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“Imagination is more important than knowledge. Knowledge is limited.
Imagination encircles the world” - Albert Einstein

“Every sentence I utter must be understood not as an affirmation, but as
a question.” - Niels Bohr

SUMMARY
The crustal evolution of  Venus appears to be principally driv-
en by intraplate processes that may be related to mantle
upwelling as there is no physiographic (i.e. mid-ocean ridge,
volcanic arc) evidence of  Earth-like plate tectonics. Rocks with
basaltic composition were identified at the Venera 9, 10, 13,
and 14, and Vega 1 and 2 landing sites whereas the rock
encountered at the Venera 8 landing site may be silicic. The
Venera 14 rock is chemically indistinguishable from terrestrial
olivine tholeiite but bears a strong resemblance to basalt from
terrestrial Archean greenstone belts. Forward petrological
modeling (i.e. fractional crystallization and partial melting) and
primary melt composition calculations using the rock compo-

sitions of  Venus can yield results indistinguishable from many
volcanic (ultramafic, intermediate, silicic) and plutonic
(tonalite, trondhjemite, granodiorite, anorthosite) rocks that
typify Archean greenstone belts. Evidence of  chemically pre-
cipitated (carbonate, evaporite, chert, banded-iron formation)
and clastic (sandstone, shale) sedimentary rocks is scarce to
absent, but their existence is dependent upon an ancient Venu-
sian hydrosphere. Nevertheless, it appears that the volcanic–
volcaniclastic–plutonic portion of  terrestrial greenstone belts
can be constructed from the known surface compositions of
Venusian rocks and suggests that it is possible that Venus and
Early Earth had parallel evolutionary tracks in the growth of
proto-continental crust.

RÉSUMÉ
L'évolution de la croûte de Vénus semble être principalement
déterminée par des processus intraplaques qui peuvent être liés
à des remontées mantelliques, car il n'y a aucune preuve phys-
iographique d'une tectonique des plaques semblable à la Terre
(c.-à-d. dorsale médio-océanique, arc volcanique). Des roches
de composition basaltique ont été identifiées sur les sites d'at-
terrissage de Venera 9, 10, 13 et 14 et Vega 1 et 2 tandis que la
roche rencontrée sur le site d'atterrissage de Venera 8 peut être
silicique. La roche du site de Venera 14 est indiscernable de la
tholéiite à olivine terrestre de par ses propriétés chimiques,
mais ressemble fortement au basalte des ceintures de roches
vertes archéennes terrestres. La modélisation pétrologique
prospective (c.-à-d. cristallisation fractionnaire et fusion par-
tielle) et les calculs de la composition de fusion primaire à par-
tir des compositions des roches de Vénus peuvent donner des
résultats indiscernables de nombreuses roches volcaniques
(ultramafiques, intermédiaires, siliciques) et plutoniques
(tonalite, trondhjemite, granodiorite, anorthosite) qui carac-
térisent les ceintures de roches vertes archéennes. Les preuves
de roches sédimentaires précipitées chimiquement (carbonate,
évaporite, chert, formation de fer rubané) et clastiques (grès,
schiste) sont rares ou absentes, mais leur existence dépend
d'une ancienne hydrosphère vénusienne. Néanmoins, il semble
que la partie volcanique-volcanoclastique-plutonique des cein-
tures de roches vertes puisse être construite à partir des com-
positions de surface connues des roches vénusiennes et sug-
gère qu'il est possible que Vénus et la Terre primitive aient eu
des trajectoires évolutives parallèles de croissance de la croûte
proto-continentale.
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INTRODUCTION
Venus and Earth are often considered to be sister planets as
they are similar in size, bulk composition, density, crater reten-
tion, and they have significant, albeit compositionally distinct,
atmospheres (Table 1; Hansen 2018; Taylor et al. 2018). The
modern exploration of  Venus began in the 1960s and it was
the first planet to be visited by a spacecraft (Mariner 2), have a
probe soft-land on the surface (Venera 7), and to have surface
pictures taken and sent back to Earth (Venera 9). Exploration
of  Venus continues to this day although the number of  proj-
ects has waned since the successful Venera, Magellan, and
Venus Express programs of  the 1960s–1980s, 1990s, and
2000s (Basilevsky and Head 2003). Consequently, new discov-
eries have lagged behind that of  other celestial bodies such as
Mercury, Mars, Ceres, Titan, and Pluto. In spite of  the lesser
number of  missions, new ideas and concepts on the evolution
of  Venus have been proposed in the past decade that could
change the perception of  Venus as an inhospitable hellscape.
The new observations have led to suggestions that the crust of
Venus may be differentiated (Hashimoto et al. 2008; Gilmore
et al. 2015), that Venus may have sustained vast oceans until
the middle Neoproterozoic (Way et al. 2016; Way and Del
Genio 2020), that there was a climatic transition from relatively
cool and wet that permitted deposition and erosion to hot and
dry (Khawja et al. 2020; Byrne et al. 2021), that the surface age
(~130 Ma) may be very young (Bottke et al. 2015), and that the
conditions to support life may exist in the atmosphere (Seager
et al. 2021).

The geology of  Venus remains enigmatic as the physio-
graphic features are known, but there is a dearth of  detailed
information on just about all other aspects (e.g. thermal
regime, surface composition, sediment deposition) of  crustal
evolution (Basilevsky and Head 1988, 2003; Nimmo and
McKenzie 1998; Ivanov and Head 2011). The surface of
Venus is dominated (~ 80%) by relatively featureless volcanic
plains that lie within ± 1 km of  the mean planetary radius
(mpr), whereas the remainder of  the surface is composed of
mesolands and highlands (Fig. 1; Basilevksy and Head 2003;
Fegley Jr. 2014). The mesolands are moderately elevated, 1 km
to 2 km above the mpr, and are known for their coronae (large
oval volcanic domains) and chasmata (troughs) features. The
highland regions represent ~ 8% of  the surface and consist of
tesserae terranes, large volcanic edifices, compression-related
mountain belts, and may be compositionally different from the
lowlands (Ansan and Vergely 1995; Basilevksy and Head 2003;
Hashimoto et al. 2008; Gilmore et al. 2015). From the geomor-
phology of  the crust, it is clear that Venus does not have
Earth-like plate tectonics due to the absence of  globe-encir-
cling mid-ocean ridges and volcanic arc subduction zones
(Nimmo and McKenzie 1998). However, the formation of  the
highlands is perplexing as it is not precisely known how or why
thickened and compositionally differentiated crust can be
voluminous in the absence of  plate tectonics.

Different tectonic models have been proposed to explain
the compressional, extensional, and deformational features
and the higher elevations (> 3 km) of  the highland terranes
(tesserae). Models of  highland formation are primarily focused

on whether mantle upwelling or downwelling is the controlling
factor in their development and maintenance (Bindschadler
1995; Jull and Arkani-Hamed 1995; Phillips and Hansen 1998;
Hansen and Willis 1998; Hansen et al. 1999). The two largest
highland terranes, Ishtar Terra and Aphrodite Terra, bear a
striking resemblance to continental crust on Earth as they are
elevated with respect to the volcanic plains and they appear to
be older and at least partially deformed (Bindschadler and
Head 1991; Ivanov 2001; Hashimoto et al. 2008; Romeo and
Turcotte 2008; Gilmore et al. 2015). The apparent lack of  plate
tectonics and the existence of  highland terranes on Venus has
led to suggestions that Venus may be analogous to the pre-
plate tectonics Archean Earth or possibly a post-plate tecton-
ics setting (Hamilton 2007; Hansen 2007a, 2018; Harris and
Bédard 2014). In fact, the vertical tectonic (mantle upwelling)
model for the development of  Venusian highland terranes is
somewhat comparable to the ‘unstable stagnant lid’ model pro-
posed for some granite–greenstone belts of  Archean cratons
(Harris and Bédard 2015; Bédard 2018). However, a major
uncertainty with all geological analogues between Venus and
Earth is whether the two planets have similar mantle composi-
tions and structures, supracrustal rock types (komatiite, kim-
berlite, sedimentary rocks), or operated under similar tectonic
regimes (plate tectonics).

The surface composition of  Venus was measured at seven
different locations between 20°S and 30°N across the volcanic
plain and mesoland regions (Fig. 2; Kargel et al. 1993). The
Venera 13, Venera 14, and Vega 2 landers analyzed, with the
exception of  Na2O, the major elements, Cl, and SO3 by X-ray
fluorescence spectrometry (Table 2); whereas the Venera 8,
Venera 9, Venera 10, Vega 1, and Vega 2 landers measured Th,
U, and K by g-ray spectrometry (Table 3; Vinogradov et al.
1973; Surkov 1977; Surkov et al. 1984, 1986, 1987). The rocks
at the Venera 13 and Venera 14 sites are compositionally
basaltic, but have distinct concentrations of  CaO and K2O.
The compositional differences indicate the Venera 13 rock is
alkaline (olivine leucitite or phonotephrite) whereas the Venera
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Table 1. Physical properties of  Venus and Earth.

Property Venus Earth

Radius 6052 km 6378 km
Mass 4.87 x 1024 kg 5.97 x 1024 kg
Bulk density 5.24 (g/cm3) 5.51 (g/cm3)
Albedo 59% 39%
Surface gravity 8.87 m/s 9.80 m/s 
acceleration
Average surface 460°C 15°C
temperature
Atmosphere N2 (3.5%) N2 (78.1%)
composition O2 (0-20 ppm) O2 (20.9%)

CO2 (96.5%) CO2 (420 ppm)
H2O (30 ± 15 ppm) H2O (4% to 40 ppm)

Values from Faure and Messing (2007).
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Figure 1. Size comparison of  Venus and Earth. The Venus surface image is radar-based and false colour. Earth image from NASA/Apollo 17 crew.

Figure 2. Mercator projection map of  Venus showing the relative mean planetary radius crustal elevation and the locations of  the Venera and Vega landers (modified from
Faure and Messing 2007).



14 rock is sub-alkaline and similar to tholeiite from Archean
greenstone belts and terrestrial within-plate settings (Fig. 3;
Condie 1981; Filiberto 2014). The material measured at the
Vega 2 landing site is unusual and may be representative of  a
soil–rock mixture as the reported SO3 (4.7 ± 1.5 wt.%) content
is very high. The remaining rocks are considered to be tholei-
itic basalt or gabbro based on their Th–U–K contents (Fig. 4;
Vinogradov et al. 1973; Surkov et al. 1986; Kargel et al. 1993;
Treiman 2007).

There is significant uncertainty regarding the nature of  the
rock measured at the Venera 8 landing site as the Th (6.5 ± 2.2
ppm) and U (2.2 ± 0.7 ppm) concentrations are anomalously
high and within the range of  intermediate to silicic (granodior-
ite or dacite) igneous rocks (Nikolayeva 1990; Basilevsky et al.
1992). Nikolayeva (1990) suggested that the Venera 8 rock
could be evidence of  differentiated (continental?) crust but the
K2O (K2O = 4.0 ± 1.2 wt.%) content of  Venera 8 is indistin-
guishable from the value reported at the Venera 13 (K2O = 4.0
± 0.6 wt.%) landing site (Kargel et al. 1993; Treiman 2007).
Subsequently, Basilevsky et al. (1992), due to the data uncer-
tainty, concluded that the Venera 8 rock could be either an

alkali basaltic rock (leucitite, minette, lamprophyre) or an
evolved intermediate rock (diorite, granodiorite, syenite). The
predominance of  basaltic rocks encountered on the surface of
Venus suggests that the planet may have retained its primary
crust or that it is dominated by flood basalt of  large igneous
provinces or possibly the supracrustal successions of  terrestri-
al Archean granite–greenstone belts (Harris and Bédard 2014;
Hamilton 2015; MacLellan et al. 2021).

This contribution is a review of  petrological modeling
(fractional crystallization modeling, equilibrium partial melt-
ing, primary melt composition) that used the surface composi-
tions measured at the Venera 13, Venera 14, and Vega 2 land-
ing sites (Surkov et al. 1984, 1986, 1987). The modeling results
are contextualized from within the framework of  terrestrial
geology and the formation mechanism of  Archean
supracrustal rocks as deduced from greenstone belts that typi-
fy the oldest cratons of  Earth. The purpose of  this manuscript
is to demonstrate that the volcanic and sedimentary lithologies
of  terrestrial greenstone belts can be generated from rock
compositions that are known to exist on the surface of  Venus.
Although the uncertainty in the data and the limited geological
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Table 2. Major element compositions of  basalt from Venus, mid-ocean ridges, Archean greenstone belts, and the estimated com-
position of  the Venera 8 rock.

Sample Venera 13 Venera 14 Vega 2 Venera 8 N-MORB E-MORB Archean Archean
(estimated) (mean) (mean) (DAT) (EAT)

SiO2 (wt.%) 45.1 ± 3.0 48.7 ± 3.6 45.6 ± 3.2 58.3-65.6 50.42 ± 0.08 50.58 ± 0.33 50.90 50.91
TiO2 1.6 ± 0.45 1.25 ± 0.41 0.20 ± 0.1 0.5-1.5 1.53 ± 0.04 1.53 ± 0.11 0.95 1.53
Al2O3 15.8 ± 3.0 17.9 ± 2.6 16.0 ± 1.8 13.4-16.2 15.13 ± 0.12 14.94 ± 0.38 15.72 15.63
FeO 9.3 ± 2.2 8.8 ± 1.8 7.7 ± 1.1 3.2-6.8 9.81 ± 0.15 9.64 ± 0.48 10.30 12.02
MnO 0.2 ± 0.1 0.16 ± 0.08 0.14 ± 0.12 0.1-0.2 0.17 ± 0.004 0.16 ± 0.013 0.22 0.19
MgO 11.4 ± 6.2 8.1 ± 3.3 11.5 ± 3.7 1.6-4.1 7.76 ± 0.09 7.37 ± 0.27 7.64 7.01
CaO 7.1 ± 1.0 10.3 ± 1.2 7.5 ± 0.7 2.8-6.4 11.35 ± 0.08 11.18 ± 0.27 11.76 9.04
Na2O 2.0 ± 0.5* 2.4 ± 0.4* 2.0 ± 0.5* 2.5-4.4 2.83 ± 0.05 2.72 ± 0.18 2.18 2.78
K2O 4.0 ± 0.6 0.2 ± 0.07 0.1 ± 0.08 3.4-4.9 0.14 ± 0.11 0.39 ± 0.075 0.22 0.71
P2O5 0.2-0.70 0.16 ± 0.004 0.24 ± 0.051 0.10 0.17
SO3 1.6 ± 1.0 0.88 ± 0.77 4.7 ± 1.5
Cl < 0.3 < 0.4 < 0.3
H2O
Th (ppm) 2.0 ± 1.0 6.4-6.7 0.25 ± 0.029 1.4 ± 0.23
U (ppm) 0.68 ± 0.38 1.6-2.7 0.08 ± 0.008 0.39 ± 0.06
Total 98.1 98.7 95.4

All Venus basalt data reported at 1s uncertainty. *The Na2O content is calculated for the Venera 13, 14 and Vega 2 data (Surkov et al. 1984,
1986). The calculated Venera 8 composition is from Nikolayeva (1990). The mean (2s) N-MORB (normal mid-ocean ridge basalt) and E-
MORB (enriched mid-ocean ridge basalt) compositions are from Gale et al. (2013). Average Archean tholeiitic compositions from Condie
(1981). DAT = depleted Archean tholeiite; EAT = enriched Archean tholeiite. 

Table 3. Measured K2O, Th and U contents from the surface rocks of  Venus by g-ray spectrometry.

Sample Vega 1 Vega 2 Venera 8 Venera 9 Venera 10

K2O (wt.%) 0.45 ± 0.22 0.40 ± 0.20 4.0 ± 1.2 0.47 ± 0.08 0.30 ± 0.16
Th (ppm) 1.5 ± 1.2 2.0 ± 1.0 6.5 ± 2.2 3.65 ± 0.42 0.70 ± 0.34
U (ppm) 0.64 ± 0.47 0.68 ± 0.38 2.2 ± 0.7 0.60 ± 0.16 0.46 ± 0.26

The results reported by Surkov et al. (1987).



knowledge of  Venus prevents a firm conclusion, the findings
indicate that the existence of  greenstone belt-like crust on
Venus cannot currently be dismissed. Therefore, I offer a
hypothesis that is eminently testable for future missions to
Venus.

SUMMARY OF MODELING PARAMETERS
Fractional crystallization and equilibrium partial melting mod-
eling of  the Venusian rocks were conducted using the petro-
logical software MELTS (Shellnutt 2013) and Rhyolite-MELTS
(Shellnutt 2018, 2019; Shellnutt and Manu Prasanth 2021). The
magma conditions (initial temperature, relative oxidation state,
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Figure 3. Major elemental comparison of  Venusian basalt to tholeiitic basalt from
Superior Province greenstone belts. All Superior Province data are from the
GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/). The Superior
Province basalt data were selected if  the sum total was > 97 wt.% and < 101 wt.%
without loss on ignition and MgO < 15 wt.%. Total iron was recalculated to FeOt
(Fe2O3 wt.% = 0.8998 ´ FeO wt.%).

Figure 4. Trace elemental comparison of  the Venusian basalts to all MORB and
greenstone belt basalts from the Superior Province. All MORB values from Gale et
al. (2013) and the Superior Province data is from the GEOROC database
(http://georoc.mpch-mainz.gwdg.de/georoc/).



water contents) used in the models encompass a wide range
due to the uncertainties of  the redox state, ambient tempera-
ture, and water content of  the Venusian mantle (Table 4).
However, conditions similar to terrestrial within-plate tectonic
settings rather than subduction zone or mid-ocean ridge set-
tings were used as a guide.

Pressure (1.0 GPa = ~ 35 km) is the least uncertain param-
eter and the model conditions range from surface to near sur-
face (0.01 GPa), upper crust (0.1 GPa), middle crust (0.5 GPa),
and lower crust (1.0 GPa). Most models presented here assume
isobaric conditions, however polybaric models were also mod-
eled (Shellnutt 2018, 2019; Shellnutt and Manu Prasanth 2021).
The relative oxidation states of  the models are within one log
unit of  the fayalite–magnetite–quartz buffer (DFMQ ± 1) as
the FeO/MnO ratios of  Venusian basalt (Venus basalt » 52;
bulk silicate Earth » 60) are similar to bulk silicate Earth.
Therefore, it is likely that the redox conditions of  the Venusian
mantle that produced the basalt is within two log units of  the
fayalite–magnetite–quartz (DFMQ ± 2) buffer, but could be
slightly less oxidizing (Haggerty 1978; Schaefer and Fegley Jr.
2017).

The water content of  the Venusian mantle is the most
uncertain parameter. Evidence suggests Venus lost significant
quantities of  surface water and that the low but stable concen-
tration of  atmospheric water is maintained by atmosphere–
mantle coupling (Donahue et al. 1997; Fegley Jr. 2014; Filiber-
to 2014; Gillmann and Tackley 2014; Airey et al. 2015; Way et
al. 2016; Filiberto et al. 2020). Due to the uncertainty of  the
water concentration of  the Venusian mantle, anhydrous (H2O
= 0 wt.%) and hydrous conditions were used in the hope that
the conditions on Venus could be deduced indirectly from
these models. For the basaltic models, 0.2, 0.4, and 0.5 wt.%
water were used as these values are common for terrestrial
basalt at within-plate settings (Hauri 2002). For the primary

melt compositions, water was set to 0.2 wt.% as this is typical
of  primitive mafic and ultramafic volcanic rocks (Berry et al.
2008; Husen et al. 2013; Sobolev et al. 2016).

The primary melt composition and mantle potential tem-
perature (TP) estimates are calculated for Venera 14 using
PRIMELT3 (Herzberg and Asimow 2015; Shellnutt 2016).
The important parameters for the calculations are FeOt and
MgO because they are the constituent components of  olivine.
The CaO content is also important because it indicates
whether clinopyroxene and/or plagioclase were removed from
the starting composition (i.e. Venera 14 composition). Conse-
quently, the CaO content must be adjusted to prevent a
clinopyroxene fractionation warning. The maximum and min-
imum permitted values of  MgO, FeOt and CaO (± 1s error)
were used so that the TP range can be constrained. The
remaining elements (TiO2, Al2O3, MnO, CaO, Na2O and K2O)
are not major components of  olivine and thus their variability
will not significantly influence the estimates. The calculated
primary melt compositions were then used for the Rhyolite-
MELTS fractional crystallization modeling to investigate how
the primary melts evolved after separation from the mantle
(Table 5).

WHAT IS A GREENSTONE BELT?
A signature feature of  all Archean cratons is the occurrence of
granite–greenstone belts. Simply put, granite–greenstone belts
are well preserved linear to curvilinear rock suites that are typ-
ically 10–25 km wide, 100–300 km long, 5 km−30 km thick
and have a characteristic stratigraphy of  volcanic rocks fol-
lowed by volcaniclastic and sedimentary rocks that represent
the final stages of  maturation (Condie 1981; Bleeker 2002;
Hawkesworth and Kemp 2006; Anhaeusser 2014; Thurston
2015). All greenstone belts are metamorphosed to some extent
and intruded by granitic rocks (e.g. tonalite–trondhjemite–gra-
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Table 4. Summary of  MELTS and Rhyolite-MELTS modeling conditions.

Model Pressure Relative Water Venera 13 Venera 14 Vega 2 Primitive Software 
(GPa) oxidation content Venera 14 version

state (¦O2) (wt.%)

2013
FC 0.01, 0.1, 1.0 DFMQ 0 0, 0.2 T T M
PM 0.01, 0.1, 1.0 DFMQ 0 0, 0.2 T T M
2018
FC 0.01, 0.1, 0.5 DFMQ 0, -1 0, 0.5 T R
PM 0.01, 0.1, 0.5 DFMQ 0, -1 0, 0.5 T R

2019
FC 0.1, 0.5 DFMQ +0.7 0.4 T R

2021
FC 0.1, 0.5, 1.0 DFMQ -1, 0, +1 0, 0.20, 0.5 T T T T R

FC = fractional crystallization; PM = equilibrium partial melting. M = MELTS (Smith and Asimow 2005); R = Rhyolite-MELTS
(Gualda et al. 2012). FMQ = fayalite-magnetite-quartz buffer. 
All models are isobaric conditions but the models of  2018, 2019, and 2021 include polybaric conditions. Primitive Venera 14 com-
positions were calculated by Shellnutt (2016).



nodiorite) with many hosting significant deposits of  base and
precious metals (e.g. Au, Zn, Pb, Ni, Cu).

The terrestrial Archean volcanic sequences are typically
composed of  mafic subaqueous volcanic and volcaniclastic
rocks with felsic intercalations and almost no sedimentary
rocks. In comparison, the upper unit is primarily composed of
sedimentary caprocks with few subaerial K-rich volcanic rocks
(Fig. 5; Anhaeusser 2014; Thurston 2015). The lower portion
of  the volcanic unit consists of  subaqueous ultramafic
(komatiite) to mafic (tholeiite, boninite) volcanic rocks with
minor felsic tuff  layers. The upper portions of  the lower unit
consist of  a bimodal sequence of  tholeiitic flows and calc-alka-
line mafic and silicic (andesitic to rhyolitic) volcanic rocks
(Condie 1981; Anhaeusser 2014; Thurston 2015). In some
cases the mafic–ultramafic sequences are separated by thin lay-
ers of  calc-alkaline rocks at intervals ranging from 3 million
years to 30 million years (Harris and Bédard 2014). Deposited
on top of  the volcanic series are sedimentary rocks, but the
lithology of  each greenstone belt is unique and can be com-
posed of  volcanogenic sandstone and mud-rocks, chemically
precipitated carbonate rocks, sulphate chemically precipitated
rocks (e.g. gypsum, barite), and banded iron formations, chert,
jaspillitic sequences, conglomerate–quartz arenite–carbonate
sequences, conglomerate–wacke–pelite, and tidal sand-wave

deposits (Anhaeusser 2014). Furthermore, sedimentary depo-
sitional gaps also exist between volcanic episodes that range in
duration from 2 to 27 million years (Thurston et al. 2008). The
total duration of  magmatism of  a given greenstone belt is vari-
able and can range from ~ 50 to ~ 300 million years (Percival
and Card 1986; Corfu and Andrews 1987; Byerly et al. 1996;
Anhaeusser 2014; Thurston 2015).

The intrusive complexes of  greenstone belts include lay-
ered mafic intrusions (LMI), sill complexes, anorthosite plu-
tons, and granitic suites (Bédard et al. 2009; Anhaeusser 2014;
Ashwal and Bybee 2017). The layered intrusions are consid-
ered to be representative of  magma chambers in which
komatiitic and/or basaltic magma differentiated. Furthermore,
anorthosite, and associated leucogabbro and gabbro, is a minor
component of  some greenstone belts (e.g. Abitibi, Fiskenæs-
set, Barberton). Anorthosite is principally formed by crystal-
lization and accumulation of  plagioclase from a mafic or ultra-
mafic parental magma and occurs either as layers within LMI
or as megacrystic lavas or sills (Ashwal and Bybee 2017).
Among the granitic rocks that intrude greenstone belts are the
tonalite–trondhjemite–granodiorite (TTG) suites that are con-
sidered to be generated by partial melting of  hydrous mafic
lower crust or possibly derived from subduction-related mag-
matic processes (Moyen 2011; Anhaeusser 2014).
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Table 5. Calculated primitive composition of  the Venera 14 basalt and mantle potential temperature estimates.

Sample Venera 14 Batch AFM Venera 14 Batch AFM AFM Venera 14 Batch AFM
(model 1) Melt (model 2) Melt (model 3) Melt

SiO2 (wt.%) 48.7 49.11 49.13 48.7 46.41 46.47 46.66 48.7 48.06 48.13
TiO2 1.25 1.26 1.26 1.25 1.07 1.08 1.12 1.25 1.19 1.20
Al2O3 17.9 17.97 18.01 17.9 15.26 15.44 15.99 17.9 17.05 17.22
Fe2O3 0.63 0.63 0.53 0.54 1.12 0.60 0.60
FeO 6.62 6.61 9.0 9.0 8.44 7.57 7.56
FeOt 7.1 9.7 8.1
MnO 0.16 0.16 0.16 0.16 0.15 0.15 0.16 0.16 0.16 0.16
MgO 9.9 10.21 10.11 11.3 15.56 15.14 13.91 11.1 12.61 12.24
CaO 11.4 11.44 11.47 11.5 9.82 9.94 10.29 10.8 10.29 10.39
Na2O 2.4 2.41 2.42 2.4 2.04 2.07 2.14 2.4 2.29 2.31
K2O 0.2 0.20 0.20 0.20 0.17 0.17 0.18 0.20 0.19 0.19
SO3
Cl
Total 99.01 100 100 103.11 100 100 100 100.61 100 100
Pressure (bars) 100 100 100 100 100 100 100
FeO (source) 8.02 8.02 8.02 8.02 8.02 8.02 8.02
MgO (source) 38.12 38.12 38.12 38.12 38.12 38.12 38.12
Fe2O3/TiO2 0.5 0.5 0.5 0.5 1.0 0.5 0.5
Mole Fraction Fe2+/Fe* 0.92 0.92 0.94 0.94 0.88 0.93 0.93
% ol addition 0.6 0.3 13.0 11.8 8.2 4.3 3.3
F (%) 0.06 0.06 0.11 0.11 0.09 0.11 0.11
Temperature (°C) 1240 1240 1360 1350 1330 1300 1290
TP (°C) 1310 1310 1450 1440 1410 1370 1360

AFM = accumulated fractional melt. F (%) = melt fraction. The model compositions above are entered into PRIMELT3
(Herzberg and Asimow 2015). The software automatically normalizes the data to 100% for the calculation. TP (°C) = mantle
potential temperature.



The formation and origin (plate tectonic origin versus man-
tle-controlled) of  greenstone belts has yet to be resolved as
they are thought to be analogous to modern oceanic plateaus,
volcanic arcs, ophiolites, or flood basalt suites that, at some
level, may involve a mantle plume particularly with respect to
the eruption of  the lower mafic–ultramafic volcanic series (de
Wit and Ashwal 1995; Bédard et al. 2003, 2013; Smithies et al.
2005a; Bédard 2006; Condie and Benn 2006; Anhaeusser 2014;
Thurston 2015). The calc-alkaline nature of  the silicic rocks in
greenstone belts is, in some cases, considered to be evidence in
favour of  a volcanic arc-like origin for at least the silicic por-
tion of  the bimodal sequence (Scott et al. 2002; Wyman et al.
2002; Smithies et al. 2005b). It is likely that greenstone belts
represent a glimpse into the development of  primitive terres-
trial crust or proto-continental crust (Smithies et al. 2005a;
Thurston 2015; Bédard 2018).

TECTONOTHERMAL REGIME OF VENUS
The surface of  Venus is dominated by low-lying volcanic
plains that have a low crater density and an estimated crustal
thickness of  10–15 km (Strom et al. 1994; Nimmo and
McKenzie 1998; Byrnes and Crown 2002; James et al. 2013).
Constraints on the interior processes, in particular the upper
mantle, of  Venus can be deduced from rock surface mor-
phologies and compositions, large-scale physiographic features
(rifts, folds, faults), and atmospheric composition (McKenzie
et al. 1992a; Lee et al. 2009; Armann and Tackley 2012; Gill-
mann and Tackley 2014; O’Rourke and Korenaga 2015). The
identification of  large volcanic rises (e.g. Beta Regio), pancake
domes (flat-top and steep-sided), coronae and novae (e.g.
Mokos, Selu, Zemire), shield volcanoes (e.g. Maat Mons, Sapa
Mons), and anastomosing lava channels indicate that Venusian
lava flows have different viscosities and different compositions
and/or represent different thermal regimes (Head et al. 1992;
McKenzie et al. 1992b; Pavri et al. 1992; Kargel et al. 1993;
Sakimoto and Zuber 1993; Lancaster et al. 1995; Nimmo and
McKenzie 1998; Byrnes and Crown 2002; Buchan and Ernst
2021; MacLellan et al. 2021). The low crater density of  Venus
suggests volcanism was probably the main process of  resurfac-
ing and the maintenance of  a young surface age, although the
role of  weathering and fluvial erosion in the denudation of
surface features is possible, but not well established (Hauck et
al. 1998; Smrekar et al. 2007; Kreslavsky et al. 2015; Way et al.
2016; Khawja et al. 2020). Hamilton (2005, 2015) offered an
alternative explanation and suggested that Venus became geo-
logically inert by 3.8 Ga due to less radiogenic heat, but this
view is not widely adopted.

The absence of  Earth-like subduction zones and mid-
ocean ridges suggests that the interior cooling of  Venus is
probably facilitated primarily by advective heat transport either
by mantle plumes or hotspots (Nimmo and McKenzie 1998;
Phillips and Hansen 1998; Smrekar et al. 2007, 2010; Gill-
mannn and Tackely 2014; Gülcher et al. 2020; MacLellan et al.
2021). Conduction and rifting and mantle decompressional
melting probably play important roles in mantle cooling as
well. Accretion and differentiation models of  Venus-like plan-
ets yielded bulk mantle compositions similar to Earth (FeO =
8.14 ± 0.90 wt.%), in particular the bulk FeO (4.52 to 8.25
wt.%) content (Herzberg and O’Hara 2002; Rubie et al. 2015).
Consequently, mantle potential temperatures and primary melt
compositions can be calculated from the Mg# of  the Venusian
basalt and offer estimates on the possible thermal regimes that
operate on Venus as well as initial eruptive temperatures
(Nimmo 2002; Lee et al. 2009; Filiberto 2014). A number of
mantle potential temperature (TP) estimates were calculated for
Venus with temperatures of  Venera 13 (TP = 1459 ± 73°C)
and Venera 14 (TP = 1330°C, 1370 ± 70°C, 1459 ± 101°C)
within the range of  ambient conditions of  modern Earth (i.e.
TP = 1350 ± 50°C); whereas estimates of  Vega 2 (TP = 1778
± 167°C) are significantly higher and could be within the range
of  ambient Archean mantle, but the rock at Vega 2 may be
representative of  a soil–rock mixture (McKenzie et al. 1992a;
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Figure 5. Greenstone belt stratigraphy of  the Coolgardie–Kurrawang succession of
Western Australia (A) and the Vermilion succession (B) of  Minnesota (modified
from Condie 1981).



Lee et al. 2009; Weller and Duncan 2015; Shellnutt 2016,
2018). The initial melt composition of  Venera 13 is difficult to
calculate because the whole rock sum total is lower than that
reported for the Venera 14 rock and it is alkaline, suggesting
that was not in equilibrium with a low volatile lherzolitic man-
tle source (Table 5; Filiberto 2014).

The calculated thermal estimates and primary melt compo-
sitions are consistent with some of  the volcanic morphologies
(e.g. shield volcanoes, anastomosing lava channels) of  the
planitiae, although the pancake domes appear to indicate low
viscosity lavas that may or may not be silicic (McKenzie et al.
1992b; Fink et al. 1993; Sakimoto and Zuber 1993). Neverthe-
less, as the range of  model Tp similar to Earth have been cal-
culated, the thermal regime and bulk composition of  the
Venusian mantle can be considered similar to the Earth, as it is
consistent with known data. The possible thermal regime dif-
ferences suggest that Venus may have had regions character-
ized by rapid eruption flux of  mafic and ultramafic lavas (cf.
Basilevsky and Head 2007; Hansen 2007b) and those of  slower
eruption rates expected for passive rifting (Basilevsky and
Head 2002; Ivanov and Head 2015; Shellnutt 2016).

CONSTRUCTING A VENUSIAN GREENSTONE BELT

Lower Volcanic Sequence
When one builds a house it is wise to start with the foundation.
The lower volcanic sequence of  greenstone belts is commonly
composed of  spinifex-textured komatiite and primitive tholei-
itic basalt with volcaniclastic rocks (Condie 1981; Anhaeusser
2014; Thurston 2015). The basalt measured at the Venera 14
landing site is compositionally similar to typical tholeiitic basalt
of  Archean greenstone belts and, more broadly, mafic volcanic
rocks from continental flood basalt provinces or oceanic
plateaus (Figs. 3 and 4). It is probably the only rock type from
the Venus data set that can be identified with any degree of
certainty and even then, the uncertainty of  the measurement
of  Venera 14 is large.

The primary melt composition of  Venera 14 was calculated
using PRIMELT3 software and reported by Shellnutt (2016)
and summarized in Table 5. Given the data uncertainty and the
mantle redox conditions of  the Venusian mantle, four primary
melt compositions were calculated by accumulated fractional
melting (AFM) whereas three were calculated using batch
melting (Table 5). The AFM compositions, probably more rep-
resentative of  actual melt accumulation, show that the Venera
14 rock was either very close to a primitive basaltic melt or
possibly a picritic melt as it has mantle potential temperature
estimates ranging from 1310°C to 1440°C, and eruption tem-
peratures of  1240°C to 1350°C. Although the picritic compo-
sition is ultramafic (MgO = 15.1 wt.%), it is not similar to a
komatiite and the maximum mantle potential temperature esti-
mate (1440°C) obtained is much lower than that expected for
the terrestrial Archean (1500–1600°C) mantle (Herzberg et al.
2010). However, it does suggest that both mafic and ultramafic
lavas can erupt on Venus. In this regard, it is expected that
interlayering of  mafic–ultramafic lavas and sills occurred and
that would resemble the lower volcanic sequences of  a green-

stone belt. Whether komatiite-like lavas erupted on Venus or if
subaqueous eruptions occurred is speculative at best, but con-
sidering the Venusian mantle was compositionally suitable to
generate a rock similar terrestrial to olivine tholeiite, then it
would be expected that they would exist at higher mantle
potential temperatures.

Bimodal Volcanic Sequence
Overlying the lower mafic–ultramafic volcanic sequence of
some greenstone belts is a bimodal volcanic sequence. The
bimodal volcanic sequence consists of  mafic tholeiitic (basalt,
basaltic andesite) flows and intermediate (andesite, boninite) to
silicic (dacite and rhyolite) calc-alkaline flows (Condie 1981;
Anhaeusser 2014; Thurston 2015). The calc-alkaline nature of
the intermediate to silicic rocks is considered to be evidence of
an active margin (island arc or continental arc) origin for these
rocks by some (Kohler and Anhaeusser 2002; Polat et al. 2002;
Smithies et al. 2005b), but it is debated (Pearce 2008; Bédard et
al. 2013; Barnes and Van Kranedonk 2014; Bédard 2018).

Intermediate and silicic igneous rocks have not conclusive-
ly been identified on the surface of  Venus. The rock encoun-
tered at the Venera 8 landing site is currently the only hard evi-
dence for the existence of  an evolved igneous rock on Venus
as it has high Th and U contents (Fig. 4). However, as dis-
cussed above, there are contrasting interpretations on the
nature of  the Venera 8 rock (Nikolayeva 1990; Basilevsky et al.
1992; Kargel et al. 1993). Ghail and Wilson (2015) identified
large-scale, welded and possibly volatile-rich pyroclastic flow
deposits, but there is little evidence at this moment to support
or refute a silicic composition. Furthermore, pancake dome
volcanic structures indicate that high viscosity lava flows
erupted, but it does not confirm an intermediate or silicic
composition (Fink et al. 1993).

Fractional crystallization modeling using the Venera 13,
Venera 14, Vega 2, and the calculated Venera 14 primitive liq-
uid compositions as the parental magmas yield intermediate to
silicic compositions over a range of  pressure, redox condi-
tions, and water contents (Shellnutt 2013, 2018, 2019; Shellnutt
and Manu Prasanth 2021). The modeled compositions include
andesitic, trachytic, dacitic, rhyolitic, and phonolitic liquids. In
other words, with the exception of  foidite, many intermediate
and silicic rocks described on the total alkalis versus silica dia-
gram of  Le Bas et al. (1986) can be generated by fractional
crystallization of  a spectrum of  Venusian basalt. The Venera
13 alkaline basalt can generate the highly alkaline rocks
(phonolite) after ~ 60% or more crystallization, whereas the
subalkaline Venera 14 and Vega 2 compositions can yield the
basaltic andesite–andesite–dacite–rhyolite series (Shellnutt
2013). The Vega 2 tholeiitic basalt can produce the trachytic
liquid series under specific (e.g. hydrous, polybaric) conditions
(cf. Shellnutt 2018).

Of  particular interest is the Venera 8 rock because the Th–
U–K contents indicate that it could be silicic. Using the Th–
U–K contents of  the Venera 8 rock, Nikolayeva (1990) calcu-
lated a likely bulk composition by comparing it to the distribu-
tion of  the same elements in terrestrial rocks and concluded
that it could be similar to granodiorite or dacite (Table 2).
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Shellnutt (2019) demonstrated that fractional crystallization of
a parental magma similar to Venera 14 subalkaline basalt could
yield a residual silicic liquid within the range that Nikolayeva
(1990) calculated. The modeling conditions that yielded the
calculated Venera 8 composition were hydrous (H2O = 0.4
wt.%), relatively oxidizing (DFMQ + 0.7), and polybaric crys-
tallization. Moreover, not only did the Venera 14 subalkaline
basalt fractional crystallization model yield compositions simi-
lar to the calculated Verena 8 composition, but the results also
generated liquids that are similar to intermediate to silicic vol-
canic rocks from terrestrial Archean bimodal complexes (Fig.
6).

The formation of  a bimodal volcanic sequence on Venus is
plausible, more so with water and other volatile (Cl, F, CO2)
elements, and does not require unusual or special circum-
stances. The identification of  pyroclastic deposits by Ghail and
Wilson (2015) provides support for the possibility that both
mafic and silicic volcaniclastic rocks would be present as well.
The identification of  rocks with basaltic composition is con-
firmed on Venus and it is expected that a mafic magma will
yield a residual silicic liquid by fractional crystallization. Thus,
bimodal volcanic complexes generated by fractional crystalliza-
tion should exist on Venus. However, the formation of
bimodal sequences of  terrestrial greenstone belts is more com-
plex than just fractional crystallization and involves assimila-
tion–fractional crystallization (AFC) processes and the volcan-

ism is likely cyclic (Leclerc et al. 2011). Assimilation–fractional
crystallization (AFC) within Venusian volcanic and plutonic
systems is expected, but there are no constraints on the com-
position of  possible source rock (e.g. sedimentary rock, vol-
caniclastic rock) of  the contaminant beyond the melt compo-
sitions that are generated by the fractional crystallization mod-
els.

Upper Sedimentary Sequence
The upper unit of  greenstone belts is largely composed of
sedimentary rocks with subordinate amounts of  volcanic and
volcaniclastic rocks (Condie 1981; Anhaeusser 2014; Thurston
2015). In many cases, the sedimentary sequences consist of
lower chemically precipitated sedimentary rocks (carbonate
rocks, banded-iron formation, and chert) and upper clastic
sedimentary rocks (wacke, conglomerate, pelite). The changing
nature of  the sedimentary rock formations indicates terrestrial,
shallow marine, marginal marine, and tidal zone depositional
environments are possible (Anhaeusser 2014).

Key to the discussion on the existence of  Venusian sedi-
mentary rocks is the presence of  a paleohydrosphere. At the
moment, the atmosphere of  Venus contains a stable amount
(30 ± 15 ppm) of  water vapour which is thought to be main-
tained by volcanic degassing (Grinspoon 1993; Zolotov et al.
1997; Fegley Jr. 2014; Filiberto et al. 2020). Furthermore, the
high deuterium-to-hydrogen ratio (150 ± 30 times that of  ter-
restrial water) indicates that Venus may have had a significant
amount of  surface water that was at least 4 m deep and possi-
bly up to 530 m deep (Donahue et al. 1982, 1997). Atmospher-
ic and planetary modeling indicates that Venus may have been
able to sustain a hydrosphere until ~ 750 million years ago
(Way et al. 2016; Way and Del Genio 2020).

Unconsolidated sediment was observed directly from the
Venera 9, 10, 13, and 14 landers indicating that the Venusian
surface experiences weathering and erosion (Florensky et al.
1983; Warner 1983). The sediments observed by the landers
suggest that they were either deposited recently or that com-
paction has not occurred since their formation. At the
moment, the evidence for lithified or chemically precipitated
sedimentary rocks on Venus is limited, although Florensky et
al. (1977) and Basilevsky et al. (1985) opined that a sedimenta-
ry origin of  the rocks encountered at the Venera 9, 10, 13, and
14 landing sites is one of  at least six possible interpretations.
However, given their major and trace elemental compositions
and assuming a sedimentary origin, then they would most like-
ly be mafic volcaniclastic rocks. The rock compositions at the
Venera 13, Venera 14, and Vega 2 landing sites reported rela-
tively high SO3 and Cl contents. Specifically, the Vega 2 (SO3 =
4.7 ± 1.5 wt.%; Cl < 0.3 wt.%) site has high SO3 content and
it appears that the sample was likely a mixture of  basaltic rock
and regolith (Surkov et al. 1984, 1986). Although the data can-
not distinguish between sulphide (S2-) and sulphate (SO4

2-), it is
possible that the high sulphur content is due to the breakdown
of  evaporites, oxidation of  sulphide minerals (gypsum, anhy-
drite, kieserite, langbeinite, polyhalite, kainite, barite, celestine,
anglesite), or fumarolic activity. The whole-rock data certainly
raise the possibility, although by no means definitive, that water
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Figure 6. The results of  the low pressure (0.1 GPa) MELTS and Rhyolite-MELTS
models from Shellnutt (2019) compared to the silicic rocks of  greenstone belts and
Haida Gwaii using (a) the modified alkali–lime (Na2O+K2O–CaO) index (Frost et
al. 2001), (b) Fe* [(FeOt/(FeOt+MgO))] value (Frost et al. 2001), (c) TiO2 vs. SiO2
and (d) Al2O3 vs. SiO2. The calculated Venera 8 composition of  Nikolayeva (1990)
is shown in grey. Silicic rocks from greenstone belts (Uchi-Confederation, Wawa,
Wutaishan, Gadwal, Central Bundelkhand) and the bimodal Masset Formation of
Haida Gwaii. Data from Thurston and Fryer (1983), Sage et al. (1996), Polat et al.
(2005), Manikyamba et al. (2007), Singh and Slabunov (2015) and Dostal et al.
(2017).



existed on the surface and that chemically precipitated sedi-
mentary rocks were deposited. If  this was the case then it is
conceivable that other chemically precipitated (chert, banded
iron formation, carbonate) sedimentary rocks may have existed
and that the rock units typical of  the upper sedimentary
sequences of  greenstone belts could be present. Moreover, a
Venusian hydrosphere would have accentuated deposition of
clastic sedimentary rocks via weathering and erosion. There is
evidence of  channel erosion and possible folding of  strata but
the features may be of  volcanic origin rather than sedimentary
(Khawja et al. 2020; Byrne et al. 2021).

On Venus the formation of  lithified epiclastic sedimentary
rocks or chemically precipitated sedimentary rocks is uncertain
and would be dependent on the existence of  a paleohydros-
phere. At the moment there is evidence for volcaniclastic
deposits and erosional channels, and indications that sedimen-
tary layering may exist in the highland terranes, but unequivo-
cal identification of  lithified or chemically precipitated sedi-
mentary rocks is needed. Consequently, the development of  an
upper sedimentary sequence within a Venusian greenstone belt
is the least constrained feature.

Anorthosite and Layered Mafic Intrusions
The oldest anorthosite bodies (³ 2.4 Ga) on Earth are spatially
and temporally associated with Archean greenstone belts.
Archean anorthosite is also distinguished by its megacrystic,
equidimensional plagioclase with anorthite contents (An% =
[Ca2+/Ca2++Na++K+]*100) of  An91 to An61 and have an aver-
age value of  An80 (Ashwal and Bybee 2017). The megacrysts
are commonly spherical, ~ 0.5 cm to > 30 cm in diameter, and
are surrounded by a finer grained matrix of  mafic silicate min-
erals (olivine, pyroxene) or a gabbroic groundmass (Ashwal
1993; Ashwal and Bybee 2017). Most Archean anorthosite
intrusions are small (< 500 km2) and likely developed within
shallow crustal magma chambers (Phinney et al. 1988; Ashwal
1993; Polat et al. 2009; Ashwal and Bybee 2017). The initial
melt composition that produced the anorthosite is thought to
be primitive (komatiite, picrite, basalt) and may have experi-
enced early high pressure crystal fractionation of  olivine
and/or orthopyroxene. Subsequent to high pressure fractiona-
tion, the less dense, hydrous, high Ca/Na and Al/Si tholeiitic
melt migrates to a magma chamber within the shallow crust
(0.1 GPa to 0.2 GPa) and crystallizes mafic silicate minerals
and accumulates megacrystic plagioclase. It is possible that the
plagioclase megacryst-rich magma is purged by new pulses of
mafic melt into the magma chamber (Phinney et al. 1988). Of
particular interest is the Venera 14 basalt (Mg# = 60 ± 15;
Al2O3 = 17.9 ± 2.6 wt.%; CaO = 10.3 ± 1.2 wt.%) because it
is similar to tholeiitic basalt of  terrestrial Archean greenstone
belts and the compositional range (i.e. Mg# = 35–60; Al2O3 =
14–18 wt.%; CaO = 9–15 wt.%) of  the parental magmas that
are thought to generate Archean megacrystic anorthosite
(Ashwal and Bybee 2017).

Shellnutt and Manu Prasanth (2021) presented a compre-
hensive evaluation of  the range of  modeled plagioclase com-
positions from all known Venusian basalt that are expected to
crystallize at low pressure (0.1 GPa), under variable redox

states (DFMQ ± 1), and hydrous to anhydrous conditions. Pla-
gioclase crystallizes relatively early (1230–1190°C) within all
melt compositions (Venera 13, Venera 14, Vega 2) and is typi-
cally > 70 vol.% of  the total mineral assemblage with the
remaining ~ 30 vol.% being olivine (1370–1190°C). With such
a high proportion of  plagioclase crystallizing early and the
density contrast with olivine (olivine r = 3.2–3.3 g/cm3; pla-
gioclase r = 2.6–2.7 g/cm3), plagioclase could accumulate
either by density stratification or convection redistribution to
the point where it forms an anorthosite mush. The highest
anorthite values from each low pressure model ranges from
An85 to An77 (Table 6) and within the range of  many Archean
anorthosite examples (Fig. 7). The compositions of  plagioclase
after 50% of  the total plagioclase crystallized range from An76
to An48. The Venera 13 alkaline basalt models are the reason
for the lowest anorthite contents (An68–48) whereas the Venera
14- and Vega 2 subalkaline basalt models are more calcic (An76–

70). However, Archean anorthosite plutons are unlikely to be
generated from alkaline magma (Ashwal and Bybee 2017).

As Venus has similar gravitational force (~ 91% of  Earth)
and similar basalt composition with similar temperature and
phase relations, then it is likely that magma chambers would
also exist. Layered mafic intrusions (LMI) are expected within
the crust of  Venus as the petrological processes of  differenti-
ation (e.g. fractionation) and crystal layering can occur. The
estimated parental magma compositions of  some terrestrial
LMIs are broadly similar to the Venera 14 rock composition
and would have similar liquidus phases (Table 7). Cumulus
mafic minerals could generate layered mafic or ultramafic
intrusions in the crust of  Venus similar to those on Earth (e.g.
Bushveld, Kiglapait, Muskox). From a crystallization point of
view and assuming no crystal redistribution, an unlikely
prospect, all models can yield cumulate rocks following the liq-
uid line of  descent of  the modeling conditions (i.e. redox,
pressure, water). Dunite (³ 90 vol.% olivine) can be generated
in the low (0.1 GPa) and medium (0.5 GPa) pressure models
and some high (1.0 GPa) pressure models settings, as olivine is
typically the liquidus mineral and is followed by plagioclase
(troctolite) and then clinopyroxene (gabbro). The high pres-
sure models can yield pyroxene-rich cumulate rocks (web-
sterite, clinopyroxenite, orthopyroxenite). Some cumulate rock
types could only be produced by specific parental composi-
tions. For example, norite (opx + pl) was produced in the
medium and low pressure Vega 2 models whereas harzburgite
can be produced by the primitive Venera 14 compositions and
wehrlite can be produced in Venera 13 models.

Venusian basaltic magma can produce LMIs in the crust
and there is no reason why they could not develop cumulate
monomineralic (anorthosite, dunite) layers or polyphase (gab-
bro, norite, troctolite, pyroxenite, websterite, wehrlite) layers
(Pavri et al. 1992; Shellnutt 2013, 2018; Smith and Maier 2021).
The principal uncertainties regarding the existence of  LMI on
Venus are their abundance, size, and thickness.

Tonalite–Trondhjemite–Granodiorite Suites
Tonalite–trondhjemite–granodiorite (TTG) suites are a com-
mon intrusive rock type within Archean cratons (Jahn et al.
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1981; Martin 1994; Martin and Moyen 2002; Moyen 2011;
Moyen and Martin 2012). The TTG series is silicic (SiO2 > 64
wt.%), sodic (Na2O = 3.0 wt.% to 7.0 wt.%), and leucocratic
(TiO2+Fe2O3t+MnO+MgO » 5.0 wt.%) with generally high
alumina (Al2O3 > 15 wt.%) content at high SiO2 (> 70 wt.%)
content, depleted heavy rare earth element (HREE) signatures,

and Mg numbers (~ 10 to ~ 70) that cover a wide range
(Drummond and Defant 1990; Moyen 2011; Martin and
Moyen 2012). It is thought that the TTG suites are derived pri-
marily by partial melting of  metamafic rocks extending from
low to high pressure (< 1.0 GPa to > 2.5 GPa) conditions
across a range of  proposed geodynamic settings that include
orogenic/subduction and anorogenic (Moyen 2011; Bédard et
al. 2013; Johnson et al. 2017).

Although Venus does not appear to have Earth-like plate
tectonics, there are compressional features (e.g. Ishtar Terra)
and possibly structures related to subduction or underthrust-
ing-like structures (e.g. Artemis corona) that suggest horizontal
and vertical thickening both occurred (Suppe and Connors
1992; Davaille et al. 2017). Moreover, crustal thickness esti-
mates suggest that some regions of  the highland terranes may
exceed 30 km and up to 65 km (Head 1990; James et al. 2013;
Harris and Bédard 2015). Therefore, it is possible that partial
melting of  tectonically thickened Venusian mafic crust could
yield magmas that fall within the range of  the TTG series. In
fact, the Venera 14 composition is somewhat similar to the 3.5
Ga Coucal Formation basalt of  the lower Pilbara Supergroup
of  Western Australia. Johnson et al. (2017) demonstrated by
phase equilibria modeling that the Coucal basalt can yield TTG
magmas after 20–30% partial melting along a high geothermal
gradient (700°C/GPa).

Shellnutt (2013) showed that hydrous (0.2 wt.%) equilibri-
um partial melting of  the Venera 14 sub-alkaline basalt at 1
GPa under moderately oxidizing conditions (DFMQ 0) will
yield liquid compositions at 1040°C to 950°C that are very
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Figure 7. A comparison of  modeled plagioclase compositions to those from
Archean (³ 2.5 Ga) megacrystic anorthosite (anorthosite data from Ashwal 1993).
The range of  initial plagioclase compositions from all models at shallow pressure
(0.1 GPa) is shown in pink. The range of  anorthite content at ~ 50% plagioclase
crystallization for all models except Venera 13 is extended to the dashed line. The
Venera 13 anorthite content at ~ 50% plagioclase crystallization is shown in light
purple.

Table 6. Summary of  modeled plagioclase anorthite content (An%) compositions.

Model Total An range Initial An content An content at
50% crystallization

P (GPa) 0.1 0.5 1.0 0.1 0.5 1.0 0.1

Anhydrous
Vega 2a 79-23 78-13 75-16 79-77 78-77 75-71 74-72
Vega 2b 77-30 75-36 74-28 77-75 75-73 74-72 72-70
Venera 13 84-20 66-22 38-17 84-78 66-59 38-33 68-48
Venera 14 79-20 74-19 72-24 79-77 74-73 72-71 71-70
V14P1 80-13 78-15 73-17 80-79 78-76 73-71 76-72
V14P2 82-10 78-14 62-12 82-81 78-75 62-58 75-74
V14P3 80-11 79-14 73-17 80-79 79-73 73-70 73-72
Hydrous
Vega 2a 82-30 82-11 78-5 82-81 82-81 78-76 76-75
Vega 2b 80-26 80-24 77-14 80-79 80-79 77-75 75-74
Venera 13 85-32 62-24 34-21 85-80 62-60 34-32 66-59
Venera 14 81-26 78-18 74-8 81-80 78-77 74-70 75-74
V14P1 82-16 78-13 74-8 82-81 78-76 74-71 75-72
V14P2 82-14 80-11 57-8 82-81 80-76 57-50 76-74
V14P3 82-16 79-12 73-8 82-80 79-75 73-66 75-74

Anorthite content (An%) = [(Ca2+/(Ca2++Na++K+))*100]. Anorthite contents are rounded to whole numbers across all redox con-
ditions relative to the fayalite-magnetite-quartz buffer (DFMQ +1, 0, -1). Anorthite content at 50% crystallization is the compo-
sitional range of  plagioclase when ~50% of  all plagioclase in the system crystallized in the low pressure model. P = pressure in
gigapascal.



similar to TTG suites after 6–8% melting (Fig. 8). The estimat-
ed tectonothermal conditions of  Venus are sufficient to melt
mafic crust at the modeled primary liquid temperatures and
the modeling pressure is within the range of  crustal thickness
estimates (> 30 km) of  Ishtar Terra and Ovda Regio regions
(James et al. 2013; Harris and Bédard 2015). Therefore, it is
conceivable that TTG-like magmas could form within the
highland regions of  Venus provided that the base of  the crust
was broadly similar to olivine tholeiite and moderately hydrous.
The models using the Venera 13 and Vega 2 compositions
could not yield TTG-like compositions by equilibrium partial
melting because they are either too alkaline or deficient in sili-
ca.

Summary
The modeling results indicate that the principal lithologies of
terrestrial Archean granite–greenstone belts can be formed
from the known rock compositions of  Venus. There is signif-
icant uncertainty in the generation of  the chemically precipitat-
ed sedimentary sequences, but unlithified sediments do exist
on Venus and it is possible that lithified clastic sedimentary
rocks also exist. Therefore, it is possible that Venus and Earth
may have evolved along similar paths from the Hadean to the
Neoarchean. The implication is that Venus may provide evi-
dence for the development of  proto-continental crust of
Earth prior to the initiation of  plate tectonics.

WAS EARLY VENUS ANALOGOUS TO ARCHEAN EARTH?
One of  the most important first order geological features of
Venus is the dichotomy between the low crater density of  the
crust and the apparent absence of  modern Earth-like plate tec-
tonics. The estimated crater retention surface age of  Venus is
fairly young (£ 1 Ga) in comparison to Mars or the Moon (Tur-
cotte 1993; Strom et al. 1994; Basilevsky and Head 2002; Her-

rick and Rumpf  2011; Bottke et al. 2015; Fasset 2016) although
Hamilton (2007) suggested that the surface of  Venus could be
closer to ~ 3.8 Ga. The absence of  a planet-wide geodynamic
mechanism responsible for maintaining a low crater density
and generating morphologically and tectonically distinct ter-
ranes is perplexing. Given the absence of  plate tectonics, the
most likely explanation for the young surface features of
Venus is advective transport of  mantle material via hotspots or
mantle plumes that may periodically and/or catastrophically
erupt (Phillips and Hansen 1998; Ernst and Desnoyers 2004;
Hansen 2007b; Romeo and Turcotte 2010; Smrekar et al. 2010;
Smrekar and Sotin 2012; O’Rourke et al. 2014; Ghail 2015;
Ivanov and Head 2015; Kreslavsky et al. 2015; Gülcher et al.
2020; Uppalapati et al. 2020). It is from this perspective that
Venus is frequently considered as an analogue for Archean
Earth as it is thought that modern plate tectonics did not com-
mence until ~ 2.5 billion years or later and that the tectonic
regime was mostly driven by a vertical process, that is, mantle
plume-initiated rifting and collision (Smithies et al. 2005a;
Condie et al. 2016; Bédard 2018; Brown et al. 2020; Dewey et
al. 2021).

Compared to the Phanerozoic (~ 540 Ma to present) or
even the Proterozoic (~ 2.5 Ga to ~ 0.54 Ga), less is known
about the tectonic regime and development of  the Archean (~
4.0 Ga to ~ 2.5 Ga) Earth due to the progressive degradation
of  the geological record (Brown et al. 2020; Hawkesworth et
al. 2020). Moreover, there is debate on the timing of  plate tec-
tonics initiation (Condie and Kröner 2008; Stern 2008; Hamil-
ton 2011, 2019; Dewey et al. 2021). However, most agree that
the thermal regime under which Archean crust developed was
300°C to 500°C higher than ambient conditions of  today (TP

= 1350 ± 50°C). There is virtually no rock record of  the
Hadean (~ 4.5 Ga to ~ 4.0 Ga) as most of  the information is
inferred from the Acasta Gneiss, detrital zircon, or isotopic
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Table 7. Major elemental compositions of  the Venera 14 basalt and proposed parental magma compositions of  layered mafic
intrusions.

Sample Venera 14 Skaergaard Kiglapait Stillwater Bushveld Bushveld
Critical Zone Upper Zone

SiO2 (wt.%) 48.7 ± 3.6 48.1 47.97 49.41 48.50 49.32
TiO2 1.25 ± 0.41 1.17 1.24 1.20 0.75 0.81
Al2O3 17.9 ± 2.6 17.2 18.95 15.79 16.49 15.67
FeO 8.8 ± 1.8 9.6 11.67 12.14 12.41 12.77
MnO 0.16 ± 0.08 0.16 0.14 0.20 0.19 0.19
MgO 8.1 ± 3.3 8.6 7.67 7.36 7.57 6.08
CaO 10.3 ± 1.2 11.4 8.60 10.88 11.15 10.83
Na2O 2.4 ± 0.4* 2.34 3.21 2.19 2.17 2.94
K2O 0.2 ± 0.07 0.25 0.40 0.16 0.14 0.25
P2O5 0.10 0.13 0.11 0.18 0.07
SO3 0.88 ± 0.77
Cl < 0.4

Uncertainty of  Venera 14 data is at 1s level. *The Na2O content is calculated for the Venera 14 rock (Surkov et al. 1984). Proposed
parental magma compositions of  the Skaergaard intrusion (McBirney 1996), Kiglapait intrusion (Morse 2015), Stillwater Complex
(McCallum 1996), and the Critical Zone and Upper Zone of  the Bushveld Complex (Eales and Cawthorn 1996).



model ages (Harrison 2009; O’Neil et al. 2012; Roth et al.
2014; O’Neil and Carlson 2017; Reimink et al. 2020). It is likely
that granite–greenstone and granulite–gneiss belts of  Archean
cratons represent a glimpse into the formation of  primitive
terrestrial crust or proto-continental crust (Smithies et al.
2005a; Van Kranendonk 2010; Thurston 2015; Bédard 2018).
Of  the two belts, the granite–greenstone belts are probably
more widely known as they are a major source of  gold and
record supracrustal rock sequences whereas the granulite–
gneiss belts record middle to lower crust metamorphic condi-
tions, but may have protoliths of  rock sequences from the
upper to middle crust (Condie 1981). 

The surface of  Venus is broadly divided into low-lying (~
90%) volcanic plains (planitia) and that are dominated by vol-
canic features (e.g. shield volcanoes, pyroclastic flows, lava
channels) and highland (> 2 km) regions of  older and
deformed tesserae terrain and mountain belts (Lancaster et al.
1995; Nimmo and McKenzie 1998; Herrick et al. 2005;
Smrekar et al. 2010; Airey et al. 2015; Ghail and Wilson 2015;
Gilmore and Head 2018; Gülcher et al. 2020). At first glance
the topography of  Venus resembles the continental and ocean-
ic crust dichotomy of  Earth where the tesserae represent ‘con-
tinental’ or sialic crust and the planitiae represent ‘oceanic’ or
simatic crust (Fig. 2). Crustal thickness estimates indicate that
the planitiae could be 10–20 km thick whereas the tesserae may
be up to ~ 65 km thick, although there are a number of  differ-
ent estimates (Head 1990; Anderson and Smrekar 2006; James
et al. 2013; Harris and Bédard 2015). Near-infrared mapping
spectrometer data suggest the plains (low SiO2, high MgO,
high FeOt) and tesserae (high SiO2, low MgO, low FeOt) are
compositionally different (Hashimoto et al. 2008; Basilevsky et
al. 2012). The crustal thickness estimates of  Venus are within

the range of  granite–greenstone belts (10–20 km) and gran-
ulite–gneiss belts (~ 40 km) and the surface chemical mapping
is consistent with the compositional differences between ter-
restrial continental and oceanic crust. The major elemental
composition of  basalt measured at the Venera 14 landing site
is similar to olivine tholeiite of  Archean greenstone belts and
the estimated composition of  the rock at the Venera 8 landing
site is granodiorite or dacite and is geochemically similar to the
Archean calc-alkaline silicic rocks from greenstone belts
(Nikolayeva 1990; Shellnutt 2019). Moreover, visible and
infrared thermal imaging spectrometry (VIRTIS) of  Alpha
Regio (tesserae) indicates the presence of  low-Fe rocks sug-
gesting either anorthositic cumulate rocks or plagioclase-rich
tonalite can satisfy the emissivity signature (Gilmore et al.
2015). Furthermore, modeling suggests it is possible that sur-
face water may have been present on Venus during the
Archean and only disappeared within the last billion years or
when the extreme CO2 greenhouse developed (Way et al. 2016;
Khawja et al. 2020). Therefore, it is entirely possible that sedi-
mentary rocks were precipitated and deposited and hydrother-
mal metamorphism and mineralization occurred previously.
Coupled with the compressional mountain features of  Ishtar
Terra and large volcanic rise of  Beta Regio, it would appear
that Venus, in the absence of  plate tectonics, may be a near
perfect analogue of  pre-plate tectonics Earth (Harris and
Bédard 2014; Hansen 2018; Wyman 2018).

In spite of  the possible similarities from a macro perspec-
tive, there is significant debate on the exact composition of  the
tesserae, depositional processes, role of  a hydrosphere, origin
of  coronae, the mantle thermal regime, and the tectonic
regimes that were operating on ancient Earth and Venus.
Recent investigations suggest that the tesserae could be com-
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Figure 8. Major elemental comparison of  the high pressure (GPa = 1.0) partial melts of  the Venera 14 rock (in outlined box) to tonalite–trondhjemite–granodiorite (TTG)
rocks. TTG data from the GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/) and all data are recalculated to 100% on an anhydrous basis.



posed of  mafic volcanic–sedimentary sequences rather than
intermediate to silicic rocks (Wroblewski et al. 2019; Byrne et
al. 2021). Silicic rocks and anorthosite have not been positively
identified and an argument can be made that the high U (2.2 ±
0.7 ppm), Th (6.5 ± 2.2 ppm), and K2O (4.0 ± 1.2 wt.%) con-
tents reported at the Venera 8 landing site could be lampro-
phyric (alkali basalt) rather than silicic (Basilevsky et al. 1992).
It is possible that Venus had a hydrosphere during the
Archean, but lithified sedimentary rocks (or their metamorphic
equivalents) derived by mechanical weathering (sandstone,
shale, greywacke, conglomerate) and chemical precipitation
(limestone, evaporites, banded iron formation) have not been
positively identified. The only possible evidence for the exis-
tence of  S-rich evaporite rocks or material (gypsum, anhydrite,
kieserite) is the high SO3 (4.7 ± 1.5 wt.%) content measured at
the Vega 2 landing site but whether the sulphur is from a sul-
phide (S2-) or sulphate (SO4

2-) is unknown. Given the possibility
of  an ocean, it would be expected that volcanogenic massive
sulphide deposits would exist as shallow basaltic intrusions
provide the heat engine to drive the circulation of  hydrother-
mal cells that can transport metals. Corona structures, a com-
mon volcanic feature of  Venus, do not appear to have a terres-
trial analogue, although there are suggestions that a similar vol-
canic feature may exist (Lopez et al. 1997; Buchan and Ernst
2021). It is entirely possible that coronae existed on Earth and
were a feature of  Archean oceanic crust but were subducted
prior to or during the Paleoproterozoic. The TP estimates and
the K/U and K/Th ratios indicate conditions, mantle compo-
sitions, and temperatures of  cyclicity and decay similar to mod-
ern Earth (Taylor and McLennan 1986; Lee et al. 2009; Gill-
mannn and Tackley 2014; Ogawa and Yanagisawa 2014; Rubie
et al. 2015; Weller and Duncan 2015; Shellnutt 2016; Walzer
and Hendel 2017). However, the identification of  volcanic fea-
tures indicative of  mantle plumes, plume swarms, and hotspot
regimes appears to suggest that, of  all the uncertainties, this
could be the most similar to Archean Earth or a non-plate tec-
tonic regime (Herrick et al. 2005; Basilevksy and Head 2007;
Smrekar et al. 2010; Gülcher et al. 2020). Therefore, the tec-
tonic regimes of  Venus and Earth may have been similar dur-
ing the earliest Archean, but diverged after the initiation of
plate tectonics.

The initiation of  modern (Phanerozoic) terrestrial plate
tectonics is vociferously debated and there are advocates that
suggest it may have always operated or that it began at ~ 3.2
Ga, ~ 2.5 Ga, ~ 1.0 Ga, or ~ 0.8 Ga (Condie and Kröner 2008;
Stern 2008; Hamilton 2011, 2019; Dewey et al. 2021; Windley
et al. 2021). This is a key argument for the comparison of
Earth and Venus as it is clear that the two most recognizable
physiographical features (mid-ocean ridge, subduction zones)
attributed to plate tectonics are not present on Venus. The pre-
cise origin of  granite–greenstone and granulite–gneiss belts is
still debated and there are compelling arguments for and
against the operation of  plate tectonic-related processes in
their development (de Wit and Ashwal 1995; Anhaeusser 2014;
Thurston 2015). Nevertheless, it is clear that the generation of
highly differentiated continental crust appears to have been
absent, very slow, or stunted on Venus.

The continental crust represents ~ 41% of  the Earth’s sur-
face area and ~ 0.7% of  its volume. It has taken ~ 4.5 billion
years to create the volume of  continental crust but the rate of
crustal growth across geological time is uncertain
(Hawkesworth et al. 2019, 2020). The end-member models of
crustal growth are rapid development followed by steady state,
continuous growth, and continuous but episodic growth. The
different models are illustrated in Figure 9. There are a number
of  uncertainties in the models but perhaps the most significant
uncertainty is the timing of  modern plate tectonics (Condie
2018; Windley et al. 2021). Assuming Venus was a perfect ana-
logue to Earth and everything is proportionate (i.e. thermal
structure, tectonic regimes) to the size difference of  the plan-
ets then its surface should have a similar but lower absolute
area and volume of  continental crust as the Earth today. Clear-
ly this is not the case as the tesserae, assuming they are similar
to continental crust, represent ~ 7.3% of  the surface area and
0.1% of  the volume (Ivanov and Head 2011; James et al.
2013). If  the surface areas of  tesserae and continental crust are
compared, then Venus developed only 17% of  its total expect-
ed crust. If  the volumes are compared then, depending on the
thickness of  the smaller tesserae, the amount reaches up to
20% of  the expected crust. According to different terrestrial
crustal growth models, the proportion of  continental crust
equaling 17% to 20% corresponds to three different potential
age ranges (Fig. 9). The oldest age range is Hadean to
Eoarchean (4.4 Ga to 3.9 Ga), the middle age range is
Mesoarchean to Neoarchean (3.1 Ga to 2.7 Ga), and the
youngest range is Paleoproterozoic (2.4 Ga to 2.1 Ga). Thus, it
would seem that the geological processes of  crustal evolution
on Venus either operate at a significantly slower pace than
Earth or they functionally stopped, possibly on or before the
Paleoproterozoic (i.e. ³ 2.1 Ga).

Is Venus analogous to Archean Earth? The answer appears
to be maybe as there are some large scale motions and magma
fluxes capable of  resurfacing the planet with lava and moving
small continental blocks that could be indicative of  pre-plate
tectonics Earth. However, the level of  understanding of  the
crustal evolution of  Venus is in its infancy and there is only a
limited understanding of  a possible Venusian hydrosphere.
New geological observations and geochemical and isotopic
surface measurements are needed to robustly evaluate the pos-
sibility that Venus and Earth evolved along similar paths dur-
ing the Archean. Although it is possible that Venus and Early
Earth may bear some resemblance there are too many uncer-
tainties at the moment to provide a firm conclusion.

CONCLUSIONS
The basalt identified at the Venera 14 landing site is composi-
tionally similar to tholeiitic basalt of  terrestrial Archean green-
stone belts. Primitive melt reconstruction (ultramafic) and
petrological modeling of  Venusian basalt shows that most of
the tholeiitic and calc-alkaline volcanic (mafic, intermediate,
silicic) and plutonic (granite, anorthosite, cumulate-layered
mafic intrusions) rocks of  a greenstone belt can be generated
by conventional physio-chemical processes acting on these
basaltic melts, such as low to medium (0.1 to 0.5 GPa) pressure
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fractional crystallization (intermediate, silicic), mineral accu-
mulation (layered mafic intrusions, anorthosite), or high pres-
sure (³ 0.5 GPa) partial melting (tonalite–trondhjemite–gran-
odiorite). The formation of  clastic sedimentary rocks and
chemically precipitated sedimentary rocks on Venus is uncer-
tain and dependent on the existence of  a paleohydrosphere.
Consequently, it is possible that the crust of  Venus could have
produced the submarine igneous rock suites that typify terres-
trial Archean greenstone belts. Although the present-day tec-
tonic regimes of  Venus and Earth are vastly different, it is pos-
sible that they were very similar until the moment that modern
plate tectonics began on Earth or ended on Venus.
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