 1.10–13 is
distinct from the table manipulations, while the
algorithm for correcting longitudinal parallax
in verse 2.3 requires the user to divide by 40
the values in the corresponding table on f. 10r.
It would seem more convenient from the user’s
point of view to have constructed the table with
its entries pre-divided by 40 in the first place.
Likewise, limiting an angular table argument to

the first quadrant reduces the table’s size, but
imposes on the user the additional task of redu-
cing arbitrary arcs to first-quadrant equivalents
(which Bhāskara explains how to do in verse
1.7).

5 A characteristic blend of the two forms is
seen in these sentences from f. 1r, line 10:

atha sūryasādhanaṃ ||
prathamaje avadhīmāhegrahegrahaṇathā-

yetenosūryamadhyama

history of science in south asia 2 (2014) 1–62



clemency montelle and kim plofker 11

calculations.6 The second eclipse, a solar one, is said (f. 3v) to have taken place
on Sunday, the new-moon tithi of the dark half of Māgha in Saṃvat 1748 or Śaka
1613: i.e. (again taking the calendar year as expired), Sunday 17 February 1692,
when an annular solar eclipse would have been visible as a partial eclipse in most
of the South Asian subcontinent.

We have occasionally used these examples to elucidate some point about the
Karaṇakesarī text or tables in our discussion of them in section 4, but we are de-
ferring a detailed study of MS. J to a more thorough investigation of the tables
themselves, as proposed in section 1.

4. KARAṆAKESARĪ : TRANSLATION AND COMMENTARY

śrīgaṇeśāya namaḥ || śrīgurubhyo namaḥ || śrīsāradāyai namaḥ || atha
karaṇakeśarī likhyate ||
Homage to Gaṇeśa. Homage to the Gurus. Homage to Śāradā.7 Now the Kara-
ṇakesarī is written.

1.1 SALUTATION

śrīkṛṣṇacandracaraṇaṃ praṇipatya bhaktyā
jyotirvidāṃ bahuvidām abhivandanaṃ ca ||
kṛtvā kavīndrakulabhūṣaṇabhāskarākhyo
rāmātmajaḥ karaṇakeśarim ātanoti || 1 ||

Having bowed to the feet of Śrī Kṛṣṇa with devotion, and making respectful sa-
lutation to the very learned knowers of jyotiṣa, the one called Bhāskara, the or-
nament of the Kavīndra family (kula), the son of Rāma, illuminates the Karaṇa-
kesarī.

VERSE ANALYSIS

Metre: vasantatilakā.
This invocatory verse introduces the author of the Karaṇakesarī, Bhāskara, and

makes reference to his lineage. Bhāskara is the son of Rāma, a descendant of a
family (kula) called Kavīndra.8 As well as being a proper name, bhāskara ‘light-

6 Both historical eclipse events mentioned
here were established via the USNO Eclipse
Portal, astro.ukho.gov.uk/eclbin/query_
usno.cgi.

7 Śāradā is another name for Sarasvatī. The
manuscript gives the variant form Sāradā.

8 We do not know who is meant by the term

‘Kavīndra family’. The name is reminiscent of
the famous Kavīndrācārya (see Sastry (1921)),
but he is said to hail from one Puṇyabhūmi
identified with Paithan near Aurangabad in the
Deccan, while our author appears to identify
himself as a member of the Moḍha Brahmanas
associated with the Gujarat area (see verse 2.7).
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12 karaṇakesarī of bhāskara

maker’ is a noun that means ‘the sun’. Thus Bhāskara has invoked a pun on his
own name; he will naturally be the one to ‘illuminate’ (ātanoti, from the Sanskrit
verb ā-tan, to illuminate, to spread light) astronomical techniques and principles
in the Karaṇakesarī.

In the last pāda or quarter-verse, the accusative form of the name Karaṇakesa-
rī (‘the mane-bearer/lion among karaṇas’, i.e., pre-eminent) is rendered -kesarim
rather than -kesariṇam to conform to the requirements of the metre.

1.2 LUNAR NODE ELONGATION

śako rāmaviṣṇupadāṅgendu 1603 hīno
viyadrāmacandrair hṛto 130 labdhaśeṣau ||
yutau copakarṇaṃ hy avadhyanvitaṃ tat-
sapātendutātkāliko bāhubhāgaiḥ || 2 ||

The [current] Śaka year is decreased by 1603 [and] divided by 130, and [the tabu-
lar entries corresponding to the amounts given by] the quotient and remainder
are added [together]. The ‘result’ (upakarṇa) is increasedby [the tabular amount
corresponding to the number of elapsed] avadhis. That [resulting sum] is the
[lunar node’s elongation from the sun corresponding to the] ‘lunar elongation’
(sapātendu) at that time.

VERSE ANALYSIS

Metre: bhujāṅgaprayāta;9 the first pāda is hypometric.
The term upakarṇa is puzzling. In a mathematical context, karṇa (literally

‘ear’) means ‘diameter’ or ‘hypotenuse’. Context suggests it refers to a different
quantity, discussed below.

The last word in the fourth pāda, namely bāhubhāgaiḥ, belongs to the next
verse.

TECHNICAL ANALYSIS

This verse gives a rule for determining the longitudinal elongation between the
sun and the lunar node on the ecliptic (in zodiacal signs, degrees, minutes, and
seconds) for a specified date. This elongation determines whether or not an ec-
lipse will be possible.

In principle, the eclipse limit is determined rather by the elongation of the
moon from its node, as suggested by the term sapātendu, literally ‘(the longitude

9 This metre, a form of jagatī (12 syllables in
a pāda), is comprised of the four-gaṇa sequence

ya ya ya ya. For details, see for instance, Apte
(1970, vol. 3, Appendix A, p. 5).
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of) the moon increased by (the longitude of) its node’ (see section 2).10 However,
as noted above and confirmed by the headings of the associated tables discussed
below, the quantity tabulated is instead the elongation of the sun (sūryasya) from
the moon’s node. We reconcile this seeming contradiction by noting that the sun
and moon at an instant of true syzygy are by definition either 0◦ or 180◦ apart,
so the absolute value of their nodal elongations at that instant will be the same.

The verse explains how to extract and combine the relevant tabular data,
whose behavior we reconstruct as follows. The node-sun elongation for the total
time since epoch is dependent on the fundamental period relation between time
and the revolutions of the node. The parameters appear to be derived from the
Brāhmapakṣa tradition in which the moon’s node makes −232,311,168 revolu-
tions (the negative sign indicates retrograde motion) in 4,320,000,000 years. This
produces the following mean yearly motion for the node:

−232, 311, 168 × 360

4, 320, 000, 000

= −19; 21, 33, 21, ...◦/year

Since the sun returns to the same zero-point of longitude at the start of every
(sidereal) year, the mean yearly increment in the node’s elongation from the sun
is identical to its mean yearly (negative) increment in longitude.

If Y is taken to be the current Śaka year, then the prescribed algorithm divides
the difference between Y and 1603 (which we infer to be the epoch year of the
tables in the Śaka era) by the constant term 130. The quotient, which we will call
E, consists of an integer result (the number of completed 130-year periods) plus
a remainder (the number of single years subsequently completed):

E =
Y − 1603

130

.

The total time since epoch is broken into three parts:
• the number of completed 130-year intervals elapsed since the epoch (the

integer part of E, called labdha or ‘quotient’ in the table heading);

• the number of completed single years elapsed in the current 130-year
period (the fractional part of E, called śeṣa or ‘remainder’);

• and the number of completed 14-day intervals elapsed in the current year
(avadhis, described in the table heading as candrasya koṣṭhakā or ‘table entries
of the moon’ despite the fact that we are computing nodal-solar rather than
nodal-lunar elongation).

10 The reason that this ‘increase’ or sum
actually signifies longitudinal elongation of the
moon from its node is that the node revolves
in the ‘backwards’ or westward direction, mak-

ing the nodal longitude negative. Adding the
positive lunar longitude to the negative nodal
longitude gives the elongation between them.
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These three quantities are the arguments in the three associated tables: the
elongation (modulo integer revolutions) computed for successive numbers of
130-year intervals from 1 to 130 (f. 3r), the elongation computed for numbers of
1-year intervals from 0 to 130 (f. 3v), and the elongation computed for successive
numbers of 14-day avadhis from 1 to 27 (f. 4r). (So in principle, the tables would
be valid for more than 130 × 130 = 16, 900 years after the epoch date!)

The sum of the tabular entries in the first two tables corresponding to the
quotient and remainder parts of E gives the total amount of elongation corres-
ponding to the beginning of the chosen year, called in the verse upakarṇa. Then,
considering the number of 14-day periods that have elapsed since the start of the
year, the appropriate tabular entry from the third table can be added to produce
the elongation for the chosen date within that year.

The first two tables are based on the assumption that the elongation changes
linearly, with a constant difference from one entry to the next. In the table of
1-year increments this constant difference is −19

◦; 21, derived from the period
relation shown above (apparently truncated rather than rounded). In the table
of 130-year increments the constant difference is −3

◦; 16, 20, evidently derived as
follows:

In one year, the absolute value of the elongation = 19; 21, 34

In 130 years the elongation = 19; 21, 34 × 130

= 2516; 43, 40

Elongation modulo integer revolutions = 7 × 360 − 2516; 43, 40

= 2520 − 2516; 43, 40

= 3; 16, 20

This table of one-year increments also incorporates an epoch correction in its
first entry—that is, it begins with the value 6

s, 29
◦; 24, 36, which is presumably

the amount of elongation at the beginning of 1681 CE or Śaka 1603. Although
Bhāskara does not specify exactly what calendar moment he associates with this
value, we assume that he equates the year-beginning with caitraśuklapratipad (the
first new moon after the vernal equinox) which according to modern retrodiction
corresponds to noon 20 March 1681.11

11 This converted date was computed us-
ing Michio Yano’s online Pañcāṅga program for
the date śuklapakṣa 1 of (amānta) month Caitra,
Śaka 1603. See http://www.cc.kyoto-su.ac.
jp/~yanom/pancanga/. In fact, a solar eclipse
took place at this conjunction, but it was not
visible anywhere on land. Reconstructing the

epoch correction from the Brāhmapakṣa kalpa
parameters with the total number of elapsed
years equal to 1972948782 (i.e., the accumu-
lated years up to the start of the Śaka era plus
1603 within the Śaka era) gives the proportional
amount of nodal longitude in degrees accumu-
lated at the epoch:
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The third table tabulates the change in elongation for each of the 26 14-day
periods (avadhis) during the solar year, plus a 27th entry to account for the
leftover day after the first 26 × 14 = 364. The division of the year into these
14-day intervals is particularly useful for eclipses as conjunction and opposition
occur roughly two weeks apart.

Figure 5: An excerpt from the table of the change in elongation for each avadhi, f. 4r

Table 1: The changes in elongation for the 14-day avadhis during the year

Argument Row 1 Row 2 Row 3
1 0 2 19 55 61 46 1 ∥ ṛ
2 0 16 41 1 61 21 2
3 1 0 56 10 60 53 2
4 1 15 5 26 60 26 1
5 1 29 10 35 60 16 0 ∥
6 2 13 12 50 60 7 0 ∥ ṛ
7 2 27 14 8 60 5 1 dha
8 3 11 16 1 60 13 1
9 3 25 20 26 60 26 1

10 4 9 28 57 60 53 2
11 4 23 42 48 61 11 2
12 5 8 3 0 61 42 2

Table contd…

divmod((−232311168) ∗ (1972948782),
4320000000) = (−106096768, 1809402624)

N(1809402624 ∗ 360/4320000000) =
150.783552000000

Recall that this nodal longitudinal increment of
approximately 150 degrees or 5 signs is neg-
ative; when added to 0◦ of solar longitude it

comes out to a little less than 7 signs of nodal-
solar elongation, which more or less corres-
ponds to Bhāskara’s epoch value 6s,29◦;24,36.
The sun is not usually exactly at 0◦ longitude
at the caitraśuklapratipad conjunction, but in this
case it appears to have been very close to it.
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16 karaṇakesarī of bhāskara

Table 1 contd…

Argument Row 1 Row 2 Row 3
13 5 2[2] 30 39 62 14 2
14 6 7 5 27 62 51 2
15 6 21 48 7 63 18 2
16 7 6 37 34 63 44 2
17 7 21 33 11 64 7 2
18 8 6 33 34 64 31 0 | dha
19 8 21 35 47 64 33 0 | dha
20 9 6 39 40 64 41 0 | ṛ
21 9 21 43 21 64 30 1
22 10 6 43 21 64 16 1
23 10 21 46 16 6⟨4⟩[3] 59 1
24 11 6 39 35 63 21 1 |
25 11 21 16 25 62 56 2
26 0 5 53 20 62 26 2
27 0 20 22 9 61 56 1 ṛ

Unlike the previous two tables, the avadhi table contains a non-linear se-
quence of values: that is, the differences between successive entries are not con-
stant, but vary sinusoidally. It also differs from them markedly in structure, with
three rows of data below each of its 27 argument values. (See figure 5 for an ex-
ample of its format in the manuscript, and table 1 for a complete reproduction
of its content. In this reproduction, which displays the original rows vertically
rather than horizontally for convenience in layout, an unmistakable scribal error
is marked off by angle brackets and missing correct values are supplied within
square brackets.)

The first row contains the increment in elongation while the second, labeled
gatayaḥ ‘(daily) motions’, gives the true velocity of the elongation between sun
and lunar node, presumably for the beginning of each avadhi. The minimum
value of this velocity is 60’;5 at avadhi 7 and the maximum 64

′; 41 at avadhi 20.
These extrema evidently fall respectively at the solar apogee, where the sun’s
motion is slowest, and the perigee where it moves fastest; see verse 1.3 below.
The third row, which is unlabeled, contains entries of 0, 1 and 2 in a distribution
whose rationale is unclear, occasionally accompanied by symbols for the nāga-
rī characters dha and ṛ, standing for dhana and ṛna or ‘positive’ and ‘negative’
respectively. The positive and negative symbols appear to be applied consistently
with the transitions from increasing to decreasing values of the velocity in the
second row. The entries in the third row may thus form part of some second-
difference interpolation rule that Bhāskara’s text does not explain.
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It may be that the reason for the non-constant differences between the entries
in the first row is that the variation in solar velocity has been taken into account.
That is, the elongation per avadhi could have been computed via the following
relation:

Elongation per avadhi = 14v
(◦/day)
sun + 14v

(◦/day)

node
where vsun is the true velocity of the sun and vnode is the mean velocity of the
node. The average difference between entries is about 14

′; 30, which more or less
agrees with the fact that the mean sun is moving approximately 0

◦; 59 per day
and the lunar node roughly 0

◦; 44, 20 in the opposite direction over 14 days:

‘Average’ value of increments = 0; 59 × 14 + 0; 44, 20

= 13; 46 + 0; 44, 20

= 14; 30, 20

This reconstruction approximately describes but does not exactly reproduce the
entries in the table.

1.3 LUNAR LATITUDE AND SIZES OF DISKS

mitaiḥ koṣṭhakair aṅgulādiḥ śaraḥ syāt
sapātasya bhuktyupari helibimbam ||
tither mānaghaṭyoparī candrabhūbhe
tulājādiṣaḍbhonayuk spaṣṭakubhā || 3 ||

The latitude in digits and so on should be [determined] by the table entries com-
mensurate with the degrees of the bāhu [arc of elongation; see the end of the
previous verse]. [The diameter of] the disk of the sun [has as its] superscribed
[argument] the daily velocity of the [moon increased by its] node. [The diameter
of] the moon and the shadow of the earth [have as their] argument the meas-
ure of ghaṭikās in a tithi. [That, i.e., the diameter of the shadow of the earth] is
decreased or increased by [the appropriate tabular entry according as the sun
is in] the six signs beginning with Libra or with Aries [respectively]. [This is] the
corrected shadow of the earth.

VERSE ANALYSIS

Metre: bhujāṅgaprayāta.
The metre and/or the grammar in this verse are defective in several instances,

and we have tried to compromise between respecting their requirements and ac-
cepting the manuscript readings. In the second pāda, the last syllable in upari
should be heavy for the sake of the metre, but we leave it light as the correct
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ending for a neuter nominative singular i-stem bahuvrīhi compound agreeing
with the neuter noun bimba that it modifies. Likewise, the third pāda contains
a dvandva compound ending in bhā (f. ‘shadow’) in the manuscript; we have cor-
rected it to the feminine nominative dual ending -bhē and made the final vowel
of upari long in the preceding bahuvrīhi compound to agree with it. In the fourth
pāda, the syllable ku (f. ‘earth’) should be long for metrical purposes.

The above compound forms with upari, an indeclinable adverb meaning
‘above, upon, on’, are peculiar to this type of technical terminology. Like other
adverbs, upari can be used as a modifying element in a compound, as in uparikuṭī
meaning ‘upper room’. But in this verse and in many of the table titles, it is used
instead as the primary member of a bahuvrīhi compound: e.g., bhuktyupari ‘having
the velocity [as its] superscribed [argument]’.12 The numbers indicating the val-
ues of that argument are written above or at the tops of the respective columns.

Interestingly, the first part of the compound word heli-bimba meaning ‘disk of
the sun’ is a loan-word derived from the Greek helios.

TECHNICAL ANALYSIS

The apparent sizes of the disks of the eclipsed and eclipsing bodies and the dis-
tance in latitude between their centers are necessary for determining the amount
of obscuration. Qualitatively, the latitude of the moon on its orbit is proportional
to its elongation or distance from its node, with the maximum latitude (conven-
tionally 4

◦; 30 or 270
′ (Pingree 1981, 16), equivalent to 90 aṅgulas or digits of linear

measure) occurring when the moon is 90
◦ from the node. And the apparent size

of the disk of sun or moon depends on its distance from the earth, which is pro-
portional to its apparent angular velocity. The size of the earth’s shadow also
depends on the distances of the moon and sun from the earth (as the moon gets
closer it passes through a wider circular cross-section of the shadow cone, while
the sun getting closer makes the shadow cone shorter; see figure 2 in section 2).
The mean apparent size of the disk of the moon or the sun is realistically as-
sumed in Indian astronomy to be about 32 arcminutes or 10–11 digits, while that
of the shadow disk is about 1; 21

◦ or 27 digits (Montelle 2011, 223). This verse
explains how to adjust these values to find their true sizes at a given time, which
will determine the appearance of the eclipse.

The first part of the verse refers to the table of lunar latitude on f. 4r, which
has three rows. The first is labeled bhujāṃśa (‘degrees of the bhuja’ or bāhu, both
meaning ‘arc’ or ‘angular argument’), ranging from 0 to 16. A note in the margin
asserts that this argument refers to the moon’s elongation from its node (atha
sapātacandrabhujāṃśopari. . .). Evidently, any nodal elongation greater than 16

◦ is

12 The use of upari as a technical term
meaning the argument of a table is attested in
other table texts as well, including Nāgadatta’s

Brahmatulyasāraṇī ; e.g., in MS. Poleman 4735
(Smith Indic 45) f. 7v.
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considered to negate the possibility of an eclipse and thus is not tabulated.
The second row, labeled śarāṃgulāḥ ‘digits of latitude’, runs from 0; 10 (evid-

ently a scribal error for 0; 0, since the accompanying value of the difference
between the first and second entries is equal to the second entry itself) to 24; 45 di-
gits. These latitude values appear to have been computed more or less in accord-
ance with a rule from the Karaṇakutūhala of Bhāskara II (verse 4.5, Balacandra Rao
and Uma 2008, S67) equivalent to setting the moon’s latitude in digits equal to 90
times the (modern) sine of its nodal elongation in degrees. For instance, by this
formula the maximum elongation of 16

◦ corresponds to a maximum latitude of
24; 48 digits, nearly identical to the Karaṇakesarī ’s 24; 45.

The third row gives the differences between successive entries in row 2, and
it is noted in the row header that this difference is always positive (’ṃtara sadā
dhanaṃ). The differences for entries 0 to 8 are 1; 34 and from 9 to 16, 1; 30.

The second pāda of the verse refers to the final table on f. 4r, which tabulates
the diameter of the disk of the sun (ravibimba) using as argument the daily elong-
ation of (presumably) the sun from the lunar node (sapātasya gatiḥ), which ranges
from 0

◦; 59, 56 to 0
◦; 64, 42 over twenty entries. This diameter of the sun (also in

digits, evidently) ranges from 10; 19 to 11; 11. Qualitatively, this relation makes
sense because the variation in the nodal-solar elongation depends on the change
in the sun’s apparent angular velocity (that of the node, which has no anomaly of
its own, is constant). That is, when the sun is moving faster, the daily nodal-solar
elongation is bigger and also the sun is closer to the earth, meaning that the solar
disk appears larger. (However, this adjustment may not have been indispensable
in a lunar eclipse computation: the compiler of the lunar-eclipse example in MS. J,
for instance, neglects it.)

The third pāda refers to a table on f. 4v, which has three rows. The first quan-
tifies the length of the Indian time-unit called the tithi, running from 52 to 67
ghaṭikās. (As remarked above in section 2, a tithi on average is one-thirtieth of a
synodic month or a little less than one civil day of 60 ghaṭikās. The so-called ‘true’
tithi, on the other hand, i.e., the time required for a 12

◦ increment in the elonga-
tion between the true longitudes of sun and moon, is of variable length because
it depends on their true velocities: the faster they move apart in longitude, the
shorter the current tithi will be.)

The table’s second row enumerates values of the diameter of the moon’s disk
from 11; 57 to 9; 30, and the third row the diameter of the earth’s shadow disk,
ranging from 30; 45 to 23; 11. Both these diameters, like that of the sun, are spe-
cified in digits. Their values seem to be based on the dependence of the apparent
diameters of moon and shadow upon the geocentric distance of the moon, which
is inversely proportional to its velocity. As previously noted, fewer ghaṭikās in a
tithi implies higher lunar velocity, and consequently a smaller lunar distance and
a larger apparent disk for both the moon and the shadow.
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Me[ṣa] Vṛ[ṣabha] Mi[thuna] Ka[rkaṭa] Si[ṃha] K⟨ā⟩[anyā] Sign-entries
0;11 0;16 0;20 0;16 0;1⟨6⟩[1] 0;0 Positive earth-shadow
Tu[lā] Vṛ[ścika] Dha[nus] Ma[kara] Kuṃ[bha] M⟨i⟩[īna] Sign-entries
0;11 0;16 0;20 0;16 0;11 0;0 Negative earth-shadow

Table 2: Transcription of the table in figure 6

The last pāda of this verse proposes a positive or negative incremental correc-
tion to the size of the disk of the shadow, depending on what zodiacal sign the
sun is in (positive when the sun is in the six signs beginning with Aries, negat-
ive otherwise; see figure 6 and table 2). The correction amount ranges from 0; 0

digits in signs ending at an equinox to 0; 20 digits in signs ending at a solstice.

Figure 6: The table of correction to the
size of the disk of the shadow, f. 4v

How these values were determined is
not entirely clear. But we can reconstruct
at least a qualitative justification for them
by appealing to Bhāskara II’s treatment in
the Karaṇakutūhala of the position and effect
of the solar apogee and the sun’s anomaly
(that is, its mean position minus the solar
apogee position, which in Karaṇakutūhala 2.1
he puts at about 78

◦ of sidereal longitude
(Balacandra Rao and Uma 2008, S15)). We
recall that when the sun is closer to the earth

and consequently more distant in anomaly from the apogee, it is perceived as
moving faster and shows a larger apparent disk, as well as shortening the earth’s
shadow cone. The formula for correcting the diameter of the shadow in Kara-
ṇakutūhala 4.7–8 (Balacandra Rao and Uma 2008, S69–70) takes this effect into
account by equating the correction to 3/67 of the true lunar daily motion minus
1/7 of the solar daily motion, implying that a larger true solar daily velocity
means a smaller shadow diameter.

The Karaṇakesarī likewise appears to locate the solar apogee somewhere
shortly before the beginning of Cancer, as the avadhi elongation table discussed
in verse 1.2 suggests: that is, it takes the sun 6 avadhis or about 84 days from the
start of the year at or near the beginning of Aries to attain its slowest velocity.
Consequently, a solar anomaly between 90

◦ and 270
◦ would mean more or less

that the sun is somewhere between the beginning of Libra and the beginning of
Aries, i.e., it seems faster and larger.

We are told in the present verse of the Karaṇakesarī to decrease the diameter
of the shadow by the tabulated correction when the sun is between Libra and
Aries, and to increase it otherwise, which qualitatively agrees with the rationale
above. Moreover, the table entries are also qualitatively consistent with it, since
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the largest corrections (both positive and negative) occur near a solstice (when
the sun is roughly at perigee or apogee, respectively), and the zero corrections
near the equinoxes where the true and mean solar velocity are about equal. How-
ever, it remains unclear whether or to what extent this rationale accounts quant-
itatively for the Karaṇakesarī ’s actual correction values.

1.4 ECLIPSE MAGNITUDE

chādyachādakamaṇḍalānvitadalaṃ kāṇḍonachannaṃ punaḥ
channaṃ grāhyavivarjitaṃ tu nikhile grāse ’pi khachannakam ||
channāṅkair mitakoṣṭhake sthitir bhavenmardasya khachannataḥ
śrībhānor udayāt tathāstasamayāt parvāntamadhyagrahaḥ || 4 ||
Half the sum of [the diameters of] the disks of the obscured and the obscurer
[is] the obscured amount [when it is] diminished by the [lunar] latitude. Again,
the obscuration is decreased by [the disk of] the eclipsed; and in a total eclipse
there is obscuration of the sky. In the table commensurate with the numbers [of
the digits] of obscuration is the half-duration. [There is also a table] of the half-
duration of totality [resulting] from sky-obscuration [i.e., in the case of a total
eclipse]. [A solar eclipse is visible] from the rising of the Lord Sun just as [a lunar
eclipse] from [its] setting. Mid-eclipse [is] the end of the parvan.

VERSE ANALYSIS

Metre: śārdūlavikrīḍita. The second syllable ought to be heavy, as should the six-
teenth syllable in each of pādas 2 and 3, suggesting that the author thought of the
following consonant cha in each case as doubled.

This verse illustrates Bhāskara’s tendency to prescribe the steps of an al-
gorithm before identifying the quantity it produces. It also exemplifies his
penchant for technically ungrammatical ways of forming and modifying com-
pounds. For instance, he expresses ◦dalaṃ kāṇḍonaṃ channaṃ ‘the . . . half-sum
diminished by the latitude [is] the obscured amount’ as ◦dalaṃ kāṇḍonachannaṃ,
literally ‘the . . . half-sum [is] the obscured amount diminished by the latitude’.13

TECHNICAL ANALYSIS

The amount of the channa or obscuration (C) is stated to be

C =
1

2

(R + r)− β,

where R and r are the radii of the obscurer and the obscured respectively and β
is the lunar latitude, all of which the user will have found from the procedures

13 This theoretically incorrect mixed con-
struction is by no means unique to Bhāskara,

however; see, e.g., Tubb and Boose (2007, 189).
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mentioned in the previous verse. As illustrated in figure 4 in section 2, C rep-
resents not the extent of the eclipsed body’s own diameter which is obscured,
but rather the depth to which the leading edge of the eclipsed body penetrates
within the disc of the eclipser. The second pāda defines ‘obscuration of the sky’,
i.e., excess of the obscuration C over the diameter 2r of the obscured disk, which
of course implies a period of totality in the eclipse. (The author of the example
in MS. J, for reasons unknown, instead (f. 1v, line 8) multiplies C by 20 and di-
vides it by the lunar disk’s diameter.) In principle, the greater the obscuration,
the longer the eclipse will last, and the greater the amount of ‘sky-obscuration’,
the longer the period of totality will be.

It follows that the second half of the verse invokes two tables, on f. 4v, that
tabulate the half-duration of the eclipse from the beginning of obscuration to
mid-eclipse, and the half-duration of totality (if any) from the beginning of total
immersion to mid-eclipse. It also adds the fairly trivial observation that solar
eclipses are visible when the sun is above the horizon and lunar ones when it is
not. The ‘end of the parvan’, as noted in section 2, refers to the syzygy moment at
the end of a tithi when the luni-solar elongation is either exactly 180

◦ or exactly
0
◦.

The argument of the half-duration table is the digits of ‘obscuration of the
moon’ (caṃdrachinnāṃgula, for caṃdrachannāṃgula?). Its maximum value of 21
digits evidently means that the maximum possible ‘obscuration’, with the center
of the moon coinciding with the center of the shadow, is taken to be equal to
the maximum value of the moon’s radius plus that of the shadow’s radius or
approximately 6 + 15 = 21 digits. Its corresponding table entries for the mean
half-duration (caṃdrasya madhyasthitighaṭi) are in ghaṭikās and run from 57; 30 to
55; 17. In fact, as the worked lunar eclipse example in MS. J (f. 1v, lines 9–10) makes
clear, these tabulated values must be subtracted from 60 to give the actual extent
of the mean half-duration, anywhere from 2; 30 to 4; 43 ghaṭikās. A separate table
at the bottom of this folio gives the differences of the successive tabulated entries.

The table of the half-duration of totality has three rows, the last of which
seems to be only an extension of the third row of a different table immediately
to the left of it, and contains only a (meaningless) zero in each cell. The first row
contains the table argument, the digits of ‘sky-obscuration’ (khachinnāṃgulopari),
running from 1 to 9. Again, the maximum value suggests that if the moon’s and
shadow’s centers coincide there will be 15 − 6 = 9 digits of shadow beyond the
edge of the moon. The second row contains the corresponding ghaṭikās running
from 59; 0 to 57; 54, apparently indicating a range of 1; 0 to 2; 6 ghaṭikās for the
actual half-duration of totality (mardaghaṭikā).

The last table on f. 4v, which is not alluded to in the text, lists the mean
solar longitude (with corresponding solar velocities and their interpolation dif-
ferences) for each avadhi from 1 to 27. The compiler of the MS. J example uses this
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table to get the mean solar position for his lunar eclipse date (f. 1v, line 10), which
he then adjusts to the true position (f. 2r, line 2).

1.5 BEGINNING AND ENDING OF ECLIPSES; ZENITH DISTANCE AND
AKṢAVALANA

sthityā mardena hīnaḥ sparśasanmīlane syuḥ
mardasthityānvite ’sminn unmilaṃmokṣasaṃjñam ||
khāṅkair nighnaṃ 90 nanāptaṃ ghasramāne natāṃśās
tānaiḥ 45 śodhyāṃśakoṣṭhe prākpare saumyayāmye || 5 ||

[The moment of mid-eclipse is] decreased by the half-duration [or] by the half-
duration of totality. These are the instants of first contact [or] beginning of total
immersion [respectively]. When that [i.e., mid-eclipse] is increased by the half-
duration of totality or the half-duration, it is called the beginning of emersion,
[or] release. Multiplying [the ‘time-arc’, time fromnoonorhour-angle] by90 [and]
dividing by its own in [the sense of] the day-measure, [the result is] the degrees
of [half] the zenith distance (nata). In the tabular entry for diminished degrees by
45 [one finds the akṣavalana]. [When the body is] East or West [of the meridian,
respectively, the (akṣa)-deflection is laid off] in theNorth or South [respectively].

VERSE ANALYSIS

Metre: maratatagaga.14

Lexically speaking, the Sanskrit word unmīla in pāda 2 (more usually unmīla-
na) should have a long ‘i’. However, it occurs in the verse with a short ‘i’ which
is required for the metre.

The word tāna in the last pāda is associated in the Sanskrit bhūtasaṃkhyā or
‘word-numeral’ system with the number 49.15 But in this context, the number
must mean 45 (and indeed in MS. R1 the numeral ‘45’ is written out). Bhāskara’s
nonstandard approach to compounding is again apparent in the use of the instru-
mental tānaiḥ ‘by 45’ to modify only the individual element śodhya ‘diminished’
in the following compound.

TECHNICAL ANALYSIS

This verse deals with the determination of the five significant moments in an ec-
lipse (see section 2). The first part of the verse shows how to find the beginning
of the eclipse or first contact and the beginning of totality, if any: namely, sub-
tract the length of the half-duration or the half-duration of totality, respectively,

14 This is a form of sakvarī, a 14-syllable
metre. Each pāda in maratatagaga is split into two
groups of seven. See Apte (1970, vol. 3, App. A,

p. 19).
15 See, e.g., Sarma (2003, 64).
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from the time of mid-eclipse or end of the parvan (which presumably the user
is expected to know from a calendar or some other source). Conversely, when
these same intervals are added to the mid-eclipse moment, the results specify the
instants of release (end of the eclipse) and beginning of emersion, respectively.

The second half of the verse concerns the akṣavalana or ‘deflection due to lat-
itude’. The ‘deflection’ or valana, as discussed in section 2, is the angle between
the directional axes determined by the more-or-less easterly movement of the ec-
lipsed body and the true local cardinal directions aligned with the prime vertical
circle and the prime meridian shown in figure 7: it is traditionally considered to
have ominous significance.16 The valana is conventionally given in the form of
two components, one due to the tilting of the celestial equator off the prime ver-
tical by the amount of terrestrial latitude (akṣavalana) and the other to the skew
between equatorial east and ecliptic east at the body’s current tropical longitude
(ayanavalana).

Instead of identifying or defining the quantity akṣavalana, this half-verse gives
a rule to find the zenith distance (nata ‘depression’, ζ)—or rather, half of it—
which is manipulated to become the argument in the table of akṣavalana. The
zenith distance depends on the hour-angle, or amount of time in ghaṭikās before
or after noon (which, somewhat confusingly, is also conventionally termed nata),
and the length of the body’s ‘own day’, i.e., the amount of time it is above the
horizon:

(half) ζ =
hour-angle × 90

own day measure
This rule is similar to a standard approximation appearing in, e.g., Karaṇakutū-
hala 4.14 (Balacandra Rao and Uma 2008, S80), which more or less converts hour-
angle (time) into zenith distance (arc) by the simple proportion ζ : 90

◦ :: hour-
angle : half-day.17 By using the whole ‘own day’ in place of the half-day in the di-
visor of this proportion, the Karaṇakesarī actually computes half the arc of zenith
distance. (Note also that this procedure does not include the information needed
to determine the length of the ‘own day’, which appears eventually in verse 1.9).

Theoretically, the relation of the zenith distance ζ to the akṣavalana is based on
the following geometric rationale. In figure 7, showing the celestial hemisphere
above the local horizon with zenith at Z, M is the deflected body and P and P′ are
the poles of the equator and ecliptic respectively (the latter is lifted off the rear
surface of the hemisphere for ease of viewing). Qualitatively, as noted above, the
local latitude or elevation of the pole P above the northern horizon is responsible
for the akṣavalana component of deflection, while the splay of the ecliptic away

16 For further details, see Montelle (2011,
229–230). The diagram in figure 7 is based on a
similar diagram in Chatterjee (1981, 125).

17 The relevant part of the Karaṇakutūhala

verse (Mishra 1991, 56) has clearly influenced
the phrasing of the Karaṇakesarī ’s rule:
khāṅkāhataṃ svadyudalena bhaktaṃ sparśe vimuk-
tau ca nataṃ lavāḥ syuḥ

history of science in south asia 2 (2014) 1–62



clemency montelle and kim plofker 25
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Figure 7: The akṣavalana ∠NMP and ayanavalana ∠P′MP of a body at M

from the equator produces the ayanavalana component. The total valana is thus
equal to the angle ∠NMP′. To compute its akṣavalana part ∠NMP, we note that
angle ∠MNP or arc ZQ is the projection of the body’s zenith distance ZM onto
the prime vertical, while PM is the complement of its declination δ and NP, the
elevation of the north celestial pole above the horizon, is the local latitude ϕ. By
the law of sines for spherical triangles, ∠NMP is trigonometrically determined
by

sin∠NMP =
sin∠MNP · sin NP

sin PM
Assuming that the hour-angle or nata converted to degrees of zenith distance ζ as
discussed above is approximately the same as∠MNP, this equation is equivalent
to a typical form of the rule for akṣavalana in Indian astronomy:18

sin akṣavalana =
sin ζ · sin ϕ

cos δ

Note that if the body is at the zenith and/or the latitude ϕ is zero, there is no
akṣavalana angle ∠NMP: the akṣavalana increases with both zenith distance and
latitude. The maximum akṣavalana for a given ϕ, when δ = 0 and ζ = 90

◦, is just
ϕ itself.

The Karaṇakesarī ’s akṣavalana table, on the other hand, requires a rather pecu-
liar manipulation of the half-ζ computed in this verse: the user is to subtract it

18 Variant forms of this rule also existed,
using slightly different functions or rougher ap-
proximations. The differing formulas for valana

and the disagreements about it between rival
authors are discussed in, e.g., Montelle (2011,
246–247).
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from 45
◦ and use the result as the argument in the table, which appears on f. 5r

and continues onto f. 5v. Its first row, the argument, labeled natāṃśa or ‘degrees
of nata’, runs from 0 to 45. The second row, labeled valana, is given in degrees,
minutes and seconds and runs from 22

◦; 35, 39 to 0. The third column, labeled
antara ‘difference’, gives the differences between successive entries in row 2.

10 20 30 40

5

10

15

20

Figure 8: Plot of tabulated values of akṣavalana
(dots), and the graph of arcsin(sin(90

◦ − ζ) · sin ϕ)
versus ζ/2 = 0 to 45

◦ for latitude ϕ = 22
◦; 35, 39

(line)

These akṣavalana values progress
backwards with respect to the or-
der one would expect from the akṣa-
valana equation shown above: for a
given ϕ and δ, the akṣavalana ought
to increase as ζ increases. As we
can see in figure 8, the values in the
table actually conform to the graph
of a ‘reversed’ akṣavalana function,
arcsin(sin(90

◦ − ζ) · sin(22
◦; 35, 39),

where it is assumed that ϕ =
22

◦; 35, 39 and δ = 0. This and
the instruction tanaiḥ śodhya◦ ‘di-
minished by 45’ inform us that the
actual table argument running from

0 to 45 is 45
◦ − ζ/2: in other words, the table entries are given for every two de-

grees of zenith distance starting at 90 (when the akṣavalana attains its maximum
value ϕ if δ is 0) and ending at 0.

Bhāskara’s final remark about directions can be justified as follows: When
the eclipsed body is east of the meridian, the equator-east direction skews north
of the easterly direction parallel to the prime vertical, so the akṣavalana is north.
When the body is west of the meridian, on the other hand, the akṣavalana is south.

The awkwardness of the Karaṇakesarī ’s presentation as a guide to actually
using the tables is indicated by the way the author of the worked example in MS. J
handles these calculations. First he corrects for precession (f. 2r, line 4) the true
solar longitude that he found at the end of the procedure in the previous verse.
This precession-corrected longitude is entered into a table described in verse 1.9
to get the length of the half-day (f. 2r, line 5). Then he follows the directions in
verse 1.5 to find the moment of first contact (f. 2r, lines 10–11; there is no period
of totality since the example concerns a partial eclipse), and determines the nata
and its direction in accordance with the rule in verse 1.8 (f. 2v, lines 3–4). He then
proceeds to compute the valana as specified (f. 2v, line 11–f. 3v, line 4).
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1.6 AYANAVALANA

yāmyottare diśi grahasya yutāyanāṃśāḥ
koṭyāṃśakeṣu valanāntaraguṇyayuktam ||
yogāntarāṃśapramite valanaṃ sphuṭaṃ syāt
sūryasya grāsavidhumokṣavilomadeyam || 6 ||
In the south [or] north direction, the precession-increased degrees of [the lon-
gitude of] the planet [determine the ayanavalana in the same direction re-
spectively]. [The difference between the precession-increased degrees and the
nearest table argument is] multiplied by the [tabulated] valana-difference and
applied to the degrees of the complement [of the precession-increased longit-
ude]. The valana [determined] in the amount of the degrees of the sum or the
difference [of the two components] should [now] be accurate. [In the case of an
eclipse] of the sun, [the valana] is given in the reverse order of release [and first
contact] from [the case of] the eclipsed moon.

VERSE ANALYSIS

Metre: vasantatilakā.
In Bhāskara’s prosody, a consonant conjoined with a following ‘r’ appears

to be counted as a single consonant that does not make the preceding syllable
heavy. This can be seen in the present verse in, e.g., graha in the first pāda and
pramite in the third pāda, each of which is preceded by a syllable that must still
be considered as ‘light’ to fit the vasantatilakā metre.

TECHNICAL ANALYSIS

Like the last verse, this verse does not explicitly specify the quantity it is com-
puting, in this case the ayanavalana or ‘deflection due to tropical [longitude]’. The
ayanavalana (angle ∠P′MP in figure 7) is the amount of deflection of the easterly
direction along the ecliptic from the easterly direction along the equator due to
the position of the body’s tropical longitude λT in its quadrant of the ecliptic.
Qualitatively, when the body is at a solstice there is no deflection from this ef-
fect, since east is in the same direction along both great circles. At an equinox,
on the other hand, the deflection is equal to the obliquity of the ecliptic (conven-
tionally 24

◦), since the local directions of the two circles diverge by that amount.
Quantitatively, the value of the ayanavalana ∠P′MP between those two ex-

tremes, again by the law of sines for spherical triangles, is given by

sin∠P′MP =
sin∠PP′M · sin PP′

sin PM
.

The angle ∠PP′M is the complement of the (tropical) longitude of M, while PM
again is the complement of its declination δ and the arc PP′ between the two
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poles is the ecliptic obliquity. The verse’s algorithm for using the table to find
the ayanavalana ∠P′MP simply prescribes adding the degrees of precession to
the degrees of the known (sidereal) longitude of the body to convert it to tropical
longitude, and using the koṭi or complement of this result to interpolate linearly
in the table. When the tropical longitude is between the winter and summer
solstices (called the northern ayana), the ayanavalana is north because ecliptic-east
points northwards of equator-east; conversely, in the southern ayana, it is south.

The last part of this verse refers to the inverse symmetry between a lunar and
solar eclipse. In a lunar eclipse, the eastern part of the moon’s disk is eclipsed
first; so at first contact it is the western part of the shadow (the ‘eclipser’) that is
being affected, and the eastern part for release. This is reversed in the case of a
solar eclipse where the moon is the ‘eclipser’ and the sun the ‘eclipsed’.

There are three tables related to this verse, on ff. 6r and 6v. The first is a table
giving the ayanavalana at ‘the time of contact [or] the time of release’ (which are
the chief moments for which the deflection is calculated). Of its three rows, the
first contains the argument, running from 0 to 90 degrees, which is evidently
the complement of the precession-corrected longitude. The second row contains
the corresponding values of the ayana-deflection, from 0; 0, 3 when the argument
is 0 (i.e., when the body is at a solstice) to 24; 0, 1 (90

◦ of longitude away, at an
equinox). The third row gives the differences between successive entries in the
second row; they change only at every tenth entry, indicating that ayanavalana
values were computed first for every tenth degree of argument and the remaining
entries found by linear interpolation.19

The other two tables on f. 6v give the ‘corrected’ valana (spaṣṭavalana), which
is not mentioned in the verse, and which despite its name does not actually intro-
duce any new elements to give a more accurate value of the deflection. Rather,
it simply converts the combined deflection into a linear measure scaled appro-
priately for the disks of the eclipsed and eclipsing bodies. Consequently, there
is one table for solar and one for lunar eclipses. The arguments for both tables
run from 0 to 47, which evidently represents the degrees of total valana as the
algebraic sum of akṣavalana (whose maximum for the Karaṇakesarī ’s latitude is
between 22 and 23 degrees) and ayanavalana (which, as noted above, can be as
much as 24

◦), giving a possible combined maximum of 47
◦.20 The table entries

run from 0; 7 to 8; 2 digits for the sun and 0; 4 to 13; 51 digits for the moon.
MS. J’s procedure confirms this interpretation; he adds his akṣavalana and

19 In fact, the non-interpolated table entries
seem to conform very closely to Bhāskara II’s
simple expression for ayanavalana in Karaṇa-
kutūhala 4.14–15 (Balacandra Rao and Uma
2008, S81–82), which is equivalent to sin(90

◦ −

λT) · 24.
20 See the rule for ‘corrected’ valana in, e.g.,

Karaṇakutūhala 4.16 (Balacandra Rao and Uma
2008, S81–82).
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ayanavalana components to get the argument he uses for the lunar corrected-va-
lana table, in the case of both contact (f. 3r, lines 1–2) and release (f. 3v, lines
1–3).

1.7 REDUCTION OF ARCS TO THE FIRST QUADRANT

tryūnaṃ bhujaḥ syāt tryadhikaṃ ca ṣaḍbhāt
viśodhya bhārdhād adhikaṃ vibhārdham ||
navādhikaṃ tad ravipātitaṃ ca
koṭir bhavet syāt trigrahaṃ bhujonam || 7 ||

The bhuja should be: [an arc] less than three [signs]; moreover, subtracting from
six signs one [i.e., an arc] that is greater than three signs; [or, an arc] greater than
a half-circle is diminished by a half-circle; [or, an arc] greater than nine [signs is]
that taken away from 12 [signs]. The koṭi should be three signs diminished by the
bhuja.

VERSE ANALYSIS

Metre: upajāti.
The grammar in this verse is particularly inconsistent in its parallel construc-

tions, as frequently happens when Bhāskara tries to revamp a borrowed Karaṇa-
kutūhala verse with some original phrasing (see below). However, the intended
meaning seems clear.

TECHNICAL ANALYSIS

This verse gives a rule for producing a koṭi or complement from a bhuja/bāhu or
given arc.21 Most commonly in geometry the bhuja and koṭi are understood as
perpendicular sides of a right triangle, but generally in astronomical texts the
bhuja is an arc, e.g., of longitude. This arc is conventionally reduced to a trigo-
nometrically equivalent amount less than 90◦ or three zodiacal signs, and the
complement arc of this standard bhuja is the koṭi.

This verse is not directed specifically toward the use of any particular table.
Rather, it is a standard general procedure for reducing arcs to their canonical
forms in the first quadrant, for which alone function values are tabulated. Note
that Bhāskara in the immediately preceding verses has prescribed procedures
assuming the user’s ability to reduce arcs, and now belatedly gives explicit dir-
ections for it.

21 Compare Karaṇakutūhala 2.4 (Mishra
1991, 20):
tryūnaṃ bhujaḥ syāt tryadhikena hīnaṃ bhārdhaṃ

ca bhārdhād adhikaṃ vibhārdham |
navādhikenonitam arkabhaṃ ca bhavec ca koṭis
trigrahaṃ bhujonam ∥
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1.8 POSITION OF NATA WITH RESPECT TO THE MERIDIAN

sūryagrahe divasam eva dinaṃ svakīyaṃ
rātris tathaiva śaśiparvaṇi vaipari syāt ||
ahno ’rdhato niśidalendunataṃ pratīcyāṃ
rātridalād dyudalato ’rkanatasya pūrve || 8 ||

In an eclipse of the sun, the day is just its own day. The night is likewise. In a
lunar eclipse, it should be reversed. The [post-]midnight nata of the moon after
the middle of [its own] day [i.e., with ‘night’ and ‘day’ reversed in meaning as
specified] is in the west. From midnight to midday, [the place] of the sun’s nata
is in the east.

VERSE ANALYSIS

Metre: vasantatilakā.
The last pāda is defective: the second syllable ought to be heavy for the metre’s

sake.

TECHNICAL ANALYSIS

This verse conveys rather simple astronomical facts about the nata or hour-
angle/zenith distance of the moon and the sun, with respect to the meridian
(here indicated by midday or midnight). ‘Its own day’ means the period of time
when the body in question is above the horizon, which is of course daytime in
its usual sense for the sun but nighttime for the full moon. And indeed for both
luminaries, from ‘midnight’ to ‘midday’ of its own day the body is to the east
of the meridian, and from ‘midday’ to ‘midnight’ it is west of the meridian, be-
cause of the westward daily rotation. Again, it might have been more intuitive
from the user’s point of view to supply this information earlier: namely, before
prescribing the calculation of the akṣavalana, whose direction depends precisely
on this issue of whether the body’s nata is in the east or the west.

1.9 PRECESSION; LENGTH OF THE HALF-DAY

prabhābdhi 445 śakonāptakhāṅgo 60 ’yanāṃśāḥ
yuto ’rkasya rāśyaṃśamāneṣu koṣṭhe ||
dinārdhaviśodhyaṃ kharāmair niśardhaṃ
dinārdheṣṭanāḍyantaraṃ taṃ nataṃ syāt || 9 ||

445 subtracted from the [current] Śaka year [and] divided by 60 are the degrees
of precession. [That amount is] added to the amounts in signs and degrees of
the sun[’s longitude]. The subtracted [complement] of the half-day in the table
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[entry] with [respect to] 30 [ghaṭikās] is the half-night. [Whatever is] the differ-
ence between the desired nāḍī [i.e., ghaṭikā] and the half-day, that should be
the ‘hour-angle’ (nata).

VERSE ANALYSIS

Metre: bhujāṅgaprayāta (see verse 1.2) with minor deviations: the third syllable
of the first and third pādas is light instead of heavy.

This unfamiliar bhūtasaṃkhyā numeration takes prabhā ‘light’ or ‘shadow’ to
mean 45. The related compound prabhāvaka is elsewhere attested as meaning 8
(Sarma 2003, 66).

A comprehensible translation of this verse requires taking substantial liber-
ties with its phrasing: its literal sense is more like ‘[The amount] which has 60 as
dividing the difference between the [current] Śaka year and 445 are the degrees
of precession.’ The mathematical meaning, however, is unmistakable.

TECHNICAL ANALYSIS

This verse explains how to correct the solar longitude for precession or the differ-
ence between sidereal and tropical longitude (which it would have been helpful
to know before calculating the ayanavalana requiring that correction). The year
Śaka 444 or 522 CE is frequently attested as the assumed date of zero precession,
and the canonical rate of precession is taken as 1 degree in 60 years.22 The dif-
ference between 445 and the current Śaka year gives the integer number of years
elapsed between the end of 444 and the start of the current year, each of which
produces one additional arc-minute of precession.

The resulting precession-corrected solar longitude in signs and degrees is the
argument of the table on f. 7r (see 2.2 below) that tabulates the sun’s ‘half-day’
(dyu-dala). This means the length in ghaṭikās of half the seasonally varying period
of daylight (the solar form of the ‘own day’ previously invoked in 1.5).

1.10–11 GRAPHICAL PROJECTION OF ECLIPSE APPEARANCE

grāhyārdhasūtreṇa vidhāya vṛttaṃ
mānaikyakhaṇḍena ca sādhitāśam ||
bāhye ’tra vṛtte valanaṃ yathāśaṃ
prāk sparśikaṃ paścimataś ca mokṣam || 10 ||
deyaṃ raveḥ paścimapūrvataś ca
jyāvac ca bāṇau valanāgrakābhyām ||
utpādya matsyaṃ valanāgrakābhyāṃ
madhyaḥ śaras tanmukhapucchasūtre || 11 ||

22 See, for instance, Pingree (1972, 30–31).
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When one has produced a circle by means of a [radius] string half [the size] of
the eclipsed body, and [another circle by a radius string equal in length to] the
[half] part of the sum of their measures [i.e, diameters of eclipsed and eclipser:
this is the circle of first contact (sparśa) and release (mokṣa)] with cardinal direc-
tions established. Now on the outer circle, the valana is to be set according to
[its] direction, contact in the east and in the west the release [valana, for a lunar
eclipse];
[and] in the case of the sun, west and east [respectively]. And having exten-
ded two latitude [values] like a chord at the two extremities of the valana, a fish
[-figure is drawn with arcs centered] at the two extremities of the valana. The
mid-eclipse latitude is [laid off from the center] on its head-tail-line [i.e., the axis
of the fish-figure].

VERSE ANALYSIS

Metre: indravajrā.
The first of these two verses is identical to Bhāskara II’s Karaṇakutūhala 4.18,

and the second nearly the same as Karaṇakutūhala 4.19, except for the syllable
ca instead of te at the end of its first pāda.23 The word āśā can mean ‘quarters
of the compass’; this adverbial form āśam evidently means ‘relating to cardinal
directions’.

TECHNICAL ANALYSIS

These verses and the two following give directions for producing the graphical
projection of the eclipse. The procedure does not refer directly to any of the data
given in the tables, as it is a practical description of how to represent the eclipse
configuration using the quantities previously computed. The following inter-
pretation of these two verses is illustrated in figure 9.24 The author of the lunar-
eclipse example in MS. J briefly echoes the text’s instructions for this diagram
(f. 3v, lines 4–8), but alas, the manuscript preserves no drawing in illustration of
them.

The central circle represents the disk of the eclipsed body. At the moment
of sparśa or mokṣa, the center of the eclipsing body is on the circumference of
a second, larger concentric circle with radius equal to the sum of the radii of

23 Karaṇakutūhala 4.18–19 (Mishra 1991, 60):
grāhyārdhasūtreṇa vidhāya vṛttaṃ
mānaikyakhaṇḍena ca sādhitāśam |
bāhye ’tra vṛtte valanaṃ yathāśaṃ
prāk sparśikaṃ paścimataś ca mokṣam || 18 ||
deyaṃ raveḥ paścimapūrvatas te
jyāvac ca bāṇau valanāgrakābhyām |
utpādya matsyaṃ valanāgrakābhyāṃ

madhyaḥ śaras tanmukhapucchasūtre || 19 ||
24 As noted in the Verse Analyses for this

and the following group of verses, this proced-
ure is directly copied from that of the Karaṇa-
kutūhala, which in turn is a simplified version of
its counterpart in the same author’s Siddhānta-
śiromaṇi 5.26–32 (Śāstrī 1989, 121–124).
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Figure 9: Initial circles and lines for the graphical projection of an eclipse

eclipsed and eclipser, so the two bodies are tangent. The trajectory between sparśa
and mokṣa is determined by the values of the valana and lunar latitude.

The local cardinal directions are laid out on this outer circle as shown in fig-
ures 9 and 10. Note that this direction grid represents a left-right-reversed image
of the eclipsed body as it would appear in the southern part of the sky, where
the southward-facing observer would see east on the left hand and west on the
right.25

The amount of the appropriately scaled linear combined valana (see 1.6 above)
for sparśa or mokṣa is marked off north or south of the appropriate extremity on
the east-west line. The radii between those two points will not be exactly collin-
ear unless the sparśa and mokṣa values of valana are exactly equal, but they will
indicate approximately the direction of the ecliptic with respect to local east-west.

Then the corresponding values of the latitude are marked off from the valana
points ‘like a chord’ so that they fall on the circumference of the outer circle, to in-
dicate the positions of the center of the eclipser at sparśa and mokṣa. (Presumably,
since the possible values of latitude are small, the fact that the ‘chord-like’ line

25 See, e.g., Sūryasiddhānta 6.12, viparyayo
diśāṃ kāryaḥ pūrvāparakapālayoḥ ‘a reversal of
the directions of the east and west hemispheres
is to be made’ (Pāṇḍeya 1991, 69). The graphical

projection shows how the eclipse would look in
a mirror image, e.g., in a tray of water or other
reflector set on the ground next to the diagram.
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Figure 10: Depicting the three moments of contact, mid-eclipse, and release in the projection

segments representing them are not quite perpendicular to the approximate line
of ecliptic direction determined by the valana points is considered negligible.)
Then a ‘fish-figure’ or perpendicular bisector to the ecliptic direction is construc-
ted through the center of the circle, and a line segment representing mid-eclipse
latitude is laid off along it.

1.12–13 GRAPHICAL PROJECTION, CONTINUED

kendrād yathāśo ’tha śarāgrakebhyo
vṛttaiḥ kṛtair grāhakakhaṇḍakena
syuḥ sparśamadhyagrahamokṣasaṃsthā
athāṅkayenmadhyaśarāgracihnāt || 12 ||

mānāntarārdhena vidhāya vṛttaṃ
kendre ’tha tanmārgayutidvaye ’pi ||
tamo ’rdhasūtreṇa vilikhya vṛttaṃ
sanmīlanonmīlanake ca vedye || 13 ||
Bymeansof circles constructed fromacentre in the [appropriate] directionat the
tips of the latitude [line segments] now [at that time], with [radius equal to] the
[half] part [of the diameter] of the eclipser, the forms [of the eclipser] at contact,
mid-eclipse and release should be [shown].

Now, producing a circle with [radius equal to] half the difference of the amounts
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Figure 11: Depicting the beginning and end of totality

[of the diameters of the twobodies], one should draw [it] from the point of the tip
of the mid-eclipse latitude. Now [there are] two centres at the two intersections
of that [circle] and the path [of the eclipser]. [Upon] drawing a circle [at each
centre] with radius [equal to that of] the eclipser, the beginning of totality and
end of totality too are to be known.

VERSE ANALYSIS

Metre: upajāti.
These verses, like the preceding ones, closely track their counterparts in the

Karaṇakutūhala.26 The Karaṇakesarī version has introduced a couple of unusual
or awkward grammatical constructions, such as the nominative/accusative form
of tamas ‘darkness’ that we take to refer to the eclipser in a genitive sense, and
what appears to be an instance of the particle atha ‘now’ more or less prepended

26 Karaṇakutūhala 4.20–23
(Mishra 1991, 61):
kendrād yathāśaṃ svaśarāgrakebhyo
vṛttaiḥ kṛtair grāhakakhaṇḍakena |
syuḥ sparśamadhyagrahamokṣasaṃsthā
athāṅkayen madhyaśarāgracihnāt || 20 ||
ādyantyabāṇāgragate ca rekhe
jñeyāv imau pragrahamuktimārgau |
mānāntarārdhena vilikhya vṛttaṃ

kendre ’tha tanmārgayutadvaye ’pi ∥ 21 ∥
bhūbhārdhasūtreṇa vidhāya vṛtte
sammīlanonmīlanake ca vedye |
mārgapramāṇe vigaṇayya pūrvaṃ
mārgāṅgulaghnaṃ sthitibhaktam iṣṭam ∥ 22 ∥
iṣṭāṅgulāni syur atha svamārgo
dadyādamūniṣṭavaśāt tadagre |
vṛtte kṛte grāhakakhaṇḍakena
syād iṣṭakāle grahaṇasya saṃsthā ∥ 23 ∥
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to śara ‘latitude’, instead of sva ‘its own’, to imply ‘the now-latitude’ or ‘latitude
at that time.’

TECHNICAL ANALYSIS

Figure 10 shows an arc drawn through the aforementioned three latitude points
to mark the ‘path’ of the eclipse, and the disk of the eclipsing body centred at
each of them. To find where the eclipsing body sits at the remaining two prin-
cipal moments of the eclipse, i.e., the beginning and end of totality, the user is
instructed to draw a circle (shown shaded in figure 11) whose radius equals the
difference between the radii of eclipsed and eclipser. The two points where this
circle intersects the ‘path’ mark the positions of the centre of the eclipser at those
two moments.

iti candraparvādhikāraḥ ||

Thus, the chapter on lunar eclipses.

2.1 DIDACTIC APHORISM

śāstrāṇy anekāni mahārthasūtrā-
ṇy anantavidyālpamatir jano ’yam ||
kalau na dīrghāyur ato hi [grā]hyaṃ
tattvaṃ yathā kṣīravidhau ca haṃsaḥ || 1 ||

[There are] many treatises (śāstras), rules (sūtras) with great purpose, [and] end-
less knowledge; this person [i.e., the speaker, is] of small intelligence. In the Kali-
yuga, life is not long; therefore, truth is to be grasped just as the swan [does] in
the act of [separating] milk [from water].

VERSE ANALYSIS

Metre: upajāti?
We have taken considerable liberties with the arrangement of the pādas and

especially with the reconstruction and translation of the third pāda, in which the
penultimate syllable seems to be missing. The final syllable looks in the manu-
script more like hvaṃ than hyaṃ, so the final word in the original might have
been something quite different. But the reference is clearly to the well-known
analogy between the soul discerning valid knowledge from a mixture of truth
and untruth and the proverbial ability of a goose or swan to separate out the
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components of a mixture of milk and water.27 The Kaliyuga or Indian ‘Iron Age’
is traditionally considered a time of degeneration and decay, in which, for ex-
ample, the standard human lifespan is much shorter than it is said to have been
in earlier ages.

2.2 HALF-DAY AND OBLIQUE ASCENSION

sāyanārkabhalavādikoṣṭhakāḥ
yukte ceṣṭhaghaṭiyuktatatsamān ||
koṣṭhakāṅkamitiṃ rāśipūrvakaṃ
labdhalagnam ayanāṃśakonnatam || 2 ||

The table entries [for half-day and oblique ascension have as argument] the
precession-increased [longitude of the] sun in zodiacal signs and degrees and
so on. And when [the longitude in signs and degrees] is increased [by minutes,
use the digits] corresponding to those [minutes] increased by the ghaṭikās [cor-
responding to] the desired [argument: these digits are] commensurate with the
number in the table cell headed by [its] zodiacal sign. The obtained oblique as-
cension [has] the precession-increased [solar longitude] beginningwith zodiacal
signs [as its] argument (unnata).

VERSE ANALYSIS

Metre: rathoddhatā.
As usual with the verses that appear to be original to the Karaṇakesarī, there

are a few metrical irregularities: namely, in pāda 2 the second syllable should be
light, as should the sixth syllable in pāda 3.

TECHNICAL ANALYSIS

This verse apparently applies to two tables, although it explicitly mentions only
the second of them. The first, on f. 7r, tabulates half the seasonally varying length
of daylight in ghaṭikās (see 1.9 above), and is titled atha sāyanaravirāśyoparidyu-
dalaṃ ‘Now [the length of] the half-day with argument the signs [and degrees]
of the precession-corrected [longitude of the] sun’. Its values for each degree of

27 This simile is attested in Sanskrit liter-
ature as far back as, e.g., Mahābhārata 1.69.10
Smith (1999):
prājñas tu jalpatāṃ puṃsāṃ śrutvā

vācaḥ śubhāśubhāḥ |
guṇavad vākyam ādatte haṃsaḥ kṣīram

ivāmbhasaḥ ∥

But the direct inspiration for the Karaṇakesarī ’s
verse was apparently closer to the form found
in, e.g., Garuḍapurāṇa 16.84 (Wood and Subrah-
manyam 1911, 164):
anekāni ca śāstrāṇi svalpāyur vighrakoṭayaḥ |
tasmāt sāraṃ vijñānīyāt kṣīraṃ haṃsa ivāmbhasi ∥
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the sun’s (tropical) longitude are arranged in double entry format, zodiacal signs
against degrees: along the vertical axis are the signs numbered 1–11 followed by
0, and along the horizontal, degrees numbered 0–29. The maximum entry 16; 48

ghaṭikās occurs at Cancer 0
◦ and the minimum is 13; 13 ghaṭikās in Capricorn 0

◦;
the equinoctial half-day is of course 15 ghaṭikās, one-quarter of a full nychthem-
eron or 60 ghaṭikās.28

As noted above, this table seems more relevant to computations involving the
nata in the lunar eclipse chapter. Its placement here may have been intended to
allow the user to check whether the sun will be visible above the horizon at the
time of the predicted solar eclipse.

The remaining instructions in the verse deal with computing the lagna, usu-
ally meaning the ‘horoscopic point’ or ascendant where the ecliptic intersects
the eastern horizon, but in this case evidently intended to signify the oblique
ascension in ghaṭikās of the ecliptic arc between the sun and the vernal equinox.
The computation employs a two-part set of tables: the first part, on ff. 7v–8r, is
another double entry table for each degree of (tropical) solar longitude, with zo-
diacal signs 0–11 on the vertical axis and degrees 0–29 on the horizontal. The tab-
ulated values begin with 0 at 0

◦ of argument and increase to 60 ghaṭikās at 360
◦,

meaning that these oblique ascensions are cumulative. The differences between
tabular entries for successive degrees within a given zodiacal sign are constant
and their values are symmetrical about the equinoxes, as shown in table 3.

Zodiacal sign Constant difference (ghaṭikās)

Aries/Pisces 0;7,36
Taurus/Aquarius 0;8,38
Gemini/Capricorn 0;10,12
Cancer/Sagittarius 0;11,20
Leo/Scorpio 0;11,18
Virgo/Libra 0;10,56

Table 3: The constant differences between oblique ascension values for successive degrees

The other table in this set, on ff. 8v–9v, allows the user to make the oblique as-
cension calculation precise for arcminutes of longitude: it is somewhat mislead-

28 We assume that zodiacal sign 1 in the
first row is Taurus and zodiacal sign 0 (the
last row) is Aries. The half-day extreme val-
ues imply that the so-called ‘maximum half-
equation of daylight’ ωmax, i.e., the difference
between half the equinoctial day and half the
solstitial day, is 1; 47 ghaṭikās. We used this

quantity to confirm the value of the terrestrial
latitude ϕ = 22; 35, 39

◦ that we inferred from
the akṣavalana table used in verse 1.5: plugging
it into the formula for the terrestrial latitude
ϕ = arctan(sin ωmax/ tan ε), where ε is the ca-
nonical ecliptic obliquity of 24

◦, yields a value
for ϕ of approximately 22; 38

◦.
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ingly titled atha lagnasya kalākoṣṭakā ‘Now, the tabular entries for the arcminutes
of the oblique ascension’. Actually, in each of its six sub-tables (one for each
pair of zodiacal signs from Aries/Pisces to Virgo/Libra), it is the argument that
is measured from 1 to 60 kalās or arcminutes within a degree, not the tabulated
oblique ascension amounts.

The table entries, in sixtieths of a ghaṭikā, are the corresponding increments
added by those extra arcminutes to the oblique ascension already computed for
the degree of tropical solar longitude specified by the previous table’s argument.
Again, the differences between entries in each sub-table are constant: the entries
for successive arcminutes differ by just one-sixtieth of the previous table’s con-
stant difference between entries for successive degrees of the appropriate zodi-
acal sign. (Thus, for example, every additional arcminute in a solar longitude
falling in the sign Aries adds 0; 0, 7, 36 ghaṭikās to the corresponding oblique as-
cension.) By the combination of the table for degrees and the one for arcminutes,
the accumulated oblique ascension can be determined for each of the possible
21,600 arcminutes of tropical solar longitude.

The version of this procedure in the solar eclipse example in MS. J starts by
finding the usual lagna or longitude of the ascendant and computing the longit-
ude difference between that and the tropical solar longitude to give the argument
for the algorithm in the following verse.

2.3 LONGITUDINAL PARALLAX

darśāntakāle ’rkatanoviśeṣaṃ
kāryaṃ tadaṃśamitispaṣṭhakoṣṭhe ||
yallambanaṃ sve guṇakena guṇyaṃ
khaveda 40 bhaktaṃ sphuṭalambanaṃ syāt || 3 ||

At the time of the end of the conjunction [tithi], the difference [of the longitudes]
of the sun and the ascendant (? tanas) is to be computed. Whatever longitudinal
parallax (lambana) [corresponds to that difference], multiplied by the multiplier
in its own true-table entry commensurate with the degree of that [ascendant]
and divided by 40, should be the corrected longitudinal parallax.

VERSE ANALYSIS

Metre: upajāti.
In pāda 2, the second syllable of aṃśa ought to be heavy and the second syl-

lable of mitispaṣṭa ought to be light for the sake of the metre. We know of no
other use of the word tanas as a synonym for lagna or ascendant, but that is the
meaning required by the procedure.
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TECHNICAL ANALYSIS

Figure 12: Plots of ‘mean’ lambana in ghaṭikās against elongation λA −λS in degrees, in three forms:
the trigonometric expression 4 sin(λA − λS) (line), the short list of values in the Karaṇakutūhala
(large dots), and the tabulated values in the Karaṇakesarī (small dots)

The first of the two tables referenced in this verse lists the ‘mean’ longitudinal
parallax or lambana in ghaṭikās for values of elongation between the sun and the
ascendant ranging from 0 to 91

◦. The table entries start with 3; 40 ghaṭikās at 0
◦,

maximising to 4; 0 at 24
◦, and decreasing to 0; 1 at 91

◦. The next table, which gives
the laṃbanaspaṣṭaguṇakāḥ ‘multipliers for correcting the longitudinal parallax’,
has as its argument the longitude of the ascendant (lagna) adjusted for precession.
This is a double-entry table with 0–11 zodiacal signs along the vertical and 0–29
degrees along the horizontal. The multiplier’s maximum is 35, 59 (for Virgo 9–
12

◦) and its minimum is 27, 21 (for Pisces 29
◦). According to the instructions in

the verse, the multiplier is divided by 40 when applied to the ‘mean’ longitudinal
parallax to correct it.

This application of table data roughly parallels the algorithmic approach to
parallax calculation in Karaṇakutūhala 5.2–3 (Balacandra Rao and Uma 2008, S92–
S94), which also begins with finding a so-called ‘mean’ lambana. This ‘mean’ or
approximate lambana, as in the corresponding Karaṇakesarī table, depends only
on the elongation of the sun’s position λS (which in a solar eclipse more or less
coincides with that of the moon) from a given point on the ecliptic. In the Karaṇa-
kutūhala’s formula the reference point for elongation is the so-called nonagesimal
with longitude exactly 90

◦ less than the longitude of the ascendant λA; a body
at the nonagesimal has no longitudinal parallax. The ‘mean’ lambana is just the
sine of that sun-nonagesimal elongation linearly scaled from its minimum of 0
when the sun and nonagesimal coincide to a maximum absolute value of 4 ghaṭi-
kās when the sun is on the horizon. However, the Karaṇakutūhala also provides a
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Figure 13: Celestial hemisphere with the autumnal equinox at the ascendant and the nonagesimal
on the meridian near the zenith

brief versified table of nine ‘mean’ lambana values that do not exactly correspond
to this relation, but which apparently inspired the Karaṇakesarī ’s tabulated values
on f. 9v. Figure 12 shows the two sets of values along with the curve representing
the scaled sine of the elongation.

The ‘mean’ lambana is subsequently corrected to its ‘true’ counterpart by tak-
ing into account the contribution from the depression of the nonagesimal from
the zenith. Figure 13 illustrates a case where the nonagesimal V is at the summer
solstice and consequently high in the sky near the zenith Z: the small nonages-
imal zenith distance ZV does not greatly affect the parallax due to the elongation
between V and the sun. Bhāskara II’s correction represents this by multiplying
the ‘mean’ lambana by the cosine of ZV, which will make the lambana zero if the
nonagesimal V is on the horizon but leave the ‘mean’ lambana unchanged if it
is at the zenith. The zenith distance arc ZV is taken as approximately equal to
the local latitude ϕ or ZQ diminished by the nonagesimal’s ecliptic declination
or VQ. (Note that this combination usually only approximates the exact zenith
distance, because the declination and latitude are measured along different arcs
unless the nonagesimal, the zenith and the celestial pole all fall on the same great
circle as shown in figure 13.) So this true lambana or longitudinal parallax cor-
rection to the time of mid-eclipse is given by the equation

(true) lambana = 4 · sin |λS − (λA − 90
◦)| · cos(ϕ− arcsin(sin 24

◦ sin(λA − 90
◦))).

The individual ‘multipliers’ in the second Karaṇakesarī table on f. 10r, which
must be divided by 40 and then multiplied by the ‘mean’ lambana, have been com-
puted to imitate this correction. The graphs in figure 14 reproduce the ‘mean’
lambana values from figure 12 and also show their corrected versions for two
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Figure 14: Plots of ‘mean’ and corrected lambana in ghaṭikās against elongation λA − λS in degrees
with ϕ = 22; 35, 39

◦, for λA = 0
◦ (left) and λA = 90

◦ (right): the corrected quantity in both
trigonometric (dashed line) and tabulated (dots) form is smaller than its uncorrected counterpart

sample values of λA at the Karaṇakesarī ’s terrestrial latitude ϕ = 22; 35, 39
◦. The

above trigonometric expression for true lambana is graphed as a dashed line,
while the Karaṇakesarī ’s tabulated lambana values corrected by their appropri-
ate tabulated multipliers are shown as small dots. As λA increases from 0

◦ and
V gets closer to the zenith, each corrected version of lambana approaches its ori-
ginal ‘mean’ value, so that by about λA = 150

◦ the ‘mean’ and true versions
become indistinguishable on the graph.
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2.4 LONGITUDINAL AND LATITUDINAL PARALLAX

viśleṣas tribhyo ’bhyadhikonakaś cet
tithyāntadā svarṇam idaṃ kramāt syāt ||
lagnasya rāśyaṃśamiteṣu koṣṭhe
natis tathā lambanako guṇo ’sti ||4||

If the difference [between the longitudes of the sun and the ascendant] is greater
or less than three [signs] at the end of the tithi, this [longitudinal parallax] should
be [applied] positively or negatively respectively. The latitudinal parallax (nati) is
in the table [entry] among those [entries] determined by the signs and degrees
of the ascendant. Now, the lambana is [to be] multiplied: [see next verse.]

VERSE ANALYSIS

Metre: upajāti.
The third syllable in pāda 1 ought to be light. The rather odd construction

tithyāntadā in the second pāda appears to be intended as an adverb of time, along
the lines of tadā ‘then’.

TECHNICAL ANALYSIS

Bhāskara’s discussion of longitudinal parallax continues with a rule for applying
it to the time of conjunction. If the luminaries are westward of the nonagesimal
(roughly, post meridian, or more precisely, farther than one quadrant away from
the ascendant), it makes the conjunction later than initially calculated, since the
parallax depresses the moon toward the (western) horizon. Likewise, parallax
applied to a position east of the nonagesimal makes the conjunction earlier. So
the longitudinal parallax in ghaṭikās calculated in the previous verse is applied
to the mid-eclipse time positively or negatively, respectively.

The other parallax component, latitudinal parallax or nati, accounts for the
fact that the nonagesimal or midpoint of the visible semicircle of the ecliptic usu-
ally does not coincide with the local zenith. The parallactic depression of the
nonagesimal toward the horizon is treated as a correction to the moon’s latitude
north or south of the ecliptic.

From the graph in figure 15 it seems almost certain that the Karaṇakesarī ’s
nati values in the table on f. 10v, whose argument is the sign and degree of the
longitude λA of the ascendant, were derived from a formula in Karaṇakutūhala
5.3 (Balacandra Rao and Uma 2008, S92–93). In this rule the ecliptic declination
of the nonagesimal is again arithmetically combined with the local latitude ϕ
to produce the nonagesimal’s approximate zenith distance, whose sine is then
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Figure 15: Plot of nati in digits (northward positive, southward negative) against λA in degrees,
showing the Karaṇakesarī ’s tabulated values of nati at the initial degree of each sign (dots), and the
Karaṇakutūhala’s nati function with ϕ = 22; 35, 39

◦ (line)

linearly scaled to give the nati in digits:

nati = 1

8

· 13

12

· 120 sin(arcsin(sin 24
◦ sin(λA + 90

◦))− ϕ)

Qualitatively, we can understand the behavior of this function by recollecting
that the nonagesimal is the point where longitudinal parallax is zero, so the lat-
itudinal component of parallax or nati depends only on how much (and in which
direction) the nonagesimal is depressed from the zenith.

Note that in the above expression, subtracting ϕ from the declination means
that the zenith distance ZV will be negative if the nonagesimal V falls south of
the zenith, and positive if it is north (see figure 13). Consequently, the nonages-
imal will approximately occupy the zenith point and the latitudinal parallax will
vanish when the northern declination VQ is equal to the local terrestrial latitude
ϕ = ZQ, here about 22; 35, 39

◦. This value is not far from the maximum declin-
ation of 24

◦ that the nonagesimal reaches in the southern or northern direction
when it falls at the winter or summer solstice respectively, while the ascendant
occupies the following equinox. In other words, when the ascendant falls a little
before or a little after the autumnal equinox at tropical Libra 0

◦, we should expect
the nati for this latitude to be minimised.

Indeed, the values in the Karaṇakesarī ’s nati table reach their minimum of
0; 1 digits when the argument λA is Virgo 12

◦ or Libra 18
◦; between these two

positions, the nati is to be applied in the northern direction (because then the
nonagesimal is slightly north of the zenith), although it is a southward correc-
tion everywhere else. Conversely, the nati’s maximum (absolute) value of 11; 46
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digits occurs when the ascendant is around the vernal equinox and the nonages-
imal around the winter solstice, producing the largest possible depression of the
nonagesimal south of the zenith.29 Most of the other nati table entries appear to
have been linearly interpolated between trigonometrically computed values at
15-degree intervals.

The final reference to the longitudinal parallax goes with the subsequent
verse.

2.5 ADJUSTING ECLIPSE DATA FOR PARALLAX

viśva 13 ghnalambanakalās tithivad yutona-
pātācca kāṇḍamataṣaḍguṇalambanāṃśaiḥ ||
yugyaṃ vilagnatanatiś ca śarau vidadyāt
spaṣṭo bhavec ca viśayāt sthitichannasādhyam || 5 ||

[There are] arcminutes [produced by] the lambana multiplied by 13, and [by
them the elongation of the sun] from the node [is] increased or decreased, [ac-
cording] as [the time to the end of] the tithi [is increased or decreased by the
lambana to give the moment of apparent conjunction]. By the degrees [pro-
duced by] the lambana considered as a [separate] quantity [and] multiplied by
6, [the longitude of the nonagesimal] is to be increased [or decreased, respect-
ively]. One should apply the nonagesimal-[derived] nati to the [lunar] latitude,
and [it] should be correct. The determination of the half-duration and the ob-
scuration is [derived] from [the corrected time of] the middle [of the eclipse].

VERSE ANALYSIS

Metre: vasantatilakā.
Our translation understands nati in the accusative in the third pāda, which is

grammatically incorrect but represents our best guess at the sense. The unusual
term vilagnata, if we have not misread or misinterpreted it, seems to be inten-
ded as a sort of portmanteau word implying the correction of the nonagesimal
(vilagna) by the lambana as well as the recalculation of its nata or zenith distance
and its resulting new nati value.

TECHNICAL ANALYSIS

This and the following verse rather sketchily describe a procedure evidently
modeled on that of the Grahalāghava for correcting the eclipse based on the com-

29 If ϕ were zero, the nati would fluctuate
symmetrically between zero and equal north
and south extremes of about 6.6 digits, corres-

ponding to the maximum nonagesimal depres-
sion of 24

◦ north or south (see section 2 for the
relation between arcs and digits of parallax).
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puted values of the parallax components.30 The flowchart in figure 16 illustrates
the main sequence of steps in such a procedure, starting with the time of true
conjunction and the positions of the bodies at that time. These quantities and
the corresponding longitudinal parallax are computed in turn until they become
fixed at the time of apparent conjunction. The resulting latitudinal parallax cor-
rects the mid-eclipse latitude and magnitude and consequently the half-duration
of the eclipse. A similar cycle of correction is then applied to each half to find the
positions and times of the apparent contact and release.

The present verse starts the Karaṇakesarī ’s version of this process by comput-
ing a quantity more or less equivalent to the change in arcminutes in the moon’s
longitude between true and apparent conjunction. Specifically, the lambana in
ghaṭikās multiplied by 13 is taken as arcminutes applied to the elongation of the
sun from the node, positively if the lambana in ghaṭikās is positive (i.e., increas-
ing the time to conjunction) and negatively if it is negative. This scale factor is
qualitatively justified by recollecting that the sun’s position at the time of a solar
eclipse is nearly coincident with the moon’s, and if the moon travels approxim-
ately 13 degrees per day then it moves approximately 13 arcminutes per ghaṭikā.
Of course, strictly speaking the lambana corresponds to an arc of time-degrees
or right ascension along the equator rather than to elongation along the ecliptic,
but this distinction is disregarded for the sake of convenience.

Meanwhile, the original lambana in ghaṭikās is also converted to degrees by
mutiplying it by 6. Again, this quantity is applied as though it were an arc of
longitude to correct an ecliptic position, in this case the longitude of the non-
agesimal. From the new position of the nonagesimal a new value of nati is to
be computed, which then requires recomputing the times of contact and release
and the extent of the obscuration.

30 The key verses are Grahalāghava 6.3–5
(Balacandra Rao and Uma 2006, S394):
trikunighnavilambanaṃ kalās tatsahitonas

tithivad vyaguḥ śaro ’taḥ |
atha ṣaḍguṇalambanaṃ lavās tair

yugayugvitribhataḥ punar natāṃśāḥ || 3 ||
daśahṛtanatabhāgonāhatāṣṭendavastad

rahitasadhṛtiliptaiḥ ṣaḍbhir āptāsta eva |
svadigiti natir etatsaṃskṛtaḥ so ’ṅgulādiḥ sphuṭa

iṣuramuto ’tra syāt sthiticchannapūrvam || 4 ||
sthitirasahatiramśā vitribhaṃ taiḥ pṛthaksthaṃ

rahitasahitamābhyāṃ lambane ye tu tābhyām |
sthitivirahitayuktaḥ samskṛto madhyadarśaḥ
kramaśa iti bhavetāṃ sparśamuktyos tu kālau ||5||
Compare the Karaṇakutūhala counterpart
quoted in the discussion of the following
verse, and the worked example in Balacandra
Rao and Uma (2008, S99–S108). As noted in
Balacandra Rao and Venugopal (2008, 68), the
solar eclipse methods in the Karaṇakutūhala
and Grahalāghava give quite similar results.
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Figure 16: The cycles of parallax correction to get from the time of true conjunction to the moments
and positions of apparent conjunction, contact, and release

2.6 ADJUSTING ECLIPSE DATA FOR PARALLAX, CONTINUED

sthitiśūlasūta 6 ghnalavonayuktāḥ
pṛthaksthatanvoḥ kṛtalambanaṃ svam ||
ṛṇaṃ sthitihīnayuter vidarśe
tataḥ sphuṭasaṃspṛśi[mo]kṣikālau || 6 ||

[The degrees of the nonagesimal’s longitude] are [separately] diminished and
increased by the degrees [produced by] multiplying the half-duration by 6. For
[each of] the two separate results [? tanu], the lambana [is] made [and applied]
additively [or] subtractively [to thehalf-duration, to get the interval betweenmid-
eclipse and release and the interval between contact and mid-eclipse, respect-
ively]. When themid-eclipse [time] is decreasedor increasedby the [correspond-
ing] half-duration, then the two times of true contact and release [result].
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VERSE ANALYSIS

Metre: upajāti?
The metre and sense of this verse as transcribed here are both far from sat-

isfactory, but it seems to borrow some of its phrasing not only from the above-
mentioned Grahalāghava verses but also from the Karaṇakutūhala.31

As reconstructed in upajāti metre, the first syllable makes the first pāda hy-
permetric and the fourth syllable in each of the last two pādas ought to be heavy
instead of light, but neither the manuscript nor the sense gives any pretext for
enforcing corrections. We are not sure how to interpret śūlasūta to supply the re-
quired content of a word-numeral meaning six. Perhaps this form is a corruption
of the reading śūlisuta 6 ‘son of the spear-bearer’ quoted twice (f. 5r, line 11 and
f. 5v, line 4) in the worked example of MS. J: we assume this alludes to the six-
headed deity Skanda but we know of no other instance of his name invoked as a
word-numeral. The word tanu in, presumably, the genitive dual must mean the
adjusted nonagesimal longitude, although we are not familiar with this meaning
(compare tanas for ‘ascendant’ in verse 2.3 above).

TECHNICAL ANALYSIS

Although the verse’s grammar is very hard to follow, there seems no doubt that
it is attempting to continue describing the above Grahalāghava-inspired proced-
ure. Namely, the corrected half-duration in ghaṭikās is converted to degrees by
multiplying it by 6, and then, as before, that time-degree arc is treated as an arc of
the ecliptic, applied negatively or positively to the longitude of the nonagesimal
to give approximate positions of the nonagesimal at the moments of contact and
release, respectively. A new lambana is computed for each of those nonagesimal
positions, and the time of half-duration is adjusted separately by each of those
lambana values to give the actual duration of each ‘half’ of the eclipse. These two
distinct ‘half’ durations, no longer equal halves of the total eclipse duration, give
the moments of contact and release when applied with the appropriate sign to
the moment of mid-eclipse.

This completes the Karaṇakesarī ’s determination of the times of the beginning,
middle and end of a solar eclipse. Indefinite cycles of iterative recalculation are
discarded in favour of a few specified corrections and re-corrections. Nor are

31 Karaṇakutūhala 5.6–8
(Mishra 1991, 68–69):
spaṣṭo ’tra bāṇo natisaṃskṛtaḥ syāc channaṃ

tataḥ prāgvad ataḥ sthitiś ca |
sthityonayuktād gaṇitāgatāc ca tithyantato

lambanakaṃ pṛthakstham ∥ 6 ∥
svarṇaṃ ca tasmin pravidhāya sādhyas tātkālikaḥ

spaṣṭaśaraḥ sthitiś ca |
tayonayukte gaṇitāgate tat svarṇaṃ pṛthaksthaṃ

muhur evam etau ∥ 7 ∥
syātāṃ sphuṭau pragrahamuktikālau sakṛt kṛte

lambanake sakṛtsnaḥ |
tanmadhyakālāntarage sthitī sphuṭe śeṣaṃ

śaśāṅkagrahaṇoktam atra hi ∥ 8 ∥
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there specific directions stated for computing the times of beginning and end of
totality, if any.

The example in MS. J appears to follow these directions faithfully, finishing
with the sum of the disks’ radii (presumably for the purpose of an eclipse dia-
gram) and identifying the eclipse ‘lord’ (parveśa) as Brahmā.

2.7 CONCLUSION

asti vaiṣṇavadhāmni sajjanavati saudāmikāhve pure
śrautasmārttavicārasāracaturo moḍho hi rāmāhvayaḥ ||
jyotirvittilakopamanyava iti khyātaḥ kṣitau svair guṇaiḥ
tatsūnuḥ karaṇākhyakeśarim imaṃ cakre kavir bhāskaraḥ || 7 ||

In the city called Saudāmikā, filled with good people, in the Vaiṣṇava clan, there
is one called Rāma, aMoḍha, learned in the essence of investigations of śrūti and
smṛti, a [member of the] Aupamanyava [gotra, who is] an ornament of the jyoṭiḥ-
knowers, renowned on the earth for his own good qualities. His son, Bhāskara,
the poet, wrote this [work], the Karaṇakesarī.

VERSE ANALYSIS

Metre: śārdūlavikrīḍita with minor discrepancies: the second and twelfth syl-
lables of the first pāda should be heavy rather than light.

Bhāskara’s idiosyncratic method of compounding appears to be at work in
the last compound where the name of the text is unpacked as ‘Keśari called
Karaṇa’ instead of the other way around. The term moḍha seems to refer to a
Brahmana group primarily associated with the Gujarat region (which is con-
sistent with the terrestrial latitude used in the Karaṇakesarī), but we have no
other information on Bhāskara’s location or any identification of the placename
Saudāmikā with a modern locality.

iti śrīdaivajñarāmātmajabhāskaraviracite karaṇakeśariye sūrya-
parvādhikāraḥ || saṃpūrṇo ’yaṃ granthaḥ || śubhaṃ lekhakapāṭhakayoḥ ||
śubhaṃbhavet kalyāṇam astu || saṃ. 1819 varṣe śāke 1684mitī aśvinaśudi 14
śanau dine lipīkṛtaṃ ||

Thus the chapter on solar eclipses in the Karaṇakesarī composed by Bhāskara,
the son of RāmaDaivajña. This book is complete. Good fortune to thewriter and
the reader;may there be good fortune,may there beprosperity. [Themanuscript
was] written in the year Saṃvat 1819, Śaka 1684, on the 14th [tithi] of the bright
[fortnight] of Āśvina, on Saturday [i.e., Saturday 2 October 1762 CE].
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APPENDIX A. GLOSSARY OF TECHNICAL TERMS

akṣavalana The component of valana or directional deflection/inclination that
depends on the akṣa or local terrestrial latitude.

aṅgula Literally ‘digit’ (in the sense of finger-breadth), a linear measure applied
to quantities like disk diameter and lunar latitude; taken as equivalent to
three arc-minutes.

avadhi A period of fourteen mean solar days.

ayanavalana The component of valana that depends on the tropical longitude
of the bodies.

bāhu, bhuja Arc or angle, usually referring to some table argument measured in
units of arc.

ghaṭikā One-sixtieth of a day, equal to twenty-four minutes.

karaṇa Usually a brief astronomical handbook in verse (may also mean one-half
of a tithi).

kalā One-sixtieth of a degree, or arc-minute.

koṭi The complement of a given arc or angle (bāhu or bhuja).

koṣṭha, koṣṭhaka A numerical table or an entry in such a table.

lagna Ascendant: the point of intersection of the ecliptic and the local horizon
in the east.

lambana Longitudinal component of parallax, usually measured in time-units.

madhya The moment of mid-eclipse.

mokṣa The moment of release or end of eclipse, when the eclipsed body is no
longer obscured.

nāḍī A synonym for ghaṭikā.
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nāgarī The most common North Indic script, in which these manuscripts of the
Karaṇakesarī are written.

nata Literally ‘depression’ or angular distance from an apex; used both for
zenith distance and for hour-angle separation from the meridian.

nati Latitudinal component of parallax, usually measured in digits.

nimīlana The moment of immersion or beginning of totality.

parvan Either an eclipse itself or the instant of syzygy when mid-eclipse occurs.

pāda One line of a (usually) four-line Sanskrit verse.

sāyana Precession-corrected, referring to tropical longitude.

sanmīlana A synonym for nimīlana.

sparśa The moment of first contact between eclipsed and eclipsing bodies.

tana Used idiosyncratically in the Karaṇakesarī to mean ascendant.

tithi One-thirtieth of a synodic month.

unmīlana The moment of emersion or end of totality.

upari Literally ‘above’, but in this case referring to the argument at the top of a
table.

valana ‘Deflection’ or ‘inclination’, i.e., angle between the local east-west direc-
tion and the eastward movement of the moon in an eclipse.

vilagna Nonagesimal: the point of the ecliptic 90
◦ west of the ascendant.
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B Critical Edition of the text

।ौीगणशेाय नमः॥ ौीगुो नमः॥ ौीसारदाय ै नमः॥ अथ करण- f. [1]v B,
f. 1v R1

केशरी िलत॥े

ौीकृचचरणं ूिणप भा
ोितिव दां बिवदामिभवनं च॥

5 कृा कवीकुलभषूणभाराो
रामाजः करणकेशिरमातनोित॥ १॥

शको रामिवपुदाे १६०३ हीनो
िवयिामचैतो १३० लशषेौ॥
यतुौ चोपकण वितं त-

10 पातेताािलको बाभागःै॥ २॥

िमतःै कोकैरलुािदः शरः ात ्
सपात भुपुिर हिेलिबम॥्
ितथमेा नघोपरी चभभू े
तलुाजािदषोनयकु ्कुभा॥ ३॥

15 छाछादकमडलाितदलं काडोनछं पनुः
छं मािवविज तं त ु िनिखले मासऽेिप खछकम ॥्
छाैिम तकोके िितभ वेद  खछतः
ौीभानोदयाथासमयात प्वा ममहः॥ ४॥

1–2 ौीगु॰—िलत॥े ] ौीगुो नमः॥ ौीसारदाय ै नमः॥ B, अथ कणकेशिर िल-
त॥े ोक॥ R1 3 ौीब॰ R1 ; ूनीप R1 4 ोतीिव दां बिवदामिवभं जनं चः R1

5 कविकुलभषुण॰ R1 7 ॰िवपु दागं १६०३ हीनो B, ॰िवपुदागंिहनो १६०३ R1 8 ॰चिंै
१३० तो R1 9 यतुो चोपकण R1 ; त om. R1 10 सपात॰ R1 11 ॰गलुािदः शरः ]
॰गलुािदशरः B, ॰गलूािदसर R1 12 सपातभूपुिर R1 13 ॰घोपिरिंभभूा B, R1

14 ॰कंूभा R1 15 छाः छाद॰ B, R1 ; कां ढोनछं B, काडंोनछंन ंR1 15–16 पनुँछं R1

16 िनिखलंमा B ; कछंनकं R1 17 िितभ वेद  ] िितभवे B, ितभवमेड
R1 ; खछतः ] खछतो B, R1 18 ॰दायाथासमयात B्, ॰दयाथासमयािा R1 ;
पवाम॰ B, पचूम॰ R1
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िा मदन हीनः शसीलन ेःु
मदिाितऽेििुलं मोसंम॥्
खाैिन ं ९० ननां घॐमान े नताशंा-
ानःै ४५ शोाशंकोे ूारे सौया॥े ५॥

5 याोरे िदिश मह यतुायनाशंाः
कोाशंकेष ु वलनारगुययुम ॥्
योगाराशंूिमत े वलनं ुटं ात ्
सयू  मासिवधमुोिवलोमदे |यम॥् ६॥ f. [2]r B

नूं भजुः ािध | कं च षात ् f. 2r R1

10 िवशो भाधा दिधकं िवभाध म॥्
नवािधकं तििवपािततं च
कोिटभ वेािमहं भजुोनम॥् ७॥

सयू महे िदवसमवे िदन ं कीयं
रािऽथवै शिशपविण वपैिर ात॥्

15 अोऽध तो िनिशदलेनतं ूतीां
रािऽदलादुलतोऽकनत पवू॥ ८॥

ूभाि ४४५ शकोनाखाो ६०ऽयनाशंाः
यतुोऽक राँयशंमानषे ु कोे ॥

1–2 हीनशसीलनं ःु मिािंते B, युः शसिलनमु  िनु R1

2 ऽििुलं ] िनिुलं B, तिमुीलन R्1 3 खाकेंिनंR1 ; ९० om. R1 ; नतांR1

4 ४५ om. B ; सोसंको ेR1 ; सौ॰ ] सो॰ R1 5 यामोरे िदशी R1 6 कोाशंकेष ु]
कोशकेष ुR1 ; ॰गुय॰ ] ॰गूंय॰ R1 7 ॰ूिमते] ॰ूमीत ेR1 8 मासिवध॰ु ] मासिवध॰ु B,
मासिवध॰ू R1 9 नूं] नुं B, R1 ; भजुः ] भजूः R1 ; ािधकं च ] ात ्िधकेन R1

; षात ]् षा B 10 भाधा दिधकं ] भाा दिकं B 11 नवाधीकं R1 12 कोिटभ वेाि॰ ]
कोिटभ वेाि७॰ B, कोटीभवेाी॰ R1 ; भजुोनम ]् भजूोन ं R1 13 िदवसमवे ] िविदवश
एव R1 ; िकयं R1 14 राऽीथवै शसीपव णी R1 15 िनिश॰ ] िनशी॰ R1 ; ूतीां ] च
ूाां R1 16 रािऽदलादुलतो B, राऽीदलादूलतो R1 17 ूभाि ] भूाि R1 ; ॰खाो ]
॰खागं ै R1 ; ६० om. B 18 यतुोऽक ] यतुाक R1 ; ऽक ] का B ; राँयशं॰ ]
राशं॰ R1 ; कोे ] कोटेः R1
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िदनाध िवशों खरामिैन शाध
िदनाधनारं तं नतं ात॥् ९॥

मााध सऽूणे िवधाय वृं
मानैखडने च सािधताशम ॥्

5 बाऽेऽ वृ े वलनं यथाशं
ूाक ्िशकं पिमत मोम॥् १०॥

दयें रवःे पिमपवू त
ाव बाणौ वलनामकााम॥्
उा मं वलनामकाां

10 मः शरखुपुसऽू॥े ११॥

केाथाशोऽथ शरामकेो
वृःै कृतमैा हकखडकेन
ःु शममहमोसंा
अथाकंयेशरामिचात॥् १२॥

15 मानाराधन िवधाय वृं
केऽेथ ताग यिुतयऽेिप ॥
तमोऽध सऽूणे िविल वृं
सीलनोीलनके च वे॥े १३॥

इित चपवा िधकारः॥

1 िदनाध िवशों ] िदना वीसों R1 ; खरामिैनशा R1 2 िदनाध॰ ] दीना॰ R1 ;
नतात R्1 3 मााध सऽूणे ] माूमाणसदूजने R1 4 मानैखडने च सािधताशम ]् मा-
नाितच दलेन च सािधताशंा R1 5 वृ े वलनंयथाशं ] वृवजनिंदयं यथाशांR1; वलनं]
ववलनं B 6 िशकं पिमत मोम ]् शमोमपरं रवीदयें R1 verses 11–12.व-
लनामका शराबतदयेपवू वलनामकाच जखलेमखुासंरासां बाणंा क िकृतमाहकखडंकेन
ु स मह मोशरामिचात ्११॥ R1 7 ॰पवू त ] ॰पवू ता B 10 मः ] म B ;
॰पु॰ ] ॰पछु॰ B 12 वृःै ] वृ ैB 15 िवधाय ] िविवधाय B ; वृं ] व R1 16 ऽिप ]
पीः R1 17 सऽुणे िवले वृ R1 18 च वे॥े १३॥ ] च - - - वधे॥े १२॥ R1 19 इित
चपवा िधकारः ] इती चिंपव समां R1
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शाायनकेािन महाथ सऽूा-
यनिवामितज नोऽयम॥्
कलौ न दीघा यरुतो िह [मा]ं
तं यथा ीरिवधौ च हंसः॥ १॥

5 |सायनाकभलवािदकोकाः f. [2]v B

येु चेघिटयुतमान ् ॥
कोकािमितं रािशपवू कं
ललमयनाशंकोतम॥् २॥

दशा कालेऽकतनोिवशषें
10 काय तदशंिमितकोे ॥

य |नंे गणुकेन गुयं f. 2v R1

खवदे ४० भं ुटलनंात॥् ३॥

िवषेिोऽिधकोनकते ्
ितादाणिमदं बमाात ॥्

15 ल राँयशंिमतषे ु कोे
नितथा लनको गणुोऽि॥ ४॥

िव १३ लनकलाििथवतुोन-
पाता काडमतषणुलनाशंःै॥
युयं िवलतनित शरौ िवदात ्

verse 1. om. R1 1 महाथ ॰ ] माहाथ ॰ B 3 िह मां ] िहं B 4 हंसः ] हंसं B
5 सायनाक॰ ] x x नाक॰B 6 युचेघटीयुतान R्1 ; ॰घिट॰ ] ॰घटी॰B 7 ॰िमितं ]
॰तु R1 ; रासीपवू कं R1 8 ललम॰ R1 ॰कोनतम ्B, ॰किनतं R1 ; २ ] १ R1

9 दशा काले ] x x तकाले B, दशा तकाले R1 ; ऽकतनोिवषें B, कतनोव शषे ं R1 ; । fol-
lowed by two akṣaras crossed out B 10 काय च तदशिमतकोःे R1 11 य
बनं B, यं |बन R1 ; गुयं ] गूंयं R1 12 ४० om. R1 ; ३ ] २ R1 13 िवषेिो ]
िवषेिऽो B, R1 ; ॰नकते ]् ॰नक R1 14 िततंदाणमीदं बमात R्1 15 ल
राशशं॰ R1 16 गणुो ] ग ुणंो R1 ; ४ ] ३ R1 17 १३ om. R1 ; ॰वतुोन॰ ] ॰वतूोन॰ R1

18 काडंकृतखणु॰ R1, ॰लनशं ै B 19 युयं ] यगुयम ्with overline on म ्Note in
margin गं B, युयगु R्1 ; िवलतनित ] िवलतनित R1 ; शरौ ] शरो B, शरे R1
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ो भवे िवशयात ि्ितछसाम॥् ५॥

िितशलूसतू ६ लवोनयुाः
पथृतोः कृतलनं-॥
मणृं िितहीनयतुिेव दश

5 ततः ुटसंिृश[मो]िकालौ॥ ६॥

अि वैवधाि सनवित सौदािमकाे परुे
ौौता िवचारसारचतरुो मोढो िह रामायः॥
ोितिव िलकोपमव इित ातः ितौ गै ुणःै
तनूःु करणाकेशिरिममं चबे किवभा रः॥ ७॥

10 इित ौीदवैरामाजभारिवरिचतेकरणकेशिरय ेसयू पवा िधकारः॥स-ं
पणूऽयं मः॥

MS. B concludes :

शभुं लेखकपाठकयोः॥ शभुं भवते ्काणम॥ु सं १८१९ वष शाके
१६८४ िमती अिनशिुद १४ शनौ िदन े िलपीकृत॥ं

15 MS. R1 concludes :

सयूोम हणषे ु गाजलवासोपमा वाडवाः
शः ानमथारा हवनकं ाुमानाय णं [॥ ]
राऽाविशत िपतयृजनं चोपराग ेतृं
ान ं दानमथायो िनगिदतो सावथेयौ नः सित॥ १॥

1 भवे िवशयात ]् भवते ु िविशषात ्R1 ; ५ ] ४ R1 2 ितीशलूीसतु R1 ; ६ om. R1

3 ॰तोः ] ॰तनो R1 ; ॰लंबनं ं R1 3–4 मणृं ] मणृं B 4 ॰हीनयतुिेव ॰ ] ॰हीचयतु-े
िव ॰B, ॰िहनयतुिेव॰ R1 5 ततः ] भवतः R1 ; ॰िृशमोि॰ ] ॰िृशि॰ B, शमिु R1

; ६ ] ५ R1 verse 7. om. R1 6 सनवित ] संनवित B ; सौदािमकाे ] सौदिमका
B 8 ॰ितिव िलको॰ ] ॰ितिव लको॰ B ; ातः ] ातो B ; गै ुणःै ] गैणुःै B
10–11 ईती कण केशिरमथं े सयू पव समा॥ं॥ R1 11 मः ] मथंः॥ १॥ B 13 भवते ]्
भवत ्B ; काणमु] काणमःु B 14 अिनशिुद ] अनसिुद B 16 सयूौ R1

17 ानमथातंराहबनकं R1 ; ाुमानाणः. R1 18 तृः. R1 19 न सित R1
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सवनेािप कत ं ौां वरैायदशन े
अकुव न ु नािोके गौिरव सीदत॥ु २॥

दािसदाससतुो वा यिद भवित कुलािऽपऽुोऽिप भृः कुया िडूदान ं
महणमपुगते भारे िसतग े वा विताीणलोकान स्ऽा िपतरः [।] िकं

5 पनुः पऽुपौऽं ताुवत िपडाडुसिहतितलःै िकं कृतौ कोिटिपडौ॥
ध॥े

इित सपंणु॥ सं १९२५ फानुशिुद १५ शबेु िलिखतं भाइः इारामः
यमवेाथ इदं पुकं। ौी॥

1 सवनेिप R1; वरैादशनःे R1 2 अकुवा णुR1; नािोकें R1; िसदत ुR1 3 कुलान ्
िमऽपऽूोपीभृः R1; कुया डूदान ंR1 4 सीतग ेवाः R1; वािंछतान ि्णलोकान R्1; सऽ R1

5 पनुः ] प ुनंः R1 ; पऽुपौऽः. R1 ; तात कु्िव त R1 ; िपडंात ग्डुशिहतितलःै R1 ; कोटीिपडंौ
R1 7 ईती R1 ; नाफाग ुणंशिुद R1 ; शबेुः R1 ; लीिषत:ं R1 ; ईछारामं R1 8 ईदं R1
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अथ सयू  लपिंचबं ।
Table I, on f. 3r : elongation between the sun and lunar node, argument from

1 to 130 at intervals of 130-year periods

अथ ौीकरणकेशिरमथं े सयू शषेपिंचबं १२ । ३०
Table II, on f. 3v : elongation between the sun and lunar node, argument from

0 to 130 at intervals of single years

अथ करनकेसिरमथंोे िसारहे सयूोः पव नयनाथ चिं कोका अवोपिर
Table III, on f. 4r : elongation between the sun and lunar node, argument from

1 to 27 at intervals of 14-day avadhis

शरागंलुाः
Table IV, on f. 4r : digits of lunar latitude, argument from 0 to 16 degrees of

nodal-solar elongation

अथ सपातचिंगपुिररिविबबंागंलुािद ॥
Table V, on f. 4r : digits of size of solar disk, argument from 59; 56 to 64; 42

minutes of daily nodal-solar elongation

अथ ितिथमा नघोपिर चिंिबबंं तथाभतूागंलुािद ॥
Table VI, on f. 4v : digits of apparent lunar diameter, argument from 52 to 67

ghaṭikās in a day

रवेगलुािदफलसृंते
Table VII, on f. 4v : digits of increments to apparent shadow diameter, argu-

ment from Aries to Virgo and from Libra to Pisces

खिछागंलुोपिर मद घिटकाचबं
Table VIII, on f. 4v : ghaṭikās of half-duration of totality, argument from 1 to 9

digits of sky-obscuration

अथ चिंिछागंलुोपिर चिं मिितघिटचबं ६० ॥
Table IX, on f. 4v : ghaṭikās of half-duration, argument from 1 to 21 digits of

lunar obscuration

िततंका महाः वलनाथ शकाले तथा मोकाले साधनं चिंमहणे
Table X, on f. 4v : degrees of solar true longitude and true daily motion, argu-

ment from 1 to 27 avadhis

चिंिछागंलुोपिर िितनो अतंरं
Table XI, on f. 4v : differences in entries of table IX, argument from 1 to 21

digits of lunar obscuration

अथ चिंिछागंलुोपिर ििभागः
Table XII, on f. 5r : agnibhāga ( ?) of the half-duration, argument from 1 to 21

digits of lunar obscuration
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अथ मबाणागंलुोपिर बाणफलमिित
Table XIII, on f. 5r : latitude-result ( ?), argument from 1 to 21 digits of lunar

obscuration

अथ खाकंहत घौमानने भे लनताशंा त तान े ४५ शोते शोाशंा उपिर अ-
वलनं

Table XIV, on f. 5r–5v : degrees of valana, argument from 0 to 45 degrees of
zenith distance

अथ सपातचिंसयू राँयपुिर पवशान ं
Table XV, on f. 5v : lords of parvans, argument 9 eclipse-possibility month

numbers between 0 and 24

अथ शकाले तथा मोकाले सायनमह कोशंोपिर अशंां अयनजं वलनं सायनसह-
कका दौ दिणे मकरादौ उरे वलनं दयें ।

Table XVI, on f. 6r : degrees of valana, argument from 0 to 90 degrees of the
complement of tropical solar longitude

अथ सयू वलनं ं । आां तथा आयनजं वलनयोयगातंराशंोपिर अगंलुां वलनं
ं सयू  । सयू  माशवलनं पिमे दयें । मोवलनं पवू दये ं । सयू  शवलनं िवपरीतं
दयें । उरे जातं दिणे दयें । दिणे जातं उरे दयें ।

Table XVII, on f. 6v : scale-factor for conversion to digits of solar valana, argu-
ment from 0 to 47 degrees of combined valana

अथ चिं वलनंं अावलनं तथा आयनजं वलनयोयगातंराशंोपिर अगंलुां वलनं
चिंमहणे शवलनं पवू दये ं मोवलनं पिमे दयें चिं मोवलनं िवपरीतं दयें उरे जातं
दिणे दयें दिणे जातं उरे दयें ॥

Table XVIII, on f. 6v : scale-factor for conversion to digits of lunar valana, ar-
gument from 0 to 47 degrees of combined valana

अथ सायनरिवरँयोपिर दुलं ॥
Table XIX, on f. 7r : ghaṭikās of half-lengths of daylight, argument from 0 to 29

degrees of 1 to 12 signs of tropical solar longitude

सायनरिवरँयशंोपिर ल[को ]काः ।
Table XX, on ff. 7v–8r : ghaṭikās of oblique ascension, argument from 0 to 29

degrees of 0 to 11 signs of tropical solar longitude

अथ ल कलाकोका ॥
Table XXI, on ff. 8v–9v : ghaṭikās of oblique ascension, argument from 1 to 60

arcminutes of any degree of signs 1 to 6 and equivalently 12 to 7 (decreasing)

अथ दशात लाकयोिव वरबाभागूिमत े कोके ममलंबनं ं घिटकािद ॥
Table XXII, on f. 9v : ghaṭikās of longitudinal parallax, argument from 0 to 90

degrees of elongation between ascendant and sun
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अथ शायनलराँयशंोपिर लंबनगणुकाः ॥
Table XXIII, on f. 10r : scale-factor for longitudinal parallax, argument from 0

to 29 degrees of 0 to 11 signs of tropical longitude of ascendant

अथ सायनं लराँयशंोपिर नित अगंलुािद
Table XXIV, on f. 10v : digits of latitudinal parallax, argument from 0 to 29

degrees of 0 to 11 signs of tropical longitude of ascendant

अथ रिवछगंलुात म्िितघिटकािद
Table XXV, on f. 11r : ghaṭikās of half-duration of solar eclipse, argument from

1 to 12 digits of solar obscuration

अथ जातके महाणां िवकलानां कोकािद नािदः
Table XXVI, on f. 11r : the arc-seconds per ghaṭikā of the planets in horoscopy,

argument from 1 to 60

अथ नऽाणां योिनिवचारः
Table XXVII, on f. 11v : type of birth category for each of the nakṣatras, argu-

ment the 28 nakṣatras
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