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Abstract

The sphere method for solving linear programs operates withonly a subset of constraints in the model in each
iteration, and thus has the advantage of handling instanceswhich may not be very sparse. In this paper we discuss
enhancements, and improved versions Sphere Methods 2, 2.1 which improve performance by 20 to 80%. Additional steps
that can improve performance even more are also presented.

Key words: Linear Programming (LP), Interior point methods (IPM.s) , ball centers of a polytope, solving LPs using
matrix inversions sparingly, Sphere methods-1, 2, 2.1 for large scale LPs.

1. Introduction

Among mathematical models, Linear Programming
(LP) is perhaps the most commonly used in decision
making applications. The simplex method (Dantzig and
Thappa [1997]) developed in mid-20th century, and In-
terior Point Methods (IPMs) developed in the last quar-
ter of the 20th century (among them in particular the
primal-dual path following IPMs, [2, 4, 5, 7, 16 to 19])
are currently the commonly used algorithms for solving
LP models in software systems. These software imple-
mentations are able to solve large scale models (those
involving thousands of constraints) within reasonable
times, which has made them very popular in practice.

While solving large scale LP models, typically the
simplex method takes many steps, however each of these
involves much less work than a step in an IPM. IPMs
have been observed to take much smaller number of
steps, and this number grows very slowly with the size
of the LP model being solved; with the result that IPMs
have gained the reputation of taking almost a constant
number of steps even as the size of the LP grows.

Both these existing classes of algorithms for LP are

Email: Katta G. Murty [murty@umich.edu], Mohammad R.
Oskoorouchi [moskooro@csusm.edu].

based on full matrix inversion operations, with every
constraint in the model appearing in the computational
process in every step. In large scale applications these
matrix inversion operations limit the ability of these
algorithms to only those in which the coefficient matrix
is very sparse. As the density of the coefficient matrix
increases, typically the effectiveness of these algorithms
fades.

LP models which do not have the property of being
very sparse do arise in many application areas, and in
some areas the models may be 100% dense. The sphere
method for LP developed in (Murty and Oskoorouchi
[2008]) is an IPM that can handle all such models along
with the others, without any problems, because it uses
matrix inversion operations very sparingly. In any step
of the sphere method only a small subset of constraints
(called thetouching set of constraints) appear in the
matrix inversion operations, And redundant constraints,
if any in the original model, are automatically guaran-
teed never to appear in the touching set. And in our
computational experiments, we observed that the num-
ber of iterations taken by the sphere method to solve
large scale models is also very small, and grows very
slowly with the size of the model, like in other IPMs.

The sphere methods need an initial interior feasible

c© 2010 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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solution. Each iteration of these methods begin with the
best interior feasible solution obtained at the end of the
previous iteration; and consists of two steps: acentering
step, and adescent step.

In concept, the aim of the centering step is to find a
ball center, which is an interior feasible solution with
objective value equal to or better than that of the current
interior feasible solution, and is the center of a largest
radius ball inside the feasible region of the original LP
subject to this constraint on its center. This centering
step takes up most of the computational effort in the
iteration. Once the ball center is obtained, the descent
step which is computationally cheap carries out several
descent steps from it, and the iteration stops with the
best point obtained in all these descent steps.

For any matrixD, we denote itsith row, jth column
by Di., D.j respectively. We use the symbole to denote
a column vector with all entries “1”, its dimension ap-
propriate to the context. For any given setΓ of points
in Rn, we denote its convex hull by< Γ >.

The sphere methods consider LPs in the form:

Minimize z = cx (1)

subject to Ax≥ b

whereA is anm×n data matrix; with a known interior
feasible solutionx0 (i.e., satisfyingAx0 > b). Strategies
for modifying any given LP into this form are discussed
in [11]. Let K denote its set of feasible solutions, and
K0 its interior.

We assume thatc, and each row vector ofA is nor-
malized so that||c|| = ||Ai.|| = 1 for all i = 1 to m. In
[11] the following concepts used in the sphere method
are defined.

Largest inscribed ball B(x, δ(x)) inside K with x
as center, for x ∈ K0: It is the largest ball with
x as center that can be inscribed inK, and δ(x)
= min{Ai.x − bi : i = 1 to m} is its radius. So,
B(x, δ(x)) = {y : ||y − x|| ≤ δ(x)}.

A ball center of K: It is a pointx ∈ K0 such that
B(x, δ(x)) is a largest ball that can be inscribed in
K, i.e.,x maximizesδ(y) overy ∈ K0.

A ball center of K on the objective planeH =
{x : cx = t}: It is a pointx ∈ H∩K that maximizes
δ(y) overy ∈ H ∩ K.

The index set of touching constraints in (1),
T (x): Defined forx ∈ K0, it is the set of all indicesi
satisfying:Ai.x−bi = Minimum{Ap.x−bp : p = 1 to

m} = δ(x). The facetal hyperplane{x : Ai.x = bi}
is a tangent plane toB(x, δ(x)) for eachi ∈ T (x).

GPTC (gradient projection on touching con-
straint) directions: Let ci denote the orthogo-
nal projection of cT on {x : Ai.x = 0}, i.e.,
ci = (I − Ai.(Ai.)

T )cT for i = 1 to m. When the
ball B(x, δ(x)) is under consideration, the diections
−ci for i ∈ T (x) are called the GPTC directions at
the current centerx.
A ball center ofK may not be unique; and in case it

is not unique, [15] discusses a conceptual definition of
identifying a specific one among them to be called “the
ball center ofK”. This theoretical definition guarantees
that the ball center is well defined and unique for every
polytope; and correspondingly the ball center ofK on
the objective planeH = {x : cx = t} is well defined
and unique for all values oft satisfyingH ∩ K0 6= ∅.
But for computational efficiency in practice, in sphere
methods we will use any ball center as defined above,
computed approximately.

Reference [15] also discusses techniques for comput-
ing a ball center ofK, or a ball center ofK on a given
objective planeH , approximately, using a series of line
search steps. In each of these steps, at the current point
x̄, the algorithm in [15] selects a directiony which is a
profitable direction for K to move at̄x, i.e.,δ(x̄+αy)
strictly increases asα increases from 0; and determines
the optimum step length to maximizeδ(x̄ + αy) over
α ≥ 0. A directiony has been shown in [10, 11, 15] to
be a profitable direction forK at x̄ ∈ K0 iff Ai.y > 0
for all i ∈ T (x̄), so it easy to check whether any given
directiony is a profitable direction at the current point.

Once a profitable directiony at the current point̄x ∈
K0 has been determined, the optimum step lengthα in
this direction that maximizesδ(x̄+αy) overα ≥ 0 is ᾱ,
where(δ̄, ᾱ) is the optimum solution of the following
2-variable LP.

Maximize δ

subject to δ − αAi.y ≤Ai.x̄ − bi i = 1, . . . , m (2)

δ, α ≥ 0

andδ̄ is the optimum objective valueδ(x̄+ ᾱy). So, the
line search for the maximum value ofδ in the directiony
involves solving this 2-variable LP, which can be carried
out efficiently (e.g., by the simplex algorithm, or the
linear time algorithm of Megiddo [1983]).

Two procedures for generating profitable directions
are discussed in [15], one isLSFN which selects a
direction among those inΓ1 = {±AT

i. : i = 1 to m}.
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The other isLSCPD which obtains profitable directions
by solving a system of linear equations.

The aim of this paper is to discuss some enhance-
ments to the sphere method of [15] called Sphere
Method 1 here, leading to newer versions, and provide
preliminary computational experience with them that
shows up to 40% improved performance, and outline
some future theoretical and computational work on
these methods.

As discussed in [15], ifK is unbounded, the ball cen-
ter of K may not be well defined; but the implementa-
tion of the algorithm based on the approximate compu-
tation of ball centers can be carried out as usual. If the
objective value in (1) is unbounded below, in one of the
steps the step length may turn out to be+∞. So, for
simplicity we assume thatK is bounded in this paper.

2. Sphere Method 1

In concept, the centering step in this method has
the aim of finding a ball center ofK on the objec-
tive plane through the current point. So, the LSFN se-
quence of steps in it use profitable directions from the
setΓ2 = {±P.i: i = 1 tom}, whereP.i is the orthogo-
nal projection ofAT

i. on {y : cy = 0}. But the LSCPD
steps in it generate and use profitable directionsy which
satisfycy ≤ 0, so some of them may also decrease the
objective valuecy.

The descent step in this iteration actually carries out
several descent steps labeled D1, D2, D3, D4, D5.1, and
selects the best point obtained from all of them as the
output of this iteration. With that point the method goes
to the next iteration.

Just as other IPMs, this method also terminates when
the change in the final points obtained in successive
iterations is smaller than some tolerance (i.e., denoting
the output of iterations by xs, it terminates at the end
of iterationr+1 if ||xr+1−xr||/||xr|| < ǫ, concluding
that xr+1 is an optimum solution of (1)). See [15] for
a detailed description of this method.

3. Sphere Method 2

In sphere method 1 the set of feasible solutions con-
sidered remains unchanged (i.e., remains the original
K) throughout the algorithm; but the current objective
plane{x : cx = t} keeps on sliding parallely towards
decreasing values oft from one iteration to the next.

In sphere method 2, in contrast, the set of feasible
solutionsK considered is updated by the current objec-
tive value after each iteration, and hence gets smaller.
So, to distinguish, we will denote byKr, the set of fea-
sible solutions considered in Stepr, and we will have
Kr ⊂ Kr−1 ⊂ K for all r. And in the centering step
of sphere method 2, all line search directions used (in
both the LSFN and LSCPD sequences) will both be
profitable and strict descent directions for the original
objective functionz = cx.

The first iteration of sphere method 2 begins with
the initial interior feasible solutionx0. We will now
describe the general iteration, Iterationr + 1, in this
method.

General Iteration r + 1

The initial point for this iteration isxr, the interior
feasible solution obtained at the end of the previous it-
eration. Define the set of feasible solutions to be con-
sidered for this iteration to beKr+1, where

Kr+1 = {x : Ax ≥ b, and cx ≤ cxr + ǫ}

whereǫ is a small positive tolerance parameter. Go to
the centering step in this iteration.

Centering Step: The aim of this step is to find a
ball center ofKr+1 approximately, as described earlier
(also in Section 2.1 of [15]).

LSFN: The set of facetal normal directions ofKr+1

is Γr+1
1 = {±cT ,±AT

i. : i = 1 to m}. Apply the LSFN
sequence to find a ball center forKr+1 as described
above using profitable directions forKr+1 from Γr+1

1 .

LSCPD: This sequence begins with the interior fea-
sible solution obtained at the end of LSFN.

Let x̂ denote the interior feasible solution in a step
of this sequence. The touching constraint set atx̂ for
Kr+1 will typically include the objective constraint in
the definition ofKr+1. If it does not, then apply this
sequence as discussed earlier (also described in detail
in Section 2.1 of [15]).

On the other hand, if the touching constraint set in-
cludes the objective constraint, letT r+1(x̂) denote the
touching constraint index set forKr+1. Solve the sys-
tem
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Ai.y = 1 for all i ∈ T r+1(x̂) (3)

−cy = β

whereβ is a positive parameter. Earlier (and in sphere
method 1, Section 2.1 of [15]) we used onlyβ = 1. But
here we will leave it as a parameter which is restricted
to take positive values only; and obtain a solution of (3)
as a function of this parameterβ. Let this solution be
denoted byp + βq.

As in Section 2.1 of [15], ifB is a basis associ-
ated with the basic vectoryB obtained for (3), let
yD denote the vector of remaining nonbasic vari-
ables in (3) associated with the basic vectoryB. Let
p = (pB, pD), q = (qB , qD) be the partition of the
vectorsp, q corresponding to the partition ofy into
basic, nonbasic parts(yB, yD). ThenqD = pD = 0,
andqB is the last column ofB−1, andpB is the sum
of the remaining columns ofB−1.

So, for allβ > 0, p + βq is a profitable direction at
x̂ for Kr+1. With p + βq as line search direction, the
optimum step lengthα (maximizingδ(x̂ + α(p + βq)),
the radius of the maximum radius ball inscribed inKr+1

with x̂+ α(p + βq) as center) is determined by solving
the 3 variable LP in variablesδ, α, γ

Maximize δ subject to

δ − αAi.p − γAi.q ≤ Ai.x̂ − bi, i = 1, ..., m

δ − α(−c)p − γ(−c)q ≤ (−c)x̂ − ((−c)x̂ − ǫ)

δ, α, γ ≥ 0.

Hereα, γ will both be> 0 at optimum. Actually this
γ is (α)(β).

If (δ̄, ᾱ, γ̄) is an optimum solution of this 3-variable
LP, then the point obtained at the end of this step is
x̂ + ᾱp + γ̄q. With that the next LSCPD step is applied
again as here, and so on until the LSCPD sequence is
completed,

Let x̄ denote the point obtained at the end of LSCPD,
it is the approximate ball center ofKr+1 obtained in
this iteration. See Figure 1.

The Descent Steps:With the point x̄ obtained at
the end of the centering step, the iteration moves to
the Descent steps in this iteration for the current set of
feasible solutionsKr+1.

It first applies descent steps D1 to D5.1 as described
in sphere method 1 in the current set of feasible solutions
Kr+1. Let x̃r1 denote the best point (by objective value)
obtained in descent steps D1 to D5.1. Thisx̃r1 is the
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Fig. 1. K is the original set of feasible solutions of the
LP being solved. The current set of feasible solutions in an
iteration when x

r is the initial interior feasible solution, is
K

r+1. The ball shown is the largest ball insideKr+1, and
its center x̄ is a ball center obtained in the centering step
in this iteration.

initial interior feasible solution for Descent Step 5.2
(D5.2).

D5.2, Descent Step 5.2:By the way the descent steps
are carried out, it is clear that̃xr1 is close to the bound-
ary of Kr+1, and δ(x̃r1) ≤ ǫ. Find the touching set
T (x̃r1) = set of all constraint indices for the current
set of feasible solutions that tie for the minimum in
{Ai.x̃

r1 − bi : i = 1 to m; −cx̃r1 + cxr + ǫ }.
For eachi ∈ T (x̃r1), from x̃r1 take a descent step in

the GPTC direction−ci and include the resulting point
along with its objective value in a newList 5.2.

At the end, letx̃r2 denote the best point in List 5.2
by objective value. Ifcx̃r1 − cx̃r2 is:
≤ some selected tolerance for objective value reduc-
tion, takex̃r2 as the output of this Descent Step 5.2,
put x̃r2 along with its objective value in the List.

> the selected tolerance for objective value reduc-
tion, with x̃r2 as the initial interior feasible solution
repeat this Descent Step 5.2; and continue the same
way.
Let xs denote the best point obtained at the end of

this cycle of D5.2 steps. With this point go to Descent
step 5.3 (D5.3).

D5.3, Descent Step 5.3:We have the current point
xs with δ(xs) ≤ ǫ.

For each i ∈ T (xs), define xsi = orthogo-
nal projection of xs on facetal hyperplane{x :
Ai.x = bi} = xs + (Ai.)

T (bi − Ai.x
s) . Define
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x̄ = [
∑

i∈T (xs) xsi]/|T (xs)|. Typically, a move from
xs in the directionxs − x̄ goes through the central
portion of Kr+1, so a step in this direction at this
stage can be expected to lead to good improvement in
objective value. We have 2 cases to consider.

Case 1:If c(xs−x̄) < 0 carry out a descent step atxs

in the descent direction(xs − x̄), and make the output
of this descent step the new current point (newxs) and
repeat this step with it, as long as the improvement in
objective value is greater than the selected tolerance.

Case 2: If c(xs − x̄) ≥ 0, let y be the orthogonal
projection of(xs − x̄) on the hyperplane{x : cx = 0},
y = (I − cT c)(xs − x̄).

Solve the 2-variable LP: maxδ subject toδ−Ai.y ≤
Ai.x

s − bi for i = 1 to m, andδ, α ≥ 0. Let δ̄, ᾱ be
the optimum solution of this 2-variable LP. The point
xs + ᾱy has objective value =cxs becausecy = 0,
from this point take all descent steps D1 up to D5.2.
Call the final output point of these descent steps as the
new current point (newxs), and with it repeat this D5.3
until the improvement in objective value becomes less
than the selected tolerance.

When all these descent steps are carried out, the best
point among the outputs of all the descent steps carried
out in this iteration, is the output of this iteration. With
that point, the method goes to the next iteration. Termi-
nation criteria are the same as in sphere method 1, as
described in [15].

Instead of givingβ the specific value 1 as in earlier
methods, leaving it as a positive parameter in (4), im-
proves the performance of the centering step in sphere
method 2.

4. Preliminary Computational Results

In this section we present the results of our compu-
tational tests on sphere methods 1 and 2. Broadly these
results indicate that sphere method 2 is up to 80% faster
than sphere method 1.

We use MATLAB7.0 routines to implement various
steps of sphere methods 1, 2, and test their performance
on some randomly generated dense problems. We use
the MATLAB function “randn” that generates random
numbers from the Standard Normal distribution to gen-

erate entries of the dense coefficient matrix, and vec-
tor c. To ensure feasibility of the LP generated, we use
the function “−rand” that generates random numbers
from the Uniform distribution in(−1, 0) for the vector
b. To reset the random number generator to a different
state each time we use “rand(’state’,sum(100*clock))”.
To ensure boundedness we include box constraintsl ≤
x ≤ u, wherel andu aren-vectors with negative and
positive random entries respectively.

We run our test problems on a laptop computer with
Intel(R) Pentium(R) M processor 2.00GHz and 2.00 GB
of RAM.

4.1. Computational results

Table 1 compares the results of implementing sphere
methods 1 and 2 on a randomly generated problem with
50 variables and 150 constraints. In this tablenfn and
npd show the number of calls to LSFN and LSCPD
respectively,δ is the final value of the radius of the
largest sphere inscribed in the feasible region,cxr+1 is
the objective value at the end of iterationr, andtr is
the cpu time (in seconds) of iterationr.

The results of this table clearly show that sphere
method 2 has improved performance. The most ex-
pensive step in sphere methods is the centering proce-
dure. Table 1 shows that the number of calls to LSFN
and LSCPD is substantially reduced in sphere method
2. Moreover, the new centering strategies discussed in
sphere method 2 make LSFN and LSCPD more efficient
which is the reason that the cpu time of each iteration
of sphere method 2 is significantly lower than that of
sphere method 1.

Furthermore, the new centering strategies along with
the new descent steps D5.2 and D5.3 result in higher
reduction in objective value in each iteration, especially
in early iterations. This can be seen by comparing the
objective values at the end of the first iteration. Both
methods start from zero as an initial objective value. At
the end of iteration 1, sphere method 1 reduces the ob-
jective value to -410.7 while sphere method 2 reduces
the objective value to -748.6. That is over 80% improve-
ment in reducing the objective value. Although such im-
proved behavior is not observed subsequently, but the
objective value of sphere method 2 is better throughout
the algorithm, which results in faster convergence to a
more accurate solution.

Notice that in most iterations, the value ofδ in sphere
method 2 is smaller than that of sphere method 1. This
is due to the fact that at each iteration the approximate



26 Katta G. Murty & Mohammad R. Oskoorouchi– Sphere Methods forLP

Table 1

sphere Method 1 sphere Method 2
r nfn npd δ cx

r+1
tr nfn npd δ cx

r+1
tr

1 72 49 2.1251 -0.4107e+3 7.2 13 25 2.1265 -0.7486e+3 2.3
2 61 50 1.9469 -0.7898e+3 6.7 18 37 1.6155 -1.0215e+3 2.5
3 34 50 1.3899 -1.0505e+3 5.3 4 39 0.9856 -1.1803e+3 2.1
4 28 39 0.8184 -1.2056e+3 4.1 1 38 0.4955 -1.2963e+3 2.1
5 17 42 0.3751 -1.2783e+3 4.7 1 36 0.2096 -1.3220e+3 2.0
6 10 34 0.1500 -1.3077e+3 3.5 1 32 0.0648 -1.3252e+3 1.9
7 10 34 0.0594 -1.3194e+3 3.5 1 27 0.0198 -1.3261e+3 1.2
8 0 26 0.0231 -1.3249e+3 2.5 0 9 0.0095 -1.3269e+3 0.7
9 0 4 0.0028 -1.3256e+3 0.9 0 5 0.0008 -1.3270e+3 0.2
10 0 4 0.0009 -1.3259e+3 0.9 0 1 0.0001 -1.3272e+3 0.1
11 0 1 0.0005 -1.3261e+3 0.2
12 0 1 0.0004 -1.3262e+3 0.2

Comparison of sphere methods 1 and 2 on a random dense problemwith m = 150 and n = 50

Table 2

r cx
r

cx
r+1

d1 cx
r+1

d2 cx
r+1

d3 cx
r+1

d4 cx
r+1

d5.1 d cx
r+1

1 0 -33.2598 -3.5691 -37.5625 -33.2285 -36.6348 D3 -40.2655
2 -40.2655 -65.2287 -63.0900 -67.01446 -65.2355 -67.4223 D5.1 -68.0023
3 -68.0023 -75.02559 -76.4776 -75.2263 -74.8651 -75.3991 D2 -78.9358
4 -78.9358 -87.1765 -79.4524 -88.0251 -87.4199 -87.9025 D3 -89.4825
5 -89.4825 -93.8825 -90.6598 -94.5022 -93.0255 -94.7996 D5.1 -95.1169
6 -95.1169 -97.2548 -96.0556 -97.0846 -97.8524 -97.9056 D5.1 -98.0005
7 -98.0005 -98.9134 -97.8257 -99.0256 -98.9192 -99.2543 D5.1 -99.9903
8 -99.9903 -100.0569 -100.0055 -100.1122 -100.0955 -100.0255 D3 -100.2965
10 -100.2965 -100.3055 -100.3144 -100.3336 -100.3289 -100.3356 D5.1 -100.3379

Descent steps in sphere method 2 based on D1 to D5.3 on a randomdense problem withm = 500 and n = 50
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ball center obtained in sphere method 2 is closer to the
optimum solution of the original LP and its updated
feasible region gets smaller as the algorithm progresses.

Table 2 shows the results of descent steps D1 through
D5.3 of sphere method 2 on a randomly generated
dense problem with 50 variables and 500 constraints.
This instance problem is solved in 10 iteration. In this
table cxr is the objective value in the beginning of
iterationsr, cxr+1

di , for i = 1, , 2, 3, 4, 5.1, illustrate the
result of the objective value at the point obtained from
D1 to D5.1,d is the descent step that produced the best
point among D1 to D5.1, and the last column shows the
result of the descent step after implementing D5.2 and
then D5.3 beginning with the best point obtained from
D1 to D5.1. Notice that we only report the final result
after implementing D5.3. Since D5.2 and D5.3 can be
carried out very cheaply we implement these steps at
the end of the descent step. Notice that the result of
D5.3 is indeed the final value of the objective function
at the end of iterationr, that is cxr+1. Observe that
in most of the iterations descent step D5.1 gave the
best point among D1 to D5.1, and D5.2 and then D5.3
slightly improve the objective value.

In Table 2, observe that at the end of the first iteration,
sphere method 2 improves the current point by over
40% (from 0 to -40.2655), and by the end of the fifth
iteration a 95% improvement is achieved. We tried sev-
eral examples where there exist too many constraints,
and more or less the same behavior was observed in all
instances. This observation suggests that sphere method
2 is particularly efficient in problems wherem ≫ n.

In Tables 1 and 2 we showed that sphere method 2 has
superiority over sphere method 1 in terms of number of
iterations in centering procedure as well as the objective
value at each iteration. We now show that sphere method
2 also outperforms sphere method 1 and simplex method
in terms of overall cpu time. We use the Matlab function
“linprog” with the simplex option to solve the instance
problems by the simplex method.

Table 3 compares the cpu time (in seconds) of sphere
methods 1 and 2 and the simplex method. We tested on
randomly generated fully dense problems with moder-
ate number of variables (up to 300) and large number of
constraints (up to 3000). The first two columns of the ta-
ble illustrate the number of variables and the number of
constraints respectively, and the last three columns re-
port the cpu time of sphere method 1 and 2 and simplex
method respectively. The results of the test problems

reported in this table suggest that the improvement of
sphere method 2 over sphere method 1 varies between
20% to 50%. This observation is very encouraging as it
shows that the combination of our new centering strat-
egy and descent steps discussed in this paper works well
in practice.

As it was stated earlier, a substantial portion of the
cost at each iteration belongs to the centering proce-
dure. Next we discuss techniques for improving the im-
plementations of this centering procedure.

4.2. Computational results of light centering

Of the two steps in an iteration of sphere method
2, the centering step is computationally most expen-
sive, compared to which the descent step is very cheap.
The centering step is expensive because in order to get
a good approximation of a true ball center ofKr+1

takes several line search steps in the LSFN, LSCPD se-
quences.

One of the great advantages of sphere methods over
other IPMs for LP for practical implementations, is
the flexibility that they offer in implementing them. In
implementing sphere methods, the expensive centering
step need not be carried out to the full extent described
in the statement of the algorithm in every iteration.

Actually, a true ball center is not really necessary to
continue applying the algorithm. Stopping the work in a
centering step short of getting a very good approxima-
tion to a ball center ofKr+1 leads to what we will call
a subiteration based on light centering. In this subit-
eration we select a small positive integerℓ (something
like 4 to 10), and carry out onlyℓ line search steps in
each of the LSFN, LSCPD sequences in that order, and
take the point obtained at the end as an approximate
ball center to move over to the descent step.

To incorporate these efficiently, we do the following
in an iteration: the iteration begins with a sequence of
subiterations, each consisting of a light centering step as
defined above, followed by a descent step as discussed
in earlier sections. The point obtained at the end of a
subiteration is the initial point for the next subiteration.
This process is continued as long as the improvement
in objective value in each subiteration is greater than a
selected tolerance. When the objective value improve-
ment in a subiteration falls below the tolerance, carry
out a full iteration based on the full centering step as
discussed in Section 3 for sphere method 2, and then the
descent step. The best point obtained at the end of all
these descent steps is the output of this iteration, with
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Table 3

Variables Constraints Sphere Method 1 Sphere Method 2 Simplex Method
n m cpu time (sec.) cpu time (sec.) cpu time (sec.)

500 43 22 74
50 1000 40 24 122

1500 42 28 360
700 136 99 241

100 1200 175 121 524
1700 342 236 892
900 1297 933 1587

200 1200 1091 815 3520
2000 1180 901 4921
1800 1721 1125 7590

300 2500 1380 932 9884
3000 1232 891 9999

Comparison of CPU time for randomly generated fully dense problems withm ≫ n

for sphere methods 1 and 2 and simplex method.

which the algorithm moves to the next iteration.
We now show some improvements on the computa-

tional results with the light centering technique. Let us
call this version, sphere method 2.1. Table 4 compares
the objective values in each iteration of sphere meth-
ods 2 and 2.1 for a randomly selected problem with 50
variables and 600 constraints. For sphere method 2 we
report the objective values at three stages in each itera-
tion: the center obtained by LSFN, the center obtained
by LSCPD, and the end of descent steps. For sphere
method 2.1 we report the objective values at the points
obtained by the light centering procedures of LSFN and
LSCPD, the full centering of LSFN and LSCPD, and
the end descent steps in each iteration. We also report
the cpu time of each iteration.

Each iteration of sphere method 2.1 involves several
light centering cycles and one full centering cycle. Ta-
ble 4 shows that the reduction in the objective func-
tion value in an iteration of sphere method 2.1 is sub-
stantially more than that of sphere method 2, especially
in earlier iterations which results in fewer overall iter-
ations. Although the cpu time per iteration in sphere
method 2.1 is slightly higher than that of sphere method
2, but the significant reduction in the number of itera-
tion more than makes up for this in the overall cpu time.

In Table 5 we repeat the results of Table 3 with an ad-
ditional column for the total cpu time of sphere method
2.1. This table shows that sphere method 2.1 with the
light centering procedure improves the computational
results of sphere method 2.

As mentioned earlier the computational results re-
ported in this paper are based on a MATLAB code that

uses built-in functions. This was mainly done to obtain
quick computational results. We are aware of the fact
that MATLAB is not recommended for computational
algorithms with many loops such as sphere methods.
Therefore the computational results reported here are
only preliminary. Converting some of the subroutines
written for this code to a lower level language using
MEX files, or rewriting the whole code, would signifi-
cantly reduce its cpu time.

The computational results reported in this section
suggest that sphere methods are efficient methods for
dense problems wherem ≫ n. A professional im-
plementation of these methods is required to test the
real power of these techniques. We believe such imple-
mentation would make sphere methods an alternative
and competitive techniques to primal-dual interior point
methods.

5. How to Improve the Performance of Sphere
Methods Even Further?

Since the centering step is computationally the most
expensive step in each iteration, the key to improving
the performance of sphere methods lies in reducing the
need for the centering steps in the method.

Let {x̂1, ..., x̂s} denote the set of all points obtained
at the end of the various descent steps in D5.1 in an
iteration, andK1 its convex hull.s ≤ m, and typically
s ≤ n + 1. Also, x̂1, ..., x̂s are spread out in different
directions all aroundK, each one in the interior ofK
but close to the boundary ofK. So, intuitively, it seems
that a ball center forK1 may be close to a ball center
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Table 4

Sphere Method 2 Sphere Method 2.1
r cxfn cxpd cx

r+1
tr cx

light
fn cx

light
pd cxfn cxpd cx

r+1
tr

1 -0.2431 -1.1644 -3.0553 2.3 -0.3758 -0.9625 -1.2091 -1.9222 -3.4269 2.7
2 -3.1453 -3.2994 -4.9102 2.3 -3.5218 -4.2662 -4.2956 -4.2592 -5.1072 2.8
3 -4.9830 -5.0040 -5.8053 2.4 -5.0418 -5.1567 -5.1614 -5.3005 -5.9035 2.2
4 -5.8224 -5.8072 -5.9554 2.1 -5.8204 -5.9869 -5.9909 -5.9915 -6.2436 2.0
5 -5.9605 -5.9667 -6.2281 2.2 -6.1728 -6.2533 -6.2533 -6.2581 -6.3990 0.2
6 -6.2376 -6.2651 -6.3688 2.2
7 -6.3691 -6.3689 -6.3790 2.1
8 -6.3805 -6.3810 -6.3900 1.9
9 -6.3909 -6.3922 -6.3966 0.5
10 -6.3971 -6.3975 -6.3989 0.1

Comparison of objective values of sphere methods 2 and 2.1 with m = 600 and n = 50

Table 5

Sphere Method 1 Sphere Method 2 Sphere Method 2.1 Simplex Method
n m cpu time (sec.) cpu time (sec.) cpu time (sec.) cpu time (sec.)

500 43 22 9 74
50 1000 40 24 10 122

1500 42 28 11 360
700 136 199 23 241

100 1200 175 121 32 524
1700 342 236 48 892
900 1297 933 215 1587

200 1200 1091 815 279 3520
2000 1180 901 356 4921
1800 1721 1125 1001 7590

300 2500 1380 932 1109 9884
3000 1232 891 1223 9999

Comparison of CPU time for randomly generated problems withm ≫ n for sphere methods 1,
2 and 2.1 and simplex method.

for K on the objective plane through it. So, if we can
obtain an approximation to the ball center ofK1 directly
and efficiently, we may be able to use it as the center
for the next iteration, and thus saving the need for a
centering step. We will now present some results from
Murty [2009-1] in this respect.

There are two ways of representing a convex poly-
tope. One way represents it as the set of feasible solu-
tions of a given system of linear constraints, this is the
representation we used in Section 1 to define the set
of feasible solutions of the LP (1). Another way is to
represent the polytope as the convex hull of a given set
of points, the polytopeK1 whose ball center we want
to obtain is represented this way as the convex hull of
Γ = {x̂1, ..., x̂s}.

For carrying out the various steps in sphere method 1
for the LP (1), we needed the solutions of the following
problems.

Problem 1:Given any interior pointx in the polytope
K, what is the radiusδ(x) of the largest ball withx
as center, that is contained insideK?

Problem 2: We want to find a largest ball inside
the polytopeK. Is it unique, and if so what is its
center and radius? If not, what is the set of all points,
each of which is the center of a largest ball insideK?
Also, given an interior point ofK, how can we check
whether it is the center of a largest ball insideK?

Problem 3: Given an interior pointx̄ of K, a
y ∈ Rn, y 6= 0 is said to be aprofitable direction
at x̄, if δ(x̄ + αy) increases strictly asα increases
from 0. How can we check efficiently whether a given
y 6= 0 is a profitable direction at̄x? How can we
check whether there exists a profitable direction at
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x̄, and if so how can we compute one such direction
efficiently?
Consider these 3 problems for the polytopeK defined

by the system of linear constraints in (1). As defined in
Section 1,δ(x) of Problem 1 is minimum{Ai.x−bi : i
= 1 to m}, can be computed very efficiently. Letδ be
the radius of a largest ball inscribed inK, andx its
center; then(x, δ) is an optimum solution of the LP:
maximizeδ subject to δ ≤ Ai.x− bi, i = 1 tom; and
vice versa; and finally the ball center ofK is unique iff
this LP has a unique optimum solution; hence Problem
2 can be solved efficiently. As discussed in Section 1,y
is a profitable direction at̄x iff Ai.y > 0 for all i ∈ T (x̄)
where the definition ofT (x̄) is given in Section 1. Hence
all 3 problems can be solved efficiently for the polytope
K defined by the system of linear constraints (1).

However, there are no efficient methods known to
solve any of Problems 1, 2, 3 listed above on a polytope
P represented as the convex hull of a given set of points.
For instance, Theorem 1 below shows that Problem 1
for the polytopeP is NP-hard.

Theorem 1: P = < {x̃1, ..., x̃L} >, is a polytope
of dimensionn in Rn given in the convex hull repre-
sentation; andx0 is a given interior point ofP . The
problem of computing̃δ(x0) = the radius of the largest
ball inscribed inP with x0 as center, is NP-hard.

Proof: Transfer the origin tox0. ThenP becomes
< ˜̄x1, ..., ˜̄xL} >, where˜̄xt = x̃t − x0. In this represen-
tation, sincex̃0 = 0 is an interior point ofP , P can
be represented by a system of linear inequalities of the
form D̃x ≤ e; wheree is a column vector of all1s, and
D̃ is a matrix of orderm1 × n; m1 being the number
of facets ofP .

Then for each for eachi = 1 tom1, D̃i. is thei-th row
vector ofD̃, and{x : D̃i.x = 1} is a facetal hyperplane
of P . So the Euclidean distance betweenx̃0 = 0, and
the nearest point tõx0 on this facetal hyperplane is
1/||D̃i.||. So,δ̃(x0) = minimum{1/||D̃i.||: i = 1 tom1}.

The vectorsD̃i., i = 1 tom1 are all the extreme points
of the system:

a˜̄xt ≤ 1 for all t = 1 to L (4)

in variablesa = (a1, . . . , an). Henceδ̃(x0) is the in-
verse of the optimum objective value in the problem of
maximizing ||a|| subject to the system of inequalities
(4). This is the problem of maximizing the Euclidean
norm, a convex function, on a convex polytope spec-

ified by a system of linear inequalities, a well known
NP-hard problem. 2

However we noticed that typically the setΓ =
{x̂1, ..., x̂s} is either linearly independent, or forms a
simplex whens = n + 1. Murty [2009-1] shows that
in these cases,K1 has a unique ball center which can
be computed directly. We discuss those results next.

Ball Center of a Simplex Represented by Con-
straints

Let S be ann-dimensional simplex inRn, i.e., its
representation using linear constraints is of the form

S = {x : Di. ≥ di for i = 1 to n + 1}

whered = (di) ∈ Rn+1, and the coefficient matrixD
of order (n + 1) × n with rows Di. i = 1 to n + 1
satisfies the properties that all the(n + 1) submatrices
of it of ordern × n are nonsingular, and that each row
vector ofD is a linear combination of the other rows
with strictly negative coefficients. Without any loss of
generality we will assume that all the rows ofD have
been normalized so that||Di.|| = 1 for all i.

We will now show thatS has a unique ball center
which is the unique solution of the system of linear
equations:

Dx − δe = d (5)

wherex in the solution will be the ball center ofS, and
δ is the radius the largest ball insideS with center at
thatx.

It can be verified that the coefficient matrix of this
system is nonsingular, hence this system has a unique
solution,(x̄, δ̄). From (5) we know that̄δ = Di.x̄ − di

for all i = 1 ton + 1, so that the ballB(x̄, δ̄) with x̄ as
the center and̄δ as radius is insideS, and touches all
the facets ofS, so it is the largest ball with̄x as center
insideS.

Also, the systemDy ≥ 0 has 0 as its unique solu-
tion, becauseD(n+1). = α1D1. + ... + αnDn. with all
α1, ..., αn < 0. So, there is no profitable direction for
the polytopeS at x̄, this implies that̄x is the ball center
of S and that it is unique.

So, when the simplexS is represented using linear
constraints, its ball center can be computed efficiently
by solving the system of linear constraints (5).



Katta G. Murty & Mohammad R. Oskoorouchi– Algorithmic Operations Research Vol.5 (2010) 21–33 31

Ball Center of a Simplex Represented as the Con-
vex Hull of its Extreme Points

Now suppose thatS is represented as the convex hull
of its set of extreme pointsΓ = {x1, ..., xn+1}. So, an
x ∈ S is represented as:

x = β1(x
1 − xn+1) + ... + βn(xn − xn+1) + xn+1 (6)

whereβ1, ..., βn ≥ 0, andβ1 + ... + βn ≤ 1.
Let B denote then × n matrix with its j-th column

B.j = xj −xn+1, for j = 1 ton; andβ = (β1, ..., βn)T .
SinceS is a simplex we know thatB is nonsingular.
So, from (6), we have

B−1x = β + B−1xn+1.

Using this, from the bounds onβ we have

B−1x≥B−1xn+1 (7)

−eB−1x≥−1 − eB−1xn+1

So, (7) is the representation ofS = convex hull ofΓ
here through linear constraints. To derive the ball center
of S using this representation (7), we need to normalize
each constraint in (7) so that the Euclidean norm of its
coefficient vector is 1. For this we needγi = ||(B−1)i.||
for i = 1 to n, andγn+1 = ||eB−1||. Then from the
results discussed above we know that the ball centerx
of S, and the radiusδ of the largest ball insideS, are
the solution of the system

(

B−1 −γ
−eB−1 −γn+1

) (

x
δ

)

=

(

B−1xn+1

−1 − eB−1xn+1

)

whereγ = (γ1, ..., γn)T . By adding the sum of the first
n equations in this system to the last, we find that in
the solution of this system

δ = 1/(γ1 + ... + γn+1)

and from the firstn equations we see that the ball center
of the simplexS here is

x = xn+1 + (1/(γ1 + ... + γn+1))Bγ

Ball Center of the Convex Hull of a Linearly In-
dependent Set of Vectors inRn

Let Q = {x1, ..., xr} be a linearly independent set of
column vectors inRn, andS2 = convex hull ofQ, where
r ≤ n. ThenS2 is an(r−1)-dimensional simplex in its

affine hull. In this section we discuss how to compute
the ball center ofS2 directly.

In this case then × (r − 1) matrix

B2 = (x1 − xr
... · · ·

...xr−1 − xr)

is of full column rank. Find a row partition of it into
(B21, B22)

T such thatB21, B22 are of orders(r− 1)×
(r − 1) and(n− r + 1)× (n− r + 1) respectively, and
B21 is nonsingular.

Let (xj
1, x

j
2)

T , (x1, x2)
T be the corresponding row

partitions of the column vectorsxj for eachj = 1 to r,
and eachx ∈ S2 respectively.

Then for eachx = (x1, x2)
T ∈ S2, it can be verified

that

x2 = B22[B
−1
21 (x1 − xr

1)] + xr
2 (8)

(8) is the system of linear equations that defines the
affine hull ofS2.

Now, the convex hull of{x1
1, . . . , x

r
1} ⊂ Rr−1 is a

full dimensional simplex inRr−1 and its ball centerx1

can be found by applying the formula derived earlier to
it. Then in the original spaceRn, the ball center ofS2

is (x1, x2)
T wherex2 is obtained fromx1 using (8).

Application in sphere Methods for Large Scale
LPs

As mentioned at the beginning of this section, the set
Γ = {x̂1, ..., x̂s} of output points obtained in the var-
ious descent steps in D5.1 in an iteration, is typically
either linearly independent, or is a simplex, and hence
the above results can be used to obtain the ball cen-
ter of K1 = convex hull ofΓ directly; or we can even
carry this out approximately to get an approximate ball
center ofK1; from which we can carry out all the de-
scent steps continuing the iteration. The computational
performance of this technique needs to be checked.

6. An Open Research Problem in Geometry

We are investigating the worst case computational
complexity of the sphere methods. In this investigation,
the central problem that appears is the following geo-
metric one.

Let K = {x : Ax ≥ b} whereA is a matrix of
orderm × n satisfying:||Ai.|| = 1 for all i = 1 to m,
be a given polytope of full dimension inRn; andcx a
linear objective function with||c|| = 1. Let tmax, tmin

be the maximum and minimum values ofcx over K
with tmax > tmin.
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As before, for eachx ∈ K, letδ(x) = minimum{Ai.x−
bi : i = 1 to m}, it is the radius of the largest ball
that can be inscribed inK with x as center. And the
index setT (x) = {i : i ties for the minimum in the
definition of δ(x) above; it is the index set of all the
constraints definingK that are tangent planes to the
ball B(x, δ(x)).

For eachtmax ≥ t ≥ tmin let Ht = {x : cx = t}.
Finding a largest ball inscribed insideK with its center
onHt, is the problem of maximizingδ(x) overK ∩Ht

which is the following:

Maximize δ

subject to δ − Ai.x≤−bi for all i = 1 to m (9)

cx = t

a parametric RHS (right hand side) LP witht as the
parameter. Letx(t), δ(t) denote an optimum solution
to this problem as a function of the parametert. Then
x(t) is the center of a largest ball inK with its center
on Ht, andδ(t) = δ(xt) is its radius.

For eacht, δ(t) is unique, but in generalx(t) may
not be unique if the parametric RHS LP given above is
dual degenerate. But to keep our discussion simple (and
without loss of generality), we make the assumption
thatx(t) is also unique for allt; this is a nondegeneracy
assumption.

From the results on parametric RHS LPs (e.g., Murty
[1980, 1983]), we know thatδ(t) is a piecewise linear
concave function, that the range[tmin, tmax] is parti-
tioned into a finite number of intervals such that in each
interval the slope ofδ(t) is constant (so, it is linear in
this interval), and ast increases moving from one inter-
val to the next the slope strictly degreases. Also,T (x(t))
remains the same for allt in any interval; and this index
set of touching constraints changes ast moves from one
interval to the next. So the number of these intervals is
the number of changes in the index set of touching con-
straints to the largest inscribed ball inK with center on
Ht, ast decreases fromtmax to tmin.

The results in Murty [1980] show that for parametric
RHS LPs in general, the number of slope changes in the
optimum objective value function can grow exponen-
tially with the size of the problem. But for (9) with its
special structure, there are intuitive reasons to believe
that the number of slope changes inδ(t) (equivalently,
changes in the touching constraint index setT (x(t)) as
t decreases fromtmax to tmin) is bounded above by
a polynomial inm. In [12] I included a proof to show
that this number is bounded above bym, but Mirzaian

[6] found an error in my proof, and this problem now
remains open. We continue studying it.

7. Conclusion

We presented some preliminary computational results
on implementing sphere Methods 1, 2, 2.1 by solving
each step in these methods using MATLAB 7.0 routines
separately; and compared this performance with that
of MATLABs finished LP code “linprog” based on the
simplex method. The results show that even this imple-
mentation of the sphere methods performs much better
than “linprog”.

To compare the sphere methods with existing IPMs
will require developing a low-level programming lan-
guage code for them using advanced techniques of nu-
merical linear algebra, and updating the basis inverse
in LSCPD steps as the matrix grows by a row and col-
umn as described above; which we have not done in
these preliminary experiments. But these preliminary
results, and the fact that the work in each iteration of
sphere methods 2, 2.1, is much simpler than an itera-
tion of other IPMs indicates that sphere methods 2, 2.1
will have advantage over them for solving large scale
models, in particular when the models may have redun-
dant constraints, or a coefficient matrix that is not very
sparse.
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