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Abstract

We show here that the implementation of the Markov randomfsfiehage segmentation algorithm of Hochbaum 2001
works well for the purpose of denoising and segmenting raeiliages. One of the main contributions here is the ability
for a user to manipulate online the image so as to achiever dedineation of objects of interest in the image. This
is made possible by the efficiency of the implementatiorulResre presented for images that are generated by Single
Photon Emission Computed Tomography and Magnetic Reseriaraging. The results show that the method presented
is effective at denoising medical images as well as segngetissue types, organs, lesions, and other features within
medical images. We advocate that this method should bedmresi as part of the medical imaging toolbox.

1. Introduction of parameter changes almost instantly and effectively
selects the parameters that give the best output image.

The Markov random fields (MRF) model is well Here we apply the MRF model to the medical imaging
known in the image segmentation field. The MRF Problem described next.
model is based on finding uniform color areas within
images. The model tries to minimize any changes in _ )
color of pixels between the input and the output, while 1-1- The Medical Imaging Problem
at the same time minimizing the difference in color be-
tween adjacent pixels in the output. In 2001, an efficient
algorithm based on discrete optimization was devel-
oped for the convex case of the MRF model [16]. We
use this algorithm for the purpose of denoising medical
images. The software used to implement the algorithm
for the MRF model is the most efficient algorithm for
flow in practice, the pseudoflow algorithm [18]. The
efficient implementation of the MRF model permits the
user to adjust the input parameters and quickly receive
feedback. The user thus receives feedback on the effec

Recent advances in high-speed computing and image
processing have contributed significantly to the progress
of treatment planning including radiation therapy,
hyperthermia, surgical procedures, and cryosurgery.
The mathematical foundation of image formation and
acquisition in biomedicine has been extensively stud-
ied [11,23,31,26,39]. Data is collected from a body
exposed to radiation in this widely used physical
gprocess . There exist different categoriesimofiging
tsystemsx)r modalities[23,31]. The first radiology im-
age was obtained byX-ray computed tomography
Email: Dorit S. Hochbaum [hochbaum@ieor.berkeley.edu], and belongs to the family dfansmission tomography
Joe Qranfal [jgranfal@irmacs.sfu.ca], Germain Tanoh imaging modality where the radiation source is outside

[tanoh@rocketmail.com]. the patient. Conversely witemission tomographyas
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radiation source is inside the patient. Magnetic reso- stance [31]. Segmentation is the practice of classifying
nance imaging (MRI), also known as nuclear magnetic pixels into different object classes according to their
resonance (NMR), has received much attention this last spatial position, intensity, neighborhood, and/or prior
decade [31]. The object to be imaged is itself a signal knowledge about the object class. Segmentation plays a
source and is a function of the density of spins in the leading role in image analysis since it is a prerequisite
tissue. Some techniques provide information about the step in most of the analysis, methods such as area and
density of tissue, such a&-ray computed tomogra- volume estimation, image co-registration, and motion
phy, ultrasound CT [39], and MRI. Some others, like detection.

SPECT imaging, reflect physiology and biochemical
function of a living organism. The raw data is ac-
quired using physical instruments in all the imaging
modalities. Then, a mathematical operation called
construction6,32,7] is performed on this data in order
to generate an image, which can be used for diagnostic
purposes by a physician.

The challenge presented by segmentation is finding a
logical rule that produces efficient partition with as éttl
human interaction as possible. In most cases, the prob-
lem is formulated as an optimization problem, where
the objective function to be minimized is some energy
function. In the celebrated paper of Geman and Ge-
man [13], a stochastic based energy function was inves-

There exist two classes of tomographic reconstruc- tigated. A more general model was proposed by Mum-
tion methods. The first class is composed of deter- ford and Shah [30]. These works gave rise to important
ministic methods like convolution techniques, Fourier Mathematically challenging problems in image analy-
techniques, analytic methods, and iterative algebraic SiS [29,16]; see also the recent monograph of Chan and
methods [32,26]. The second class comprises stochas-Shen [8] and references therein.

tic methods based on Bayesian analysis; the most well- e o5t common segmentation methods are thresh-
known of these is the expectation maximization (EM) o|ging, region growing, classifiers, clustering, Markov

method [28,20,37]. The Kalman filtering approach be- anqom fields models, artificial neural networks, de-
longs to this class of stochastic reconstruction tech- ¢5-able models. and atlas-guided methods. Global

niques and is well-suited for dynamic SPECT image i esholding is effective where sets of pixels associated
reconstruction [35,36]. However, sometimes the data ith 5 physical property (e.g. an organ) clearly fall into
recorded may not yield a unique solution, or the solu- gistinct groups of colors within the image. However,
tion may not even exist at all. This phenomenon is €x- s does not work well for low contrast segmentations,
acerbated by physical degradation like camera blurring, g ,ch as separating heart muscle from chest tissues or
photon scattering, or attenuation. Thus, the efficiency cerepral gray matter from white matter. Edge detection
of a reconstruction method depends on its capability 0 ig gjfficult in medical images because the difference
remove the effect of the source of degradation, which p, inensities between the structure of interest and the

is associated with the imaging system. Many studies g, rounding structure can vary along the edge of the

haye been c.arried out to stabilize the r(.econstruction.al- structure. Segmentation of medical images is an active
gorithm against the effects of the physical degradation \egearch area; interested readers are referred to [34,40]

of the image through the incorporation of prior infor- - 5nq references therein, for a thorough survey on the
mation about the image [24,15]. subject.

Another important aspect of medical image process-
ing is the ability to focus or visualize important features 1.2. Image Segmentation as Markov Random Fields
of the image. For instance, quantitative information on Problem
tumor volume can help evaluate the efficacy of different
treatments [34,40,31,14]. Thus we need mathematical The image segmentation problem is to partition a
methods to extract clinically important features from given digital image into multiple regions based on some

large data sets. criterion. We are given an image made up of pixels, each
associated with a color antensity This given input
In the context of medical imagingeegmentations image, referred to hereafter as thbservedmage, is

an image analysis technique used to highlight a partic- a noisy representation of ariginal image, which is a
ular characteristic, organ, or object from the image data perfect representation of the object. The noise may be
for visualization and measurement purposes; see for in- caused either by information loss during transmission
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or by inaccurate measurements as is the case in medicapixels we define as adjacent tpis denoted byV (z).
imaging [34]. The objective is to reset the values of pixel We wish to assign each pixgek P an intensityz; that
intensities to generate@rrectedimage. The methods  belongs to a discrete finite s& = {A1, A2, ..., Az} SO
used to generate a corrected image are based on thehat the sum over all pixels of the deviation cdst-)
assumption that such an image tends to have uniformand the separation co&t;; () is minimized. The MRF
color areas, or segments. Each color area correspondgroblem is formulated as follows:
to what is presumed to be a distinct object in the image.

(MRF)

The Markov random fields image segmentation L o .
(MRF) problem considers an observed image. Each Minimize D,XI;E(%)—FSZ; %: G (w23
pixel in the image has a color and a set of pixels which . © _ (ER A
are defined as the neighbors of the pixel. The objective Subject Toz; € X Vie P

is to generate a corrected image, whereby the values e the penalty functiong;(-) andG;(-) are se-

of its pixels minimize the sum of two penalties: These lected, an equal weighting of them may not produce
two components of the penalty function are defined as: segmentation of adequate quality. When the separa-
(1) The cost of deviation of the pixel intensities of tion function is more dominant, a higher importance is
the corrected image from those of the observed placed on the continuity of structures within the output,
image, called theleviation cost The purpose of  and in fact when the separation function overwhelms
this cost function is to penalize differences from the deviation function, the output will become a single
the observed image. intensity. When the deviation function is more domi-
(2) The cost of discontinuity in the corrected image nant, a higher emphasis is placed on keeping the pixel
penalizes the difference of the intensities of two intensities close to the intensities in the input. If the de-
neighboring pixels. This penalty function is called  viation function completely overwhelms the separation

the separation costThe purpose of the separation  function, the outputimage is simply the observed image
cost is to achieve uniform color areas and remove mapped to the intensity values K.

noise in the corrected image.

Thus the choice of colors assigned to pixels of the cor-
rected image minimizes the penalty function consisting
of the deviation penalties from the observed color shade
and the separation penalties of differences in assigned
values between neighboring pixels in the corrected im-
age.

For this reason the positive integer coefficiesitand
D are added to the objective function and left to the
control of the user to adjust the tradeoff between the de-
viation and separation penalties. Note that in fact only
the ratio betwee® and D affects the segmentation. We
define that ratio to be = % which can take on any
nonnegative rational value.is varied until a corrected
This problem has been studied over the past two image of adequate quality, if one exists, is found. Our
decades, see e.qg. [2], [3], [21], experience indicates that the valuesydfor which ad-
[12], [13]. MRF was addressed (prior to [16]) with two €quate segmentations are produced are limited in any
solution methods. The first method was to use heuristic given application to a reasonable range of values, as we
and approximation approaches. The drawback of this discuss in Section 3.3.1..
approach is that the solution found is not optimal. The
second method used to solve the MRF problem is with )
an optimal algorithm that does not work in polynomial 2 |mplementation
time [21]. Rather, it creates multiple copies of the im- i i )
age graph, one for each possible label. The drawback of Hochbaum [16] described the first known polynomial
this approach is that the run time increases excessivelyime algorithm for the MRF problem with convex sep-
with the number of labels. This makes it impractical aration and deviation functions. We refer to this imple-

for many situations. The method presented in this paper Mentation as th#IRF algorithm. An important special
does not suffer either shortcoming. case of the problem has any convex deviation function

and linear separation functions — linear for positive sep-

We are given an observed image which is a set of aration and linear for negative separation. Thus penal-
pixels P, with a real-valued intensity; for each pixel ties can be different for positive and negative separa-
i € P. The neighborhoodof pixel i, which contains tions. We chose here a specific setting of the penalty



82 Dorit S. Hochbaum et al. — Experimental Analysis of the MRIg&ithm

functions in whichF;(-) is convex quadratic: processor. This efficiency permits the user to adjust the
parameters of thtRF algorithm in real time and re-
Fi(i) = (i — i) _ ceive online feedback. Importantly, this means that the
Gij(wi, ;) = { (i — ;) !f r;—x; >0 medical imaging operator could actively adjust a dial
' Bij(xj — i) f x; —a; >0 or other control mechanism to rapidly find the most ac-
for aij;, Bi; > 0. ceptable segmentation, and hence the clearest image of

The optimal solution for th&#RF algorithm with these the object.

penalty functions is achieved by reducing it to a para-
metric minimum cut problem on a constructed graph 2-1. Parameters Affecting Results
with k& parameters as shown in [16]. The interested
reader is referred to Hochbaum [16] and Hochbaum and
Queyranne [19] for details of this approach.

The task is to adjust the parameters so the corrected
image is sufficiently close to the original. The defini-
tion of “close” is intentionally left ambiguous since this

The particular choice of the separation and deviation depends on the specific application. For most imaging
functions was made as specified because the functionsapplications, the closeness of the corrected image to the
are simple and this is not dominated by other choices. original is based purely on a qualitative visual assess-
Although the convex MRF allows for any choice of ment, but we have also used an error measurement. We
convex functions we found that selecting other convex have observed that the output of the algorithm depends
functions does not improve the segmentation. In fact significantly on two things: the value gfand the choice
choosing higher degree polynomial functions can cause of which and how many pixel intensities are included
too high penalty for larger deviations and may lead to in the output.
too much uniformity in the output image without the
ability to fine tune it. That is because small separations
translate to very high penalties for higher degree poly-
nomials. We found that the best control of the segmen-
tation is afforded with the choice specified and using
the ~ ratio as the main mechanism for controlling the
segmentation.

An appropriate value fofy is chosen for each appli-
cation of theMRF algorithm. We demonstrate that one
can easily find values of to generate good corrected
images using our technique. An analysis of the error be-
tween the output image and the true image as the value
of ~ varies is presented in Section 3.3.1..

The choice of the set of intensities that may appear in
the output imageX = {\1, Ao, ..., A\x}, has an effect
on the quality of the segmentation results. The values
of the setX may be taken from the original image, if
available, or from sample images in a database to which
the observed image can be compared. Although it can
be challenging to find the ideal s&t, once found it can
be used in other images of the same type.

Generally, the neighbors of a pixel can be defined as
being the four pixels horizontally and vertically adja-
cent to the pixel that form a cross around it. An eight
pixel neighborhood includes those that are horizontally,
vertically, and diagonally adjacent covering a nine pixel
square with the original pixel in the center. The algo-
rithm may be easily extended to three-dimensional seg-
mentations by defining the pixel's neighbors in all three
dimensions. Pixels in a three-dimensional segmentation In many medical applications, the cardinality of the
can be defined as having 6 or 18 neighbors. set X is known [34]: for example, the image may con-
stitute three types of tissue. The cardinality)ofis de-
noted byk = | X|. If no prior information is available
about the sef(, the values may be estimated from the
observed image, given the valée It is important to
note thatk is the number of values thahay appear
in the corrected image, not the number of values that

While future research is needed to fine-tune our ap- will appear in the corrected image. For example, if the
proach in order to apply it effectively to other cases, we observed image consists entirely of one color, then the
have developed here an implementation that producescorrected image will be an image consisting of a sin-
good quality images for our example problems. The im- gle color as well — whichever color in the s&t that
plementation is fast, finding the solution t@%6 x 256 is closest to the color in the observed image. It is easy
pixel image in 3.4 seconds with a 2.0 Ghz Intel Core 2 to see that this is the case by assuming that a corrected

The MRF algorithm is implemented using the high-
est label pseudoflow algorithm which was developed to
solve the parametric maximum flow problem. The latest
version of the pseudoflow algorithm code is available
at [9].
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image,/mg;, contains more than one color whereas the
observed image contains only one color. If this is com-
pared to an image,mg;, consisting only of the color

in I'mg; that is closest to the color in the observed im-
age, then the total deviation penalties fong; will be
less than or equal to the total deviation penalties for
Img;. Additionally, wherever pixels of different col-
ors are neighbors, there will be a separation penalty for
Img;. Since the total penalties fdimg; will be strictly
greater thatdmg;, Img; cannot be the optimal segmen-
tation and it is shown that when the observed image is

a single color, the corrected image must be as well. Fig. 1. Original image composed of a gray ring, a white disk
and a black background.

In this implementation, the default is to select the
values of the setX’ from the observed image using giferent levels of signal-to-noise-ratio (SNR) and dif-
a simple k-means procedure [27]. The set of values fgrent levels of contrast-to-noise-ratio (CNR) to simu-
selected by this method is referred to here askhe  |ate an observed image contaminated by noise. Noise
set The advantages of the k-means algorithm are that s added using Gaussian distributions for the white and
it is very efficient and it fmd; a good approximation of grey regions and using Rayleigh distributions for the
the most common values in the observed image. The hackground. The first data set contains three images
disadvantages are that it is a heuristic and the value of i, decreasing CNR (Figure 2), and the second is a

an area of interest (for example a lesion) may be small ggt of two images having different levels of SNR (Fig-
and therefore not likely to be selected by k-means. To ;e 3).

compensate for these disadvantages, the implementation
allows a value that is found to give good results in one ~ Figures 2 and 3 each present observed images with
k-set to be forced into other k-sets. The algorithm also simulated noise in the top row. The bottom row of fig-
allows the user to choose the values of the)§diased ures 2 and 3 display is the corrected images resulting
on prior knowledge, without the use of k-means. from running theMRF algorithm on the respective ob-
served image above. In these corrected images, the noise
is totally removed so that the most important compo-
3. Results and Evaluation nents are more visible and are very close to the original
image. As expected, a higher CNR or SNR results in a
The MRF algorithm can be applied to a multi-band  petter segmentation. Overall, the restored images cap-
image such as a color image or an image composed oftyre the main features of the original image. We notice
multiple feature layers. However, all results presented that the three regions (the white circle, the grey ring and
here are single-band images. This section presents sevthe background) look well delineated compared to the
eral experiments on selected applications from simple original in Figure 3.1.. This is especially seen in Fig-
models to more realistic magnetic resonance brain im- e 2 () where the low level of CNR does not affect

ages. the performance of the algorithm. In Figure 2 from (d)
to (e) to (f), the color of the background in the cor-
3.1. Contaminated Noisy | mages rected image becomes lighter, and all three are lighter
than in the original image in Figure 1 due to the selec-
In order to demonstrate the effectiveness ofl¢iRF tion of gray level by k-means. The added noise reduces

algorithm for medical imaging, we test it on noisy syn- the number of pixels with the intensity of the original
thetic data. We take an original image and add to it noise background, causing the k-means algorithm to choose
to obtain what we refer to as a noisy “observed” image. lighter colors for the image. The colors selected by k-
The goal is to recover an image as close as possible tomeans is not inherently inferior to using the colors in
the original in terms of objects of interest by applying the original image. For example the segmentation, us-
the MRF algorithm to the observed image. Figure 1 ing k-means, of Figure 2 (c) as shown in Figure 2 (f)
shows the origina256 x 256 pixel image composed of  produces very good results, but when the colors from
a gray ring, a white disk and the background. We use the original image are used, the segmentation is signifi-
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(@) High CNR Ob- (b) Medium CNR Ob- (c) Low CNR Ob-
served Image served Image served Image

(d) High CNR Cor- (e) Medium CNR Cor- (f) Low CNR Cor-
rected Image rected Image rected Image

Fig. 2. First row: (a)-(c) from left to right, observed imageith decreasing CNR. Second row: (d)-(f)from left to rigasults
of the segmentation of corresponding images.

(@) Medium SNR Ob- (b) Low SNR Observed
served Image Image

(c) Medium SNR Cor- (d) Low SNR Cor-
rected Image rected Image

Fig. 3. First row: (a)-(b) from left to right, observed imageith decreasing CNR. Second row: (c)-(d)from left to riglesults
of the segmentation of corresponding images.
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cantly worse with the grey band and background merged tool for post-reconstruction smoothing to improve the
into a single grey segment. visual quality of a SPECT image.

Most importantly, these examples demonstrate that
the MRF Algorithm is able to find contours, which is 3.3, Application to Magnetic Resonance | mage Seg-
necessary in medical imaging to separate the organ from mentation
the background. This confirms that the technique is well
suited to enhance the qua“ty ofan image with poor spa- The eXperiment with the SynthetiC data demonstrated

tial resolution and SNR such as encountered in SPECT the success and the quality of the segmentation on an
imaging. image having distinct and well-separated bands of pix-

els. We now validate the practicality of the segmenta-
tion algorithm with a more realistic object. We use T1
modality MR brain phantom images obtained from the
In this section we assess these abilities using one slicebrain Web Simulated Database at the McConell Brain
of a digital thorax phantom. A SPECT image was sim- Imaging Center of the Montreal Neurological Institute,
ulated using the MCAT Phantom [33]. SPECT imaging McGill University [10]. Figure 6 (a) represents one slice
informs us about the bio-distribution of specific radio- 0f a brainimage affected by Multiple Sclerosis (MS) le-
tracers. It is used in nuclear medicine for the diagno- sion. The brain is composed of different constituents or
sis of abnormalities in a biochemical process. Unfortu- segments. The most representative are the cerebrospinal
nately, SPECT images are inherently noisy and provide fluid (CSF), the gray matter (GM), the white matter

less quantitative information about the qualitative fea- (WM), the fat, the muscle & skin, skin, skull, glial mat-
tures discerned by the experienced observer. ter, connective, MS Lesion and the background. We fo-

. . cused on the capability of the algorithm to isolate the
Figure 4 shows the original image and the observed CSE. GM. WM. and the MS lesion.

image using a SPECT imaging modality. This image
represents a slice of a human chest and shows the liver, Multiple sclerosis is a disease that affects the central
the lungs, the left and the right ventricle, and a defect nervous system. Magnetic resonance imaging is used to
in the heart, all surrounded by a background. Figure 5 monitor and assess the progression of the disease and
shows the segmentation results of the reconstructed im-to evaluate the effect of drug therapy. Clinical analysis
age using several k-sets for different values of the pa- of MS lesions is usually performed manually and suf-
rameterk in the algorithm. The segmentation distin- fers from lack of accuracy. The ability of an automatic
guishes different classes of region according to their in- segmentation to rapidly and accurately segment the MS
tensities. It removes noise and the images are smootherlesions allows quantitative analysis of the disease and
As a consequence, important features are highlightedimproves the accuracy of the evaluation.

(heart, liver and lungs). As the value bofs varied from

3 to 10, we notice that for smaller values/gfthe seg-
mentation result can omit some features in the original
image. Fork = 3, the left and the right ventricles and
the lungs merge to form a single organ; however, the
liver is well delineated. The later feature is less pre-
served withk greater than 4; nevertheless, the lesion
starts to be seen.

3.2. Segmentation of SPECT Images

In the brain MRIs which were segmented using the
MRF algorithm, the number of colorsk, was set to
12 based on our prior knowledge of the brain anatomy:
there are 11 kinds of tissues plus the background. We
have the same observation for the restored brain images
as for the synthetic data described in Section 3.1., less
noise in the observed image results in better segmenta-
tions. We only report here the results of a segmentation

The segmentation with = 7 is much better as itis  of the brain with one specific noise added. In Figure 6 a
able to distinguish the lesion and the liver does not lose MR image is shown segmented by t&F algorithm.

its homogeneity. Witk = 9 andk = 10, almost all The results show that the proposed method is capable
the regions are perfectly delimited and the lesion is vi- of segmenting an image made up of several parts with
sualized, but not as accurately as with= 7 or k = 8. complex interconnection. Despite the lack of difference

The variation in features segmented is a result of the between brain pixel intensities of various tissues, the
different k-sets chosen by the k-means algorithm for algorithm distinguishes the WM, CSF, GW and the MS
different values ofc. As demonstrated by all these nu- lesion. Depending on the choice of the deviation and
merical experiments, thelRF algorithm is a powerful separation parameters, the algorithm succeeds to a cer-
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HE

(@) Original image (b) Observed SPECT
of an unhealthy my- image
ocardium

Fig. 4. SPECT image reconstruction

Q >
) )

(a) Observed (b) k=3 (c) k=4
image

(d) k=5 (e) k=6 () k=7
H

(9) k=8 (h) k=9 (i) k=10

Fig. 5. Organ segmentation obtained with several k-setgliftarent values ofk.

(a) Original image (b) Observed image (c) Corrected image

Fig. 6. Segmentation of Multiple Sclerosis brain image.N& brain original image. The lesion are the red (brown) zarside
the brain. (b) Simulated observed MS Brain image, (c) Coed1S brain image.
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(a) Cerebrospinal fluid

(b) Gray Matter

(c) White Matter

(d) MS lesion

(e) Cerebrospinal fluid

(f) Gray Matter

(9) White Matter

(h) MS Lesion

Fig. 7. Segmentation results of two brain images obtaineti wumber of colorst = 12, deviation D = 2 and separation
S = 16. Sub figures (a) to (d) are, respectively, the segmented GBEFWM and the MS lesion shown separately but segmented
in the same image. (e)-(h) are the corresponding segmemntstfre original image.
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Fig. 8. Plot of the error between the corrected image and tiggnal image asy is varied. Left image, number of colors is
k = 8. Right image, number of colors fs= 12.

tain extent to separate constituents of the brain image. the corresponding segment from the original image of
Figure 6 (a). Figure 7 (d) stresses the fact that the al-

Figure 7 presents the original and corrected images gorithm is able to identify the MS lesion, but can not

shown in Figure 6 (a) and (c) in a different manner. |
ages (@) through (d) are the masked segments of Fig-

A segment is masked in the sense it is the only one
shown while the remaining segments are seen as a back-
ground. To ease then a visual comparison, each segmen[
of Figure 6 (c) is shown separately from the rest of the

m- Perfectly isolate it from the rest of the tissues. This is

a result of the lack of intensity difference between the
ure 6 (c) comprising the GM, WM, CSF and the MS Multiple Sclerosis(MS) lesion and other tissues, espe-

lesion as well as the masked segmented of Figure 6 (a)_ually the WM. From a cI|n_|caI viewpoint, this does not
create undue confusion since we know that MS affects

corrected image, and beneath each corrected segment is

m

ainly the WM. We also emphasize the capability of
he algorithm to segment while removing noise in order
to highlight important features.
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3.3.1. Quantitative Analysis

The forgoing analyses were based on visual inspec-

tion. We now include quantitative criteria to study the
behavior of the separation-deviation segmentation with
respect toy, the ratio of S to D. Knowing the origi-
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The right number of color intensitie, for a given
data set is usually not known a priori. It can be auto-
matically approximated using statistical techniques like
Akaike Information Criterion (AIC) [1]. Once a satis-
factory number of intensities is found, the deviation and

nal image, we evaluate the quantitative performance by the separation parameters,and D, are tuned by the

computing the relative error between the corrected im-
ages obtained asis varied and the original image. Let
x°"% andx°°" be the original and the corrected images
respectively, we denote laythe error level computed as

N

orig _ _.cor
E (2} T

4

orig __

x

e = [l27i0 — 2] =

)?,

where N is the total number of pixels in the image.
As in the previous segmentations of brain MR images,
the number of color values is set to= 12, but we
also present the error from a segmentation with-

8 for comparison. We evaluate the results by varying
the value ofy = %. We are looking for a parameter
~ for which the relative erroe as a function ofy is
minimum. The plot in Figure 8 shows the experimental
results of varyingy. The lowest error whek = 12 is
obtained whery = 6 and whenk = 8 is obtained when

~ = 4. The plot provides an example of the importance
of properly balancing the penalty functions for each
type of application, as the error increases if either the
separation or deviation function is allowed to dominate.

3.3.2. Discussion

The MRF algorithm performs well provided that the
different classes of pixels are well separated in terms
of intensity, as demonstrated with the synthetic dataset.

user online according to their preference. An interesting
aspect that remains to be explored is the automatic esti-
mation of the number of intensities simultaneously with
the optimal deviation and separation ratio. This could
be done using AIC as discussed above or Schwarz crite-
rion [38], which are two ways to measure the goodness
of fit of an estimated statistical model.

4. Conclusions

We demonstrate here an efficient implementation of
an algorithm for the MRF problem applied to medical
images. The results show that tMRF algorithm is
effective at denoising medical images as well as seg-
menting tissue types, organs, lesions, and other features
within medical images.

The MRF algorithm is highly efficient, meaning that
results are produced so rapidly that a medical imag-
ing operator could actively adjust input parameters to
generate and select the most acceptable segmentation
in almost real time interactively. It also means that the
MRF algorithm may be used to deblur and segment
very large images such as very high resolution images
and 3-dimensional images.

We presented here corrected images generated by the
MRF algorithm from synthetic images, SPECT images,

Unfortunately this is not always true for MR images and MRI images. The synthetic images demonstrated
of the brain. Because of the limited spatial resolution the ability of the algorithm to segment images with low
of image modality and the complexity of the anatomic signal-to-noise-ratios and low-contrast-to-noise matio
structure of some brain tissues, a single tissue voxel may The SPECT images showed that the algorithm is able

be composed of several tissue types, which is called
partial volume(PV) effect. An example of this is the
lack of intensity difference between MS lesions and the

to segment individual organs within images. TMRF
algorithm also significantly increased the visibility of
a lesion which is otherwise very difficult to see in the

other tissues of the brain. As a consequence, intensity observed image.

similar to the lesion is found in several regions of the
brain. As a remedy, a priori knowledge of the anatomi-

cal location of brain tissues can be used. In the current

example, since most of the MS lesions are located in
the white matter, one approach to improve the result is
to confine the segmentation area. Exploiting the knowl-
edge that the majority of MS lesion are located inside
WM is a widespread technique in MR image segmen-
tation [22,25].

The application of the algorithm to MRI images
demonstrated the ability of the algorithm, not only to
remove noise from the image, but also to effectively
separate various tissue types. Most importantly, it can
distinguish MS lesions within the noisy observed im-
age.

The flexibility of the implementation of th®IRF al-
gorithm allows it to be used with other applications
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