
All rights reserved © Preeminent Academic Facets Inc., 2010 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des
services d’Érudit (y compris la reproduction) est assujettie à sa politique
d’utilisation que vous pouvez consulter en ligne.
https://apropos.erudit.org/fr/usagers/politique-dutilisation/

Cet article est diffusé et préservé par Érudit.
Érudit est un consortium interuniversitaire sans but lucratif composé de
l’Université de Montréal, l’Université Laval et l’Université du Québec à
Montréal. Il a pour mission la promotion et la valorisation de la recherche.
https://www.erudit.org/fr/

Document généré le 10 août 2025 14:49

Algorithmic Operations Research

Speeding up Stochastic Dynamic Programming with Zero-Delay
Convolution
Brian C. Dean

Volume 5, numéro 2, fall 2010

URI : https://id.erudit.org/iderudit/aor5_2art04

Aller au sommaire du numéro

Éditeur(s)
Preeminent Academic Facets Inc.

ISSN
1718-3235 (numérique)

Découvrir la revue

Citer cet article
Dean, B. C. (2010). Speeding up Stochastic Dynamic Programming with
Zero-Delay Convolution. Algorithmic Operations Research, 5(2), 96–104.

Résumé de l'article
We show how a technique from signal processing known as zero-delay
convolution can be used to develop more efficient dynamic programming
algorithms for a broad class of stochastic optimization problems. This class
includes several variants of discrete stochastic shortest path, scheduling, and
knapsack problems, all of which involve making a series of decisions over time
that have stochastic consequences in terms of the temporal delay between
successive decisions. We also correct a flaw in the original analysis [8] of the
zero-delay convolution algorithm.

https://apropos.erudit.org/fr/usagers/politique-dutilisation/
https://www.erudit.org/fr/
https://www.erudit.org/fr/
https://www.erudit.org/fr/revues/aor/
https://id.erudit.org/iderudit/aor5_2art04
https://www.erudit.org/fr/revues/aor/2010-v5-n2-aor5_2/
https://www.erudit.org/fr/revues/aor/

Algorithmic Operations Research Vol.5 (2010) 96–104

Speeding up Stochastic Dynamic Programming with Zero-Delay Convolution

Brian C. Dean

School of Computing, Clemson University, USA

Abstract

We show how a technique from signal processing known as zero-delay convolution can be used to develop more
efficient dynamic programming algorithms for a broad class of stochastic optimization problems. This class includes
several variants of discrete stochastic shortest path, scheduling, and knapsack problems, all of which involve making
a series of decisions over time that have stochastic consequences in terms of the temporal delay between successive
decisions. We also correct a flaw in the original analysis [8]of the zero-delay convolution algorithm.

Key words: dynamic programming, stochastic dynamic programming,convolution.

1. Introduction

By allowing for uncertainty in the input data for a
problem, stochastic optimization problems are capable
of modeling much more realistic scenarios than their de-
terministic counterparts. Unfortunately this generality
comes at a price, as stochastic problems tend to be much
more computationally intensive to solve. If we focus on
discrete probability distributions, many stochastic op-
timization problems can be solved using dynamic pro-
gramming (DP), although for large instances straightfor-
ward DP algorithms often do not run fast enough to be
useful in practice. In this paper we advocate the use of a
technique from signal processing known as zero-delay
convolution to substantially speed up DP algorithms for
a broad class of stochastic optimization problems. In the
literature, many clever techniques have been proposed
for speeding up classes of DP problems — see [7] for
a good exposition of these results. However, we believe
this is the first description of such a technique specifi-
cally designed for DP problems of a stochastic nature.

The class of problems we consider includes the
stochastic shortest path problem and several variants
of stochastic scheduling and knapsack problems. In
the stochastic shortest path problem, the travel times
along edges in a graph are described by independent,
integer-valued random variables, whose distributions
are provided as input. Given a source vertexs, a des-
tination vertexd, and a deadlineT , and wish to find
a route froms to t that has maximum probability of
arriving withinT time units. The problem is “adaptive”

Email: Brian C. Dean [bcdean@cs.clemson.edu].

in the sense that once we follow an edge we realize its
travel time, and depending on this outcome we have
the option to select a different route for the remainder
of the journey. Zero-delay convolution will allow us to
reduce the running time for solving this problem from
O(mT 2) to O(mT log2 T) for anm-edge graph.

There are many ways to generalize the classical knap-
sack problem by introducing randomness. We introduce
one such variant here, which is also an example of a
stochastic scheduling problem, and several more in Sec-
tion 4.. Suppose again that we have a fixed deadline of
T time units, and a collection ofn types of tasks we
might choose to perform. Each task type has an asso-
ciated value as well as an integer-valued duration de-
scribed by a discrete probability distribution, where du-
rations of different tasks are independent random vari-
ables. At the beginning of time we select some task type
to perform, thereby receiving its associated value and
realizing its duration. Again, we have an adaptive prob-
lem where based on the duration required by the first
task we can select a second task type (multiple tasks
of the same type may be selected), and so on. The pro-
cess stops when the deadline is reached, and no value is
received from the final interrupted task. One can think
of this problem either as a type of stochastic schedul-
ing problem with a fixed deadline, or alternatively as a
stochastic knapsack problem where items sizes are ran-
dom variables. Zero-delay convolution reduces the DP
running time for this problem and many other variants
from O(nT 2) to O(nT log2 T).

The remainder of this paper is structured as follows.
In Section 2. we review the zero-delay convolution tech-

c© 2010 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.

Brian C. Dean – Algorithmic Operations Research Vol.5 (2010) 96–104 97

nique in the context of dynamic programming, and we
correct a flaw in the original analysis of the technique
in [8]. We then study stochastic shortest path problems
in Section 3. and stochastic scheduling and knapsack
problems in Section 4..

2. Zero-Delay Convolution

We illustrate the technique of zero-delay convolution
applied to DP using a simple example. Leth[1 . . . n] be
the probability distribution of a discrete random variable
X , soh[i] = Pr[X = i]. What is the expected number
of independent samples ofX one can draw until their
sum reaches some thresholdT ≥ n? We can answer
this question using a simple dynamic program. Letting
A[j] be the expected number of independent samples
required to reach a sum ofj, we have

A[j] = 1 +

n
∑

i=1

A[j − i]h[i], (1)

whereA[j ≤ 0] = 0 as a base case. Straightforward
computation ofA[1 . . . T] by direct application of (1)
requiresO(nT) time. To improve this, we think of (1) as
a special type of convolution between two sequencesA
andh. In a standard convolution problem we are given
as input two pre-specified sequences to convolve. How-
ever, in this case the sequenceA is actually generated
in an on-line fashion, with each successive element of
A depending on the results of the convolution so far.
From a signal processing standpoint, we can picture this
as a discrete-time system with impulse responseh (so
any signal fed through the system is convolved withh)
where each output element is immediately incremented
and fed back as the next element of the input signal.

A fundamental computation performed by discrete-
time signal processing devices is the convolution of
a long input sequencex[1 . . . T] with the impulse re-
sponseh[1 . . . n] of the system. Since the Fast Fourier
Transform (FFT) can convolve two length-n signals in
O(n logn) time, the usual approach is to bufferx into
T/n length-n blocks and to convolve each of these in
sequence againsth using the FFT. This requires only
O(log n) time per output element, but it has the unpleas-
ant side effect of introducing some input/output delay
due to the buffering ofx; that is, we must wait forn
elements ofx to arrive at the system before we can pro-
duce any output. Input/output delay is undesirable for
obvious reasons in many signal processing applications,
and it is absolutely unacceptable for our problem since

we cannot advance the input signal until the complete
result of the convolution thus far is determined.

In 1995 Gardner [8] introduced a zero-delay convolu-
tion technique that eliminates input/output delay at the
expense of only a small running time penalty, produc-
ing each output element inO(log2 n) amortized time
(this is incorrectly analyzed asO(log n) time in Gard-
ner’s paper). Assume for simplicity and without loss of
generality thatn is a power of 2, and break the impulse
responseh into blocks of exponentially increasing size
(except the first two, which are both of size 1), as shown
in Figure 1. We then launch separate convolutions that
move forward in parallel between each block and the
entire input sequence. By adding together the results of
these sub-convolutions, we obtain the final convolution
of x with h. We convolve each block ofh againstx
using the standard buffering approach: for a block of
sizeB we bufferx into T/B blocks of sizeB and con-
volve them each in sequence using the FFT, which re-
quires a total ofO(T

B
× B logB) = O(T logB) time.

Note that the block decomposition ofh is designed so
that buffering does not contribute to input/output delay.
For example, in Figure 1 when we convolvex with H3

we initially buffer the valuesx[1 . . . 4], but the result of
convolving these buffered elements againstH3 is not
used in computing elements1 . . . 4 of the output. The
total running time spent convolvingx with all of the
blocks ofh is

log n
∑

i=1

O(T log
n

2i
) = O(T log2 n),

which amortizes toO(log2 n) time per output element.
Applying this technique to our original problem of com-
puting of A[1 . . . T], we obtain anO(T log2 n) algo-
rithm.

In order to develop a sense of how well the zero-delay
convolution algorithm performs in practice, Figure 2
shows the results of a simple computational experiment.
Zero-delay convolution was implemented in C using the
well-known FFTW3.0.1 Fast Fourier Transform library
of Frigo and Johnson, and compared against the “naı̈ve”
convolution approach for the sample problem above,
settingn = T (so the theoretical running times are
O(T log2 T) for zero-delay convolution andO(T 2) for
the naı̈ve approach). The zero-delay approach seems
to become superior forT ≥ 212 and improve from
there. For problems that are finely-discretized in the
time dimension, a value ofT in this range is entirely
conceivable in practice.

98 Brian C. Dean – Speeding up Stochastic Dynamic Programming with Zero-Delay Convolution

...

x[4]h[3] +
x[3]h[4]

x[1]h[1] x[2]h[1] x[3]h[1] x[4]h[1] x[5]h[1] x[6]h[1] x[7]h[1] ...

x[1]h[2] ...x[2]h[2] x[3]h[2] x[4]h[2] x[5]h[2] x[6]h[2] x[7]h[2]

x[8]h[1]

x[2]h[4] x[5]h[3]

(x[1..2] * h[3..4]) (x[5..6] * h[3..4])

...

x * H :1

O(T)

O(T)

x[1]h[3]

h: h[1] h[8]h[7]h[6]h[5]h[4]h[3]h[2]

O(T log 2)

HH H

x * H :0

x * H :2

0 1 H 3

...

x[1]h[5]
x[2]h[5] +
x[1]h[6]

x[3]h[5] +
x[2]h[6] +
x[1]h[7]

x[4]h[5] +

2

x[2]h[7] +
x[1]h[8]

...

(x[1..4] * h[5..8])

x[1]h[1]Output:
(x * h)

x[2]h[1] +
x[1]h[2]

x[3]h[6] +

x[2]h[2] +
x[1]h[3]

...

O(T log 4)

......

+

x * H :3

x[3]h[1] + 2

x[3]h[3] x[4]h[4]

(x[3..4] * h[3..4])

...

(x[7..8] * h[3..4])

(x[5..8] * h[5..8])

x[2]h[3] +
x[1]h[4]

x[6]h[3] +
x[5]h[4]

O(T log n)

Fig. 1. Illustration of the zero-delay convolution algorithm. We divideh into blocksH0,H1, H2, . . .
of exponentially increasing size (except for the first two, both of size 1). Each of these blocks is
then convolved, in parallel, againstx, using buffering and block convolution. The output,x ∗ h
(we denote by∗ the convolution operation), is obtained by summing these partial results. Running
times are specified in the rightmost column, summing toO(T log2 n). Applied to our example of
computingA[1 . . . T], we would take each output element, increment it, and feed itback in as the
next input element.

3. The Stochastic Shortest Path Problem

The input to the stochastic shortest path (SSP) prob-
lem consists of a graphG = (V,E) with n = |V |
vertices andm = |E| directed edges, where the length
of each edge(i, j) ∈ A is a discrete positive-integer-
valued random variablelij whose distribution we de-
noteLij [·], soLij [t] = Pr[lij = t]. We are interested
in finding an optimal path from a source vertexs to a
destination vertexd.

Since the length of everys ; d path is a random vari-
able (obtained by convolving together the distributions
of the edge lengths along the path), it is not immediately
clear what should be called an “optimal” path. Several
reasonable objective functions have been proposed in
the literature — see [13] and [1] for a detailed account.
Some of the more prominent choices include (i) the path

of minimum expected length, (ii) the path having maxi-
mum probability of being the shortest [15], (iii) the path
whose expected deviation (or squared deviation) from
the shortest path length is minimized [10], and (iv) the
path having maximum probability of arrival by a spec-
ified deadline ofT time units [6]. Of these objectives,
only (i) appears to be computationally manageable as
it is equivalent to a deterministic shortest path problem
where every edge length distribution is replaced with its
expectation. The author is not aware of any complex-
ity results for (ii)-(iii), and (iv) can be shown to be #P-
hard, even if edge lengths have Bernoulli distributions
(only two possible lengths), using a result of Kleinberg
et al. [11].

In this paper we focus on objective (iv): maximizing
the probability of arrival by a specified deadlineT . Al-

Brian C. Dean – Algorithmic Operations Research Vol.5 (2010) 96–104 99

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

log
2
(T)

S
pe

ed
up

Fig. 2. Speedup obtained by using zero-delay convolution for different values ofT (we use powers
of two, since these are best suited for the FFT; performance is slightly worse for FFT-based
approaches if using a problem size that is not a power of two, especially a problem size just larger
than a power of two).

though the computation of a static optimal path accord-
ing to this objective seems difficult, a DP solution exists
if we consider a dynamic, or “adaptive”, variant: rather
than selecting an entire path apriori, our algorithm ini-
tially selects only the first edge to follow. After follow-
ing this edge and realizing its travel time, the algorithm
chooses a second edge, and so on. Hall [9] calls such
an approach a “time-adaptive route choice” algorithm.
We note that there are instances of the SSP problem in
which the best adaptive strategy gives an exponentially
larger probability (in the size of the graph,n) over the
best “non-adaptive” static path of successfully arriving
by the deadline (Figure 3).

3.1. Dynamic Programming Formulation

LetPi[t] denote the probability of arriving atd within
t time units if we are currently at vertexi and henceforth
follow an optimal (adaptive) route. Likewise letPij [t]
denote the optimal arrival probability if we depart along
edge(i, j) at timet. We then have

Pi[t] =

{

1 if i = d
max{Pij [t] : (i, j) ∈ A} if i 6= d

(2)

Pij [t] =

t
∑

τ=1

Lij [τ]Pj [t− τ] (3)

wherePi[t < 0] = Pij [t < 0] = 0 as a base case.
A straightforward DP algorithm that repeatedly applies
(2) and (3) for increasingly larger values oft spends
O(mT) total time evaluating (2) andO(mT 2) total time
evaluating (3). However, notice that (3) is of the same
form as (1): we are convolving the fixed distribution
Lij [·] against a sequencePj [·] that is appearing one el-
ement at a time as we incrementt. We can therefore use
one instance of Gardner’s zero-delay convolution algo-
rithm for every edge to evaluate (3) in a total of only
O(mT log2 T) time. Moreover, wemustemploy a type
of zero-delay convolution due to the interleaved struc-
ture of the formulation. Experimental results showing
the speedups obtained by zero-delay convolution are
shown in Figure 4.

100 Brian C. Dean – Speeding up Stochastic Dynamic Programming with Zero-Delay Convolution

2 : 1/2
4 : 1/2

T : 4/5
1 : 1/5

ds

(b)

T = 6k

...

(a)

T : 1/2

1

ds

T = 6

4 : 1/2

Fig. 3. (a) An instance of the stochastic shortest path problem for which a better probability of
arrival by a deadlineT is possible if adaptive routing is allowed. The best non-adaptive path (the
straight edges across the top of the graph) arrives on time with probability 1/4, where the best
adaptive route arrives on time with probability at least 7/20. By concatenatingk copies of (a), we
see in (b) an instance where the non-adaptive and adaptive probabilities are(1/4)k and at least
(7/20)k , so our adaptivity gap is exponentially large factor in the size of the graph.

3.2. Some Extensions

If we assign a costcij to every edge(i, j) ∈ A, we
can consider the adaptive route choice problem whose
goal is to minimize the expected cost of traveling from
s to d, where this cost becomes equal to some large
penaltyM if we take longer thanT units of time. The
DP formulation for the adaptive variant of this problem
is similar to the one above. LetCi[t] denote the expected
cost of a path from vertexi to the destination, if we
departt units before our deadline and follow an optimal
adaptive routing strategy. LetCij [t] denote the same
quantity if we depart along the edge(i, j). We then have

Ci[t] =

{

0 if i = d
min{Cij [t] : (i, j) ∈ A} if i 6= d

(4)

Cij [t] = cij +

t
∑

τ=1

Lij [τ]Cj [t− τ], (5)

whereCi[t < 0] and Cij [t < 0] are as a base case
set to some large specified penaltyM . This variant can
also be solved inO(mT log2 T) time using zero-delay
convolution.

We can make the edge costs time-dependent by re-
placing cij with a functioncij [t]. By splitting d into
two verticesd′ andd connected by a zero-length edge
with time-dependent costcd′d[t] = f [t] we can impose
a penaltyf [t] based on the arrival time at the destina-
tion — for example, one might wish to impose a soft
deadlineT ′ < T after which arrival is acceptable but
penalized based on the extent to which the soft deadline
is violated.

Finally, we have been assuming that edge lengths
are strictly positive in order to ensure the acyclicity of

our DP formulation. This assumption can be relaxed,
however. LetG′ denote the subgraph ofG consisting of
edges(i, j) for whichLij [0] > 0. If G′ is acyclic we can
still solve the problem with no increase in asymptotic
running time by processing vertices within each “time
level” in a topological ordering. IfG′ is not acyclic, then
we do incur a penalty in running time as it is necessary
to solve a generalized shortest path problem within each
time level as the DP algorithm progresses.

3.3. Sparse Distributions

If we describe the probability distributionsLij that
comprise the input to an instance as length-T vectors,
the running time ofO(mT log2 T) is only a polyloga-
rithmic factor larger than theO(mT) time required to
read the entire input. However, in practice we are likely
to find instances in which many edges have either fixed
deterministic lengths or very “sparse” length distribu-
tions. If any distributionLij haso(log2 T) non-zero el-
ements we will find it more efficient to evaluate (3) di-
rectly for this edge rather than to use zero-delay convo-
lution. Furthermore, if the distribution ofLij does not
range from1 to T but rather fits into a smaller range
[r, R], we can reduce thelog2 T factor for that edge in
the zero-delay convolution running time tologR log R

r
.

These observation also apply to the stochastic knapsack
problem (described in the next section) with sparse dis-
tributions.

4. Stochastic Knapsack and Scheduling Problems

The classical knapsack problem involves a set ofn
items with sizess1 . . . sn and valuesv1 . . . vn, where

Brian C. Dean – Algorithmic Operations Research Vol.5 (2010) 96–104 101

2 4 6 8 10 12 14 16
0
1
2

4

6

8

10

12

14

16

18

20

22

log
2
(T)

Sp
ee

du
p

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

log
2
(C)

Sp
ee

du
p

Fig. 4. On the left: speedup obtained using zero-delay convolution for the stochastic shortest path
problem as formulated in (2) and (3), for a random network with n = 10 nodes andm = 40 edges,
with the length distributionLij of each edge(i, j) chosen by sampling a random vector in[0, 1]T

and normalizing it. On the right: speedup obtained using zero-delay convolution for the stochastic
knapsack problem as formulated in (6) and (7), for a random instance withn = 10 items, each
with a random value in[0, 1] and a size distribution sampled from[0, 1]C and normalized. As
expected from the theoretical analysis of these algorithms, the speedup obtained using zero-delay
convolution is largely independent ofn andm (on the left) and ofn (on the right). We observed
very slight increases in speedup for larger values ofn andm, attributable to caching artifacts.

our goal is to maximize the value we can pack into a
knapsack of capacityC. There are two common variants
of the problem: one in which multiple copies of items
can be placed in the knapsack, and the so-called 0/1
knapsack problem in which at most one copy of each
item is allowed. In addition to the more common pack-
ing formulation, both of these variants can be rephrased
as covering problems, where items have costsc1 . . . cn
rather than values, and we wish to compute a minimum-
cost collection of items whose total size is at leastC.
If items sizes are integral, all of these problems can be
solved inO(nC) time with simple DP algorithms.

Stochastic knapsack problems involve item sizes
and/or item values/costs that are independent random
variables with known distributions. In this section
we will focus primarily on the case where sizes are
integer-valued random variables and values/costs are
deterministic, since this is the case where zero-delay
convolution applies. As an example, let us consider the
stochastic “multiple copies allowed” knapsack packing
problem. We interpret ourn items as different types of

tasks, where the duration of each task is an independent
random variable of known distribution, and each task
type, if performed by a specified deadlineT , offers us a
deterministic value. Our solution to the problem will be
an adaptive scheduling policy, where at the outset we
select only the first task to perform. After realizing the
duration of the first task, we select a second task type
(multiple tasks of the same type may be selected) based
on the amount of time remaining before the deadline,
and so on, until eventually we run out of time and re-
ceive no value for the final interrupted task. Our goal is
to compute a policy that maximizes the expected value
we receive. Although we motivated this problem as a
stochastic knapsack problem, we could just have easily
approached it as a type of stochastic scheduling prob-
lem. Stochastic scheduling problems involve optimally
sequencing a set of tasks with probabilistic durations
— see [17,?] for a thorough discussion. To date, the
only results in the stochastic scheduling literature that
focus on the knapsack objective (maximizing the ex-
pected value of tasks scheduled by a fixed deadline)

102 Brian C. Dean – Speeding up Stochastic Dynamic Programming with Zero-Delay Convolution

consider only special classes of probability distribu-
tions, typically only those for which optimal analytic
solutions are possible.

As another example, consider the stochastic “multi-
ple copies allowed” knapsack cover problem. Derman
et al. [5] describe an excellent motivation for this prob-
lem in which we have a machine (e.g. an automobile)
that must be kept running forT units of time and that
depends on some critical component (e.g. a battery) to
run. We haven types of components from which to
choose, each with a deterministic cost and each hav-
ing a lifetime described by a random variable of known
distribution. Our task is to devise an optimal adaptive
policy that selects a sequence of components over time
that keeps the machine running at minimum expected
cost. Derman et al. [5] study instances of this problem
in which component durations are exponentially dis-
tributed, as well as instances in which one type of com-
ponent is available in limited supply and the remaining
types are unlimited.

Regarding previous results from the literature for the
stochastic knapsack problem, the first dynamic pro-
gramming formulation for the stochastic knapsack prob-
lem appears in Steinberg and Parks [16], who consider
problems where sizes are deterministic and costs are
random variables, with a goal of packing the knapsack
with a collection of items that maximizes the proba-
bility of achieving some target valueV (we consider
this variant in Section 4.4.). Several heuristics have
been proposed in the literature for solving this prob-
lem (e.g. branch-and-bound, preference-order dynamic
programming), and item values are typically assumed
to be normally-distributed (see Carraway et al. [2] for
a more detailed historical account). Previous literature
on the stochastic knapsack problem appears to be en-
tirely focussed on the non-adaptive case where a subset
of items is determined apriori, which seems to be much
more computationally demanding than the correspond-
ing adaptive variant we study in this paper, where items
are sequentially chosen for placement in the knapsack
based on the accumulated size (or cost) thus far.

4.1. Packing and Covering with Multiple Item Copies
Permitted

If multiple copies of items are allowed, this simplifies
the state space of DP subproblems, since all that matters
is how much room remains in the knapsack and not
the set of items that have already been placed in the
knapsack. Consider first the knapsack packing problem.

Let V [j] denote the optimal expected value one can
pack into a capacity-j knapsack, and letVi[j] denote
the optimal expected value where itemi is the next to
be added. We then have a DP formulation based on the
following recurrences:

V [j] = max
i=1...n

{Vi[j]}. (6)

Vi[j] = viPr[si ≤ j] +

j
∑

j′=1

Pr[si = j′]V [j − j′] (7)

Computation ofV [1 . . . C] by straightforward evalua-
tion of (6) and (7) requiresO(nC2) time, and this is
improved toO(nC log2 C) time if we employn in-
terleaved instances of zero-delay convolution to eval-
uate (7) for each item. Experimental results showing
the speedups obtained by zero-delay convolution are
shown in Figure 4. The DP formulation for the cov-
ering problem variant is quite similar, and the running
time improvement achieved using zero-delay convolu-
tion is the same. Although (6) and (7) assume that item
sizes are positive integers, it is not difficult to write a
slightly more complicated set of recurrences (with no
impact on running time) that accommodates items with
Pr[si = 0] > 0. It is worth noting that one can also
express the packing variant as a stochastic shortest path
problem, in the same way that a classical knapsack prob-
lem can be expressed as a standard shortest path prob-
lem.

4.2. The Stochastic and Dynamic Knapsack Problem

We can extend the DP formulation above to solve a
problem variant known as the stochastic and dynamic
knapsack problem [14,12], in which items arrive in an
on-line fashion. Returning to the scheduling interpreta-
tion of the stochastic knapsack problem, supposeAi[t]
denotes the probability that a copy of task typei arrives
when preciselyt units of time remain before our dead-
line. At this point in time if we are currently not pro-
cessing any task we may choose to accept the arriving
task and begin processing it. Otherwise, if we decline
the task it is cannot be recalled later (although another
task of the same type might arrive later). Papastavrou
et al. [14] describe numerous applications of stochastic
and dynamic knapsack problems. Note that only pack-
ing problems make sense in this framework, and that an
optimal adaptive policy might involve “idle” time. To
easily accommodate idle time we introduce a dummy
task with unit size, zero value, and unit arrival proba-
bility. It is therefore guaranteed that at least one task

Brian C. Dean – Algorithmic Operations Research Vol.5 (2010) 96–104 103

arrives at every point in time, so our goal is to compute
a policy that selects the best possible arriving task every
time the current task reaches completion. We can write
a DP formulation for this problem by replacing (6) with

V [j] = max
i=1...n

{Vi[j]Ai[j]}. (8)

Zero-delay convolution provides anO(nC log2 C) al-
gorithm that optimally solves this problem. The result-
ing policy should be employed as follows: every time a
task is completed at timet we examine the setS of in-
coming tasks and select the task maximizingVi[t] over
i ∈ S.

For this problem variant as well as the previous non-
dynamic packing and covering variants we can acco-
modate items with time-varying values/costs at no ad-
ditional running time expense. We can also extend the
formulations for these variants to allow the final inter-
rupted item to generate some pro-rated amount of value
based on the amount of progress on the item prior to its
termination.

4.3. The 0/1 Case

A very interesting phenomenon occurs when we con-
sider the 0/1 knapsack problem. In this case we restrict
our focus to the packing variant, as the covering vari-
ant is not well-posed in the 0/1 case since we could run
out of items before successfully covering the knapsack.
Whereas in the deterministic case the 0/1 problem is
no harder (from a DP running time standpoint) than the
“multiple items allowed” variant, in the stochastic case
the 0/1 problem seems to be significantly more difficult.
The natural DP algorithm for the deterministic 0/1 prob-
lem computes an optimal “ordered” solution: it builds a
subset of items to include in the knapsack sequentially
— to compute the best subset of items1 . . . i to include
in the knapsack, we decide whether to insert itemi after
first optimally scheduling a subset of items1 . . . i − 1.
The items comprising the resulting optimal solution are
implicitly ordered by their index in the problem input,
but this is of no concern in the deterministic case since
the order of the items in the knapsack is of no con-
sequence. However, in the stochastic case the optimal
adaptive policy might not involve inserting items in or-
der of their input indices.

It does not seem that there exists a DP formulation
for computing the optimal adaptive policy whose state
space is polynomial inn andC. However, it turns out
that for any ordering of the items, the expected value

of the optimal “ordered” policy (constrained to insert
items in an order consistent with their indices in the
input) is within a constant factor of the expected value
of the optimal unordered policy [4]. An optimal ordered
adaptive policy can be computed using DP, although
it does not require zero-delay techniques (the standard
FFT suffices).

4.4. Random Costs/Values and Deterministic Sizes

One can also consider stochastic knapsack problems
in which item sizes are deterministic but costs/values are
independent random variables with known discrete dis-
tributions. The objective in this case is similar to that of
the stochastic shortest path problem: we seek an adap-
tive policy that maximizes the probability of delivering
a solution of at least some specified target value (or al-
ternatively, of at most some specified maximum cost).
The DP formulation for these problems allows use of
the standard FFT, so zero-delay techniques are not nec-
essary. However, even using the FFT we still encounter
factors of bothV (target value) aqndC (knapsack ca-
pacity) in the running time, so these DP algorithms are
rather computationally intensive.

5. Concluding Remarks

We have shown how an algorithmic technique origi-
nally designed for signal processing applications, zero
delay convolution, finds broad applicability in the do-
main of stochastic optimization as a generic approach
for speeding up certain classes of stochastic dynamic
programs. These classes include prominent variants of
stochastic shortest path, knapsack, and scheduling prob-
lems. It is likely that many other problems may fall un-
der this domain of applicability as well, and this might
be an interesting direction for future study. We have
also corrected a flaw in the original analysis of the zero-
delay convolution technique.

References

[1] Andreatta, G., Shortest path models in stochastic
networks, Advanced School in Stochastics and
Combinatorial Optimization, Edited by G. Andreatta, F.
Mason, and P. Serafini, CISM Udine, World Scientific
Publishing, Singapore, 1987.

[2] Carraway, R.L., Schmidt, R.L., and Weatherford, L.R.,
An algorithm for maximizing target achievement in the

104 Brian C. Dean – Speeding up Stochastic Dynamic Programming with Zero-Delay Convolution

stochastic knapsack problem with normal returns,Naval
Research Logistics, Vol. 40, pp. 161-173, 1993.

[3] Dean, B.C.,Approximation Algorithms for Stochastic
Scheduling Problems. PhD Thesis, Massachusetts
Institute of Technology, 2005.

[4] Dean, B.C., Goemans, M.X., and Vondrak, J.,
Approximating the stochastic knapsack problem: the
benefit of adaptivity, Proceedings of the 45th annual
IEEE symposium on the Foundations of Computer
Science (FOCS), pp. 208-217, 2004.

[5] Derman, C., Lieberman,G.J., and Ross,S.M.,A renewal
decision problem, Management Science, Vol. 24, No. 5,
pp. 554-561, 1978.

[6] Frank, H., Shortest paths in probabilistic graphs,
Operations Research, Vol. 17, pp. 583-599, 1969.

[7] Galil, Z. and Park, K., Dynamic Programming
with Convexity, Concavity and Sparsity, Theoretical
Computer Science Vol. 92, pp. 49-76, 1992.

[8] Gardner, W.G., Efficient convolution without input-
output delay, Journal of the Audio Engineering Society,
Vol. 43, No. 3, pp. 127-136, 1995.

[9] Hall, R.,The fastest path through a network with random
time-dependent travel times, Transportation Science,
Vol. 20, No. 3, pp. 182-188, 1986.

[10] Kamburowski, J.,A note on the stochastic shortest route

Received 13-1-2010; revised 31-8-2010; accepted 7-9-2010

problem, Operations Research, Vol. 33, pp. 696-698,
1985.

[11] Kleinberg, J., Rabini, Y., and Tardos, E.,Allocating
bandwidth for bursty connections, proceedings of the
29th annual ACM Symposium on the Theory of
Computation (STOC), pp. 664-673, 1997.

[12] Kleywegt, A., Papastavrou, J. D.,The dynamic and
stochastic knapsack problem with random sized items,
Operations Research, Vol. 49, No. 1, pp. 26-41, 2001.

[13] Loui, R., Optimal paths in graphs with stochastic or
multidimensional weights, Communications of the ACM,
Vol. 26, No. 9, pp. 670-676, 1983.

[14] Papastavrou, J.D., Rajagopalan, S., Kleywegt, A.,
The dynamic and stochastic knapsack problem with
deadlines, Management Science, Vol. 42, No. 12, pp.
1706-1718, 1996.

[15] Sigal, C.E., Pritsker, A.A.B., and SOLBERG, J.J.,The
stochastic shortest route problem,Operations Research,
Vol. 28, pp. 1122-1129, 1980.

[16] Steinberg, E., and Parks, M.S.,A preference order
dynamic program for a knapsack problem with stochastic
rewards, The Journal of the Operational Research
Society, Vol. 30, No. 2, pp. 141-147, 1979.

[17] Uetz, M., Algorithms for deterministic and stochastic
scheduling. PhD Thesis, Institut für Mathematik,
Technische Universität Berlin, 2001.

