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Probabilistic optimization in graph-problems

Cécile Murat and Vangelis Th. Paschos

LAMSADE, CNRS UMR 7024 and Université Paris-Dauphine, Blda Maréchal De Lattre de Tassigny, 75775 Paris
Cedex 16, France

Abstract

We study a probabilistic optimization model for graph-geshs under vertex-uncertainty. We assume that any vertex
of the input-graphG(V, E) has only a probability; to be present in the final graph to be optimized (i.e., the fimgtnce
for the problem tackled will be only a sub-graph of the iditigaph). Under this model, the original “deterministic”
problem gives rise to a new (deterministic) problem on thae@put-graphz, having the same set of feasible solutions
as the former one, but its objective function can be venewfft from the original one, the set of its optimal solutions
too. Moreover, this objective function is a sum2¥ ! terms; hence, its computation is not immediately polynbmia
We give sufficient conditions for large classes of graptbfams under which objective functions of their probakist
counterparts are polynomially computable and optimal Sohs are well-characterized. Finally, we apply these gahe
results to natural and well-known combinatorial problerhattbelong to the classes considered.

Key words: graph, complexity, approximation, a priori optimization

1. Introduction necessarily solved on the whalebut rather on a (un-
known a priori) sub-instanc€ C I. Suppose that any

Very often people has to make decisions under severaldatumd; in the data-set describing has a probabil-
degrees of uncertainty, i.e., when only probabilistic in- ity p:, indicating howd; is likely to be present in the fi-
formation about the future is available. Acquisition and nal sub-instancé’. Consider finally that onc# is spec-
validation of input data is one of the most challenging ified, the solver has no opportunity to solve it directly
issues in almost any real-world application of opera- (for example she/he has to react quasi-immediately, so
tions research techniques. Although several well estab- N0 sufficient time is given to her/him).
lished theoretical models exist for problems arising in  In this case, a possible way for a decision maker to
practical applications, direct application of theoretica proceed is to compute amticipatory solutionS for II,
developments may be difficult or even impossible due i.e., & solution for the entire instanégand oncel’ be-
to incompleteness of data, or due to their questionable comes known, to modify§ in order to get a solutios”
validity. Occasionally, one may be asked to produce an fitting I’. The objective is to determine an initial solu-
optimal operational design even before a complete de-tion S for I such that, for any sub-instan¢eC I pre-
terministic picture of input data is provided, but only sented for optimization, the solutic$f respects some
based on estimations and statistical measures. pre-defined quality criterion (optimality, achievement of

We deal in this paper with the following probabilis- a "good” approximation ratio, etc.).

tic combinatorial optimization model under data uncer-
tainty. Consider a generic instant®f a combinatorial

optimization problemil. Assume thafl is not to be 2 Preliminaries

In what follows, we restrict ourselves in problems
defined on graphs. Consider a gragfV, E) of or-
der n, instance of a combinatorial optimization prob-

* Part of this work has been performed while the second
author was with the University of Athens on a visiting pasiti
supported by the Greek Ministry of Education and Research

under the project PYTHAGORAS I lem II, and ann-vectorPr = (py,...,pn) of vertex-
Email: Cécile Murat [murat@lamsade.dauphine.fr], Vange- probabilities, eactp;, measuring how likely is for ver-
lis Th. Paschos [paschos@lamsade.dauphine.fr]. texv; € V, i = 1,...,n, to be present in the final
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subgraphG’ C G, on which the problem will be re-
ally solved. Consider a stratedy called modification
strategy such that, when a sét’ C V is finally re-
alized, M modifies any solutionS for II into a solu-
tion S’ feasible forIl in the subgraphz’ = G[V]
of G induced byV’. Denote bym(G’, 5", M) the objec-
tive value ofS’ in G’. Then, the value of for G, de-
noted byE (G, S, M) (and frequently callefunctiona),
is the expectation ofr(G’, S’, M), over all the possible
induced subgraph&’ of G. Formally, given an antic-
ipatory solutionS, the functionalE(G, S,M) of S is
defined by:

E(G,SM) = Y Pr[VIm(G,S'm) (1)
V'Ccv
wherePr[V'] is defined by
H Di H 1 _pz
v, €V vy, eV\V/

and represents the probability that the vertexlgét
will be the set finally present for optimization (in other
words,G[V'] will be the instance where finallif will

be solved).

Let us note that from (1) it can be seen that the
functional of a probabilistic combinatorial optimization
problem is defined with respect to the chosen mod-
ification strategyM A different modification strategy
derives a different probabilistic problem. The quan-
tity, £(G, S,M) can be seen as the objective function of
a new combinatorial problem, derived frarhand de-
noted byPROBABILISTIC IT in what follows, where we
are given an instanc@ of I1, a probability vecto®Pr
on the vertices o7 and a modification strategyl The
objective is then to determine a solutiéfi in G (op-
timal anticipatory solution) optimizin@ (G, S,M). The
optimization rule ofPROBABILISTIC II is the same as
the one ofll.

Concrete applications giving rise to probabilis-
tic combinatorial optimization problems are given
in [17,18]. They come from satellite shots planning,
timetabling, etc. We revisit one of them, the probabilis-
tic timetabling. Consider for a given University-fall a
list of potential classes that students can follow. Any
student has to choose a sublist in this list. For any
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class will take place before the closing of students reg-
istrations (we can reasonably assume that the choice of
any student is a function of the contents of the course,
of the teacher, etc.). On the other hand, one can, for
example by statistical data on the behavior of the stu-
dents in the past years, assign probabilities on the fact
that such or such class will really open, the mandatory
courses been assigned with probability 1. The prob-
lem for the University planning services is how much
rooms are to be scheduled for the set of the courses
offered. This problem is typically an instancer#oB-
ABILISTIC MIN COLORING if one considers courses
as vertices and if he/she links two such vertices if the
corresponding classes cannot take place in the same
room (because, for instance, they are planned with the
same professor, or are assigned with overlapping time
slots). This type of graph is known under the term
“incompatibility graph”. Here, an independent set, i.e.,
a potential color, corresponds to a set of “compatible
classes”, i.e., to classes that can be assigned with the
same room. The number of colors used in such a graph
represents the total number of rooms assigned to the set
of classes considered. The probabilities resulting from
the statistical analysis on the former students’ behavior,
are the presence probabilities for the vertices (i.e., the
probabilities that the corresponding classes will really
take place). Starting from an anticipatory solution, i.e.,
from a coloring of the incompatibility graph, the func-
tional represents, in some sense, the average number of
the necessary rooms for the courses planned.

This way to tackle data uncertainty in combinatorial
optimization is calleda priori framework for proba-
bilistic combinatorial optimizatior{this term has been
introduced by [9]). Under this model, restrictive ver-
sions of routing and network-design probabilistic mini-
mization problems (in complete graphs) have been stud-
ied in [1,3-6,9-12]. In [7], the analysis of the prob-
abilistic minimum travelling salesman problem, orig-
inally performed in [3,9], has been revisited and re-
fined. In[15,17,8] the minimum vertex covering and the
minimum coloring are tackled, while in [13,14] prob-
abilistic maximization problems, namely, the longest
path and the maximum independent set, are studied.
In [20,19], the Steiner forest problem and the classical
Steiner tree problem are handled, respectively. An early

class one knows the title, the lecturer and the time slot Survey about a priori optimization can be found in [2]
assigned to it, each such slot being proposed by theWhile, a more recent one appears in [16].

lecturer in charge. A class will open if it is chosen by

As already mentioned, in probabilistic combinatorial

sufficient students (whose the number is above a given optimization, the combinatorial problem to be solved,

threshold). So, nobody knows a priori if a particular

being subject to hazards or to inaccuracies, is not de-
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fined on a static and clearly specified instance, since thewhose solutions are subsets of the input edge-set veri-
instance to be effectively optimized is not known with fying some specific property and the restriction of any
absolute certainty from the beginning. The goal here is anticipatory solution to any subgraph of the input-graph
to compute solutions that behave “well” for any subset is feasible. For any of the categories considered in Sec-
of the initial data-set. In this sense, a priori probabiist tions 3., 4. and 5., we give sufficient conditions un-
combinatorial optimization can be seen as a particular der which functionals are analytically expressible and
case of stochastic programming addressed for combi- polynomially computable and anticipatory solutions are

natorial optimization problems.

There are two major computational challenges asso-

well-characterized. Let us note also that for any prob-
lem in these categories, restriction of any anticipatory

ciated with a probabilistic combinatorial optimization solution to any realized subgraph produce feasible so-
problem:

obtain a polynomial time computable expression for
the objective functionE(G, S,M) (let us note that
this function carries, by (1), oveX* additive terms;
henceforth the complexity of its computation is not
trivially polynomial);

give a closed tight combinatorial characterization of
the optimal anticipatory solution (this implies the
derivation of a compact combinatorial characteriza-
tion of the solution optimizing (1)).

lutions for the subgraph at hand.

In Section 6., things become more complicated since
the problems handled have as solutions connected sub-
sets of the input edge-set that are either cycles, or paths,
or trees. For this type of problems, the restriction of
the anticipatory solutiort to G[V'] is not feasible in
general and some additional work (with low algorith-
mic complexity) is needed in order to render this set
feasible. Informally, it could be the case that restriction
of the anticipatory solutiors' to the present subgraph

G’ = G[V’] leavesS non-connected. So, in order to
produce a feasible solution f@’, one has to recon-
nect the connected componentssfAs we will see,

in this case, anticipatory solutions cannot be as well-
and compactly characterized as those of Sections 3., 4.
and 5.. However, we give sufficient conditions under
which functionals for the probabilistic counterparts of
the concerned problems are computable in polynomial
time.

The structural results given in the paper immediately
apply to several well-known problems, for instanaey
VERTEX COVER MAX INDEPENDENT SET, MIN COL-
ORING, MAX CUT, MAX MATCHING, MIN TSP, etc.,
producing particular results interesting per se. Further-
more, the scope of our results is even larger as they
capture problems even defined on set-systems like the
MIN SET COVER So, this work can provide a frame-
will be specified later) in order to get a feasible solution work for a systematic classification of a great number
for G'. of probabilistic derivatives of well-known combinato-

We handle three categories of combinatorial graph- rial optimization problems.
problems exhausting a very large part of the mostknown In what follows, we deal with problems iNPO.
ones. In Section 3., we study problems whose solu- Informally, this class contains optimization problems
tions are subsets of the input vertex-set verifying some whose decision versions belongNi®. Given a combi-
specific property. In Section 4., we handle problems natorial problenil € NPO, we denote byyROBABILIS-
whose solutions are collections of subsets of the input Tic II, its probabilistic counterpart defined as described
vertex-set verifying some specified non-trivial heredi- previously and assume that the vertex-probabilities are

Our goal in this paper is to go beyond study of prob-
abilistic versions of particular combinatorial problems
and to propose a structural way to handle this model.
Notice that, for any probled, its probabilistic counter-
part,PROBABILISTICII, containdI as subproblem (just
consider probability vectof1,...,1) for II). Hence,
from a complexity point of viewpROBABILISTIC IT is

at least as hard a§, that is, ifII is NP-hard, therPROB-
ABILISTIC IT is alsoNP-hard, while ifIT is polynomial,

no immediate conclusion can be derived for the com-
plexity of PROBABILISTIC II, until this latter problem

is explicitly studied.

In what follows, we consider the following very sim-
ple quick modification strategil Given an anticipa-
tory solutionS and a subgraptG’ = G[V'], S’ is the
restriction of S in G'. If S’ is feasible forG’, then re-
tain it. If not, quickly “patch” S’ (a possible patching

tary property . In Section 5., we deal with problems

L A property 7 is hereditaryif, whenever is satisfied by a
graphG, it is satisfied by any subgraph &f; a hereditary

independent.

property« is non-trivial if it is true (satisfied) for infinitely
many graphs and false for infinitely many graphs.
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Let A be a polynomial time approximation algorithm
for an NP-hard graph-problentl, let m (G, S) be the
value of the solutiorb provided byA on an instancér
of II, and optG) be the value of the optimal solution
for G (following our notation forPROBABILISTIC I,
m(G,S) = E(G,S,M) and optG) = E(G,S*,M)).
The approximation ratip, (G) of the algorithmA on G
is defined byp,(G) = m(G, S)/opt(G). An approx-
imation algorithm achieving ratio, at most, on any
instanceG of IT will be called p-approximation algo-
rithm. Since modification strategylused in each sec-
tion of the paper is unique and fixed, it will be omitted
for simplicity from the mathematical expressions.

3. Solutions are subsets of theinitial vertex-set

Cécile Murat & Vangelis Th. Paschos— Probabilistic optatian

fact that presence-probabilities of the verticed/oare
independent, we get:

Z 1{m€V’} Pr [VI] =
VICV

> Pr[V]

viev,

Z Pr[{v;} UV”]

VI'CV;

Z Pr [v;] Pr[V"]
VICy;
= Prlv] Z Pr(V'] = p;

VICV;
©)

Combination of (2) and (3) immediately leads to the
expression claimed foE (G, 5).
It is easy to see that this functional can be computed

In this section, we deal with graph-problems whose ip time Iingar inn. Furth_ermore, computation of.the op-
solutions are subsets of the vertex-set of the input-graph. fimal anticipatory solution forroBABILISTIC ITin G,

We further assume that given a solutiShand a set
V' C V, the restriction ofS in V’, i.e., the setS’ =
S NV’ is feasible forG[V']. The main result of this
section is stated in Proposition 1.

Proposition 1 Consider a graph-probleril verifying
the following assumptions: (i) an instance Hfis a
vertex-weighted grapli?(V, E, «&); (ii) solutions of II
are subsets oV; (iii) for any solution S and any sub-
setV/ C V, 5" = SnV'is feasible forG' = G[V'];
(iv) the value of any solutios C V is defined by:
m(G,S) = w(S) =), cgwi, wherew; is the weight
ofv; € V. Then, the functional oPROBABILISTICII is
expressed ast (G, S) = Zvies w;p; and can be com-

puted in polynomial time. Furthermore, the complexity

of PROBABILISTIC IT is the same as the one Hf
Proof. Fix a subsef’’ C V and an anticipatory solu-
tion S for PROBABILISTIC IT on GG. According to as-
sumptions (iii) and (iv),S’ is feasible forG[V'] and
its value is given bym(G',S") = >, cqwil{y,evry-
Then, denoting by  the indicator function of a fadt’
and using (1) we get:

E(G,S)= Y m(G,8)Pr[V]
V'V

Z Z wil{vieV’} Pr [V’]

VTV v;eS

= Z Wy Z 1{vi€V/} Pr [V/]

v; €S VICcv

(@)

For any vertexv; € V, letV; = V' \ {v;} andV] =
{(V'CV: V' ={y}uV"” V" CV;}. Using also the

obviously amounts to the computation of the optimal
weighted solution fofI in G(V, E, '), where, for any

v; € V, w; = w;p;. Consequently, by this observation
and by assumption (iv)] andPROBABILISTIC IT have
the same worst case complexitw.

Although computation of the functional is, as we
have mentioned, a priori exponential (since it carries
over the2™ possible subgraphs @F), assumptions (i)
through (iv) in Proposition 1 allow polynomial compu-
tation of its value. This is due to the fact that, under
these assumptions, given a subgrdphinduced by a
subsetl’’ C V, the value of the solution fof’ is the
sum of the weights of the vertices 1N V’. Further-
more, a vertex not i will never make part of any
solution in any sub-graph off. Consequently, com-
putation of the functional amounts to determining, for
anyG’, which vertices make part &fn'V’. This can be
done by specifying, for any; € S, all the subgraphs to
which v; belongs, and by performing a summation of
the presence-probabilities of these subgraphs. This sum
is equal top; (the probability ofv;). This simplification
is the main reason that renders functional’'s computa-
tion polynomial, despite of the exponential number of
terms in its generic expression.

Notice that Proposition 1 can also be used for getting
generic approximation results f@roBABILISTIC II.
Indeed, since this problem is a particular weighted ver-
sion of I, one immediately concludes thiéitlI is ap-
proximable within approximation ratip, SO iSPROBA-
BILISTIC II.

Corollary 1 Under the hypotheses of Proposition 1,
whenevedl and PROBABILISTIC IT are NP-hard, they
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are equi-approximable.

Proposition 1 has also the following immediate corol-
lary dealing with the case of probabilistic versions of
unweighted combinatorial optimization problems.
Corollary 2 Consider a problemlI verifying assump-
tions (i) to (iv) of Proposition 1 withi = 1. Then,
the functional of PROBABILISTIC II, is expressed as:
E(G,S) =}, cspi and can be computed in polyno-
mial time. FurthermorepROBABILISTIC II is equiva-
lent to a weighted version dil where vertex-weights
are the vertex-probabilities.

Corollary 2 is weaker than Proposition 1 since it sim-
ply establishes a kind of (obvious) reduction frdin

to PROBABILISTIC II stating that whenevdid is NP-
hard, so iROBABILISTIC II. However, ifIl is polyno-
mial, the status oPROBABILISTIC II remains unclear
by Corollary 2.

Proposition 1 can be applied to a broad class of prob-
lems that fit its four conditions, @ROBABILISTIC MAX
INDEPENDENT SET([14]), PROBABILISTIC MIN VER-
TEX COVERING ([15]), etc. We describe in what follows
two further applications, namelyROBABILISTIC MAX
INDUCED SUBGRAPH WITH PROPERTYr andPROBA-
BILISTIC MIN FEEDBACK VERTEX-SET.

3.1. PROBABILISTIC MAX
WITH PROPERTY 7

INDUCED SUBGRAPH

Consider a graplZ(V, E') and a non-trivial hered-
itary property. A feasible solution fanAx INDUCED
SUBGRAPH WITH PROPERTY~ is a subsetl’’ C V
such that, the subgrapff[V’] of G induced byV’
satisfies m. The objective is to determine such a
setV’ of maximum-size. Note thatjridependent s&t
“cliqgue’, “planar grapli are hereditary properties.
In the weighted version of the problem (i.e., the one
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3.2. PROBABILISTIC MIN FEEDBACK VERTEX-SET

Given an oriented grap&(V, A), afeedback vertex-
setis a subsel”’ C V such thatl’”’ contains at least a
vertex of any directed cycle daf. In MIN FEEDBACK
VERTEX-SET, the objective is to determine a feedback
vertex-set of minimum size.

Remark that, absence of a vertexrom a feedback
vertex-setl’’, breaks any cycle containing this vertex.
If v makes part of an anticipatory solutiéhthen, since
no such cycle that containedexists inG’, feasibility
of the solutionS' NV’ does not suffer from the absence
of v. So, Corollary 2 applies for this problem.

Note that the weighted version of this problem can
be tackled in a similar way.

4, Solutions are collections of subsets of the initial
vertex-set

We now handle problems the feasible solutions of
which are collections of subsets of the initial vertex-
set. Consider a grapH(V, E') and a combinatorial op-
timization graph-problenil whose solutions are col-
lections of subsets of verifying some specified non-
trivial hereditary property. The following theorem char-
acterizes functionals and optimal anticipatory solutions
for such problems.

Proposition 2 Consider a graph-probleril verifying
the following assumptions: (i) an instance Hdfis a
graphG(V, E); (i) a solution of Il on G is a collection

= (WV1,..., Vi) of subsets oV each of them sat-
isfying some specified non-trivial hereditary property;
(iii) for any solution S and any subset” C V, the re-

striction S’ of SinV’,i.e.,S8' = (VinV’/, ..., Vi,NV’),
is feasible foiG’ = G[V]; (iv) the value of any solution
S C V of IT is defined bym(G, S) = |S| = k. Then,

E(G,S) = 27 1(1=]T,,ev, (1—p:)) and can be com-

where positive weights are associated with the vertices puted in polynomial timePROBABILISTIC IT amounts

of (), called MAX WEIGHTED INDUCED SUBGRAPH
WITH PROPERTYm, we search for maximizing the total
weight of V',

Given a solutionS for MAX WEIGHTED INDUCED
SUBGRAPH WITH PROPERTY7 and an induced sub-
graphG[V’] of the input graptG(V, E), the setSN 'V’
is a feasible solution fo&/[V’], since, by the definition
of «, if a subsetS C V induces a subgraph verifying
it, then any subset of also induces a subgraph veri-
fying . HenceforthMAX WEIGHTED INDUCED SUB-
GRAPH WITH PROPERTYr fits the conditions of Propo-
sition 1.

to a particular weighted version df, where the weight
of any vertex; € V is1—p;, the weightu(V;) of a sub-
setV; C V is defined byw(V;) =1 -], ey, (1 — ps)
and the objective function to be optlmlzed is equal to
2 v,es w(Vi)-
Proof. Con5|der an anticipatory solutionS
(V1,Va,..., Vi) and a subgrapltz’ = G[V'] of G.
Denote byk’ = m(G’,S"), the value of the solution
obtained onGG’ as described in assumption (iii). Then,
E(G,S) = ZV/CV Pr[V']k".
Con5|der the factsF;: V; NV/ # 0 and Fj: V; N

k
= (. Then,k’ can be written ag’ = >°7_| 15, =
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Z’;l(l —1p,) andE(G, S) becomes:

J

k
E(G,S) v (1 1 F)
vy o1-

j=1

(4)

It is easy to see that computation 8fG, S) can be
performed in at mosD(n) steps; consequentlyRoOB-
ABILISTIC IT is in NPO. Furthermore, by (4), the char-
acterization of the feasible solutions fBROBABILIS-
Tic II claimed in the statement of the proposition is
immediate.m

Central role for yielding result of Proposition 2 plays
the fact that the property satisfied by the sets of the col-
lection S is hereditary. This allows to the non-empty
sets of the restriction of to V' to be a feasible solu-
tion for G[V’] and, consequently, to expreg§G, S)
as in (4), using the facts; and F}.

Assume thap; = 1, for anyv; € V. Then, by (4),
E(G,S) = k andproBABILISTIC IT coincides in this
case withlI.

Corollary 3 If II is NP-hard, thenPROBABILISTIC II

is alsoNP-hard.

As for Corollary 2, Corollary 3 settles complexity only
for the case wherél is NP-hard, leaving unclear the
status ofPROBABILISTIC II whenII € P.

Proposition 2 also captures numerous combinatorial
optimization problems, aBROBABILISTIC MIN COL-
ORING ([17]), PROBABILISTIC MIN PARTITION INTO
CLIQUES, etc. In what follows, we describe two further
applications, namel\yROBABILISTIC MIN COMPLETE
BIPARTITE SUBGRAPH COVERand PROBABILISTIC
MIN CUT COVER. Then, we show that Proposition 2
can go beyond graphs by giving a formulationnafy
SET COVERas a graph-problem and proving that, ac-
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cording to this formulationPROBABILISTIC MIN SET
COVER also fits conditions of Proposition 2.

4.1. PROBABILISTIC MIN COMPLETE BIPARTITE
SUBGRAPH COVER

Given a graphG(V, E), a solution ofMIN COM-
PLETE BIPARTITE SUBGRAPH COVERIS a collection
C = (W, Va,..., V) of subsets o¥/ such that the sub-
graph induced by any of th&’s, i = 1,...,k, is a
complete bipartite graph and for any edgev) € E
there exists & containing both: andv. The objective
here is to minimize the sizg| of C.

Remark first that the property “complete bi-
partite graph” is hereditary. Consider a solution
C (Vi,..., Vi) of MIN COMPLETE BIPARTITE
SUBGRAPH COVERand a subse¥’ C V. The set
C'=(WnV', ..., VpxnV’), is feasible foilG' = G[V’].
Indeed, if a vertex disappears from some s&t of an
anticipatory solutiorC, the surviving set; \ {v} al-
ways induces a complete bipartite graph. Furthermore,
except for the edges that have been disappeared (the
ones incident ta) any other edge remain covered by
the surviving sets of.

S0, PROBABILISTIC MIN COMPLETE BIPARTITE
SUBGRAPH COVERmMeets the conditions of Proposi-
tion 2.

4.2. PROBABILISTIC MIN CUT COVER

Given a graph=(V, E), a feasible solution fomIN
CUT COVERIs a collection(V4, ..., V}) of V such that
anyV;,i=1,...,kis acut, i.e., for anfu,v) € F,
there exists &; such that either. € V; andv ¢ V;, or
u ¢ V; andv € V;. The objective is to minimize the
sizek of the collection.

Consider a solutiory = (V4,..., V) for MIN CUT
COVER. If a vertexv € V is absent, then any edge in-
cident towv is also absent. So, the edges of the final
graphG’(V', E’), remain feasibly covered by the re-
striction of Sto V'. Hence,s’ = (VinV’, ..., VpNV’)
is feasible formIN CUT COVER, that meets the condi-
tions of Proposition 2, since property “cut” is hereditary.

4.3. PROBABILISTIC MIN SET COVER

Given a collectionS = {Sy,...S,} of subsets of
a ground setC = {e1,...,c,} (it is assumed that
Us,esSi = C), MIN SET COVERING consists of deter-
mining a minimum-size set cover 6f, i.e., a minimum-
size sub-collectio’ of S such thatug,cs/S; = C.
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Starting from an instancgS,C) of MIN SET
COVER, one can construct an edge-colored multi-
graph GC(VC,EC,ZS) as follows: for anye; € C,
add a vertexy; € V¢, for any pairc;, ¢; of elements
in C, add a new edgév;, v;) colored withSj, only if
Sk D {Ci, Cj}.

In the so-constructed grapliic a set S; =
{¢iy,...ci,} € S becomes a cligue on vertices
vi,, ..., 0, € Vo all the edges of which are colored
with the same coloiS;; we will call such a cliqgue a
unicolored clique. Under this formulatiomjiN SET
COVER can be viewed as a particular clique-covering
problem where the objective is to determine a minimum
size cover ofV- by unicolored cliques.

Consider a set cove?’ for the initial instancésS, C)
and a sub-instancE of (S, C) consisting of some el-
ements ofC and of the subsets &f including these
elements. These objects correspond; i, to a vertex-
covering by unicolored cliques and the subgraph
of G¢ defined with respect té'. Restriction ofS’ in I’
can be viewed, with respect ¢, as restriction of the
initial vertex-covering by unicolored cliques to the ver-
tices of Gi,. Observe finally that “unicolored clique” is
a hereditary property. So, under this formulatipROB-
ABILISTIC MIN SET COVER perfectly fits conditions of
Proposition 2.

According to the formulation used fomIN SET
COVER, given an instance(S,C) with element-
probabilities p;, for any ¢, € C, and a feasi-
ble solution &’ of (S,C), then, E((S,C),S') =
>sies'(1 = Ile,es, (1 — p;)) and can be computed in
ponnomlaI time. The probabilistic version ofiN SET
COVER amounts to a particular weighted version of the
initial problem where each sé& = {¢;,,...,¢;, } inS
is weighted byl — H?Zl(l — i, )

Hence,PROBABILISTIC MIN SET COVERIs indeed
a simple weighted version ofiN SET COVER, where
one has to determine a set cover minimizing its total

weight. In this sense, the problem dealt seems to be

simpler than the majority of the problems captured by
Proposition 2 as, for instanc®yN COLORING. This is
due to the fact that, dealing withiN SET COVER, there

is a polynomial number of unicolored cliquesif; (the
sets ofS) candidate to be part of any solution, while,
for MIN COLORING the number of the independent sets
that may be part of a solution is exponential.
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4.4. A generic approximation result for the problems
fitting conditions of Proposition 2

This section extends an approximation result of [17]
for PROBABILISTIC MIN COLORING, in order to cap-
ture the whole of problems meeting the conditions of
Proposition 2.

Consider such aNPO problemll, aninstancé& (V, E)
of II, setn = |V| and consider a solutior
(V1,..., Vi) of T on G (recall thatVy, ..., V; are as-
sumed mutually disjoint). Denote by, andp,.x the
minimum and maximum vertex-probabilities, respec-
tively. Then, the following bounds hold fdt (G, S):

Z Z plpjakpmln

=1 j=14+1

< min {Zpl X NMPmax, } (5)

max E
=1

< E(G,

Observe first that the rightmost upper boundig(=, .S)
in (5) is immediately derived from the expression
for E(G, S) in the statement of Proposition 2.

We now prove the leftmost upper bound and the lower
bounds of (5). We first produce a framing for the term
1 —II,,ev,(1 — pi). For simplicity, assum¢V;| = ¢
and arbltrarlly denote vertices iWi; by v1,...,ve. By
induction on¢, we show that:

14 4
L-JIa=-p) <) p
=1 =1
(6)
For the left-hand side of (6), observe first that it is true
for ¢ = 1 and suppose it true fdr=x, i.e.,> ;| p; —

D 27 i Pipg S T—=T[Z (1 —pi), or

sz Z Z pipj <

=1 j=i+1

[T -»)< 1—sz+z Z pip;  (7)

=1 =1 j=1i+1

Suppose now that = « + 1 and multiply both terms



56

of (7) by (1 — px+1); then:

Kk+1
H 1 pz < ( —ZPH-Z Z png) 1 p/-chl)
1=1 1=1j=14+1

—1—sz+z Z PiPj — Pr1+

1=1 j=1i+1

Pr+1 sz Pr+1 Z Z DiPj

1=1 j=1i4+1
Kk+1 k+1 k+1

=12 mit ) D v

1= 1] 1+1

anrlZ Z pip;

i=1 j=i+1
Kk+1 k+1 k+1

S p+ ) X p

=1 j=1i+1

that proves the left-hand side inequality in (6).

For the right-hand side of (6), we show by induction
on/that]]i_,(1 —pi) > 1—S'_, pi. This is clearly
true for/¢ = 1. Suppose it also true for ay< «, i.e.,
[T, (1=p;) = 1->"7, p;- Then, by multiplying both
members of this inequality byl — p..11), we get that
the product obtained is equal to- p,. 11 — > 1, pi +

Pr+1 Zle pi = 1— Z;H—ll Dis qed
Remark 1 Let us note that (6) is a special case of the
following well-known result of the inclusion-exclusion

principle: if Pr(4;) = p;, thenPr(n; A;) = So — 51 +
Sy — S3 + ... where:
Se= > Pr(A,nA,n..NA)

i1 <t2<...ig

and
So—S1+S2—. . —Sor_1 SPT(Q/L) <So—S1+ . +5%

Inequality (6) is the case where all; are independent,
andk = 1.
Taking the sums of the members of (6) for = 1
to k, the right-hand side inequality immediately gives
(G S) < Z —1Di-
We now prove thatE(G,S) > > pi —
> i1 2 j—iy1 Pipj (the leftmost lower bound claimed
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in (5)). From the left-hand side of (6), we get:

m=1 i=1 i=1 j=i+1 i=1

k 4 4 n n n
Z Z Z pipj 2 sz' - Z pip; (8)
m=1i=1 j=i+1 i=1 i=1 j=i+1

Observe that, from the first inequality of (6), we have:

k 14 4 4 k

Z (Zpi—z Z pz‘pg) < Z <1—
m=1 \ i=1 =1 j=i+1

The righthand side of (9) is exactlif(G, S). Putting
this together with (8), the leftmost lower bound
for E(G,S) in (5) is proved.

Finally, in order to derive the rightmost lower bound
in (5), observe thaf],, s (1 —pi) < (1= pmin)¥! <
1 — pmin, 1.€.,1 — Hv es; (1 — ;) 2 Pmin- SUMmMing
for j = 1to k, we get thé bound claimed.

We are ready now to study an approximation algo-
rithm for the whole class of problems meeting Propo-
sition 2. Fix a vertex-probability’, assume that there
exists ap-approximation polynomial time algorithr
for II, and run the following algorithm, calleRA for
PROBABILISTIC IT:

(1) partition the vertices of7 into three subsets: the
first, V1 including the vertices with probabilities at
most1/n, the second}s, including the vertices
with probabilities in the interval /n, p’] and the
third, V3, including the vertices with probabilities
greater than’;

(2) feasibly solvdI in G[V;] andG[V,] separately;

(3) runAin G[V5];

(4) take the union of the solutions computed in steps 2
and 3 as solution fof.

Theorem 1 If A achieves approximation ratip for II,
thenRA approximately solves in polynomial tirr@oB-
ABlLISTIC IT within ratio O(,/pn).
Proof. Denote by S* = (V{*,..., V) an optimal
anticipatory solution, byS = (V4,...,Vi) the ap-
proximate anticipatory solution computed in step 4
and, respectively, byS; = (Vi;,..., V&:\,i) and

S; = (f/u, . .,V‘Si‘_j), the optimal and approximate
solutions inG[V;], ¢ = 1,2,3. Denote byS*[Vi],
S*[V2] and S*[V3] the restrictions ofS* in G[V4],
G[V2] and G[Vs], respectively. Denote finally by,
the orders ofG[V;], for i = 1,2, 3, respectively. The
proof is based upon the following claims.
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(1) Any feasible polynomial time approximation al-
gorithm for PROBABILISTIC II achieves in the
graphG[V;] approximation ratio bounded above
by 2.

(2) Any feasible polynomial time approximation al-
gorithm for PROBABILISTIC II achieves in the
graph G[V;] approximation ratio bounded above
by O(np’).

(3) Assuming thatA achieves approximation ratio
for II, when running inG[V5] it achieves approx-
imation ratio bounded above hy/p’ for PROBA-
BiLISTIC II.

For Claim 1, using (5) forS; and S, we get:

E(GW],S) < 3%pi and E(GV].ST) >
S pi— S L pip;. Combining them, we
derive:
31: 31: PiDj
E(GW],S7) St j
EGVL.5) ~ m
(G W], S1) ;pi

ni 2 ni
(z pi) R
=1 =1

ni
2 Z Di
i=1
ni 1 9 ni
Z bi Z b; Z bi
/1_121 1=1 /1_121
2 T 2
2 Z Y23
=1
(10)

Since p;’s are smaller thanl/n and n; < n, the
right-hand side of (10) is at least as large B&.
Hence, every algorithm foll in G[V;] achieves ratio
E(G[W1],51)/E(G[V4],S7) < 2 for PROBABILIS-
Tic II, and the proof of Claim 1 is complete.

We now prove Claim 2. Here, for any, p; > 1/n.
Consequently,l — Hvievj*z(l -—p) =2 1-(01-

(/)5 > (Vis|/n) — (Vi |(1Via| = 1)/20%),
where the last inequality is an easy application of the
left-hand side of (6) wittp; = 1/n for any vertexv;.

Furthermore:
Vial  [Vial (V2 =1) _ [Vl 1_"@‘5 -1
n 2n2 n 2n

> V] Lt
2n
Vil

n
2n

> (11)
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Summing inequality (11) for; = 1,...,|S5|, we
get E(G[V2],S3) = na2/2n, whereny is the order
of G[V:]. On the other hand, using the leftmost upper
bound in (5), we geE(G[Vz], S2) < nep’. The bounds
for E(G[Vz], S5) andE(G[Vz], S2) immediately derive
approximation ratio at mosinp’ = O(np’) for every
algorithm solvingproBABILISTIC IT in G[V2] and the
proof of Claim 2 is complete.

We now turn to Claim 3. Using the rightmost
lower bound of (5),E(G[Vs],S5) > |S5|p’. On the
other hand, by the rightmost upper bound of (5),
E(G[V3],S3) < |Ss|. So, assuming thak achieves ra-
tio p for I1, step 3 achieves rati®pSs|/|S5|)p’ for G[Vs],
that turns out to a ratio bounded above byp’ for
PROBABILISTIC IT, completing so the proof of Claim 3.

We prove that, for anys € {1,2,3}: E(G,S*) >
E(G[Vk],S* [Vk]) > E(G[Vk],SZ) Remarkthaﬂ*[Vk]
is a particular feasible solution fo&[V4]; hence:
E(G[Vi], S*[Vk]) = E(G[V%], S;). In order to prove
the first inequality, fix ak and consider a component,
say V" of S*. Then, the contribution oV in S*[Vj]
is:1— HviGVj*ﬂVk (1 _pi) <1- HviGVj* (1 —pi), that
is its contribution inS*. Iterating this argument for all
the elements ir6*[V4], the claim follows.

Algorithm RA solves separately eachG[Vy],

k € {1,2,3} and returns as solutiof the union of

the solutions computed in the three induced subgraphs.
Hence, E(G,S) = E(G[W1],S1) + E(G[V2], Sa2) +
E(G[V3],S3). Furthermore,E(G, S*) is at least as
large as any ofE(G[Vi], Sf), k € {1,2,3}. So, the
ratio of the algorithm inG is at most the sum of
the ratios proved by Claims 1, 2 and 3, i.e., at most
O@2+np’ + (p/p'))-

Note that the ratio claimed in Claim 2 is increas-
ing with p’, while that of Claim 3 is decreasing
with p’. Equality of expressionsp’ and p/p’ holds
for p" = y/p/n. In this case the value of the ratio ob-
tained isO(,/pn), and the proof of the theorem is now
completed.m

5. Solutions are subsets of theinitial edge-set

We now handle problems for which solutions are sets
of edges. Notice that whenever a vertex is absent from
some subsel”’ C V, the edges incident to it are also
absent fromG[V’].

Proposition 3 Consider a graph-problemII ver-
ifying the following assumptions: (i) an instance

—

of IT is an edge- (or arc-) valued grapt¥(V, E, {);
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(ii) any solution of Il on any instanceG is a sub-
set of E; (iii) for any solution S and any sub-
set V! C V, denoting byG’(V’, E’) the subgraph
of G induced byV’, the setS N E’ is feasible;
(iv) the value of any solutior5 C FE of II is de-
fined by: m(G,S) w(S) = (v, 0,)es (Vi v5),
where{(v;, v;) is the valuation of(v;, v;) € E. Then,
E(G,S) = > (4,0;)es £(vi,vj)pip; and can be com-
puted in polynomial time. Furthermore, dealing with
their respective computational complexitiesROBA-
BILISTIC IT andII are equivalent.

Proof. Set S’ S N E’. By the assumptions of
the proposition,S’ is feasible forG’. Furthermore,

m(G/7S/) ( Z:) Sé(vi’vj)l{(viﬂ)j)EE/}' Then,
vi,Uj)E

using (1):
E(G,8)= Y m(G,8)Pr[V]

VIcv

=Y > L) Iwen PrV]

V'CV (vi,v)ES

Y4 (Ui, ’Uj)
)ES

B Z Li(vi,0)eEry Pr(V']
(vi,v; vicy

(12)

Every(v;,vj) € Ebelongstaz’ = G[V'], ifand only if
both of its endpoints belong ©0'. LetV;; = V\{v;,v;}
andV, ={V' CV V' = {v;} U{v} UV", V" C
Vi; } be the set of all the subsetsWfcontaining both;
andv;. Using also the fact that presence-probabilities
of the vertices of” are independent, we get:

> Ywiopery PriV]= > PrV/]

vicy vievy,
= Z Pr[{vi} U{v;} UV"]

V//g‘/ij

= Z pip; Pr (V"]

V//g‘/ij

=pip; Y, Pr[V’] = pip
V//g‘/ij

(13)

Combination of (12) and (13) immediately leads to the
expression claimed for the functional.

It is easy to see that this functional can be com-
puted in time quadratic with.. Furthermore, compu-
tation of an optimal anticipatory solution f&ROBA-
BILISTIC IT in G obviously amounts to computation
of an optimal solution fodl in an edge- (or arc-) val-
ued graphG(V, E, ) where, for any(vi,v;) € E,
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U (vi,v5) = £(vs,v5)pip;. ConsequenthyiI andPROB-
ABILISTIC IT have the same complexity

The reasons for which the functional derived in
Proposition 3 becomes polynomial are quite analogous
to those of Proposition 1. Since an edge that does not
belong to the anticipatory solutio$ will never be part
of SN E’ in any subgrapld”’ (V’, E) of G, the compu-
tation of the functional amounts to the quantification,
for any GG/, of the average cardinality of the s& E".

For this, it suffices to first determine, for any edge
e € S, all the subgraphs containirggand next to sum
the probabilities of these subgraphs. This sum equals
the product of the probabilities of the endpointseof

Let us note that, as in Section 3., Proposition 3 can
be used for getting generic approximation results for
PROBABILISTIC II. Since this problem is a particular
weighted version ofI (recall thatlI is also a weighted
problem), one immediately concludes thiafl is ap-
proximable within approximation ratip, So iSPROBA-
BILISTIC II.

Corollary 4 Under the hypotheses of Proposition 3,
whenevefl and PROBABILISTIC IT are NP-hard, they
are equi-approximable.

Corollary 5 Consider a problemlI verifying assump-
tions (i) through (iv) of Proposition 3 with = 1. Then,
E(G,S) = >(4,0;)es Pip; and can be computed in
polynomial timePROBABILISTIC IT is equivalent to an
edge- (or arc-) valued version @f where the value of
an edge is the product of the probabilities of its end-
points.

As for Corollary 2, Corollary 5 does not conclude some-
thing definite for the complexity ofROBABILISTIC I1
whenlI is polynomial.

5.1. PROBABILISTIC MAX MATCHING

In MAX MATCHING, the objective is, given a
graphG(V, E) to determine a maximum-size matching,
i.e., @ maximum-size subset & such that its edges
are pairwise disjoint (they have no common endpoint).

Clearly, MAX MATCHING in both edge-valued and
non-valued graphs, fits conditions of Proposition 3
and Corollary 5, respectively. Moreover, sinesx
WEIGHTED MATCHING is polynomial, bothPROBA-
BILISTIC MAX WEIGHTED MATCHING and PROBA-
BILISTIC MAX MATCHING are also polynomial.
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5.2. PROBABILISTIC MAX CUT not mentioned, the cut partitioris in subsetsl; =
) {1,3,4,7,10,13} and Vo = {2,5,6,8,9,11,12};
Consider a grapliZ(V, E). In MAX CUT (resp.MAX the anticipatory cutS (thick edges) is thenS =

WEIGHTED CUT) we wish to determine a maximum car- {(1,2),(3,6), (4,2), (4,5),(4,6),...,(13,11)} (edges
dinality (resp., maximum weight) cut, i.e., to partitibn are ordered in lexicographic order). In Figure 1(b),
into two subsets’; andV; such that a maximum num- e present graph’s and cut’s states assuming that ver-
ber of edges (resp., maximum-weight set of edges) haveyices 4, 6 and 11 are absent. The solut®rconsidered
one of their endpoints if; and the other one if;. misses in all edges of having at least one endpoint
in {4,6,11} but it obviously remains a feasible cut for
the surviving graph.

Hence, both weighted and cardinalitfROBABILIS-
TIC MAX CUT meet the conditions of Proposition 3
and Corollary 5, respectively. Consequenthpx cuT
beingNP-hard,PROBABILISTIC MAX WEIGHTED CUT
andPROBABILISTIC MAX CUT are alsoNP-hard.

6. When things become complicated: solutions are
trees, or cordless cycles

In this section we handle edge-weighted graph-
problems where a feasible solution is either a path, or
a tree, or a cordless cycle. It is easy to see that, given
such a solutionS and a sefl’” C V inducing a sub-
graphG[V'] = G'(V', E’) of G, the setS N E' may
(a) A graphG with a cut S (thick be not feasible fot:’.
edges) Consider a problenil where a feasible solution is
a path, or a tree, or a cordless cycle denotedShy
Consider that the vertices if are ordered in some
appropriate order. Assume th& N E’ is a set of
k = k(G") (in other wordsk depends on the present
graphG’) connected subsets;, Cs, ...,y of S but
that S” = U%_, C; is not connected (i.e$” does not
constitute a feasible solution fdf). The vertices of
eachCy, Cs, ..., Cy are ordered consistently with the
chosen order of.

We consider a kind of “completion” of” by addi-
tional edges linking, fof = 1,..., k—1, the last vertex
(in the ordering considered fa&¥) of C; with the first
vertex ofC; 1. In other words, giverd (representing a
connected set of edges) aid, and assuming that ver-
tices of S are ordered following some appropriate or-
der, we apply the following algorithm, denoted Byn
the sequel (recall that’ is ordered following the order

(b) Some “surviving” sub-
graph and the “surviving” so-

lution considered forS):
Fig. 1. An example foPROBABILISTIC MAX CUT. (1) computeSNE’; letCy, Cs, ..., Cy betheresulting
connected components §fN E;
We can represent an anticipatory citas a set (2) fori =1,...,k—1,use an edgetolink the last ver-
of edges in such a way that whenevet,v;) € S, texwv, of C; to the first vertex, of C;;1 (wherep
v, € Vi and v; € Vi For example, in Fig- andq are indexes of vertices according to the cho-

ure 1(a), where for simplicity values of edges are sen ordering fois), if p < ¢ in the order consid-
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ered forsS; more:

(3) output the obtained solution and denote it$jy
Obviously, in order that step 2 @fis able to link com- m (G, 5") = Z € (i, 05) (v )esy
ponentsC; andC; 1, an edge must exist between the (vi,v)€E
verti_ces implied; otherwise@ |s definitely unfeasible. = Z € (03,95) 1(v;,0,)e870C[E)}
So, in order to assure feasibility, we make, for the rest (vir0))EE
of the section, the basic assumption that the input graph (14)
for the problems handled is complete.

In what follows, we denote by’[S’] the set of ver- By construction, any element @f[£’] is an edge (or
tices inS” and setl” (V[S'], E”) = G[V[5']]. We also arc) whose the initial endpoint corresponds to the ter-
denote by{v;, v;] the set{v; i1, vit2,...,vj-1} (i < j minal endpoint of a connected subggtof S, and the
in the ordering assumed f&t?) such that: (a) for any  terminal endpoint corresponds to the initial endpoint of
C=vdi+1,...,5—1, (vs,ve41) € S (i€, [v5,v5] is the “next” connected subsét;; of S. Then, for any
the set of vertices in the path linking to v; in S, subgraphGG’ of G, the following two assertions hold:
wherev; andv; themselves are not encountefgdBy (@) S’ € E”, and (b) any edge that does not belong
symmetry, always for < j, we denote byv;, v;] the set to E”, will never be part of any feasible solution (in-
{Vj11,Vj42, ., Un,V1,...,0;—1}. Obviously, [v;,v;] deed, for such an edge, at least one of its endpoints does

and [v;,v;] are both non-empty i is a cordless cy-  notbelongtd/[S’]). So,C[E'] C E”. Then, from (14):
cle; [v;,v;] is empty if S is a path or a tree.

Theorem 2 Consider a problenil verifying the fol- m(G',8") = Z € (vi, 05) L, es0CB)
lowing assumptions: (i) instances Hfare edge-valued (vi,v;)€E
complete graph £, ) = G(V.E. 0 () a solu- = > ) emestcien
tion of IT is a subsetS of F inducing either a path, (vi0;)EE"
or a tree, or a cordless cycle; (iii) given an anticipa- B ’ 1
tory solution S (the vertices of which are ordered in - Z (Vi 07) L (v 0)e57) +
some appropriate order), algorith# computes a fea- (vi,v;)€E
sible solutionS’, for any subgraphG’(V',E’,¢) = Z (i, v5) (v, 0,)eClE}
G[V’] of G (obviouslyG’ is complete); (iv)n(G, S) = (viv;)EE"
2 (vsv)es Ui, v5). Then, E(G, S) is computable in _ Clo )1 Nt
poiyhomial time and is expressed by: ( z;es (Vi 03) (oo ey
Vi, Vj
— o) D Z € (vi,v5) Lo, 0p)e0(E)
FE (G7 S) = Z V4 (Uz7 vj)png (i e ENS Fi
(vi,v;)€S (15)
+ Z € (vi,v5) pip; H (1—p) _
(viv;)EE"\S v €[wi,v;] Using (15), we get from (1):
+ Y Atwv)epy [ A-m)
(vi,v;)EE"\S v1€[v;,vi] E(G,S) = Z Z (03, 97) L{(ws 05 27}

VICV \(vi,v)ES
Proof. Denote byC[E’], the set of edges added &
during the execution of step 2 @&. Obviously, S’ = + Z
S U C[E']; also, if an edge belongs ©6[F’], then it
necessarily belongs t&[V[S]], the set of edges aff

€ (vi,v5) L (v, ey | PriV']
(vi,vj ) EE"\S

induced by the endpoints of the edgesirBy assump- = Z £ (vi, v5) Z Ly wyerry PrV7]
tions (i) to (iii), S’ is a feasible set of edges. Further- (vi,v;)€S viev
+ Z 14 (’Ui, Uj)
2 Recall thatS is either a path, or a tree, or a cordless cycle. (vi,v;)EE"\S
3 Itis assumed that ffv;, v;] = 0, thenH,Ule[Ui’,uj](l—pl) = X Z L (vi,0yecey Pr V'] (16)

0. VIcvV



Cécile Murat & Vangelis Th. Paschos— Algorithmic Operasigtesearch Vol.5 (2010) 49-64

As in the proof of Proposition 3, the first term of (16)
can be simplified as follows:

D Lwihw) X Hwowper PriV] =
(Ui,’Uj)GS vicv

> (i) pips

(vi,vj)€S

(17)

Using (17) in (16), we get:
E(G, S) = Z é(vi,vj)pipj—i—
(vi,v;)€S

£(vi,vj) Z 1{(vi,vj)€C[E’]} PI‘[V’]
V'CV

>

(Ui,’Uj)EE”\S
(18)

We now settle the second term of (18) that, in this form,
seems to be exponential. Consider some €dge;)
added during step 2 in order to “patch”, say, con-
nected component§; and C;4, of the anticipatory
solution S. Since (v;,v;) ¢ S, there exists inS

a sequencey = [v;,v,] of consecutive edges (or
arcs) linkingv; to v;. Assume that this sequence is
listed by its vertices and that neithey, nor v; be-
long to p. Edge (v;,v;) € E”\ S’ is added toS’
just because all the vertices jnare absent. In other
words, inclusion ofv;, v;) in C[E'] holds for any sub-
graphG'(V', E'), with V' e U}, = {V' C V :v; €
V',v; € V' and any vertex oft = [v;, v;] is absent.

Consequently, the inner sum in the second term of (18) tonian cycle (i.e., of an orderin@y, vo, . ..

can be written as:

> Nwwpecy PrivV= > PrV]
aa% vieu,,

=pp; | Q-m)+pp; [ Q-m)
v € [v;,v5] v €[vj,v4)

(19)

Combination of (16), (18) and (19) derives the expres-
sion claimed for the functional. It is easy to see that
computation of a single term in the second sum of the
functional require€)(n) computations (at most + 1
multiplications). Since this is done at ma@3tn?) times
(the edges irF), it follows that E(G, S) is computable
in O(n?), that concludes the proof of the theorem.
The fact thatE/(G, S) is polynomial is partly due to
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arc) (v;, v;) will be added inS’. These conditions carry
over, the presence or the absence of the edges initially
lying betweernw; andv; in S.

Unfortunately, in the opposite of Propositions 1 and 3,
Theorem 2 does not derive a compact characterization
for the optimal anticipatory solutions of the problems
meeting the assumptions (i) to (iv). In particular, the
form of the functional does not imply solution of some
well-defined weighted version dfl (the deterministic
support ofPROBABILISTICII). This is due to the second
term of the expression fdt (G, S) in Theorem 2. There,
the “costs” assigned to the edges depend on the structure
of the anticipatory solution chosen and of the present
subgraph ofG.

However, according to the functional in Theorem 2,
we can easily conclude that whéh is NP-hard, so
is PROBABILISTIC II. In fact settingp; = 1, for any
v; € V, we recover the objective function oF.

In what follows, we outline some problems fitting the
conditions of Theorem 2. In particular, we study cases
where feasible solutions are either cycles or trees.

6.1. Application of Theorem 2 when the anticipatory
solution is a cycle

In this section, we consideniN TSP and its proba-
bilistic version. Given a complete graph anvertices,
denoted byK,,, with positive distances on its edges,
MIN TSP consists of minimizing the cost of a Hamil-
,Up) Of V
such that,,v; € E and, forl < i < n, v;v;41 € F),
the cost of such a cycle being the sum of the distances
of its edges. We shall represent any Hamiltonian cy-
cle T (called also a tour in what follows) as the set
of its edges; its value is(K,,,T) = > . £(vi, v;).
Moreover, we arbitrarily number the vertices Bf, in
the order that they are visited ; so, we can set’ =
{(v1,v2),. .., (Vi, Vix1),s -+ oy (Vn—1,Vn), (U, v1)}

Consider an anticipatory touf in an edge-valued
complete graphK, and a set of absent vertices.
Then, application of step 1 oA may result in a set
{P1, P, ..., P} of pathst, ordered in the order ver-
tices have been visited if", that is not feasible for
MIN TSP in the surviving graph. In order to render this
set feasible, one can link (modul) the last vertex of
the pathP; to the first vertex ofP,; this is always

the same reasons as in Propositions 1 and 3 and alscpossible since the initial graph is complete.

to the way the “patching edges” are chosen at step 2

of A. Indeed, they are chosen in such a way that one * These paths may be sets of edges, or simple edges, or even

can say a priori under which conditions an edge (or

isolated vertices, any such vertex considered as a path.
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U1 V2
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(a) An anticipatory tour
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(b) The tour T’ computed
by A

Fig. 2. An example of application of algorith# for PROB-
ABILISTIC MIN TSP.

For example, in Figure 2(a), an anticipatory cy€le
derived from a (symmetridXs is shown. In Figure 2(b),
we consider that vertices, v4, vg anduvg are absent. In
a first time, application of Step 1 éfresults in a path-
set{{(v1,v2)},{vs}, {vr}}. In @ second time, we will
link vertexwvs to vs (using the dotted edge., v5)) and
vertexvs to vy (by the dotted edggys, v7)). This creates
a Hamiltonian path linking all the surviving vertices of
the initial Ks. Finally, we link vertexv; to vy (by the
dotted edg€wv7,v1)). We so build a new tour feasibly

visiting all the present vertices of the remaining graph.

6.2. Application of Theorem 2 when the anticipatory
solution is a tree

Let us now consideMIN SPANNING TREE Given
an edge-valued gragh(V, E, Z) MIN SPANNING TREE
consists of determining a tréé spanningV and min-
imizing quantitym(G,T) = 3 . {(e). For the rea-
sons discussed previously, we restrict ourselves to com-
plete graphs.

Note that in the case GfROBABILISTIC MIN TSPin
Section 6.1., its solution induces an implicit and natural
ordering of the edges. This is not the case here since var-
ious orderings can be considered. We consider a particu-
lar ordering of the vertices df derived by a depth-first-
search (dfs) starting from some leaf (numbered by 1).
Obviously, this ordering is performed ®(n) for a tree
on n vertices (recall that such a tree has- 1 edges).

For example, consider the tree of Figure 3(a) and
assume thatitis a minimum spanning tree of some graph
on 14 vertices. In what follows vertices are named by
their dfs number. This ordering partitions the edges of
the tree into edge-disjoint patlt%, P, . . . For instance,
dealing with Figure 3(a)I" is partitioned into 4 paths:

Py = {1,2,3,4,5,6,7}, P, = {5,8,9,10,11}, P3 =
{9,12} and P, = {4,13,14}.

Suppose now that some vertices are absent from the
initial graph G. Then, step 1 ofA will produce a non
connected set of edges (forming paths, any of them
being a subset of son®); denote by{ P, P;, ..., P}
the set of paths so-obtained. Order them according to
the order of appearance of their edges appear in the
dfs paths off". For anyl = 1,...,k, we link the last
vertex, sayi of path P/ to the first vertex, say, of the
path P/, ,, if i < j. Since the initial graph is assumed
complete, such an edge always exists.

With respect to the example of Figure 3(a), assume
that vertices 2, 5, 11 and 13 disappear from the initial
graph. Application of step 1 o4 returns the following
set of dfs pathsP] = {1}, P; = {3,4}, P; = {6,7},

P; = {8,9,10}, P. = {9,12}, P, = {4}, P, =

It is easy to see that all the conditions of Theorem 2 {14}. The edges added in step 2Ato reconnect the
are satisfied. Consequently, its application for the casetree are(1,3), (4,6), (7,8), and(4, 14) (Figure 3(b)).

of PROBABILISTIC MIN TSP gives for E(K,,,T) the

Note that the edged 0, 9) connecting path#®; and P}

expression claimed in the theorem. We so recover the and(12,4) connecting pathg’ and 5 have not been

result of [9] aboutPROBABILISTIC MIN TSP. The an-

ticipatory solution minimizing the functional cannot be

added sincd0 > 9 and12 > 4.
We now specify the patlf, j] associated with the

characterized tightly by means of Theorem 2, since the edge(i, j) connecting?/ andP;, , and appearing in the

expression folZ (K,,, T') depends on the particular an-

ticipatory tour?” considered and by the way this partic-

ular tour will be completed in the surviving instance.

expression forE (G, S) in Theorem 2. Merging paths
in the order they have been specified by the dfs num-
bering, T can be written as a sequence of vertices as
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4 performed by step 2 ok can be seen as insertion of an
edge(i, j) linking two consecutive elemenis and j;

in T, wherei, is the last occurrence obefore the first
occurrencej, of vertexyj, verifyingi < j. The corre-
sponding patti, j] (i.e., the list of vertices that have to
be absent in order thét, ;) is added), is the portion of
the list betweern; andj;.

Let us revisit the example of Figure 3(a). The se-
guence associated with the treelis= (14,...,71, 52,
81,...,111,99,127,45,131,147) and, assuming that
vertices 2, 5, 11 and 13 disappedl, = (11, 31,41,
61,71,81,91,101,92, 124,49, 141) Then,[l, 3] = {2},
[4,6] = {5}, [7,8] = {5} and[4, 14] = {13}.

By the discussion above, one can immediately con-

11 clude thatE(K,,T) can be expressed as claimed by
(a) The ordering of the nodes of an anticipatory Theorem 2.
solutionT

4

7. Final remarks

We have drawn a framework for the classification of
probabilistic combinatorial optimization problems un-
der the a priori optimization paradigm. What seems to
be of interest in this classification is that when restric-
tion of the initial solution to the “present” subgraph
is feasible, then the complexity of determining the op-
timal anticipatory solution for the problems tackled,
amounts to the complexity of solving some weighted
version of the deterministic problem, where the weights
depend on the vertex-probabilities. These weights do
not depend on particular characteristics of the antic-
ipatory solution considered, thing that allows a com-
pact characterization of an optimal anticipatory solu-

Fig. 3. When anticipatory solution is a tree. tion. On the contrary, when more-than-one-stage algo-

rithms are needed for building solutions, then the ob-

they have been visited (of course, some of them appearservation above is no more valid. In this case, one also
more than once), i.el = (11,21,31,...,J1,%2,(§ + recovers some weighted version of the original prob-
1)1,...,(n—k)q,n1), wherei < j andi. represents  lem, but the weights on the data cannot be assigned in-
the c-th time the vertex is encountered iff" during dependently of the structure of a particular anticipatory
the dfs. Based upon this representation, one can recon-solution.
structT in the following way: for any paifi., j.-) of

(b) The solutionT” derived from application of
algorithmAonT

consecutive vertices, edge ;) belongs td' if and onl Acknowledgment. Many thanks to Orestis Telelis for
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if < j. Note that a leaf appears only once in the list liminary versions of the paper. The very useful com-
and that its absence does not disconnect the tree. Sup- )
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