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Scheduling Weighted Packets with Deadlines over a Fading Gimnel

Zhi Zhang and Fei Li
Department of Computer Science, George Mason Universitiyfax, VA 22030

Abstract

We consider scheduling weighted packets with time comssraiver a fading channel. Packets arrive at the transmitter
in an online manner. Each packet has a value and a deadlinehighwit should be sent. The fade state of the channel
determines the throughput obtained per time unit and thenobkEs quality may change over time. In this paper, we
design both offline and online algorithms to maximize weidhhroughput, defined as the total value of the packets sent
by their respective deadlines. We first present polynotirizé- exact offline algorithms for this problem. We then prese
online algorithms and their competitive analysis. We alsove the lower bounds of competitive ratio.

Key words: online algorithms, competitive analysis, fading chanseheduling algorithms

1. Introduction fined as the tightest upper bound of the amount of in-
formation (i.e., the total number of packets) that can be
Time-varying signal strength is a fundamental char- reliably transmitted over a communication channel. Tse
acteristic of wireless channels. Scheduling packets overand Hanly [19] have found capacity limits and optimal
fading wireless channels has received much attentionresource allocation policies for such fading channels.
(see [19,10,9,18,21,4] and the references therein). A They also studied the greedy approach for channel al-
scheduling algorithm can significantly improve the locations in multi-access fading channels, assuming all
communication performance by taking advantages of packets arriving at the transmitter are successfully eeliv
the changing channel states. Specifically, the packets toered. Prabhakar et al. [10] have considered proactively
be scheduled are associated with deadlines. Time con-adjusting the rate of packet transmission for saving en-
straints (deadlines) are specified on packets to modelergy where the quality of the fading channel is assumed
the possible network protocol timeouts and the time to be fixed and the consumed energy is a convex function
sensitivity of the information carried by the packets. In Of the transmission speed. The discrete version of this
the previously studies, the objective is usually to max- algorithm has been proposed in [20] in a more general
imize the totalnumberof packets delivered by their ~Problem setting. In [9], the authors applied a dynamic
deadlines. However, for many practical problems, it is Programming approach to get the optimal solution for
more reasonable to differentiate various packets and scheduling uniform-value packets under both time and
take into account the amount and the significance level energy constraints. However, this algorithm [9] runs in
of the information associated with the packets. Thus, €xponential-time in overloaded systems. A polynomial-
in this paper, we address the prob|em of Opt|m|z|ng time Optlmal offline solution of SChedUling paCketS with
weighted throughpubf packets with time constraints hard deadlines was given in [18,21]. In their problem
in a fading wireless channel. Our results show that the Settings, energy is minimized under the assumption that
algorithmic solutions in maximizing weighted through-  all arriving packets are successfully delivered. An op-
put as well as their computational complexity are sig- timal offline algorithm maximizing throughput and a
nificantly different from those optimizing throughput heuristic online approach of scheduling uniform-value
of uniform-value packets. packets with possibly different deadlines were given
in [4]. No theoretical analysis has been provided for
their heuristic online solution. Note that in these previ-
ous studies, packets have uniform values and their ar-
rivals at the transmitter are usually modeled by a Pois-
Email: zhi Zhang [zzhang8@cs.gmu.edu], Fei Li son distribution.
[lifei@cs.gmu.edul]. In the models discussed above, packets are distin-

Resource allocation for fading channels has been a
well-studied topic in the area of information theory. The
guantity to maximize is often the Shannon capacity, de-
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guished by their deadlines and release dates only; thatgoal is to maximize weighted throughput subject to the
is, they have uniform values and sizes. However, packetsdeadline constraints of packets and the varying fading
from different users and various applications may have channel qualities.

different significance levels of embedded information.  We design two kinds of algorithmeffline algorithms
Forthe sake of being realistic and practical, we associateandonline algorithmsAll input information (including
packets withweights(value$ that indicate the signifi-  the fading channel states and the packets’ characteris-
cance of their embedded information. We also associatetics) is known to an offline algorithm in advance. For
packets with deadlines to represent the information’s an online algorithm, the packet input sequence is un-
time sensitivity in real-time applications. None of the known and each packet's characteristics are known to
previous algorithms for delivering packets can be gener- the algorithm only at the time when the packet actually
alized to this problem setting, because a schedule with arrives at the transmitter. The fade state of the channel

the maximum throughput does not imply its optimal-
ity on maximizing weighted throughput. In this paper,
we design efficient scheduling algorithms to maximize
weighted throughput for packets with time constraints
over a fading channel. Our contributions include:
(1) offline algorithms for this model (Section 3.1.).
(2) competitive online algorithms and lower bounds of
competitive ratios for this model and its variants
(Section 3.2.).

2. Model

We consider scheduling weighted packets with dead-
lines over a wireless fading channel. In this model, time
is assumed to be discrete. Thth time steprepresents
the time periodt — 1, t]. A few consecutive time steps
are called @aime interval Packets are released over time.
All packets are with the same lengthe R* (L is a
constant). Each packgthas an integerelease timgar-
riving time) r, € Z*, a positive real value, € R* to
represent itsveight (value), and an integer hard dead-
line d,, € Z* to denote the time by which it should be

delivered. The time required to send a packet depends

on thestate qualityg; (¢: € [¢min, gmax]) Of the fading
channel during a time stefp whereq,i, andgnax are
two constants. Without loss of generality, we assume
L =1, ¢gumin > 0, gmax = 1, and the fade state in a sin-

gle time step keeps unchanged. If the fading channel is

at its highest quality;,,,.x, one packet can be sent in a

is unknown or partially known to an online algorithm,
which depends on the assumptions in the variants of
the online version of this problem. Note that essentially,
delivering packets with deadlines in a wireless channel
is an online decision making problem. We address the
online version in the following two settings.

¢ In the non-preemption setting packet, once it is

being delivered, is committed to be sent without
being preempted until it is sent.

¢ In the preemption-restart settingan online algo-

rithm is allowed to abort a packet during its trans-
mission, and the aborted packet can be restarted
(from scratch) and sent later.

In either setting, the online algorithm gets credits only
from the packets that are successfully sent in consecu-
tive steps by their deadlines.

Our model can be awverloaded systerin which
it is feasible that due to packets’ deadline constraints,
no algorithm can deliver all packets in the input in-
stance. Note that in amnderloaded systenthe offline
solution is relatively trivial. The classic algorithm EDF
(Earliest-Deadline-First) delivers all the packets non-
preemptively by the increasing deadline order and it
achieves the optimal weighted throughput.

We have realized the connection between this prob-
lem and the well-studiebdounded-delay mod#i buffer
management. The bounded-delay model [15,13,16,8,17]
implicitly applies an assumption of ideal channel qual-
ity at all the time such that in every time step, one

time step. A packet has to be sent in consecutive time Packet can be delivered. The offline version of the

steps. Successfully sending a packeakest(p) steps
wheret(p) = t2 — t; subject to

to
> @ >1andty <dy, th, ty € ZF,
t=tq

Two or more packets cannot share (i.e., to be sent in)

the same time step. If a packets sent by its deadline
d,, its weightv, is contributed to our objective. Our

bounded-delay model has been solved optimally via
maximizing a weighted bipartite matching. The online

version still remains a very intriguing open problem.

3. Algorithms and Analysis

We classify our algorithms and present them as of-
fline algorithms and online algorithms in Section 3.1.
and Section 3.2. respectively. Note that in designing
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offline algorithms, there is no difference between the

non-preemption setting and the preemption-restart set-

ting: An optimal offline algorithm can always be non-
preemptive.

Let the input sequence feand|Z| = n. All packets
have the same length

3.1. Offline algorithms

In this section, we present a few exact algorithms
running in polynomial time for several variants of the
problem, assuming all input information is known.
Theorem 1. [11] Assume the fading channel has a fixed
qualityq € [0, 1] during all time steps. If all packets are
with the same value (but they are allowed to have arbi-
trary deadlines), then there exists an exact polynomial-
time optimal algorithm running in timé&(n logn).

We consider an important variant in which packets
are withagreeable deadlings.e., for any two packets
pi andp;, rp, < 1, impliesd,, < d,,. This variant al-
lows an optimal algorithm running in an online manner.
Here, we look at EDF: If there is no packet being sent,
schedule the earliest-deadline pending packet until it is
finished. We have
Theorem 2. Assume the fading channel has a fixed
quality ¢ € (0, 1] during all time steps. If all packets
are with the same value and if they are with agreeable
deadlines, then EDF is an exact polynomial-time opti-
mal algorithm running in linear time(n).

Proof. To prove Theorem 2, it is sufficient to show that
at any timet (¢ does not have to be an integer), EDF
finishes no fewer packets than any algorithm ALG. We
useA(Z) to denote the number of packets delivered by
their deadlines in the algorithm A.
The proof consists of proving the following two parts:
(1) Given any algorithm ALG and the set of packets
7' (C 7) that ALG schedules, we can create an
earliest-deadline-first scheduler ECffishing all
packets inZ’ by their deadlines; that is,
EDF'(T') = |T'| = ALG(Z). (1)
(2) Given the inputZ for EDF and the inpufZ’ for
EDF, EDF is no worse than EDHn finishing as
many as packets by their deadlines at any time
that is,
EDF(I) > EDF'(T"). (2)

Equation (1) and Equation (2) implg DF(Z) >
ALG(T).

Zhi Zhang & Fei Li—Scheduling Weighted Packets with Deagimver a Fading Channel

Given the set of packetg’ that is finished by an
algorithm ALG as the input of EDFwe can use the
exchange argumenb show that EDFcan finish the
packets irZ’. Note that if the fading channel is at a fixed
quality, for any unit-length packet it takes[¢ 1] time
steps to delivep. Since all packets are with the same
value and the same processing time, we can always
replace the packets Z’ using packets 7 \ Z’ with no
later release dates or deadlines. Thus, the second part
of the proof is true as well.

The running time analysis is as follows. If packets are
with agreeable deadlines, newly arriving packets can be
appended at the end of the packet queue. EDF sends the
first pending packet which has not expired yet in the
next[q¢—!] time steps when there is no packet currently
being sent. The scheduling algorithm runs in linear time
O(n). Theorem 2 is proved. O

In the following, we can prove that there exists an
optimal offline policy for the general problem. First,
we assume that the channel quality’s is a fixed constant
number. Then, we apply the algorithm into the general
setting in which the fade states of the channel vary.
Theorem 3. Assume the fading channel has a fixed and
constant quality; € [0, 1] during all time steps. There
exists an optimal algorithm in maximizing weighted
throughput.

Proof. We would like to point out that since it may not
be feasible to deliver all packets ever arrive at the trans-
mitter in an overloaded system, the optimal solutions
in the previously studied models in [9,4,14] cannot be
directly applied to our model.

We design an exact algorithm that depends on the fol-
lowing two critical observations on the matroidal struc-
ture of the model.

Remark 1. Given a setS of packets, any feasible
schedule or can be converted to an earliest-deadline-
first schedule wherthe earliest-deadline packetsS is
scheduled as long as it is available

Remark 2. Denote S* as both the optimal solution
maximizing the weighted throughput and the set of pack-
ets delivered. If a packei; € S* is pending at time

t and it is not scheduled at timg there must exist a
packetp; € S* such thatr,, < t+ [¢~'] andp; is
scheduled at time,, .

Let the set of packets arriving at the transmitter be
{p1, p2, ..., pn}. As the channel quality is a fixed
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numberyg, it takes[¢~!] consecutive time steps to de- Corollary 1. Consider scheduling weighted packets
liver one packet. The set of time steps that a packet canwith deadlines in a fading channel. There exists an

be sent is a subset of all the time stéps optimal algorithm in maximizing weighted throughput
in time O(nlogn - m), wherem is the number of time
T :=|Jlrp., rp, +nlg 1], steps that we consider.
i In our model, as long as each interval with time steps

_ ) ) [t1, to] hasZ?:t1 q: > 1, a packet can be sent. For each
Where_q is the constant channel quality. Let the time | qje5se timer,, we seek the following: consecutive
steps inl" beti, ta, ..., t,, where time intervals such that for each time interval, .],
Sie,. ¢ > 1. Let the union of all such time steps be
T’. Then, the numbem in Corollary 1 hasn = |T”|.

Note that our proofs depend on the following three
assumptions that J all packets have the uniform length,
(2) packets are sent in consecutive steps, ahgdckets
do not share a time step. If any one of these assumptions
does not hold, it is easy to conclude that the offline
version of this problem is a NP-complete one, via the
reduction from the NP-completgin-Packingproblem
or the NP-complet&et-Partitionproblem.

Theorem 4. Consider packet scheduling in fading
channels. Assume a packet can be preempted before the

|T| < n-n(q_lw <n?4+n?.¢n

We have a greedy algorithm as follows. Based on
Remark 1 and Remark 2, we know that if there are
two pending packets available for delivery, we can al-
ways pick the one with the earlier deadline to send in
a time stepe T'. We call this order acanonical or-
der. Our following algorithm is based on the matroidal
property of the model. The generated schedul®’irs

Algorithm 1 Optimal-Offline-Algorithm

1: Initialize the set of packets to be seff = . transmitter finishes it. Only unfinished part of the packet
Initialize the set of packets to be considefed= 7 is resumed later. Then, maximizing (weighted) through-
(= {p1,p2,---,pPn}). put is a NP-complete problem, even if all packets share

2: Sort all packets iP in decreasing order of values. @ common release date and a common deadline.

3: while |P’| < n and there are packets left in do

4:  remove the maximum-value packefrom P; Proof. To show that one problem is NP-completeness,

5. if the setP’ U {p} can be feasibly scheduled in it is sufficient to show that we can reduce a well-known

time stepsI” under the canonical order (i.e., all NP-complete problem to our problem in polynomial

packets can be sent by their deadlingen time and a candidate solution can be verified in polyno-
6: insert the packets i’ and update®’ as P’ U mial time. Verifying a candidate solution can be done
{p}. in linear time. To prove Theorem 4, the remaining work
7. endif is to reduce the known NP-complete Set-Partition prob-
8: end while lem to our problem.
9: return P, The Set-Partition problem is defined as follows.

Given an instance that has a finite getand a size
the optimal solution and its correctness is based on the si € Z* fori € 7, the objective is to find out if there ex-
fact that feasible schedules form a matroid. The run- ists a subset’ C Z such that_, 7, s; = 3,1\ 1 Si-

ning time of this algorithm i) (n log n+nlogn|T|) = This problem is proved NP-complete [12].

O(n3logn - ¢—1), where the factoO(nlogn) for |T)| Now we introduce the reduction. Given any instance
is the time spent on sorting packetsiin decreasing  Z of the Set-Partition problem, we normaliZesuch
order of weights. For each packetit takes timeO(|T'|) that} . s; = 2. Then we generate the channel qual-
to verify the feasibility of adding into the existing ity ¢ = s, for eachi € Z and we have only two
schedule. For this variant, our result improves the algo- unit-value packets whose deadlines arg_; s; = 2
rithm in [2], whose running time i€ (n'%) and which in our input instance. This conversion takes polyno-
also holds wheny is fixed but not a constant number. mial time. Consider any algorithm ALG. If ALG re-
Theorem 3 is proved. | turns a throughput o2, ALG returns two sets of fad-

ing states such that each of them is with a total qual-
Following the proof of Theorem 3, we immediately ity Zj g; = 1. The time step of delivering one packet
have (respectively, the other packet) consists of one parti-
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tion set (respectively, the other partition set) for the straints on packets, (weighted) throughput is maxi-
Set-Partition problem. Since the Set-Partition problem mized by simply delivering all packets that ever arrive
is NP-complete, ALG cannot schedule two packets by at the transmitter. When time constraints are enforced
their deadlines optimally in polynomial-time. Hence, onuniform-valuepackets, the objective of this problem
maximizing (weighted) throughput with time varying becomes to send as many packets as possible before
quality, is NP-complete. Theorem 4 is proved. O their respective deadlines — this variant is as the same
problem of online scheduling equal-length jobs [7].
A 2-competitive deterministic algorithm and B5-
competitive deterministic algorithm have been given

Scheduling packets with deadlines (even in a fad- for this variant in the non-preemption setting and the
ing channel whose quality is always at its maximum) preemption-restart setting respectively [7]. Both online
is essentially an online decision problem. In order to algorithms’ competitive ratios are tight.

evaluate the worst-case performance of an online algo- . " . )

rithm lacking of future input information, we compare ~1hough optimal competitive online algorithms have
it with an optimal offline algorithm. The offline algo- ~P€en proposedin [7] for a variant in which throughputis
rithm is a clairvoyant algorithm, empowered to know maximized, schedulmg pack_ets with deadh_nes is open
the whole input sequence (including the fading states of 1d becomes more interesting and complicated when
the channel, the packet sequence, and all packets’ chariPacket weights are considered. Now we present an in-
acteristics) in advance to make its decisibncontrast stance in which the fade state of the channelis ideal (i.e.,

to stochastic algorithms that provide statistical guaran- 9t = dmax = 1, V) but packets have weights. Consider
tees under some mild assumptions on input sequencesa" overloaded system. At time there are two packets

3.2. Online algorithms

competitive online algorithms guarantee their worst-
case performance.

Definition 1. Competitive ratig3]. Consider any finite
input instance. A deterministic online algorithm ON is
called p-competitiveif the weighted throughput of an
optimal offline algorithm on this instance is at mest
times of the online algorithm’s weighted throughput on
the same instance.

. OPT(T) =5
PPTON@)

whered is a constant and PT(Z7) is the optimal offline
solution of an inpufZ. The parametep is known as the
online algorithm ON’scompetitive ratio

Theupper bound®f competitive ratios are achieved
by some known online algorithms. A competitive ratio
less than théower boundis not reachable by any on-
line algorithm. An online algorithm is said to loptimal
if its competitive ratio reaches the lower bound. If the
additive constand is no larger thar, the online algo-
rithm ON is calledstrictly p-competitive Competitive-

p1 andp; with d,,, =1 < dp, = 2 andv,, < vp,. Note
that the transmitter has no knowledge of future arriv-
ing packets. Sending the packetin the first time step
may cause- not to be sent anymore if we assume that
another packeps with dp, = 2 andv,, > v,, arrives

at time 2 (sincep, and ps cannot be sent simultane-
ously at step successfully by their deadlines). A better
(clairvoyant) way is to sengs in the first time step and
sendps in the second time step. One the other hand, if
the online algorithm pick®, to send in the first time
step, it potentially leads to the expiration of the packet
p1. In case no packets is released at stepin the ac-
tual input sequence, the online algorithm loses the value
of p; — it is better to sengh; andp- in the first two
consecutive time steps clairvoyantly. In summary, the
challenge of designing efficient online algorithms who
are lacking of information about future input is to bal-
ance wisely between sending an earliest-deadline packet
and a largest-weight packet. Our proposed online algo-
rithms are based on this intuition. Another challenge of
this model is due to the uncertainty of the fade states
of the wireless channel. We will address more on these

ness has been widely accepted as the metric to measurgna|ienges and present our solutions in the following.

an online algorithm’s worst-case performance in theo-
retical computer science and operations research [3]. In

We consider non-preemption and preemption-restart

this section, we design and analyze some competitive settings separately. We also call the optimal offline al-

online scheduling algorithms for maximizing weighted
throughput in a fading channel.

gorithmadversary Let vy« andv,,;, denote the max-
imum and the minimum value of a packet in the input

We investigate the challenge of designing efficient sequencel respectively. We can always scale packet

online algorithms for this problem. Without time con-

values such that,,;, = 1. Thus,:j:ﬁ = Umax-
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3.2.1. In the non-preemption setting

We first show a negative result and then show an
optimal online algorithm for a variant of this model.
Theorem 5. In the non-preemption setting, no online
algorithm has a constant competitive ratio, even if the
fade state is a fixed number(¢ < gmax = 1) and

73

have proved that for any time EDF finishes no fewer
packets than any algorithm (see the proof of Theorem 2).
Given an inputZ, we assume EDF finishespackets
with a total valueW > s - vy = s. Any algorithm
finishes no more tham packets with a total value

8 Umax < W - vmax. Thus, we immediately have

even if packets are with agreeable deadlines. The lower Corollary 2. In the non-preemption setting, if the fade

bound of competitive ratios can be upuigQ.x.

Proof. We set the channel’s qualigy= 0.5. Any packet
can be sent in consecutietime steps. Let an online
algorithm be ON. We usg, d) to denote a packet with
valuev and deadlinel.

In the first time step, a packéty,, = 1, 2) is re-
leased. The adversary keeps releasing a patkel:)
in each time stef: until one of the events happens) (
ON picks up a packefl, 2k) to send, or %) the adver-
sary has released such packets with value,,;,, = 1,
and ON has not picked up any one of them to send.

state is a fixed number and if packets are with agreeable
deadlines, EDF is an optimal online algorithm.

If the fade state is at its maximum all the time (such
that a packet is sent in a single time step), this vari-
ant of the online problem is same as the bounded-delay
model [15,13,16,8,17]. An optimal online algorithm has
been proposed for the agreeable deadline case [16]. For
the general case, the best known lower bound of com-
petitive ratios is¢ := Y5 ~ 1.618 [13] and the
best known upper bound is832 [8]. Closing the gap
[1.618, 1.832] is still an intriguing open problem [6].

For the second case, the adversary stops releasing . .
new packets and it schedules all packets ever released-2.2. In the preemption-restart setting

with a total gain ofz. On the other side, ON gains
nothing overall. For the first case, when ON picks up a

In the preemption-restart setting, we first provide a
bad example to show that if the fading states are un-

packet(1, 2k) to send, the adversary releases a packet known to the online algorithms, no online algorithm can

(Umax, 2k + 3) at time 2k + 1. Note that in the non-

have a competitive ratio better thap, ...

preemption setting, ON cannot stop sending the packet Theorem 7. If the fading states are unknown to online

(1, 2k) till the time 2k + 2 when this packet is finished.
Thus, ON cannot execute the packet,.., 2k + 3) at
time 2k + 1 to get it finished by its deadline. After re-
leasing the packéin,.x, 2k+3), the adversary releases
nothing. Overall, the optimal offline algorithm will send
all packets(1, 2-1),(1, 2-2),...,(1, 2(k—1)), and
(Umax, 2k + 3). On the other side, ON executes only
one packetl, 2k). The competitive ratio is

(k - 1)1 + Umax

1 =k — 1+ VUmax = Umax-

Then, ON is no better than,,.,.-competitive. Theo-
rem 5 is proved. O

Note that if packets are with the uniform value and
the if the fading channel has a fixed quality (but packets
can have arbitrary deadlines), EDRisompetitive [7].

algorithms, no online algorithm can have a competitive
ratio better thanuy, ..

Proof. Consider time0 and two packets are released.
We use(v, d) to represent a packgtwith valuev and
deadlined. Let an online algorithm be ON. The fading
state at time) is 0.5. A packetpy := (vmin = 1, 2) is
released at time.

The fade state keeps its qualitys since time0 to
time 2. Attime 1, a packeps := (vmax, 3) is released.
If ON scheduleg,, we keep the fading state @t till
time 3 and ON cannot finistpy by its deadline. The
optimal offline algorithm will schedule, instead and
the competitive ratio i,.. On the other hand, if ON
scheduleg, at its arrival, the fade state sharply changes
to 0 at the end of time& and keep$) eventually. Thus,
even ON starts to scheduybg, it cannot finish it though.

Thus, associating values to packets complicates thelnstead, the optimal offline algorithm schedujgsand

model. To complement Theorem 5, we note
Theorem 6. [1] In the non-preemption setting, no on-
line algorithm has a constant competitive ratio, if the
fade state is ideal((= gn.x = 1). The lower bound of
competitive ratios can be up tgvpax.

the competitive ratio can be an arbitrarily large number.
Theorem 7 is proved. O

Based on Theorem 7, we know that if the fade states
are unpredictable, without one step of look-ahead, no

Given the assumptions that the channel state is a fixedonline algorithm can have a competitive ratio better than
number and packets are with agreeable deadlines, wev,,.x. Again, EDF is optimal in this setting. In the fol-
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lowing, we consider a practical scenario and make the
following assumption that is well-known:

Condition 1. [19,18,21] The online algorithms have
the ability of looking one-step ahead of knowing the
fade states of the wireless channel. At the time when an
online algorithm starts to schedule a packet, this “com-
mitted” packet can be scheduled based on the future
fading states. However, note that the online algorithm
is allowed to preempt-restart this packet later.

Assumption 1 applies to all the variants that we con-
sider in the following.

In [7], an optimall.5-competitive deterministic algo-
rithm has been proposed for a variant in which the fade
state is a fixed number (the lower bound of competitive
ratios for that variant i4.5). We note the lower bound
can be improved t@ for the weighted version of this
problem.

Theorem 8. [5] Assume the channel’'s quality is fixed
at gmax = 1. The lower-bound of competitive ratios for
this variant is¢ := % ~ 1.618. This lower bound
holds even for agreeable deadline instances.

Theorem 9. [7] Assume the channel’'s quality is fixed
at ¢ < 1. The lower-bound of competitive ratios for
deterministic online algorithms i8. This lower bound
holds even for maximizing the number of packets sent
by their deadlines.

From Theorem 8, we know that the variant (in which
the fade state is a constant) has the lower boungl of
For this invariant (we also called it a bounded-delay
model), given a set of pending packétsan online al-
gorithm can calculate theptimal provisional schedule
S* (S* is the one that achieves the maximum total value
of packets among all provisional schedules on pending
packetsS) and send one packet froft. Note thatS*
can be calculated only if the channel’s quality is known
beforehand. Since the fade state of the channel is un-
predictable, all prior online algorithms on the bounded-
delay model cannot be applied to our model.

Assume the fade states and future input informa-
tion are unknown.

Here, we study an algorithm called SEMI-GREEDY
with a parametera > 1. In each time step, the
maximum-value pending packgtaborts the currently
running packets, if v, > «a - v;. This algorithm is
described in Algorithm 2.

Before we prove the competitive ratio for the algo-
rithm SEMI-GREEDY, we define a concept that is use-
ful to the proof.

Definition 2. Packet chain We define a packet chain

Zhi Zhang & Fei Li—Scheduling Weighted Packets with Deagimver a Fading Channel

Algorithm 2 SEMI-GREEDY¢ > 1)

1: Let the maximum-value pending packet with the
earliest deadline b@ and let the currently being
sent packet bé. If p (or ¢) does not exist, we set
vp =0 (or v; =0).
2. if v, > « - v; then

aborti and send.
4: end if

C of k packets as

C:= {pla P2, P3, -+, pk}a
with the following property ¢ > 1),
vy, < L =203, k1.

We usdV (C) to represent the total value of the packets
of C.
Lemma 1. Given a chainC of k¥ > 2 packets

p1, P2, ..., Pk, We have
1 an+1 1
We) = a—1 am “ Upy, - 3
Proof.
k
W(C) = Zi:l Up, = Upy + Upy + 0+ Upy_ + Upy
Upy, Upy, Upy

_ Up, T Upy + U Uy, €
Q- Vp, , €
.UP1+U;D2+"'+’UP1C71

<1+

vpk—l

1 Upy + Upy + -+ + Up,_,

1
«
1
<1+~ (14~
«

)

’Upkfz
. Upy + Upy &+ Upy_,

’Upkfz

Theorem 10. The SEMI-GREEDY algorithm has a

e . 1 an+171 .
competitive ratiomax{l + o, — —— ). Itis
(¢? ~ 2.618)-competitive whem = ¢ ~ 1.618.

7 a—1
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Proof. We use a charging scheme to prove Theorem 10. to send in this time step since this packeis a
Let the subset of packets chosen by the adversary candidate. The packet that SEMI-GREEDY sends,
(= an optimal offline algorithm) (respectively, SEMI- letit bep’, in this corresponding time interval has a
GREEDY) bell; (respectively,Il,). Without loss of value no less than, -a~!. Also, SEMI-GREEDY
generality, we assume the adversary sends packets in finishesp’ no later than the adversary finishgs
a canonical order, i.e., for any two pending packsgts sincep andp’ have the same processing time and
andpj;, the adversary sends the packet with an earlier p andp’ are being executed in corresponding time
deadline. We are going to prove that steps when both algorithms send packets.

D v _— (2) Consider any packet € II; \ TI, that SEMI-

=€ P hax{l + a, Lo o = 1}_ GREEDY ever sends but aborts it later.

D pietls Upi a—1 ar We know that (from above observations) tpat

belongs uniquely to a chain and the last element
of this chain, say/, is sent by SEMI-GREEDY.
Thus, we charge,, to the time interval whep’ is
sent by SEMI-GREEDY.
Consider any packete I1; N 1ls.

We chargev, to the time interval when SEMI-
GREEDY sendw. Clearly, for any packet acting
as the last-element of a chain, this charging scheme

The proof depends on the following two observations:
(1) Consider a set of pending packétsit timet. We
assume that an online algorithm starts to schedule
a packefp, € S at timet.

We consider time’ > t. Since all packets are ®3)
with the same length, if the packgt cannot be
finished by timet’, then any packet irf cannot
be finished completely by tim&, no matter what o
the fade state of the channel is. results that the value ratio is bounded % .

(2) Consider a set of pending packétst timet. We O‘H;*l (see Lemma 1).
assume that the SEMI-GREEDY algorithm starts ~ The remaining part of the proof is to argue that when
to schedule a packet;, € S at time¢. We have we charge a packet € II; \ II, that SEMI-GREEDY
Q- Vp, > MaXp, e Up,- has not ever run yet, in the corresponding time interval,

If p; is aborted at time’ > t by a packepy, SEMI-GREEDY sends a packet, a - v,y > v,. This
then we havev-v,, < v, andpy ¢ S (pr mustbe claim is easy to prove since SEMI-GREEDY chooses
released after timé). If the preempting packet; the earliest-deadline-first qualified packet to send. If
is not sent by the algorithm SEMI-GREEDY, then v,/ < v,, thenp’ will be aborted byp immediately at
pr. must be aborted by another packet which has the time whenp arrives. Thus, for each packegtthat
the potential of being sent. So on and so forth, we SEMI-GREEDY sends, the charged valueptdor the
regard all aborted packets and the last-sent packetadversary is bounded bly+ a and ﬁ . oz”;fl and
pi as a chain. From Lemma 1, all ever-aborted all packets that the adversary sends have been charged.
packets have a total valug v, - -1+ - ot -1 Theorem 10 is proved. O

a—1 amn

(see Lemma 1). Note that no chains share a same

packet. Closing or shrinking the gaf2, 2.618] is still an
For any packep € II; \ II, sent by the optimal of- ~ open problem.
fline algorithm, eithep expires before SEMI-GREEDY Assume the fade states are known to the online

sends it op is sent, aborted before it is finished, and is algorithms, but the packet input sequence are un-

never completed by its deadline plexpires, any packet ~ known.

that SEMI-GREEDY sends since timg has a value We note at first that given the channel quality keep-

> v, - a1 (from the algorithm). ing at its maximum, delivering uniform-value packets
We examine the time intervals (a single packet is sent in a greedy manner (which runs in an online manner)

in such an interval) for the optimal offline algorithm and achieves the best throughput for any algorithms. How-

this online SEMI-GREEDY algorithm in a sequential ever, if the channel quality is less thap.., the lower

order. Our charging scheme works as follows: bound of competitive ratios for any deterministic on-
(1) Consider any packet € II; \ Il that SEMI- line algorithms is2 [7]. For this, we conclude that a
GREEDY has not ever run. p-competitive algorithm for the variant with consistent

We charge it to the corresponding time interval channel qualityg,,.x does not imply ap-competitive
that SEMI-GREEDY sends a packet. We note that algorithm for the variant in which the fade states are
SEMI-GREEDY must have one pending packet known to the online algorithms. The latter variant has
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its own interests and difficulties. Algorithm 3 EDFg
Now we present an instance in which the fade state

of the channel is withy; = 0.5, v,, = 1, andVt, i

to illustrate the challenge. Consider one pagketvith

deadline5 at time1. If an online algorithm executes it,

the adversary releases another pagketith deadline

3 at time2. So, the online algorithm cannot finish both

jobs and the competitive ratio & given the adversary

1: Abortthe currently running packgtonly if the new
arrival with value> (- vy, ties are broken in favor
of the packet with the earliest deadline.

2: if there is no currently running packigen

calculate the optimal provisional schedule, based
on the set of pending packets and the known fade

finishing both in order of packets, andp . If the on- states.

line algorithm abortg, but executep,, the adversary 4:if vy, > g then

releases another packet at time 2 with deadline4. > executep.;

Here, the online algorithm cannot finish bgthandps, 6. else o

but the adversary can finigh andps by their deadlines execute a packety satisfying

in order. Thus, the lower bound of competitive ratios for .

this variant ¢, = 1, Vi and fade states keep the same) vp; = max{f - vp,, E“ h

is 2. It is intuitive to abort a running packet if it can be

sent later with the given set of pending packets and fade where ties are broken in favor of the earliest-
states of the channel. Our proposed online algorithms deadline packet. Notg,, . itself is a candidate
are based on this intuition. for py.

We provide an algorithm similar to EDF and thisalgo-  8:  end if
rithm is called EDR. We usep,.x to denote the packet 9: end if
with the maximum value,,, at timet. Since the fade it
states are known, there exists an efficient algorithm in wherec := max{2, §, % . B Bn_l}. We provide the
calculating the provisional schedule, a feasible sched- following invariants and prove their correctness by case
ule of sending a subset of the pending packets by their study.
deadlines. We calculate the optimal provisional sched- ¢ Denote the pending packets at titnir ADV and

ule, which is with the maximum total value among all EDFs as P/ and P,. P/ C P;. Note that EDF
provisional schedules, at timel_et the earliest-deadline may not deliver all the packets iR;.

pending packet bg.. We either schedulg, or another e For each packet sent, the sum of the actual gain
packetp; satisfyingv,, > max{ - v, , <=}, and the credit change is callachortized gainWe
Theorem 11. Assume fade states are known to on- prove that for thei-th packet sent, ADV’s amor-
line algorithms. Algorithm EDF is max{2, S, ﬁ . t@zed gai_n is no more thantimes of EDFg’s amor-
5”;,][1 }-competitive in scheduling packets with dead- tized gain.

lines by_one transmitter with restarts. EQFs 2- C vy, +A<I>{5DF > vy _|_A(I)£4DV.
competitive wher = 2. !

For arrivals, with the first invariant, the invariants are
easy to prove. Note,, = v, = 0. In the following, we
consider packet deliveries only. Let the packet BDF
chooses to send in this duration peOne fact that we
will use is: Given two packep and a packep* with
d, < d,~, if pis notin the optimal provisional schedule,
butp* is, thenv,- > v,. This fact further implies that if
pis the packet EDFis currently sending, any packet not
in the optimal provisional schedule has a value - v,,.

(1) Assume ADV sends a packet Assumep is sent
successfully.

Based on the invariants,/, v, < wvp,... . From
the algorithm itself5-v, > v,,... Since all pack-
ets have the same length, under any fade states,

¢ vp, + ARFPE > v, + APV EDF; finishesp no later than ADV finisheg'. If

Proof. We use a potential function method to prove
Theorem 11. We compare our algorithm EPFith the
adversary ADV. Letb/!PV and ®P¥ denote the po-
tentials of the adversary and Ep Bt timet respectively.
Specifically, 7PV denotes the total value achieved
since timet from the pending packets at tintdfor the
adversary. Let this set of packets Bg. Let EPF de-
note the total value of the optimal provisional schedule
of the pending packets at tintefor EDFg. We usep,
andp; to denote the-th packet sent by EDfFand ADV
respectively. If such a packet does not exist(or p;)

is a null packet with valué. To prove Theorem 11, we
need to show that for any we always have
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d, < d,, we havev, < v, in the optimal provi-
sional schedule. Then we chargg + v, to the
adversary and we have

Uy + vp < 20y

If d,y > d,, p will not be sent by the adversary.
Then we charge,, to ADV and we have

Bvp 2> Up, > Upe

(2) Assume ADV sends a packet. Assumep is
aborted before it is finished.

If the adversary will seng), we will chargev,

to the packet that preempts it. Like the chain that
we have calculated in Lemma 1, the value gained

77

3. Note here Assumption 1 still holds. Then the com-
petitive ratio is¢. If ON schedule$-, then the optimal
offline algorithm schedules bothy and p2, given the
fading states ar@.5 from 0 to 4. Thus, the competitive

ratio is% = ¢. Theorem 12 is proved. O

4. Conclusion

Closing or shrink the gap of competitive ratios
[1.618, 1.832] for the classic bounded-delay model is
an intriguing problem. There are gafpis618, 2.618]
of competitive ratio for our general packet scheduling
under a fading channel arfd.618, 2] of competitive
ratio for the variant in which fading states are known.

by sendlng the last packet of the chain is at least acknowledgment

(B-1)- n+1 7 times of the total value that we
charge to the adversary.
Assume ADV has nothing to send from the cur-
rently pending packets for EDF

We claim that eithep has been sent by ADV
or ADV must have one new arrival before EpF
finishes the packetit chooses to send. Otherwise,
ADV can get more credit by delivering. It does
not hurt if we have rurmp till new arrivals come.
This analysis is similar to what we have had for
the above cases.
Theorem 11 is proved.

®3)

O

Theorem 11 implies that extra information (fade
states) helps improve the competitive ratio fr@ri18
to 2.

Assume the fade states are unknown, but the
packet input sequence is known.

We first provide the lower boungd ~ 1.618 of com-
petitive ratio for deterministic online algorithms for ¢hi
variant. Then we provide competitive algorithms for it.
Theorem 12. Consider a variant in which the fade

states are unknown, but the packet input sequence is

known to online algorithms. The lower bound of com-
petitive ratio for deterministic online algorithms s~
1.618.

Proof. An instance is easy to construct. Assume there

are two packets in the input sequence only. One packet

p1 is with valuel and deadline. The other packet,
is with value¢ and deadling8. These two packets are
released at timé@. Let an online algorithm be ON.

If ON schedulesp;, the optimal offline algorithm
scheduleg, and the fade states apeb from time0 to

This material is based upon work supported by the
National Science Foundation under Grant No. CCF-
0915681. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
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References

[1] W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen.
Competitive queue policies for differentiated services.
Journal of Algorithms55(2005) 113-141.

Baptiste. Polynomial time algorithms for minimizingeth
weighted number of late jobs on a single machine with
equal processing timedournal of Scheduling2(1999)
245-252.

A. Borodin and R. El-Yaniv. Online Computation
and Competitive AnalysisCambridge University Press,
1998.

W. Chen, M. J. Neely, and U. Mitra. Energy-efficient
transmission with individual packet delay constraints.
IEEE Transactions on Information Theorp4(2008)
2090-2109.

F. Y. L. Chinand S. P. Y. Fung. Online scheduling with
partial job values: Does timesharing or randomization
help? Algorithmica 37(2003) 149-164.

M. Chrobak. 2007 — An offine perspectiveSIGACT
News Online Algorithmsl13(2008) 96-121.

M. Chrobak, W. Jawor, J. Sgall, and T. Tichy. Online
scheduling of equal-length jobs: Randomization and
restart help? SIAM Journal on Computing36(2007)
1709-1728.

M. Englert and M. Westermann. Considering suppressed
packets improves buffer management in QoS switches.

(2]

(3]

[4]

[5]

(6]
[7]

(8]



78

In Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithm&007) 209-218.

[9] A. Fu, E. Modiano, and J. Tsitsiklis.  Optimal
transmission scheduling over a fading channel with
energy and deadline constraintEEE Transactions on
Wireless Communication§(2006) 630-641.

[10] A. El Gamal, E. Uysal, and B. Prabhakar. Energy-
efficient transmission over a wireless link via lazy packet
scheduling. InProceedings of the 20th Annual Joint
Conference of the IEEE Computer and Communications
Societies 1(2001) 384—-394.

[11] M. Garey, D. Johnson, B. Simons, and R. Tarjan.
Scheduling unit-time tasks with arbitrary release times
and deadlinesSIAM Journal on Computingl0(1981)
256-269.

[12] M. R. Garey and D. S. Johnso@omputers and Intrac-
tability: A Guide to the Theory of NP-Completenegs
H. Freeman, 1979.

[13] B. Hajek. On the competitiveness of online scheduling
of unit-length packets with hard deadlines in slotted
time. InProceedings of the 35th Annual Conference on
Information Sciences and Systert001) 434-438.

[14] T. Heikkinen and A. Hottinen. Delay-differentiated
scheduling in a fading channdEEE Transactions on
Wireless Communicationd(2008) 848-856.

Received 28-12-2010; revised 6-10-2011; accepted 9-12-20

Zhi Zhang & Fei Li—Scheduling Weighted Packets with Deagimver a Fading Channel

[15] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir,

B. Schieber, and M. Sviridenko. Buffer overflow
management in QoS switches.SIAM Journal on
Computing 33(2004) 563-583.

[16] F. Li, J. Sethuraman, and C. Stein. An optimal
online algorithm for packet scheduling with agreeable
deadlines. IfProceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithr(2005) 801-802.

[17] F. Li, J. Sethuraman, and C. Stein. Better Online Buffer
Management In Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms,(2007) 199—
208.

[18] A. Tarello, J. Sun, M. Zafer, and E. Modiano. Minimum
energy transmission scheduling subject to deadline
constraints.Wireless Neworksl4(2007) 633-645.

[19] D. N. Tse and S. V. Hanly. Multiaccess fading channels:
Polymatroid structure, optimal resource allocation
and throughput capacities. IEEE Transactions on
Information Theory 44(1998) 2796-2815.

[20] F. Yao, A. Demers, and S. Shenker. A scheduling model
for reduced CPU energy. IRroceedings of the 36th
Annual IEEE Symposium on Foundations of Computer
Science (1995) 374-382.

[21] M. Zafer and E. Modiano. Optimal rate control for delay-
constrained data transmission over a wireless channel.
IEEE Transactions on Information Theorp4(2008)
4020-4039.



