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General Form of a Nonmonotone Line Search Technique for Unconstrained
Optimization

Zhensheng Yu and Ji Lin

College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, PR China

Abstract

By using the forcing function, we propose a general form of nonmonotone line search technique for unconstrained
optimization. The technique includes some well known nonmonotone line search as special cases while independent on
the nonmonotone parameter case. We establish the global convergence of the method under weak conditions and we
report numerical test results with a modified BFGS method to show the effectiveness of the proposed method.
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1. Introduction

In this paper, we consider the following uncon-
strained optimization problem:

min
x∈Rn

f(x), (1)

wheref : R
n → R is a continuously differentiable

function with gradient functiong(x) = ∇f(x).
Line search method is one of the most well known

methods for solving (1): for a givenxk, the line search
generate the next point by:

xk+1 = xk + αkdk,

whereαk > 0 is a step size anddk is a search direction.
The traditional line searches require the function

value descent monotonically at every iteration, namely:

f(xk+1) ≤ f(xk) (2)

Recent research [4,9,11,16] indicates that the mono-
tone line search technique may considerably reduce the
rate of convergence when the iteration is trapped near
a narrow curved valley, which can result in very short
steps or zigzagging. The nonmonotone line search tech-
nique does not impose the condition (2), as a result, it

⋆ This work is supported by the National Natural Science
Foundation of China (No.10671126) and Shanghai Leading
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is helpful to overcome this drawback. Serval numeri-
cal tests show that the nonmonotone line search tech-
nique for unconstrained optimization and constrained
optimization is efficient and competitive.

The first nonmonotone line search technique was pro-
posed by L.Grippo, F.Lampariello and S.Lucidi [6] for
unconstrained optimization, where the next iteration sat-
isfies

f(xk+1) ≤ max
06j6min{k−1,M}

f(xk−j), (3)

where positive integerM is a nonmonotone parameter.
Many numerical experiments have suggested that the

nonmonotone line search technique is efficient and prac-
tical for solving some nonlinear large-scale optimiza-
tion problems [2,13]. However, in some cases the nu-
merical performance is very dependent on the choice of
the nonmonotone parameter (see [6,13,16,19]).

Zhang and Hager [19] proposed a new nonmonotone
line search algorithm without the nonmonotone param-
eter, and proved global convergence under the following
direction assumptions:

gT
k dk 6 −c1‖gk‖

2 (4)

and
‖dk‖ 6 c2‖gk‖ (5)

wherec1 andc2 are two positive constants. Numerical
results show the new nonmonotone line search tech-
nique uses fewer function and gradient evaluations, on
average, than those of the monotone or the traditional
nonmonotone scheme.

c© 2009 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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Sun et al. [14] combined forcing function with the
nonmonotone line search technique and proposed a gen-
eral line search rule, called the nonmonotone F-rule.
They proved that the nonmonotone Armijo line search
rule, the nonmonotone Goldstein line search rule and the
nonmonotone Wolfe line search rule are special cases of
the nonmonotone F-rule (see Proposition 2.4 in [14]).
To obtain the global convergence, Sun et al. required
the directiondk to satisfy the following conditions:

∣

∣

∣

∣

−gT
k dk

‖dk‖

∣

∣

∣

∣

> σ(‖gk‖), k = 1, 2, · · · , (6)

and (5), whereσ(·) is a forcing function.
Noted that the condition (3) may prevent large step

where the gradient is small, as in the neighborhood of
saddle point and at the bottom of the valley. To over-
come this drawback, Yu and Pu [18] proposed a new
nonmonotone line search technique and remove the con-
dition (3), moreover, they established the strong con-
vergence property under conditions weaker than those
of the existed traditional nonmonotone line search tech-
niques. However, their algorithms still dependent on the
nonmonotone parameter.

In this paper, we propose an algorithm model by com-
bining the F-rule in [14] with the nonmonotone line
search technique in [19]. The algorithm model includes
many well known nonmonotone line searches as spe-
cial cases but independence on the nonmonotone pa-
rameter. We establish the global convergence of the al-
gorithm without the direction assumption (5) and we
implement our algorithm model with a modified BFGS
method [10] to show the efficiency of the algorithm.

The remainder of our paper is organized as follows.
In Section 2, the algorithm model is stated. In Section
3, the global convergence is established. In Section 4,
we present computational results, and give numerical
comparisons.

2. Algorithm model

The following assumption is imposed throughout the
paper.
Assumption 1 f(x) is bounded below on the level set
L ={x ∈ R

n|f(x) 6 f(x1)}, and the gradient function
g(x) is uniformly continuous inL.
Definition 1 The functionσ : [0, +∞] → [0, +∞] is a
forcing function(F-function), if for any sequence{ti} ⊂
[0, +∞]

lim
i→∞

σ(ti) = 0 implies lim
i→∞

ti = 0. (7)

Now, we state our algorithm model.

Algorithm 1

Step 0: Given x1 ∈ R
n, 0 6 ηmin 6 ηmax < 1,

δ ∈ (0, 1). SetV1 = f(x1), Q1 = 1, k = 1.

Step 1: If ‖gk‖ sufficiently small, then stop.

Step 2: Compute the search directiondk that satisfies
condition (6).

Step 3:Setα = 1.

Step 4: If

f(xk + αdk) 6 Vk − σ(−gT
k dk/‖dk‖) (8)

does not hold, setα = δα, repeat Step 4.

Step 5:Defineαk = α, xk+1 = xk + αkdk.

Step 6:Chooseηk ∈ [ηmin, ηmax], and set

Qk+1 = ηkQk+1, Vk+1 = (ηkQkVk+fk+1)/Qk+1.
(9)

k = k + 1, and go to Step 1.

Remark: Similar to proposition 2.4 in [19], it is
easy to see that our nonmonotone line search contains
nonmonotone Arimijo rule, the nonmonotone Goldstein
rule and the nonmonotoneWolfe rule as the special case.

3. Global convergence

To establish the global convergence of Algorithm 1,
we first prove two lemmas.
Lemma 1 If σ(−gT

k dk/‖dk‖) > 0 for each k, then for
the iterates{xk} generated by Algorithm 1, we have
fk 6 Vk for all k.
Proof. DefiningDk : R → R by

Dk(t) =
tVk + fk

t + 1
,

we have

D
′

k(t) =
Vk−1 − fk

(t + 1)2
.

Sinceσ(−gT
k dk/‖dk‖) > 0, it follows from (8) that

fk 6 Vk−1, which implies thatD
′

k(t) > 0. Hence,Dk is
nondecreasing. In particular, takingt = ηk−1Qk−1 > 0
gives

fk = Dk(0) 6 Dk(ηk−1Qk−1) = Vk. 2
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Lemma 2 If Qk (k = 1, 2, . . . ) are generated by Algo-
rithm 1, then

Qk+1 6
1

1 − ηmax

. (10)

Proof. FromQ1 = 1, Qk+1 = ηkQk + 1, and the fact
thatηk ∈ [ηmin, ηmax], we have

Qk+1 = ηk(ηk−1Qk−1 + 1) + 1

= ηkηk−1Qk−1 + ηk + 1

6 η2
maxQk−1 + ηmax + 1

6 · · ·

6 ηk
maxQ1 + ηk−1

max + · · · + η2
max + ηmax + 1

=

k
∑

j=0

ηj
max.

Sinceηmax < 1, we deduce

Qk+1 6

k
∑

j=0

ηj
max 6

∞
∑

j=0

ηj
max =

1

1 − ηmax

. 2

Now we establish a global convergence theorem for
Algorithm 1.
Theorem 1 Let functionf : R

n → R satisfy Assump-
tion 1, if the search directiondk satisfies (6). Then the
iterates{xk} generated by Algorithm 1 contained in the
level setL and

lim
k→∞

‖gk‖ = 0. (11)

Proof. Combining (8) and (9),

Vk+1 =
ηkQkVk + fk+1

Qk+1

6
ηkQkVk + Vk − σ(−gT

k dk/‖dk‖)

Qk+1

= Vk −
σ(−gT

k dk/‖dk‖)

Qk+1

,

which meansVk+1 6 Vk for all k, sincefk+1 6 Vk,
we have

fk+1 6 Vk 6 Vk−1 6 · · · 6 V1 = f(x1),

which implies the sequence{xk} is contained in the
level setL.

On the other hand, sincef is bounded below and
fk 6 Vk for all k, we conclude thatVk is bounded from
below. Hence,

∞
∑

k=1

σ(−gT
k dk/‖dk‖)

Qk+1

<
∞
∑

k=1

(Vk − Vk+1) < ∞.

By (10),

(1 − ηmax)

∞
∑

k=1

σ

(

−gT
k dk

‖dk‖

)

< ∞.

Therefore,

lim
k→∞

σ

(

−gT
k dk

‖dk‖

)

= 0,

which means from Definition 1 that

lim
k→∞

−gT
k dk

‖dk‖
= 0.

Using condition (6), we deduce

lim
k→∞

σ(‖gk‖) = 0,

which implies (11) holds.2
As an application of the nonmonotone line search,

we consider the nonmonotone quasi-Newton method:

xk+1 = xk + αkdk, (12)

whereαk is obtained by the nonmonotone line search
(8), and

dk = −B−1

k gk, (13)

whereBk is an×n symmetric positive definite matrix
and obtained by some quasi-Newton formulas.

Let θk be the angle of−gk anddk, in what follows,
we assume that there exists a positive constantτ such
that

cosθk =
−gT

k dk

‖gk‖‖dk‖
> τ. (14)

Theorem 2 Let functionf : R
n → R satisfy Assump-

tion 1, consider the nonmonotone quasi-Newton method
(12)-(14). Then the iterates{xk} generated by Algo-
rithm 1 contained inL and

lim
k→∞

‖gk‖ = 0. (15)

Proof. Similar to the proof of Theorem 3.1, we have

lim
k→∞

−gT
k dk

‖dk‖
= 0.

By (14), we know that

−gT
k dk

‖dk‖
> τ‖gk‖,

which implies (15) hold.
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4. Numerical Experiences

In what follows, we first implement our algorithm
model in the context of Li and Fukushima’s BFGS
method [10] with slight modification. Here we combine
the line search proposed by Byrd and Nocedal[3] with
our nonmonotone technique.

The algorithm is described as follows.

Algorithm 2

Step 0: Given x1 ∈ R
n, 0 6 ηmin 6 ηmax < 1, δ ∈

(0, 1), τ ∈ (0, 1), γ1 ∈ (0, 1), γ2 ∈ (0, 1). ChooseB1 ∈
Rn×n symmetric positive definite. SetV1 = f(x1),
Q1 = 1, k = 1.

Step 1: If ‖gk‖ = 0, then stop.

Step 2: Compute dk = −B−1

k gk, if −gT
k dk <

τ‖gk‖‖dk‖, setdk = −gk.

Step 3:Setα = 1.

Step 4: If both

f(xk + αdk) 6 Vk + γ1αgT
k dk. (16)

and

f(xk + αdk) 6 Vk − γ2

(

gT
k dk

‖dk‖

)2

. (17)

does not hold, setα = δα, repeat Step 4.

Step 5:Defineαk = α, xk+1 = xk + αkdk.

Step 6:Chooseηk ∈ [ηmin, ηmax], and set

Qk+1 = ηkQk+1, Vk+1 = (ηkQkVk+fk+1)/Qk+1.
(18)

Step 7:UpdateBk using the formula

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

. (19)

where sk = xk+1 − xk = αkdk and yk = gk+1 −
gk + tk‖gk‖sk with tk = 1 + max{0,−(gk+1 −
gk)T sk/‖sk‖

2}. k = k + 1, and go to Step 1.
We compare the behavior of the Algorithm 2 with

two different implementations of the nonmonotone line
search technique in [6] and the method in [19]. In [6],
Vk in (16) is replaced by

max
06j6min{k−1,M}

f(xk−j). (20)

We chooseM = 5 andM = 10.

The algorithms were coded in Matlab 7.4. The test
problems were taken from Moré et al. [12], except “
Strictly Convex 1 ” and “ Strictly Convex 2 ” that are
provided in [13]. The total number of the test problems
is 39. For the numerical experiments we set following
initial parameters:δ = 0.5, γ1 = 10−3, γ2 = 10−3,
B1 = I. Although the best convergence results were ob-
tained by dynamically varyingηk in Step 6, using values
closer to 1 when the iterates were far from the optimum,
and using values closer to 0 when the iterates were near
an optimum, the numerical experiments reported here
employ a fixed valueηk ≡ 0.85 , which adopted by
Zhang and Hager in [19]. To decide when to stop the
execution of the algorithms declaring convergence we
used the criterion‖gk‖∞ 6 10−6(1 + |f(xk)|).

The numerical results are shown in Table 1, where the
test problems from [12] are numbered in the following
way: “ MGHi ” means thei-th problem in [12]. In addi-
tion, “Dim” denotes the dimension of the problem, and
IT, FE are number of iterations and number of function
evaluations respectively. The number of gradient eval-
uations is equal to that of iterations since no gradient
evaluation is required in the line search procedure.

From Table 1, we see that the our line search algo-
rithms and the algorithm in [6] require the same number
of iterations and the same number of function evalua-
tions for some problems, whereas for some other prob-
lems, the Algorithm 2 be implemented with (16) (when
ηk ≡ 0.85) performs better than with (20) (whenM = 5
andM = 10). The gains are sometimes significant, for
example, for MGH19, MGH22 and so on. However, our
numerical performance is not better than those of [19]
although our method has good theoretical performance.
Hence how to improve the method to enjoy both good
theoretical and numerical performance deserves further
study.

5. Conclusion

In this paper, we consider a general form of the non-
monotone line search technique and some well known
nonmonotone line search techniques can be seen as
the special case of our technique. But compared with
other nonmonotone technique not only independence
on the nonmonotone parameter but also remove some
restricted condition for the search direction. The nu-
merical tests with a modified BFGS method show the
efficiency of the proposed method. How to extend this
technique to trust region method deserves further dis-
cussing, we leave it as a future work.
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Table 1

Numerical comparisons
Problem Dim IT/FE IT/FE IT/FE IT/FE
name (M=5) (M=10) (ηk ≡ 0.85) ([19])
MGH2 2 40/51 40/51 40/51 11/31
MGH5 2 19/26 19/26 19/26 19/43
MGH7 3 50/72 50/72 50/72 42/116
MGH8 3 21/31 21/31 21/31 36/110
MGH9 3 6/9 6/9 6/9 5/11
MGH12 3 51/61 51/61 51/61 31/69
MGH13 4 55/78 55/78 53/76 40/99
MGH14 4 92/131 92/131 92/131 32/97
MGH15 4 30/33 30/33 30/33 30/61
MGH16 4 98/149 98/149 98/149 24/100
MGH18 6 23/27 23/27 23/27 54/111
MGH19 11 312/350 309/343 143/168 >1000/>1000
MGH20 6 79/101 79/101 70/94 36/91
MGH21 8 112/154 98/141 95/136 104/245

16 156/251 184/282 158/249 162/409
32 247/445 248/462 221/413 301/800
64 321/751 339/785 312/714 355/1124
128 487/1322 487/1387 474/1269 494/1902
256 714/2534 776/2718 719/2295 750/3448

MGH22 8 134/174 143/183 106/143 58/145
MGH25 9 30/51 30/51 30/51 14/47
MGH26 10 26/27 26/27 26/27 >1000/>1000
MGH30 4 24/38 24/38 23/37 20/52

6 28/53 28/53 20/47 24/77
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