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Probabilistic optimization in graph-problems

Cécile Murat and Vangelis Th. Paschos

LAMSADE, CNRS UMR 7024 and Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris
Cedex 16, France

Abstract

We study a probabilistic optimization model for graph-problems under vertex-uncertainty. We assume that any vertexvi

of the input-graphG(V, E) has only a probabilitypi to be present in the final graph to be optimized (i.e., the finalinstance
for the problem tackled will be only a sub-graph of the initial graph). Under this model, the original “deterministic”
problem gives rise to a new (deterministic) problem on the same input-graphG, having the same set of feasible solutions
as the former one, but its objective function can be very different from the original one, the set of its optimal solutions
too. Moreover, this objective function is a sum of2|V | terms; hence, its computation is not immediately polynomial.
We give sufficient conditions for large classes of graph-problems under which objective functions of their probabilistic
counterparts are polynomially computable and optimal solutions are well-characterized. Finally, we apply these general
results to natural and well-known combinatorial problems that belong to the classes considered.
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1. Introduction

Very often people has to make decisions under several
degrees of uncertainty, i.e., when only probabilistic in-
formation about the future is available. Acquisition and
validation of input data is one of the most challenging
issues in almost any real-world application of opera-
tions research techniques. Although several well estab-
lished theoretical models exist for problems arising in
practical applications, direct application of theoretical
developments may be difficult or even impossible due
to incompleteness of data, or due to their questionable
validity. Occasionally, one may be asked to produce an
optimal operational design even before a complete de-
terministic picture of input data is provided, but only
based on estimations and statistical measures.

We deal in this paper with the following probabilis-
tic combinatorial optimization model under data uncer-
tainty. Consider a generic instanceI of a combinatorial
optimization problemΠ. Assume thatΠ is not to be

⋆ Part of this work has been performed while the second
author was with the University of Athens on a visiting position
supported by the Greek Ministry of Education and Research
under the project PYTHAGORAS II
Email: Cécile Murat [murat@lamsade.dauphine.fr], Vange-
lis Th. Paschos [paschos@lamsade.dauphine.fr].

necessarily solved on the wholeI, but rather on a (un-
known a priori) sub-instanceI ′ ⊂ I. Suppose that any
datumdi in the data-set describingI has a probabil-
ity pi, indicating howdi is likely to be present in the fi-
nal sub-instanceI ′. Consider finally that onceI ′ is spec-
ified, the solver has no opportunity to solve it directly
(for example she/he has to react quasi-immediately, so
no sufficient time is given to her/him).

In this case, a possible way for a decision maker to
proceed is to compute ananticipatory solutionS for Π,
i.e., a solution for the entire instanceI, and onceI ′ be-
comes known, to modifyS in order to get a solutionS′

fitting I ′. The objective is to determine an initial solu-
tion S for I such that, for any sub-instanceI ′ ⊆ I pre-
sented for optimization, the solutionS′ respects some
pre-defined quality criterion (optimality, achievement of
a “good” approximation ratio, etc.).

2. Preliminaries

In what follows, we restrict ourselves in problems
defined on graphs. Consider a graphG(V, E) of or-
der n, instance of a combinatorial optimization prob-
lem Π, and ann-vectorPr = (p1, . . . , pn) of vertex-
probabilities, eachpi, measuring how likely is for ver-
tex vi ∈ V , i = 1, . . . , n, to be present in the final

c© 2010 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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subgraphG′ ⊆ G, on which the problem will be re-
ally solved. Consider a strategyM, calledmodification
strategy, such that, when a setV ′ ⊆ V is finally re-
alized,M modifies any solutionS for Π into a solu-
tion S′ feasible forΠ in the subgraphG′ = G[V ′]
of G induced byV ′. Denote bym(G′, S′, M) the objec-
tive value ofS′ in G′. Then, the value ofS for G, de-
noted byE(G, S, M) (and frequently calledfunctional),
is the expectation ofm(G′, S′, M), over all the possible
induced subgraphsG′ of G. Formally, given an antic-
ipatory solutionS, the functionalE(G, S, M) of S is
defined by:

E(G, S, M) =
∑

V ′⊆V

Pr [V ′] m (G′, S′, M) (1)

wherePr[V ′] is defined by

Pr[V ′] =
∏

vi∈V ′

pi

∏

vi∈V \V ′

(1 − pi)

and represents the probability that the vertex-setV ′

will be the set finally present for optimization (in other
words,G[V ′] will be the instance where finallyΠ will
be solved).

Let us note that from (1) it can be seen that the
functional of a probabilistic combinatorial optimization
problem is defined with respect to the chosen mod-
ification strategyM. A different modification strategy
derives a different probabilistic problem. The quan-
tity, E(G, S, M) can be seen as the objective function of
a new combinatorial problem, derived fromΠ and de-
noted byPROBABILISTIC Π in what follows, where we
are given an instanceG of Π, a probability vectorPr

on the vertices ofG and a modification strategyM. The
objective is then to determine a solutionS∗ in G (op-
timal anticipatory solution) optimizingE(G, S, M). The
optimization rule ofPROBABILISTIC Π is the same as
the one ofΠ.

Concrete applications giving rise to probabilis-
tic combinatorial optimization problems are given
in [17,18]. They come from satellite shots planning,
timetabling, etc. We revisit one of them, the probabilis-
tic timetabling. Consider for a given University-fall a
list of potential classes that students can follow. Any
student has to choose a sublist in this list. For any
class one knows the title, the lecturer and the time slot
assigned to it, each such slot being proposed by the
lecturer in charge. A class will open if it is chosen by
sufficient students (whose the number is above a given
threshold). So, nobody knows a priori if a particular

class will take place before the closing of students reg-
istrations (we can reasonably assume that the choice of
any student is a function of the contents of the course,
of the teacher, etc.). On the other hand, one can, for
example by statistical data on the behavior of the stu-
dents in the past years, assign probabilities on the fact
that such or such class will really open, the mandatory
courses been assigned with probability 1. The prob-
lem for the University planning services is how much
rooms are to be scheduled for the set of the courses
offered. This problem is typically an instance ofPROB-
ABILISTIC MIN COLORING if one considers courses
as vertices and if he/she links two such vertices if the
corresponding classes cannot take place in the same
room (because, for instance, they are planned with the
same professor, or are assigned with overlapping time
slots). This type of graph is known under the term
“incompatibility graph”. Here, an independent set, i.e.,
a potential color, corresponds to a set of “compatible
classes”, i.e., to classes that can be assigned with the
same room. The number of colors used in such a graph
represents the total number of rooms assigned to the set
of classes considered. The probabilities resulting from
the statistical analysis on the former students’ behavior,
are the presence probabilities for the vertices (i.e., the
probabilities that the corresponding classes will really
take place). Starting from an anticipatory solution, i.e.,
from a coloring of the incompatibility graph, the func-
tional represents, in some sense, the average number of
the necessary rooms for the courses planned.

This way to tackle data uncertainty in combinatorial
optimization is calleda priori framework for proba-
bilistic combinatorial optimization(this term has been
introduced by [9]). Under this model, restrictive ver-
sions of routing and network-design probabilistic mini-
mization problems (in complete graphs) have been stud-
ied in [1,3–6,9–12]. In [7], the analysis of the prob-
abilistic minimum travelling salesman problem, orig-
inally performed in [3,9], has been revisited and re-
fined. In [15,17,8] the minimum vertex covering and the
minimum coloring are tackled, while in [13,14] prob-
abilistic maximization problems, namely, the longest
path and the maximum independent set, are studied.
In [20,19], the Steiner forest problem and the classical
Steiner tree problem are handled, respectively. An early
survey about a priori optimization can be found in [2]
while, a more recent one appears in [16].

As already mentioned, in probabilistic combinatorial
optimization, the combinatorial problem to be solved,
being subject to hazards or to inaccuracies, is not de-
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fined on a static and clearly specified instance, since the
instance to be effectively optimized is not known with
absolute certainty from the beginning. The goal here is
to compute solutions that behave “well” for any subset
of the initial data-set. In this sense, a priori probabilistic
combinatorial optimization can be seen as a particular
case of stochastic programming addressed for combi-
natorial optimization problems.

There are two major computational challenges asso-
ciated with a probabilistic combinatorial optimization
problem:
• obtain a polynomial time computable expression for

the objective functionE(G, S, M) (let us note that
this function carries, by (1), over2n additive terms;
henceforth the complexity of its computation is not
trivially polynomial);

• give a closed tight combinatorial characterization of
the optimal anticipatory solution (this implies the
derivation of a compact combinatorial characteriza-
tion of the solution optimizing (1)).

Our goal in this paper is to go beyond study of prob-
abilistic versions of particular combinatorial problems
and to propose a structural way to handle this model.
Notice that, for any problemΠ, its probabilistic counter-
part,PROBABILISTIC Π, containsΠ as subproblem (just
consider probability vector(1, . . . , 1) for Π). Hence,
from a complexity point of view,PROBABILISTIC Π is
at least as hard asΠ, that is, ifΠ is NP-hard, thenPROB-
ABILISTIC Π is alsoNP-hard, while ifΠ is polynomial,
no immediate conclusion can be derived for the com-
plexity of PROBABILISTIC Π, until this latter problem
is explicitly studied.

In what follows, we consider the following very sim-
ple quick modification strategyM. Given an anticipa-
tory solutionS and a subgraphG′ = G[V ′], S′ is the
restriction ofS in G′. If S′ is feasible forG′, then re-
tain it. If not, quickly “patch” S′ (a possible patching
will be specified later) in order to get a feasible solution
for G′.

We handle three categories of combinatorial graph-
problems exhausting a very large part of the most known
ones. In Section 3., we study problems whose solu-
tions are subsets of the input vertex-set verifying some
specific property. In Section 4., we handle problems
whose solutions are collections of subsets of the input
vertex-set verifying some specified non-trivial heredi-
tary property1 . In Section 5., we deal with problems

1 A property π is hereditary if, whenever is satisfied by a
graphG, it is satisfied by any subgraph ofG; a hereditary

whose solutions are subsets of the input edge-set veri-
fying some specific property and the restriction of any
anticipatory solution to any subgraph of the input-graph
is feasible. For any of the categories considered in Sec-
tions 3., 4. and 5., we give sufficient conditions un-
der which functionals are analytically expressible and
polynomially computable and anticipatory solutions are
well-characterized. Let us note also that for any prob-
lem in these categories, restriction of any anticipatory
solution to any realized subgraph produce feasible so-
lutions for the subgraph at hand.

In Section 6., things become more complicated since
the problems handled have as solutions connected sub-
sets of the input edge-set that are either cycles, or paths,
or trees. For this type of problems, the restriction of
the anticipatory solutionS to G[V ′] is not feasible in
general and some additional work (with low algorith-
mic complexity) is needed in order to render this set
feasible. Informally, it could be the case that restriction
of the anticipatory solutionS to the present subgraph
G′ = G[V ′] leavesS non-connected. So, in order to
produce a feasible solution forG′, one has to recon-
nect the connected components ofS. As we will see,
in this case, anticipatory solutions cannot be as well-
and compactly characterized as those of Sections 3., 4.
and 5.. However, we give sufficient conditions under
which functionals for the probabilistic counterparts of
the concerned problems are computable in polynomial
time.

The structural results given in the paper immediately
apply to several well-known problems, for instance,MIN

VERTEX COVER, MAX INDEPENDENT SET, MIN COL-
ORING, MAX CUT , MAX MATCHING , MIN TSP, etc.,
producing particular results interesting per se. Further-
more, the scope of our results is even larger as they
capture problems even defined on set-systems like the
MIN SET COVER. So, this work can provide a frame-
work for a systematic classification of a great number
of probabilistic derivatives of well-known combinato-
rial optimization problems.

In what follows, we deal with problems inNPO.
Informally, this class contains optimization problems
whose decision versions belong toNP. Given a combi-
natorial problemΠ ∈ NPO, we denote byPROBABILIS-
TIC Π, its probabilistic counterpart defined as described
previously and assume that the vertex-probabilities are
independent.

propertyπ is non-trivial if it is true (satisfied) for infinitely
many graphs and false for infinitely many graphs.
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Let A be a polynomial time approximation algorithm
for an NP-hard graph-problemΠ, let m(G, S) be the
value of the solutionS provided byA on an instanceG
of Π, and opt(G) be the value of the optimal solution
for G (following our notation forPROBABILISTIC Π,
m(G, S) = E(G, S, M) and opt(G) = E(G, S∗, M)).
The approximation ratioρA(G) of the algorithmA onG
is defined byρA(G) = m(G, S)/opt(G). An approx-
imation algorithm achieving ratio, at most,ρ on any
instanceG of Π will be calledρ-approximation algo-
rithm. Since modification strategyM used in each sec-
tion of the paper is unique and fixed, it will be omitted
for simplicity from the mathematical expressions.

3. Solutions are subsets of the initial vertex-set

In this section, we deal with graph-problems whose
solutions are subsets of the vertex-set of the input-graph.
We further assume that given a solutionS and a set
V ′ ⊆ V , the restriction ofS in V ′, i.e., the setS′ =
S ∩ V ′ is feasible forG[V ′]. The main result of this
section is stated in Proposition 1.
Proposition 1 Consider a graph-problemΠ verifying
the following assumptions: (i) an instance ofΠ is a
vertex-weighted graphG(V, E, ~w); (ii) solutions ofΠ
are subsets ofV ; (iii) for any solutionS and any sub-
setV ′ ⊆ V , S′ = S ∩ V ′ is feasible forG′ = G[V ′];
(iv) the value of any solutionS ⊆ V is defined by:
m(G, S) = w(S) =

∑

vi∈S wi, wherewi is the weight
of vi ∈ V . Then, the functional ofPROBABILISTIC Π is
expressed as:E(G, S) =

∑

vi∈S wipi and can be com-
puted in polynomial time. Furthermore, the complexity
of PROBABILISTIC Π is the same as the one ofΠ.
Proof. Fix a subsetV ′ ⊆ V and an anticipatory solu-
tion S for PROBABILISTIC Π on G. According to as-
sumptions (iii) and (iv),S′ is feasible forG[V ′] and
its value is given by:m(G′, S′) =

∑

vi∈S wi1{vi∈V ′}.
Then, denoting by1F the indicator function of a factF
and using (1) we get:

E(G, S) =
∑

V ′⊆V

m (G′, S′) Pr [V ′]

=
∑

V ′⊆V

∑

vi∈S

wi1{vi∈V ′} Pr [V ′]

=
∑

vi∈S

wi

∑

V ′⊆V

1{vi∈V ′} Pr [V ′] (2)

For any vertexvi ∈ V , let Vi = V \ {vi} andV ′
i =

{V ′ ⊆ V : V ′ = {vi} ∪ V ′′, V ′′ ⊆ Vi}. Using also the

fact that presence-probabilities of the vertices ofV are
independent, we get:
∑

V ′⊆V

1{vi∈V ′} Pr [V ′] =
∑

V ′∈V′

i

Pr [V ′]

=
∑

V ′′⊆Vi

Pr [{vi} ∪ V ′′]

=
∑

V ′′⊆Vi

Pr [vi] Pr [V ′′]

= Pr [vi]
∑

V ′′⊆Vi

Pr [V ′′] = pi

(3)

Combination of (2) and (3) immediately leads to the
expression claimed forE(G, S).

It is easy to see that this functional can be computed
in time linear inn. Furthermore, computation of the op-
timal anticipatory solution forPROBABILISTIC Π in G,
obviously amounts to the computation of the optimal
weighted solution forΠ in G(V, E, ~w′), where, for any
vi ∈ V , w′

i = wipi. Consequently, by this observation
and by assumption (iv),Π andPROBABILISTIC Π have
the same worst case complexity.

Although computation of the functional is, as we
have mentioned, a priori exponential (since it carries
over the2n possible subgraphs ofG), assumptions (i)
through (iv) in Proposition 1 allow polynomial compu-
tation of its value. This is due to the fact that, under
these assumptions, given a subgraphG′ induced by a
subsetV ′ ⊆ V , the value of the solution forG′ is the
sum of the weights of the vertices inS ∩ V ′. Further-
more, a vertex not inS will never make part of any
solution in any sub-graph ofG. Consequently, com-
putation of the functional amounts to determining, for
anyG′, which vertices make part ofS∩V ′. This can be
done by specifying, for anyvi ∈ S, all the subgraphs to
which vi belongs, and by performing a summation of
the presence-probabilities of these subgraphs. This sum
is equal topi (the probability ofvi). This simplification
is the main reason that renders functional’s computa-
tion polynomial, despite of the exponential number of
terms in its generic expression.

Notice that Proposition 1 can also be used for getting
generic approximation results forPROBABILISTIC Π.
Indeed, since this problem is a particular weighted ver-
sion of Π, one immediately concludes thatif Π is ap-
proximable within approximation ratioρ, so isPROBA-
BILISTIC Π.
Corollary 1 Under the hypotheses of Proposition 1,
wheneverΠ and PROBABILISTIC Π are NP-hard, they
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are equi-approximable.

Proposition 1 has also the following immediate corol-
lary dealing with the case of probabilistic versions of
unweighted combinatorial optimization problems.
Corollary 2 Consider a problemΠ verifying assump-
tions (i) to (iv) of Proposition 1 with~w = ~1. Then,
the functional ofPROBABILISTIC Π, is expressed as:
E(G, S) =

∑

vi∈S pi and can be computed in polyno-
mial time. Furthermore,PROBABILISTIC Π is equiva-
lent to a weighted version ofΠ where vertex-weights
are the vertex-probabilities.
Corollary 2 is weaker than Proposition 1 since it sim-
ply establishes a kind of (obvious) reduction fromΠ
to PROBABILISTIC Π stating that wheneverΠ is NP-
hard, so isPROBABILISTIC Π. However, ifΠ is polyno-
mial, the status ofPROBABILISTIC Π remains unclear
by Corollary 2.

Proposition 1 can be applied to a broad class of prob-
lems that fit its four conditions, asPROBABILISTIC MAX

INDEPENDENT SET([14]), PROBABILISTIC MIN VER-
TEX COVERING ([15]), etc. We describe in what follows
two further applications, namely,PROBABILISTIC MAX

INDUCED SUBGRAPH WITH PROPERTYπ andPROBA-
BILISTIC MIN FEEDBACK VERTEX-SET.

3.1. PROBABILISTIC MAX INDUCED SUBGRAPH

WITH PROPERTY π

Consider a graphG(V, E) and a non-trivial hered-
itary property. A feasible solution forMAX INDUCED

SUBGRAPH WITH PROPERTYπ is a subsetV ′ ⊆ V
such that, the subgraphG[V ′] of G induced byV ′

satisfies π. The objective is to determine such a
setV ′ of maximum-size. Note that, “independent set”,
“clique”, “ planar graph” are hereditary properties.
In the weighted version of the problem (i.e., the one
where positive weights are associated with the vertices
of G), called MAX WEIGHTED INDUCED SUBGRAPH

WITH PROPERTYπ, we search for maximizing the total
weight ofV ′.

Given a solutionS for MAX WEIGHTED INDUCED

SUBGRAPH WITH PROPERTYπ and an induced sub-
graphG[V ′] of the input graphG(V, E), the setS ∩V ′

is a feasible solution forG[V ′], since, by the definition
of π, if a subsetS ⊆ V induces a subgraph verifying
it, then any subset ofS also induces a subgraph veri-
fying π. Henceforth,MAX WEIGHTED INDUCED SUB-
GRAPH WITH PROPERTYπ fits the conditions of Propo-
sition 1.

3.2. PROBABILISTIC MIN FEEDBACK VERTEX-SET

Given an oriented graphG(V, A), a feedback vertex-
set is a subsetV ′ ⊆ V such thatV ′ contains at least a
vertex of any directed cycle ofG. In MIN FEEDBACK

VERTEX-SET, the objective is to determine a feedback
vertex-set of minimum size.

Remark that, absence of a vertexv from a feedback
vertex-setV ′, breaks any cycle containing this vertex.
If v makes part of an anticipatory solutionS then, since
no such cycle that containedv exists inG′, feasibility
of the solutionS ∩V ′ does not suffer from the absence
of v. So, Corollary 2 applies for this problem.

Note that the weighted version of this problem can
be tackled in a similar way.

4. Solutions are collections of subsets of the initial
vertex-set

We now handle problems the feasible solutions of
which are collections of subsets of the initial vertex-
set. Consider a graphG(V, E) and a combinatorial op-
timization graph-problemΠ whose solutions are col-
lections of subsets ofV verifying some specified non-
trivial hereditary property. The following theorem char-
acterizes functionals and optimal anticipatory solutions
for such problems.
Proposition 2 Consider a graph-problemΠ verifying
the following assumptions: (i) an instance ofΠ is a
graphG(V, E); (ii) a solution ofΠ onG is a collection
S = (V1, . . . , Vk) of subsets ofV each of them sat-
isfying some specified non-trivial hereditary property;
(iii) for any solutionS and any subsetV ′ ⊆ V , the re-
strictionS′ of S in V ′, i.e.,S′ = (V1∩V ′, . . . , Vk∩V ′),
is feasible forG′ = G[V ′]; (iv) the value of any solution
S ⊆ V of Π is defined by:m(G, S) = |S| = k. Then,
E(G, S) =

∑k

j=1(1−
∏

vi∈Vj
(1−pi)) and can be com-

puted in polynomial time.PROBABILISTIC Π amounts
to a particular weighted version ofΠ, where the weight
of any vertexvi ∈ V is1−pi, the weightw(Vj) of a sub-
setVj ⊆ V is defined byw(Vj) = 1 −∏vi∈Vj

(1 − pi)
and the objective function to be optimized is equal to
∑

Vj∈S w(Vj).
Proof. Consider an anticipatory solutionS =
(V1, V2, . . . , Vk) and a subgraphG′ = G[V ′] of G.
Denote byk′ = m(G′, S′), the value of the solution
obtained onG′ as described in assumption (iii). Then,
E(G, S) =

∑

V ′⊆V Pr[V ′]k′.
Consider the facts:Fj : Vj ∩ V ′ 6= ∅ and F̄j : Vj ∩

V ′ = ∅. Then,k′ can be written ask′ =
∑k

j=1 1Fj
=
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∑k

j=1(1 − 1F̄j
) andE(G, S) becomes:

E(G, S) =
∑

V ′⊆V

Pr [V ′]





k
∑

j=1

(

1 − 1F̄j

)





=
∑

V ′⊆V

Pr [V ′]

k
∑

j=1

1−

∑

V ′⊆V

Pr [V ′]

k
∑

j=1

1Vj∩V ′=∅

=

k
∑

j=1

∑

V ′⊆V

Pr [V ′]−
k
∑

j=1

∑

V ′⊆V

Pr [V ′] 1Vj∩V ′=∅

= k −
k
∑

j=1

∏

vi∈Vj

(1 − pi)

=

k
∑

j=1



1 −
∏

vi∈Vj

(1 − pi)



 (4)

It is easy to see that computation ofE(G, S) can be
performed in at mostO(n) steps; consequently,PROB-
ABILISTIC Π is in NPO. Furthermore, by (4), the char-
acterization of the feasible solutions forPROBABILIS-
TIC Π claimed in the statement of the proposition is
immediate.

Central role for yielding result of Proposition 2 plays
the fact that the property satisfied by the sets of the col-
lection S is hereditary. This allows to the non-empty
sets of the restriction ofS to V ′ to be a feasible solu-
tion for G[V ′] and, consequently, to expressE(G, S)
as in (4), using the factsFj andF̄j .

Assume thatpi = 1, for anyvi ∈ V . Then, by (4),
E(G, S) = k and PROBABILISTIC Π coincides in this
case withΠ.
Corollary 3 If Π is NP-hard, thenPROBABILISTIC Π
is alsoNP-hard.
As for Corollary 2, Corollary 3 settles complexity only
for the case whereΠ is NP-hard, leaving unclear the
status ofPROBABILISTIC Π whenΠ ∈ P.

Proposition 2 also captures numerous combinatorial
optimization problems, asPROBABILISTIC MIN COL-
ORING ([17]), PROBABILISTIC MIN PARTITION INTO

CLIQUES, etc. In what follows, we describe two further
applications, namely,PROBABILISTIC MIN COMPLETE

BIPARTITE SUBGRAPH COVER and PROBABILISTIC

MIN CUT COVER. Then, we show that Proposition 2
can go beyond graphs by giving a formulation ofMIN

SET COVER as a graph-problem and proving that, ac-

cording to this formulation,PROBABILISTIC MIN SET

COVER also fits conditions of Proposition 2.

4.1. PROBABILISTIC MIN COMPLETE BIPARTITE

SUBGRAPH COVER

Given a graphG(V, E), a solution of MIN COM-
PLETE BIPARTITE SUBGRAPH COVERis a collection
C = (V1, V2, . . . , Vk) of subsets ofV such that the sub-
graph induced by any of theVi’s, i = 1, . . . , k, is a
complete bipartite graph and for any edge(u, v) ∈ E
there exists aVi containing bothu andv. The objective
here is to minimize the size|C| of C.

Remark first that the property “complete bi-
partite graph” is hereditary. Consider a solution
C = (V1, . . . , Vk) of MIN COMPLETE BIPARTITE

SUBGRAPH COVER and a subsetV ′ ⊆ V . The set
C′ = (V1∩V ′, . . . , Vk∩V ′), is feasible forG′ = G[V ′].
Indeed, if a vertexv disappears from some setVi of an
anticipatory solutionC, the surviving setVi \ {v} al-
ways induces a complete bipartite graph. Furthermore,
except for the edges that have been disappeared (the
ones incident tov) any other edge remain covered by
the surviving sets ofC.

So, PROBABILISTIC MIN COMPLETE BIPARTITE

SUBGRAPH COVERmeets the conditions of Proposi-
tion 2.

4.2. PROBABILISTIC MIN CUT COVER

Given a graphG(V, E), a feasible solution forMIN

CUT COVER is a collection(V1, . . . , Vk) of V such that
any Vi, i = 1, . . . , k is a cut, i.e., for any(u, v) ∈ E,
there exists aVi such that eitheru ∈ Vi andv /∈ Vi, or
u /∈ Vi andv ∈ Vi. The objective is to minimize the
sizek of the collection.

Consider a solutionS = (V1, . . . , Vk) for MIN CUT

COVER. If a vertexv ∈ V is absent, then any edge in-
cident to v is also absent. So, the edges of the final
graphG′(V ′, E′), remain feasibly covered by the re-
striction ofS to V ′. Hence,S′ = (V1∩V ′, . . . , Vk∩V ′)
is feasible forMIN CUT COVER, that meets the condi-
tions of Proposition 2, since property “cut” is hereditary.

4.3. PROBABILISTIC MIN SET COVER

Given a collectionS = {S1, . . . Sm} of subsets of
a ground setC = {c1, . . . , cn} (it is assumed that
∪Si∈SSi = C), MIN SET COVERING consists of deter-
mining a minimum-size set cover ofC, i.e., a minimum-
size sub-collectionS′ of S such that∪Si∈S′Si = C.
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Starting from an instance(S, C) of MIN SET

COVER, one can construct an edge-colored multi-
graph GC(VC , EC , ~ℓS) as follows: for anyci ∈ C,
add a vertexvi ∈ VC ; for any pairci, cj of elements
in C, add a new edge(vi, vj) colored withSk only if
Sk ⊇ {ci, cj}.

In the so-constructed graphGC a set Si =
{ci1 , . . . cik

} ∈ S becomes a clique on vertices
vi1 , . . . , vik

∈ VC all the edges of which are colored
with the same colorSi; we will call such a clique a
unicolored clique. Under this formulation,MIN SET

COVER can be viewed as a particular clique-covering
problem where the objective is to determine a minimum
size cover ofVC by unicolored cliques.

Consider a set coverS′ for the initial instance(S, C)
and a sub-instanceI ′ of (S, C) consisting of some el-
ements ofC and of the subsets ofS including these
elements. These objects correspond, inGC , to a vertex-
covering by unicolored cliques and the subgraphG′

C

of GC defined with respect toI ′. Restriction ofS′ in I ′

can be viewed, with respect toGC , as restriction of the
initial vertex-covering by unicolored cliques to the ver-
tices ofG′

C . Observe finally that “unicolored clique” is
a hereditary property. So, under this formulation,PROB-
ABILISTIC MIN SET COVER perfectly fits conditions of
Proposition 2.

According to the formulation used forMIN SET

COVER, given an instance(S, C) with element-
probabilities pi, for any ci ∈ C, and a feasi-
ble solution S′ of (S, C), then, E((S, C),S′) =
∑

Si∈S′(1 −∏cj∈Si
(1 − pj)) and can be computed in

polynomial time. The probabilistic version ofMIN SET

COVER amounts to a particular weighted version of the
initial problem where each setSi = {ci1 , . . . , cik

} in S
is weighted by1 −∏k

j=1(1 − pij
).

Hence,PROBABILISTIC MIN SET COVER is indeed
a simple weighted version ofMIN SET COVER, where
one has to determine a set cover minimizing its total
weight. In this sense, the problem dealt seems to be
simpler than the majority of the problems captured by
Proposition 2 as, for instance,MIN COLORING. This is
due to the fact that, dealing withMIN SET COVER, there
is a polynomial number of unicolored cliques inGC (the
sets ofS) candidate to be part of any solution, while,
for MIN COLORING the number of the independent sets
that may be part of a solution is exponential.

4.4. A generic approximation result for the problems
fitting conditions of Proposition 2

This section extends an approximation result of [17]
for PROBABILISTIC MIN COLORING, in order to cap-
ture the whole of problems meeting the conditions of
Proposition 2.

Consider such anNPO problemΠ, an instanceG(V, E)
of Π, set n = |V | and consider a solutionS =
(V1, . . . , Vk) of Π on G (recall thatV1, . . . , Vk are as-
sumed mutually disjoint). Denote bypmin andpmax the
minimum and maximum vertex-probabilities, respec-
tively. Then, the following bounds hold forE(G, S):

max







n
∑

i=1

pi −
n
∑

i=1

n
∑

j=i+1

pipj , kpmin







6 E(G, S) 6 min

{

n
∑

i=1

pi 6 npmax, k

}

(5)

Observe first that the rightmost upper bound forE(G, S)
in (5) is immediately derived from the expression
for E(G, S) in the statement of Proposition 2.

We now prove the leftmost upper bound and the lower
bounds of (5). We first produce a framing for the term
1 −∏vi∈Vj

(1 − pi). For simplicity, assume|Vj | = ℓ
and arbitrarily denote vertices inVj by v1, . . . , vℓ. By
induction onℓ, we show that:

ℓ
∑

i=1

pi −
ℓ
∑

i=1

ℓ
∑

j=i+1

pipj 6 1 −
ℓ
∏

i=1

(1 − pi) 6

ℓ
∑

i=1

pi

(6)
For the left-hand side of (6), observe first that it is true
for ℓ = 1 and suppose it true forℓ = κ, i.e.,

∑κ

i=1 pi −
∑κ

i=1

∑κ

j=i+1 pipj 6 1 −∏κ

i=1(1 − pi), or:

κ
∏

i=1

(1 − pi) 6 1 −
κ
∑

i=1

pi +

κ
∑

i=1

κ
∑

j=i+1

pipj (7)

Suppose now thatℓ = κ + 1 and multiply both terms
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of (7) by (1 − pκ+1); then:

κ+1
∏

i=1

(1−pi) 6



1−
κ
∑

i=1

pi+

κ
∑

i=1

κ
∑

j=i+1

pipj



 (1−pκ+1)

= 1 −
κ
∑

i=1

pi +
κ
∑

i=1

κ
∑

j=i+1

pipj − pκ+1+

pκ+1

κ
∑

i=1

pi − pκ+1

κ
∑

i=1

κ
∑

j=i+1

pipj

= 1 −
κ+1
∑

i=1

pi +

κ+1
∑

i=1

κ+1
∑

j=i+1

pipj−

pκ+1

κ
∑

i=1

κ
∑

j=i+1

pipj

6 1 −
κ+1
∑

i=1

pi +

κ+1
∑

i=1

κ+1
∑

j=i+1

pipj

that proves the left-hand side inequality in (6).

For the right-hand side of (6), we show by induction
on ℓ that

∏ℓ

i=1(1 − pi) > 1 −∑ℓ

i=1 pi. This is clearly
true for ℓ = 1. Suppose it also true for anyℓ 6 κ, i.e.,
∏κ

i=1(1−pi) > 1−∑κ

i=1 pi. Then, by multiplying both
members of this inequality by(1 − pκ+1), we get that
the product obtained is equal to1− pκ+1 −

∑κ

i=1 pi +

pκ+1

∑κ

i=1 pi > 1 −∑κ+1
i=1 pi, q.e.d.

Remark 1 Let us note that (6) is a special case of the
following well-known result of the inclusion-exclusion
principle: if Pr(Ai) = pi, thenPr(∩iĀi) = S0 − S1 +
S2 − S3 + . . . where:

Sk =
∑

i1<i2<...ik

Pr (Ai1 ∩ Ai2 ∩ . . . ∩ Aik
)

and

S0−S1+S2−. . .−S2k−1≤Pr
(

∩Āi

)

≤S0−S1+. . .+S2k

Inequality (6) is the case where allAi are independent,
andk = 1.

Taking the sums of the members of (6) form = 1
to k, the right-hand side inequality immediately gives
E(G, S) 6

∑n

i=1 pi.

We now prove that E(G, S) >
∑n

i=1 pi −
∑n

i=1

∑n

j=i+1 pipj (the leftmost lower bound claimed

in (5)). From the left-hand side of (6), we get:

k
∑

m=1





ℓ
∑

i=1

pi −
ℓ
∑

i=1

ℓ
∑

j=i+1

pipj



 =

n
∑

i=1

pi−

k
∑

m=1

ℓ
∑

i=1

ℓ
∑

j=i+1

pipj >

n
∑

i=1

pi −
n
∑

i=1

n
∑

j=i+1

pipj (8)

Observe that, from the first inequality of (6), we have:

k
∑

m=1





ℓ
∑

i=1

pi−
ℓ
∑

i=1

ℓ
∑

j=i+1

pipj



6

k
∑

m=1

(

1−
ℓ
∏

i=1

(1−pi)

)

(9)
The righthand side of (9) is exactlyE(G, S). Putting
this together with (8), the leftmost lower bound
for E(G, S) in (5) is proved.

Finally, in order to derive the rightmost lower bound
in (5), observe that

∏

vi∈Sj
(1− pi) 6 (1− pmin)

|Sj | 6

1 − pmin, i.e., 1 −∏vi∈Sj
(1 − pi) > pmin. Summing

for j = 1 to k, we get the bound claimed.
We are ready now to study an approximation algo-

rithm for the whole class of problems meeting Propo-
sition 2. Fix a vertex-probabilityp′, assume that there
exists aρ-approximation polynomial time algorithmA
for Π, and run the following algorithm, calledRA for
PROBABILISTIC Π:
(1) partition the vertices ofG into three subsets: the

first, V1 including the vertices with probabilities at
most 1/n, the second,V2, including the vertices
with probabilities in the interval[1/n, p′] and the
third, V3, including the vertices with probabilities
greater thanp′;

(2) feasibly solveΠ in G[V1] andG[V2] separately;
(3) runA in G[V3];
(4) take the union of the solutions computed in steps 2

and 3 as solution forG.
Theorem 1 If A achieves approximation ratioρ for Π,
thenRA approximately solves in polynomial timePROB-
ABILISTIC Π within ratio O(

√
ρn).

Proof. Denote byS∗ = (V ∗
1 , . . . , V ∗

k∗) an optimal
anticipatory solution, byS = (V̂1, . . . , V̂k) the ap-
proximate anticipatory solution computed in step 4
and, respectively, byS∗

i = (V ∗
1,i, . . . , V

∗
|S∗

i
|,i) and

Si = (V̂1,i, . . . , V̂|Si|,i), the optimal and approximate
solutions in G[Vi], i = 1, 2, 3. Denote byS∗[V1],
S∗[V2] and S∗[V3] the restrictions ofS∗ in G[V1],
G[V2] and G[V3], respectively. Denote finally byni,
the orders ofG[Vi], for i = 1, 2, 3, respectively. The
proof is based upon the following claims.
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(1) Any feasible polynomial time approximation al-
gorithm for PROBABILISTIC Π achieves in the
graphG[V1] approximation ratio bounded above
by 2.

(2) Any feasible polynomial time approximation al-
gorithm for PROBABILISTIC Π achieves in the
graphG[V2] approximation ratio bounded above
by O(np′).

(3) Assuming thatA achieves approximation ratioρ
for Π, when running inG[V3] it achieves approx-
imation ratio bounded above byρ/p′ for PROBA-
BILISTIC Π.

For Claim 1, using (5) forS1 and S∗
1 , we get:

E(G[V1], S1) 6
∑n1

i=1 pi and E(G[V1], S
∗
1 ) >

∑n1

i=1 pi −
∑n1

i=1

∑n1

j=i+1 pipj . Combining them, we
derive:

E (G [V1] , S
∗
1 )

E (G [V1] , S1)
> 1 −

n1
∑

i=1

n1
∑

j=i+1

pipj

n1
∑

i=1

pi

= 1 −

(

n1
∑

i=1

pi

)2

−
n1
∑

i=1

p2
i

2
n1
∑

i=1

pi

> 1 −

n1
∑

i=1

pi

2
+

n1
∑

i=1

p2
i

2
n1
∑

i=1

pi

> 1 −

n1
∑

i=1

pi

2

(10)

Since pi’s are smaller than1/n and n1 6 n, the
right-hand side of (10) is at least as large as1/2.
Hence, every algorithm forΠ in G[V1] achieves ratio
E(G[V1], S1)/E(G[V1], S

∗
1 ) 6 2 for PROBABILIS-

TIC Π, and the proof of Claim 1 is complete.
We now prove Claim 2. Here, for anyvi, pi > 1/n.

Consequently,1 − ∏

vi∈V ∗

j,2
(1 − pi) > 1 − (1 −

(1/n))|V
∗

j,2| > (|V ∗
j,2|/n) − (|V ∗

j,2|(|V ∗
j,2| − 1)/2n2),

where the last inequality is an easy application of the
left-hand side of (6) withpi = 1/n for any vertexvi.
Furthermore:
∣

∣V ∗
j,2

∣

∣

n
−
∣

∣V ∗
j,2

∣

∣

(∣

∣V ∗
j,2

∣

∣−1
)

2n2
=

∣

∣V ∗
j,2

∣

∣

n

(

1−
∣

∣V ∗
j,2

∣

∣−1

2n

)

>

∣

∣V ∗
j,2

∣

∣

n
× n + 1

2n

>

∣

∣V ∗
j,2

∣

∣

2n
(11)

Summing inequality (11) forj = 1, . . . , |S∗
2 |, we

get E(G[V2], S
∗
2 ) > n2/2n, where n2 is the order

of G[V2]. On the other hand, using the leftmost upper
bound in (5), we getE(G[V2], S2) 6 n2p

′. The bounds
for E(G[V2], S

∗
2 ) andE(G[V2], S2) immediately derive

approximation ratio at most2np′ = O(np′) for every
algorithm solvingPROBABILISTIC Π in G[V2] and the
proof of Claim 2 is complete.

We now turn to Claim 3. Using the rightmost
lower bound of (5),E(G[V3], S

∗
3 ) > |S∗

3 |p′. On the
other hand, by the rightmost upper bound of (5),
E(G[V3], S3) 6 |S3|. So, assuming thatA achieves ra-
tio ρ for Π, step 3 achieves ratio(|S3|/|S∗

3 |)p′ for G[V3],
that turns out to a ratio bounded above byρ/p′ for
PROBABILISTIC Π, completing so the proof of Claim 3.

We prove that, for anyk ∈ {1, 2, 3}: E(G, S∗) >

E(G[Vk], S∗[Vk]) > E(G[Vk], S∗
k). Remark thatS∗[Vk]

is a particular feasible solution forG[Vk]; hence:
E(G[Vk], S∗[Vk]) > E(G[Vk], S∗

k). In order to prove
the first inequality, fix ak and consider a component,
sayV ∗

j of S∗. Then, the contribution ofV ∗
j in S∗[Vk]

is: 1−∏vi∈V ∗

j
∩Vk

(1− pi) 6 1−∏vi∈V ∗

j
(1− pi), that

is its contribution inS∗. Iterating this argument for all
the elements inS∗[Vk], the claim follows.

Algorithm RA solves separately eachG[Vk],
k ∈ {1, 2, 3} and returns as solutionS the union of
the solutions computed in the three induced subgraphs.
Hence,E(G, S) = E(G[V1], S1) + E(G[V2], S2) +
E(G[V3], S3). Furthermore,E(G, S∗) is at least as
large as any ofE(G[Vk], S∗

k), k ∈ {1, 2, 3}. So, the
ratio of the algorithm inG is at most the sum of
the ratios proved by Claims 1, 2 and 3, i.e., at most
O(2 + np′ + (ρ/p′)).

Note that the ratio claimed in Claim 2 is increas-
ing with p′, while that of Claim 3 is decreasing
with p′. Equality of expressionsnp′ and ρ/p′ holds
for p′ =

√

ρ/n. In this case the value of the ratio ob-
tained isO(

√
ρn), and the proof of the theorem is now

completed.

5. Solutions are subsets of the initial edge-set

We now handle problems for which solutions are sets
of edges. Notice that whenever a vertex is absent from
some subsetV ′ ⊆ V , the edges incident to it are also
absent fromG[V ′].
Proposition 3 Consider a graph-problemΠ ver-
ifying the following assumptions: (i) an instance
of Π is an edge- (or arc-) valued graphG(V, E, ~ℓ);
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(ii) any solution ofΠ on any instanceG is a sub-
set of E; (iii) for any solution S and any sub-
set V ′ ⊆ V , denoting byG′(V ′, E′) the subgraph
of G induced by V ′, the set S ∩ E′ is feasible;
(iv) the value of any solutionS ⊆ E of Π is de-
fined by: m(G, S) = w(S) =

∑

(vi,vj)∈S ℓ(vi, vj),
whereℓ(vi, vj) is the valuation of(vi, vj) ∈ E. Then,
E(G, S) =

∑

(vi,vj)∈S ℓ(vi, vj)pipj and can be com-
puted in polynomial time. Furthermore, dealing with
their respective computational complexities,PROBA-
BILISTIC Π andΠ are equivalent.
Proof. Set S′ = S ∩ E′. By the assumptions of
the proposition,S′ is feasible forG′. Furthermore,
m(G′, S′) =

∑

(vi,vj)∈S

ℓ(vi, vj)1{(vi,vj)∈E′}. Then,

using (1):

E(G, S) =
∑

V ′⊆V

m (G′, S′) Pr [V ′]

=
∑

V ′⊆V

∑

(vi,vj)∈S

ℓ (vi, vj) 1{(vi,vj)∈E′} Pr [V ′]

=
∑

(vi,vj)∈S

ℓ (vi, vj)
∑

V ′⊆V

1{(vi,vj)∈E′} Pr [V ′]

(12)

Every(vi, vj) ∈ E belongs toG′ = G[V ′], if and only if
both of its endpoints belong toV ′. LetVij = V \{vi, vj}
andV ′

ij = {V ′ ⊆ V : V ′ = {vi} ∪ {vj} ∪ V ′′, V ′′ ⊆
Vij} be the set of all the subsets ofV containing bothvi

andvj . Using also the fact that presence-probabilities
of the vertices ofV are independent, we get:
∑

V ′⊆V

1{(vi,vj)∈E′} Pr [V ′] =
∑

V ′∈V′

ij

Pr [V ′]

=
∑

V ′′⊆Vij

Pr [{vi} ∪ {vj} ∪ V ′′]

=
∑

V ′′⊆Vij

pipj Pr [V ′′]

= pipj

∑

V ′′⊆Vij

Pr [V ′′] = pipj

(13)

Combination of (12) and (13) immediately leads to the
expression claimed for the functional.

It is easy to see that this functional can be com-
puted in time quadratic withn. Furthermore, compu-
tation of an optimal anticipatory solution forPROBA-
BILISTIC Π in G obviously amounts to computation
of an optimal solution forΠ in an edge- (or arc-) val-
ued graphG(V, E, ~ℓ′) where, for any(vi, vj) ∈ E,

ℓ′(vi, vj) = ℓ(vi, vj)pipj . Consequently,Π andPROB-
ABILISTIC Π have the same complexity.

The reasons for which the functional derived in
Proposition 3 becomes polynomial are quite analogous
to those of Proposition 1. Since an edge that does not
belong to the anticipatory solutionS will never be part
of S∩E′ in any subgraphG′(V ′, E′) of G, the compu-
tation of the functional amounts to the quantification,
for anyG′, of the average cardinality of the setS ∩E′.
For this, it suffices to first determine, for any edge
e ∈ S, all the subgraphs containinge and next to sum
the probabilities of these subgraphs. This sum equals
the product of the probabilities of the endpoints ofe.

Let us note that, as in Section 3., Proposition 3 can
be used for getting generic approximation results for
PROBABILISTIC Π. Since this problem is a particular
weighted version ofΠ (recall thatΠ is also a weighted
problem), one immediately concludes thatif Π is ap-
proximable within approximation ratioρ, so isPROBA-
BILISTIC Π.

Corollary 4 Under the hypotheses of Proposition 3,
wheneverΠ and PROBABILISTIC Π are NP-hard, they
are equi-approximable.

Corollary 5 Consider a problemΠ verifying assump-
tions (i) through (iv) of Proposition 3 with~ℓ = ~1. Then,
E(G, S) =

∑

(vi,vj)∈S pipj and can be computed in
polynomial time.PROBABILISTIC Π is equivalent to an
edge- (or arc-) valued version ofΠ where the value of
an edge is the product of the probabilities of its end-
points.

As for Corollary 2, Corollary 5 does not conclude some-
thing definite for the complexity ofPROBABILISTIC Π
whenΠ is polynomial.

5.1. PROBABILISTIC MAX MATCHING

In MAX MATCHING , the objective is, given a
graphG(V, E) to determine a maximum-size matching,
i.e., a maximum-size subset ofE such that its edges
are pairwise disjoint (they have no common endpoint).

Clearly, MAX MATCHING in both edge-valued and
non-valued graphs, fits conditions of Proposition 3
and Corollary 5, respectively. Moreover, sinceMAX

WEIGHTED MATCHING is polynomial, bothPROBA-
BILISTIC MAX WEIGHTED MATCHING and PROBA-
BILISTIC MAX MATCHING are also polynomial.
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5.2. PROBABILISTIC MAX CUT

Consider a graphG(V, E). In MAX CUT (resp.MAX

WEIGHTED CUT) we wish to determine a maximum car-
dinality (resp., maximum weight) cut, i.e., to partitionV
into two subsetsV1 andV2 such that a maximum num-
ber of edges (resp., maximum-weight set of edges) have
one of their endpoints inV1 and the other one inV2.

1 2

3

4 5

67

8

910

11

12

13

V1

V2

(a) A graphG with a cut S (thick
edges)

1 2

3

5

7

8

910

12

13

V1
V2

(b) Some “surviving” sub-
graph and the “surviving” so-
lution

Fig. 1. An example forPROBABILISTIC MAX CUT.

We can represent an anticipatory cutS as a set
of edges in such a way that whenever(vi, vj) ∈ S,
vi ∈ V1 and vj ∈ V2. For example, in Fig-
ure 1(a), where for simplicity values of edges are

not mentioned, the cut partitionsV in subsetsV1 =
{1, 3, 4, 7, 10, 13} and V2 = {2, 5, 6, 8, 9, 11, 12};
the anticipatory cutS (thick edges) is thenS =
{(1, 2), (3, 6), (4, 2), (4, 5), (4, 6), . . . , (13, 11)} (edges
are ordered in lexicographic order). In Figure 1(b),
we present graph’s and cut’s states assuming that ver-
tices 4, 6 and 11 are absent. The solutionS′ considered
misses in all edges ofS having at least one endpoint
in {4, 6, 11} but it obviously remains a feasible cut for
the surviving graph.

Hence, both weighted and cardinalityPROBABILIS-
TIC MAX CUT meet the conditions of Proposition 3
and Corollary 5, respectively. Consequently,MAX CUT

beingNP-hard,PROBABILISTIC MAX WEIGHTED CUT

andPROBABILISTIC MAX CUT are alsoNP-hard.

6. When things become complicated: solutions are
trees, or cordless cycles

In this section we handle edge-weighted graph-
problems where a feasible solution is either a path, or
a tree, or a cordless cycle. It is easy to see that, given
such a solutionS and a setV ′ ⊆ V inducing a sub-
graphG[V ′] = G′(V ′, E′) of G, the setS ∩ E′ may
be not feasible forG′.

Consider a problemΠ where a feasible solution is
a path, or a tree, or a cordless cycle denoted byS.
Consider that the vertices inS are ordered in some
appropriate order. Assume thatS ∩ E′ is a set of
k = k(G′) (in other words,k depends on the present
graphG′) connected subsetsC1, C2, . . . , Ck of S but
that S′′ = ∪k

i=1Ci is not connected (i.e.,S′′ does not
constitute a feasible solution forΠ). The vertices of
eachC1, C2, . . . , Ck are ordered consistently with the
chosen order ofS.

We consider a kind of “completion” ofS′′ by addi-
tional edges linking, fori = 1, . . . , k−1, the last vertex
(in the ordering considered forS) of Ci with the first
vertex ofCi+1. In other words, givenS (representing a
connected set of edges) andV ′, and assuming that ver-
tices ofS are ordered following some appropriate or-
der, we apply the following algorithm, denoted byA in
the sequel (recall thatV ′ is ordered following the order
considered forS):
(1) computeS∩E′; letC1, C2, . . . , Ck be the resulting

connected components ofS ∩ E′;
(2) for i = 1, . . . , k−1, use an edge to link the last ver-

texvp of Ci to the first vertexvq of Ci+1 (wherep
andq are indexes of vertices according to the cho-
sen ordering forS), if p < q in the order consid-



60 Cécile Murat & Vangelis Th. Paschos – Probabilistic optimization

ered forS;
(3) output the obtained solution and denote it byS′.

Obviously, in order that step 2 ofA is able to link com-
ponentsCi andCi+1, an edge must exist between the
vertices implied; otherwise,A is definitely unfeasible.
So, in order to assure feasibility, we make, for the rest
of the section, the basic assumption that the input graph
for the problems handled is complete.

In what follows, we denote byV [S′] the set of ver-
tices inS′ and setG′′(V [S′], E′′) = G[V [S′]]. We also
denote by[vi, vj ] the set{vi+1, vi+2, . . . , vj−1} (i < j
in the ordering assumed forS 2 ) such that: (a) for any
ℓ = i, i + 1, . . . , j − 1, (vℓ, vℓ+1) ∈ S (i.e., [vi, vj ] is
the set of vertices in the path linkingvi to vj in S,
wherevi andvj themselves are not encountered3 ). By
symmetry, always fori < j, we denote by[vj , vi] the set
{vj+1, vj+2, . . . , vn, v1, . . . , vi−1}. Obviously, [vi, vj ]
and [vj , vi] are both non-empty ifS is a cordless cy-
cle; [vj , vi] is empty ifS is a path or a tree.

Theorem 2 Consider a problemΠ verifying the fol-
lowing assumptions: (i) instances ofΠ are edge-valued
complete graphs(Kn, ~ℓ) = G(V, E, ~ℓ); (ii) a solu-
tion of Π is a subsetS of E inducing either a path,
or a tree, or a cordless cycle; (iii) given an anticipa-
tory solutionS (the vertices of which are ordered in
some appropriate order), algorithmA computes a fea-
sible solutionS′, for any subgraphG′(V ′, E′, ~ℓ) =
G[V ′] of G (obviously,G′ is complete); (iv)m(G, S) =
∑

(vi,vj)∈S ℓ(vi, vj). Then,E(G, S) is computable in
polynomial time and is expressed by:

E (G, S) =
∑

(vi,vj)∈S

ℓ (vi, vj) pipj

+
∑

(vi,vj)∈E′′\S

ℓ (vi, vj) pipj

∏

vl∈[vi,vj ]

(1 − pl)

+
∑

(vi,vj)∈E′′\S

ℓ (vi, vj) pipj

∏

vl∈[vj ,vi]

(1 − pl)

Proof. Denote byC[E′], the set of edges added toS′′

during the execution of step 2 ofA. Obviously,S′ =
S′′ ∪ C[E′]; also, if an edge belongs toC[E′], then it
necessarily belongs toE[V [S]], the set of edges ofG
induced by the endpoints of the edges inS. By assump-
tions (i) to (iii), S′ is a feasible set of edges. Further-

2 Recall thatS is either a path, or a tree, or a cordless cycle.
3 It is assumed that if[vi, vj ] = ∅, then

∏

vl∈[vi,vj ](1−pl) =
0.

more:

m (G′, S′) =
∑

(vi,vj)∈E

ℓ (vi, vj) 1{(vi,vj)∈S′}

=
∑

(vi,vj)∈E

ℓ (vi, vj) 1{(vi,vj)∈S′′∪C[E′]}

(14)

By construction, any element ofC[E′] is an edge (or
arc) whose the initial endpoint corresponds to the ter-
minal endpoint of a connected subsetCi of S, and the
terminal endpoint corresponds to the initial endpoint of
the “next” connected subsetCi+1 of S. Then, for any
subgraphG′ of G, the following two assertions hold:
(a) S′ ⊆ E′′, and (b) any edge that does not belong
to E′′, will never be part of any feasible solution (in-
deed, for such an edge, at least one of its endpoints does
not belong toV [S′]). So,C[E′] ⊆ E′′. Then, from (14):

m (G′, S′) =
∑

(vi,vj)∈E

ℓ (vi, vj) 1{(vi,vj)∈S′′∪C[E′]}

=
∑

(vi,vj)∈E′′

ℓ (vi, vj) 1{(vi,vj)∈S′′∪C[E′]}

=
∑

(vi,vj)∈E′′

ℓ (vi, vj) 1{(vi,vj)∈S′′}+

∑

(vi,vj)∈E′′

ℓ (vi, vj) 1{(vi,vj)∈C[E′]}

=
∑

(vi,vj)∈S

ℓ (vi, vj) 1{(vi,vj)∈E′}+

∑

(vi,vj)∈E′′\S

ℓ (vi, vj) 1{(vi,vj)∈C[E′]}

(15)

Using (15), we get from (1):

E (G, S) =
∑

V ′⊆V





∑

(vi,vj)∈S

ℓ (vi, vj) 1{(vi,vj)∈E′}

+
∑

(vi,vj)∈E′′\S

ℓ (vi, vj) 1{(vi,vj)∈C[E′]}



Pr [V ′]

=
∑

(vi,vj)∈S

ℓ (vi, vj)
∑

V ′⊆V

1{(vi,vj)∈E′} Pr [V ′]

+
∑

(vi,vj)∈E′′\S

ℓ (vi, vj)

×
∑

V ′⊆V

1{(vi,vj)∈C[E′]} Pr [V ′] (16)
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As in the proof of Proposition 3, the first term of (16)
can be simplified as follows:

∑

(vi,vj)∈S

ℓ (vi, vj)
∑

V ′⊆V

1{(vi,vj)∈E′} Pr [V ′] =

∑

(vi,vj)∈S

ℓ (vi, vj) pipj (17)

Using (17) in (16), we get:

E (G, S) =
∑

(vi,vj)∈S

ℓ (vi, vj) pipj+

∑

(vi,vj)∈E′′\S

ℓ (vi, vj)
∑

V ′⊆V

1{(vi,vj)∈C[E′]} Pr [V ′]

(18)

We now settle the second term of (18) that, in this form,
seems to be exponential. Consider some edge(vi, vj)
added during step 2 in order to “patch”, say, con-
nected componentsCl and Cl+1 of the anticipatory
solution S. Since (vi, vj) /∈ S, there exists inS
a sequenceµ = [vi, vj ] of consecutive edges (or
arcs) linking vi to vj . Assume that this sequence is
listed by its vertices and that neithervi, nor vj be-
long to µ. Edge (vi, vj) ∈ E′′ \ S′ is added toS′

just because all the vertices inµ are absent. In other
words, inclusion of(vi, vj) in C[E′] holds for any sub-
graphG′(V ′, E′), with V ′ ∈ U ′

ij = {V ′ ⊆ V : vi ∈
V ′, vj ∈ V ′ and any vertex ofµ = [vi, vj ] is absent}.
Consequently, the inner sum in the second term of (18)
can be written as:
∑

V ′⊆V

1{(vi,vj)∈C[E′]} Pr [V ′] =
∑

V ′∈U ′

ij

Pr [V ′]

= pipj

∏

vl∈[vi,vj ]

(1 − pl) + pipj

∏

vl∈[vj ,vi]

(1 − pl)

(19)

Combination of (16), (18) and (19) derives the expres-
sion claimed for the functional. It is easy to see that
computation of a single term in the second sum of the
functional requiresO(n) computations (at mostn + 1
multiplications). Since this is done at mostO(n2) times
(the edges inE), it follows thatE(G, S) is computable
in O(n3), that concludes the proof of the theorem.

The fact thatE(G, S) is polynomial is partly due to
the same reasons as in Propositions 1 and 3 and also
to the way the “patching edges” are chosen at step 2
of A. Indeed, they are chosen in such a way that one
can say a priori under which conditions an edge (or

arc)(vi, vj) will be added inS′. These conditions carry
over, the presence or the absence of the edges initially
lying betweenvi andvj in S.

Unfortunately, in the opposite of Propositions 1 and 3,
Theorem 2 does not derive a compact characterization
for the optimal anticipatory solutions of the problems
meeting the assumptions (i) to (iv). In particular, the
form of the functional does not imply solution of some
well-defined weighted version ofΠ (the deterministic
support ofPROBABILISTIC Π). This is due to the second
term of the expression forE(G, S) in Theorem 2. There,
the “costs” assigned to the edges depend on the structure
of the anticipatory solution chosen and of the present
subgraph ofG.

However, according to the functional in Theorem 2,
we can easily conclude that whenΠ is NP-hard, so
is PROBABILISTIC Π. In fact settingpi = 1, for any
vi ∈ V , we recover the objective function ofΠ.

In what follows, we outline some problems fitting the
conditions of Theorem 2. In particular, we study cases
where feasible solutions are either cycles or trees.

6.1. Application of Theorem 2 when the anticipatory
solution is a cycle

In this section, we considerMIN TSP and its proba-
bilistic version. Given a complete graph onn vertices,
denoted byKn, with positive distances on its edges,
MIN TSP consists of minimizing the cost of a Hamil-
tonian cycle (i.e., of an ordering〈v1, v2, . . . , vn〉 of V
such thatvnv1 ∈ E and, for1 6 i < n, vivi+1 ∈ E),
the cost of such a cycle being the sum of the distances
of its edges. We shall represent any Hamiltonian cy-
cle T (called also a tour in what follows) as the set
of its edges; its value ism(Kn, T ) =

∑

e∈T ℓ(vi, vj).
Moreover, we arbitrarily number the vertices ofKn in
the order that they are visited inT ; so, we can setT =
{(v1, v2), . . . , (vi, vi+1), . . . , (vn−1, vn), (vn, v1)}.

Consider an anticipatory tourT in an edge-valued
complete graphKn and a set of absent vertices.
Then, application of step 1 ofA may result in a set
{P1, P2, . . . , Pk} of paths4 , ordered in the order ver-
tices have been visited inT , that is not feasible for
MIN TSP in the surviving graph. In order to render this
set feasible, one can link (modulok) the last vertex of
the pathPi to the first vertex ofPi+1; this is always
possible since the initial graph is complete.

4 These paths may be sets of edges, or simple edges, or even
isolated vertices, any such vertex considered as a path.
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v1 v2

v3

v4

v5v6

v7

v8

(a) An anticipatory tour

v1 v2

v5

v7

(b) The tour T ′ computed
by A

Fig. 2. An example of application of algorithmA for PROB-
ABILISTIC MIN TSP.

For example, in Figure 2(a), an anticipatory cycleT ,
derived from a (symmetric)K8 is shown. In Figure 2(b),
we consider that verticesv3, v4, v6 andv8 are absent. In
a first time, application of Step 1 ofA results in a path-
set{{(v1, v2)}, {v5}, {v7}}. In a second time, we will
link vertexv2 to v5 (using the dotted edge(v2, v5)) and
vertexv5 tov7 (by the dotted edge(v5, v7)). This creates
a Hamiltonian path linking all the surviving vertices of
the initial K8. Finally, we link vertexv7 to v1 (by the
dotted edge(v7, v1)). We so build a new tour feasibly
visiting all the present vertices of the remaining graph.

It is easy to see that all the conditions of Theorem 2
are satisfied. Consequently, its application for the case
of PROBABILISTIC MIN TSP gives for E(Kn, T ) the
expression claimed in the theorem. We so recover the
result of [9] aboutPROBABILISTIC MIN TSP. The an-
ticipatory solution minimizing the functional cannot be
characterized tightly by means of Theorem 2, since the
expression forE(Kn, T ) depends on the particular an-
ticipatory tourT considered and by the way this partic-
ular tour will be completed in the surviving instance.

6.2. Application of Theorem 2 when the anticipatory
solution is a tree

Let us now considerMIN SPANNING TREE. Given
an edge-valued graphG(V, E, ~ℓ), MIN SPANNING TREE

consists of determining a treeT spanningV and min-
imizing quantitym(G, T ) =

∑

e∈T ℓ(e). For the rea-
sons discussed previously, we restrict ourselves to com-
plete graphs.

Note that in the case ofPROBABILISTIC MIN TSP in
Section 6.1., its solution induces an implicit and natural
ordering of the edges. This is not the case here since var-
ious orderings can be considered. We consider a particu-
lar ordering of the vertices ofT derived by a depth-first-
search (dfs) starting from some leaf (numbered by 1).
Obviously, this ordering is performed inO(n) for a tree
on n vertices (recall that such a tree hasn − 1 edges).

For example, consider the tree of Figure 3(a) and
assume that it is a minimum spanning tree of some graph
on 14 vertices. In what follows vertices are named by
their dfs number. This ordering partitions the edges of
the tree into edge-disjoint pathsP1, P2, . . . For instance,
dealing with Figure 3(a),T is partitioned into 4 paths:
P1 = {1, 2, 3, 4, 5, 6, 7}, P2 = {5, 8, 9, 10, 11}, P3 =
{9, 12} andP4 = {4, 13, 14}.

Suppose now that some vertices are absent from the
initial graphG. Then, step 1 ofA will produce a non
connected set of edges (forming paths, any of them
being a subset of somePi); denote by{P ′

1, P
′
2, . . . , P

′
k}

the set of paths so-obtained. Order them according to
the order of appearance of their edges appear in the
dfs paths ofT . For anyl = 1, . . . , k, we link the last
vertex, sayi of pathP ′

l to the first vertex, sayj, of the
pathP ′

l+1, if i < j. Since the initial graph is assumed
complete, such an edge always exists.

With respect to the example of Figure 3(a), assume
that vertices 2, 5, 11 and 13 disappear from the initial
graph. Application of step 1 ofA returns the following
set of dfs paths:P ′

1 = {1}, P ′
2 = {3, 4}, P ′

3 = {6, 7},
P ′

4 = {8, 9, 10}, P ′
5 = {9, 12}, P ′

6 = {4}, P ′
7 =

{14}. The edges added in step 2 ofA to reconnect the
tree are(1, 3), (4, 6), (7, 8), and(4, 14) (Figure 3(b)).
Note that the edges(10, 9) connecting pathsP ′

4 andP ′
5

and(12, 4) connecting pathsP ′
5 andP ′

6 have not been
added since10 > 9 and12 > 4.

We now specify the path[i, j] associated with the
edge(i, j) connectingP ′

l andP ′
l+1 and appearing in the

expression forE(G, S) in Theorem 2. Merging paths
in the order they have been specified by the dfs num-
bering,T can be written as a sequence of vertices as
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(a) The ordering of the nodes of an anticipatory
solutionT
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(b) The solutionT ′ derived from application of
algorithmA on T

Fig. 3. When anticipatory solution is a tree.

they have been visited (of course, some of them appear
more than once), i.e.,T = (11, 21, 31, . . . , j1, i2, (j +
1)1, . . . , (n − k)q, n1), wherei < j and ic represents
the c-th time the vertexi is encountered inT during
the dfs. Based upon this representation, one can recon-
structT in the following way: for any pair(ic, jc′) of
consecutive vertices, edge(i, j) belongs toT if and only
if i < j. Note that a leaf appears only once in the list
and that its absence does not disconnect the tree. Sup-
pose now that some vertices are absent from the initial
graphG. Drop them from the sequence representingT .
This will produce a subsequenceT ′ of T only including
the copies of the present vertices. It is easy to see that
the list T ′ is exactly the result of the concatenation of
pathsP ′

i resulting from the removal of the absent ver-
tices from the initial dfs paths. The reconnection ofT

performed by step 2 ofA can be seen as insertion of an
edge(i, j) linking two consecutive elementsil andj1
in T ′, whereil is the last occurrence ofi before the first
occurrencej1 of vertexj, verifying i < j. The corre-
sponding path[i, j] (i.e., the list of vertices that have to
be absent in order that(i, j) is added), is the portion of
the list betweenil andj1.

Let us revisit the example of Figure 3(a). The se-
quence associated with the tree isT = (11, . . . , 71, 52,
81, . . . , 111, 92, 121, 42, 131, 141) and, assuming that
vertices 2, 5, 11 and 13 disappear,T ′ = (11, 31, 41,
61, 71, 81, 91, 101, 92, 121, 42, 141). Then,[1, 3] = {2},
[4, 6] = {5}, [7, 8] = {5} and[4, 14] = {13}.

By the discussion above, one can immediately con-
clude thatE(Kn, T ) can be expressed as claimed by
Theorem 2.

7. Final remarks

We have drawn a framework for the classification of
probabilistic combinatorial optimization problems un-
der the a priori optimization paradigm. What seems to
be of interest in this classification is that when restric-
tion of the initial solution to the “present” subgraph
is feasible, then the complexity of determining the op-
timal anticipatory solution for the problems tackled,
amounts to the complexity of solving some weighted
version of the deterministic problem, where the weights
depend on the vertex-probabilities. These weights do
not depend on particular characteristics of the antic-
ipatory solution considered, thing that allows a com-
pact characterization of an optimal anticipatory solu-
tion. On the contrary, when more-than-one-stage algo-
rithms are needed for building solutions, then the ob-
servation above is no more valid. In this case, one also
recovers some weighted version of the original prob-
lem, but the weights on the data cannot be assigned in-
dependently of the structure of a particular anticipatory
solution.
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