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Abstract

We illustrate how an iterative method and the idea of recurrence can be employed to optimize chemotherapy scheduling.
We take the density of host and cancer cells as the states, andaim at minimizing the treatment period for each state. We
derive the equation satisfied by the optimal values of the objective function at different states. The theorem of existence
and uniqueness for the solution to this equation is proved, and some important properties of the optimal values of the
objective function are presented. The optimal treatment schedule can be derived directly from the optimal objective
function values at different states. We use an iterative method to solve the equation numerically. Some ideas to further
enhance the model are discussed.
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1. Introduction

With the development of new drugs or treatment ap-
proaches, a fast growing number of different protocols
for cancer treatment are coming into use. Although the
limited human and financial resources for clinical trials
prohibits the optimal protocols from being determined
empirically, it is still necessary to suggest a priori im-
proved drug schedules, according to certain criteria set
by the physicians, such as life expectancy of a patient,
side effects, quality of life, time and cost of treatment,
etc. In this paper, we illustrate how an iterative algo-
rithm can be applied in scheduling chemotherapy, which
so far remains one of the most widely employed anti-
cancer therapy modes.

In past years, there has been much work on opera-
tions research methods for ameliorating anticancer ther-
apy. Wu & Zhu [1] is an example for radiotherapy,
and Malinen et. al. [2] for surgery. Other operations re-
search literature is devoted to chemotherapy, and dif-

Email: Yifan Liu1 [yliu9@gmu.edu].
1 corresponding author

ferent objectives are introduced. For example, among
the extensive effort in the theoretical investigation of
cancer chemotherapy control methods, Cox et. al. [3]
and Swan [4] measure the treatment both by the overall
toxicity it induces and by the overall number of cancer
cells throughout the entire treatment period, while Mur-
ray [5] aims at minimizing the tumor size while limit-
ing toxicity by keeping the host cell population above
a given threshold.

While an analytical solution is found to the equa-
tions in [3], [4] and [5], it is unobtainable in the gen-
eral case of Pereira et. al. [6], in which an optimization
problem involving multiple drug chemotherapy is dis-
cussed. Instead, an iterative algorithm using Pontrya-
gin’s maximum principle is employed. Another example
of numerical methods is Athanassios [7], which consid-
ered tumor and white blood cells’ (WBC) responses to
chemotherapy in an optimization problem. The problem
searches a chemotherapy protocol which minimizes tu-
mor load at the end of the first chemotherapy cycle and
minimizes toxicity to the WBC. The model consists of
ordinary delay differential equations, and the optimiza-
tion is performed using nonlinear programming and nu-
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merical methods.
Agur et. al. did a series of work, which took into ac-

count cell-cycle dynamics of tumor and host cells [8]-
[13]. Their work suggested that intermittent delivery of
cell-cycle phase-specific drugs, at intervals equivalent to
the mean cell-cycle time, might minimize harmful toxi-
city without compromising therapeutic effects on target
cells. Some explicit general formulas and algorithms
were presented in their work. The underlying theories
of the existence of this resonance phenomenon are dis-
cussed in Dibrov et. al. [14], Webb [15] and Johnson et.
al. [16]. Some other examples of work related to cell-
cycle phase-specific optimization problems include but
are not restricted to Swan [17] and Swierniak [18,19].

In this paper, we use recurrence to describe the min-
imum treatment time. The main idea is as follows. We
consider the density of host cells and tumor cells, which
are written as(x, y). Instead of searching for the best
treatment schedule for each(x, y) separately, we regard
each(x, y) as a state of a dynamic system, and define
f(x, y) as the treatment time needed for a patient at
state(x, y), if an optimal schedule is employed. There-
fore,f(x, y) is essentially the optimal value of our ob-
jective function, which corresponds to the optimal value
of the decision variable, that is, the treatment schedule
sequence, for(x, y). Take∆t as the shortest time inter-
val in reality during which chemotherapy is applied or
not. If a patient is at state(x, y) at timet, then att+∆t,
the patient should move to state(x1, y1) if chemother-
apy is applied during this∆t, or to state(x2, y2) if not.
The relation amongf(x1, y1), f(x2, y2) andf(x, y) is
therefore established in an equation. Moreover, by set-
ting f to zero when tumor density is below a certain
level, which means cured, and settingf to infinity when
tumor density is over a level or host density is below
a level, which means terminal, we set up the bound-
ary values for the equation. Solving this equation, we
can obtain the minimum treatment time required for all
states. Also, by studying the relation among thef val-
ues of the states, we can retrieve the optimal treatment
schedule, i.e., to apply chemotherapy or not during a
sequence of∆t time intervals.

We first prove the theorem of existence and unique-
ness of the solution to the equation forf(x, y), and
study some of the properties of this equation, then solve
it numerically. To emphasize our main point in the re-
currence, we temporarily simplify other detailed aspects
of the chemotherapy model, such as the dose amount of
chemotherapy, the probabilistic model for moving from
state to state, individualization of the parameters for dif-

ferent patients, and cell-cycle phase-specific schedul-
ing. However, as discussed in section 6, all of these can
be combined with our recurrence approach, so that the
model can be further enhanced.

The rest of the paper is structured as follows. In sec-
tion 2, we give detailed assumptions on the model and
derive the recurrence equation. In section 3, we study
the properties of the optimal objective function values,
and prove the theorem of existence and uniqueness of
the solution to thef(x, y) equation. In section 4, we
introduce the iterative method to solve this equation nu-
merically. In section 5, we present the numerical results
for a set of parameters, and compare our method with
the local search heuristic algorithm proposed by Agur
et.al. [13]. Finally in section 6, we discuss how other
detailed issues can be incorporated to modify our model
in our future work.

2. Modeling the Minimum Treatment Time

In our model, we consider the density of two types of
cells, the host cells and the tumor cells, denoted asx and
y. By choosing a suitable unit, we can assumex = 1
for a normal person without cancer. Also, we assume a
person will die when the host cell density falls below a
certain levelxd < 1. Similarly, we can choose a unit for
tumor cells, so thaty is at a comparable magnitude tox.
Also, we assume the person is cured wheny falls below
a constantyc, and terminal wheny increases above a
constantyd. Chemotherapy is scheduled forxd < x ≤ 1
andyc < y < yd.

While scheduling chemotherapy treatment, we need
to decide whether to apply the treatment at any time.
However, in reality, treatment should be applied contin-
uously during at least a certain period, say, one hour or
a couple of hours, and we cannot switch between treat-
ment and no treatment too frequently. Therefore, we
assume a constant∆t, which is the minimum time in-
terval required in reality for continuous treatment. Sup-
pose we start at timet = 0, then we need to decide to
administer treatment or not for time intervals(t, t+∆t),
(t + ∆t, t + 2∆t), (t + 2∆t, t + 3∆t), ... If we let 1
stand for treatment and 0 for no treatment, we are es-
sentially searching for the optimal 0-1 sequence, such
as 1100101100...

Suppose att = 0 the density of the cells arex andy,
then at time∆t the density should depend on whether
there was treatment during this∆t. Suppose the density
of the cells arex(0) andy(0) in case of no treatment,
andx(1) andy(1) in case of treatment. We define the
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increment functions as

∆(l)x = x(l) − x, ∆(l)y = y(l) − y, l = 0, 1.

Finding the accurate expression of the increment
functions∆(0)x, ∆(0)y, ∆(1)x and ∆(1)y lies in the
field of biology and oncology, and is not the interest of
our paper. Our goal is that, given the increment func-
tions, we find the optimal chemotherapy schedule. As
will be shown in the next section, our method will work
for all increment functions that satisfy the following
natural assumptions in chemotherapy.
• ∆(0)x ≥ 0, ∆(0)y ≥ 0, which means in case of no

treatment, the density of cells cannot decrease due to
cell growth.
• ∆(1)x ≤ 0, ∆(1)y ≤ 0, which means during

chemotherapy treatment, the density of cells will not
increase due to the effect of drug.
• If x1 ≤ x2, thenx1 + ∆(l)x1 ≤ x2 + ∆(l)x2, i.e.,

x
(l)
1 ≤ x

(l)
2 , for l = 0, 1, and similarity for tumor cell

densityy. This means at the beginning of a period
∆t, if state 1 has fewer cells than state 2, then given
the same treatment choice during the time interval,
state 1 will still have fewer cells than state 2 at the
end of this interval.
Besides these assumptions, research also shows some

other properties (listed below) regarding the monotonic-
ity of the increment functions, which are not required to
prove our theorems in the next section. However, while
presenting the numerical results, we choose some in-
crement functions that satisfy these properties.
• If there was no treatment, then the density of both host

cells and tumor cells should increase, but the increas-
ing speed varies. For tumor cells, it is well-known
that they grow very fast, for example, geometrically
or exponentially, i.e., the more tumor cells, the faster
they grow. Therefore,∆(0)y should increase withy.
• Host cell density, on the other hand, can never ex-

ceed its normal level, which is assumed to be 1 in
the suitable unit, and research shows that whenx is
small, it grows somewhat like a tumor, but whenx
is approaching 1, it grows more and more slowly.
Therefore,∆(0)x should first increase asx increases,
then reaches its maximum at somexM , and then de-
crease to zero asx approaches 1. In any case,∆(0)x
should be smaller than1− x.
• If treatment was applied during∆t, the density of

both host cells and tumor cells should drop rapidly,
since the drug strongly reduces the growth of cells.
However, the drop of tumor is much faster since the
drug involved in chemotherapy is supposed to be ori-

ented to the tumor, and hence has stronger effect on
the tumor than on host cells. Also, the more cells
there are, the more effect the chemotherapy has on
them. Due to these facts, both∆(1)x and∆(1)y are
negative, and both of their absolute values should in-
crease withx andy.
We aim at minimizing the treatment time for each

(x, y) by choosing the best schedule. We regardT , the
time needed to cure a person with cell density(x, y),
as a function ofx, y and s, where s is a sequence
of boolean variables. Suppose all possible choices ofs
construct a setS, then we are essentially solving

min
s∈S

T (x, y, s),

for each pair(x, y) which satisfiesxd < x ≤ 1 and
yc < y < yd.

However, the enormous size ofS prohibits direct so-
lution, and the problem in some cases might be NP-
complete [13]. Fortunately, we are more interested in
the optimal value ofT instead of the functionT on the
whole ofS.

If we define

f(x, y) = min
s∈S

T (x, y, s),

i.e.,f(x, y) is the shortest possible time to cure a patient
at state(x, y) if the optimal schedule is employed, then
we can build up the relation off for different states in
the following way.

Suppose a patient is at(x, y), then in the follow-
ing time interval ∆t, the density of cells may go
to (x(0), y(0)) if no chemotherapy is applied, or to
(x(1), y(1)) if there is chemotherapy treatment. Then
from these two states, if optimal scheduling is employed
thereafter, the shortest treatment time aref(x(0), y(0))
and f(x(1), y(1)) respectively. Since∆t has elapsed
while moving from(x, y) to either of these two states,
by optimality of the functionf(x, y), we have the
relation

f(x, y) = min(f(x(0), y(0)), f(x(1), y(1))) + ∆t.

Moreover, for those already cured, the time needed
is obviously zero, and for those terminal, we can as-
sume the time needed is infinity, i.e., can never be
cured. Therefore, we reach our equation forf(x, y) with
boundary values as follows
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f(x, y) =















min(f(x(0), y(0)), f(x(1), y(1))) + ∆t,
xd < x ≤ 1 and yc < y < yd

0, for xd < x ≤ 1 and 0 ≤ y ≤ yc

∞, for 0 ≤ x ≤ xd or y ≥ yd

(1)
For those who are neither terminal nor cured, the time

needed should be either infinity (impossible to cure) or
a multiple of∆t, which means we are seeking a solution
to (1) which isk∆t everywhere in[xd, 1] × (yc, yd],
wherek ∈ Z

+ or∞. We define this kind of solution as
a “regular solution”.

3. Properties of the Solution to the Recurrence
Equation

Since we need to mathematically solve equation (1)
to getf(x, y), it is important to know, regardless of the
biological meaning of it, whether there exists a solution
to equation (1), and if so, whether the solution is unique.
We have the following theorems, the proofs of which
lead to the algorithms.
Theorem 1 There exists a regular solution to equation
(1).
Proof. The main idea of the proof comes from the value
iteration algorithm, but here we are dealing with the case
of continuous states. We iteratively define a sequence of
functionsfi and prove they will converge to a function,
which is the solution to equation (1). Define

f0(x, y) =

{

0, xd < x ≤ 1 and 0 ≤ y ≤ yc

∞, 0 ≤ x ≤ xd or y > yc

And for i = 1, 2, ..., define

fi(x, y) =















min(fi−1(x
(0), y(0)), fi−1(x

(1), y(1)))+
∆t, xd < x ≤ 1 and yc < y < yd

0, for xd < x ≤ 1 and 0 ≤ y ≤ yc

∞, for 0 ≤ x ≤ xd or y ≥ yd

(2)
We show that for everyx andy, fi(x, y) ≥ 0, and

fi(x, y) ≥ fi+1(x, y).
In the area where0 ≤ x ≤ xd or y ≥ yd, fi(x, y) is

defined constantly as∞, and in the area wherexd <
x ≤ 1 and0 ≤ y ≤ yc, fi(x, y) is defined constantly as
0. Hence both non-negativeness and monotonicity hold
for these two cases trivially.

For the case wherexd < x ≤ 1 andyc < y < yd,
we can show it by induction. Fori = 0, it is trivial by

definition thatf0(x, y) ≥ 0 andf0(x, y) ≥ f1(x, y). If
we havefk(x, y) ≥ 0 andfk(x, y) ≥ fk+1(x, y), then
for

fk+2(x, y) = min(fk+1(x
(0),y(0)), fk+1(x

(1),y(1)))+∆t

≤min(fk(x(0), y(0)), fk(x(1), y(1))) + ∆t

= fk+1(x, y).

Also,

fk+1(x, y) = min(fk(x(0), y(0)), fk(x(1), y(1))) + ∆t

≥min(0, 0) + ∆t ≥ ∆t > 0.

Therefore, we proved that for each(x, y), fi(x, y) is
a monotonically decreasing sequence, while bounded
below by 0, hence will converge asi goes to∞. Define

f(x, y) = lim
i→∞

fi(x, y),

then forxd < x ≤ 1 andyc < y < yd, take the limit
on both sides of equation (2), we can get

f(x, y) =















min(f(x(0), y(0)), f(x(1), y(1))) + ∆t,
xd < x ≤ 1 and yc < y < yd

0, for xd < x ≤ 1 and 0 ≤ y ≤ yc

∞, for 0 ≤ x ≤ xd or y ≥ yd

So the only thing left to prove for existence is that
f(x, y) is either∞ or k∆t, for xd < x ≤ 1 andyc <
y ≤ yd, but this can also be easily obtained via induction
on fi(x, y). As f0(x, y) can only be0 or∞, f1(x, y)
can only be∆t or∞ in this region, etc.
Theorem 2 The regular solution to equation (1) is
unique.
Proof. Suppose there were two different regular solu-
tions to equation (1), denoted byf(x, y) andg(x, y).
From boundary value 0 and∞, f and g can only be
different whenxd < x ≤ 1 andyc < y < yd. Suppose
at a certain(x, y) in this region,f(x, y) < g(x, y), then
f(x, y) <∞, assumef(x, y) = k∆t, wherek is a nat-
ural number.

Since bothf andg are solutions, we have

f(x, y) = min(f(x(0), y(0)), f(x(1), y(1))) + ∆t,

and

g(x, y) = min(g(x(0), y(0)), g(x(1), y(1))) + ∆t.

Without loss of generality, assumef(x(0), y(0)) ≥
f(x(1), y(1)), and denote(x(1), y(1)) with (x′, y′), then

f(x, y) = f(x′, y′) + ∆t,
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which means

f(x′, y′) = (k − 1)∆t.

On the other hand,

g(x′, y′)≥min(g(x(0), y(0)), g(x′, y′))

= g(x, y)−∆t

> f(x, y)−∆t

= (k − 1)∆t.

Therefore, starting from(x, y) wheref(x, y) = k∆t
andg(x, y) > k∆t, we move to another point(x′, y′)
wheref(x′, y′) = (k−1)∆t andg(x′, y′) > (k−1)∆t.
Then do the same thing from point(x′, y′), and repeat
this for k times, we can finally reach a point(x∗, y∗)
wheref(x∗, y∗) = 0 while g(x∗, y∗) > 0. However,
sincef is a regular solution, it can only be zero for
xd < x∗ ≤ 1 and 0 ≤ y∗ ≤ yc, so g(x∗, y∗) = 0,
which results in a contradiction. Therefore, the regular
solution to equation (1) must be unique.

Since equation (1) and the regularity condition sat-
isfied by f(x, y) are derived from the optimality of
T (x, y, s), now that we have proved the existence and
uniqueness of the regular solution to equation (1), we
can from now on regard the regular solutionf(x, y) and
mins∈S T (x, y, s) as the same thing.

A typical chemotherapy schedule involves both
period of treatment and non-treatment. Tumor cells
are killed during the treatment, while host cells are
also killed to some extent. Therefore, we need a non-
treatment period from time to time to let the host
cells grow back to an acceptable level. However, if we
choose the optimal schedule, we know intuitively that,
given the same host cell density level, the more tumor
cells, the longer it takes to cure the patient. On the
other hand, given the same tumor cell density level, the
fewer host cells, the longer it takes. These two points
can be stated and proved in the following theorems.
Theorem 3 Given ∀x ∈ (xd, 1], if y1 ≤ y2, then
f(x, y1) ≤ f(x, y2).
Proof. If f(x, y2) =∞, thenf(x, y1) ≤ f(x, y2) holds
trivially. If f(x, y2) < ∞, say,f(x, y2) = k∆t, where
k is a natural number, then according to the definition
of f , there exists an optimal schedules∗ ∈ S, such that

f(x, y2) = T (x, y2, s
∗) = min

s∈S
T (x, y2, s) = k∆t.

and during thesek periods, host cell level never drops
below xd, while at the end of thekth period, tumor
level goes toy′

2 which is belowyc, so that it can be
considered cured.

Now starting from state(x, y1), and following
the same schedules∗, from the assumption that
y1 + ∆(l)y1 ≤ y2 + ∆(l)y2 if y1 ≤ y2, after each time
period, the host cell level will be the same as if we
start from state(x, y2), while the tumor level should
reach a level lower than that from state(x, y2), since
y1 ≤ y2. Therefore, during thesek periods, host cell
level will never drop belowxd, either, while at the
end of thekth period, tumor level drops toy′

1, which
satisfiesy′

1 ≤ y′
2 ≤ yc.

Therefore, state(x, y1) can also be cured afterk∆t
following schedules∗, and we can conclude the op-
timal treatment time for(x, y1) is at mostk∆t, i.e.,
f(x, y1) ≤ f(x, y2).

Similarly, we can prove a parallel result,
Theorem 4 Given ∀y ∈ (yc, yd), if x1 ≤ x2, then
f(x1, y) ≥ f(x2, y).
Proof. Omitted.

4. Algorithms

The proposed approach for scheduling chemotherapy
consists of two steps. The first step is to numerically
solve equation (1) to get the optimal treatment time
f(x, y), and the second step is to determine the 0-1
sequence fromf(x, y) of the whole domain.

In the proof of the existence of a solution, we con-
structed a solution by forming a sequence offi(x, y)
and taking the limit of it. The numerical algorithm is
based on the same idea. However,fi(x, y) is defined on
the whole domain ofx andy having uncountable points,
which makes it impossible to implement directly. What
we need to do is mesh the domain into a finite number
of grid points, and update the value off on the grid. If
(x, y) moves to a non-grid point after∆t, we use linear
interpolation from the value of its 4 nearby grid points
as the value off(x + ∆(l)x, y + ∆(l)y). The interpola-
tion may violate the regularity condition which requires
the solution to be a multiple of∆t. However, we may
round the converged solution off to the closest integer
after the algorithm terminates.

We set the whole domain of interestD as x ∈
[xmin, 1] andy ∈ [ymin, ymax]. Herexmin is chosen
somewhat smaller thanxd, ymin smaller thanyc and
ymax larger thanyd, such that we can ensure any state
(x, y) within the region[xd, 1]× [yc, yd] will not move
out of [xmin, 1]× [ymin, ymax] after a time interval∆t.

We meshD with step sizeδx and δy. Let M =
(1−xmin)/δx, N = (ymax−ymin)/δy, then the whole
domain is meshed to(xi, yj) as grid points, fori =
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0, 1, ..., M , j = 0, 1, ..., N . By adjustingxmin, ymin

andymax, we can assumexd, yc andyd are on the grid
points, i.e.xd = xmin + kxd

δx, yc = ymin + kyc
δy

andyd = ymin + kyd
δy, wherekxd

, kyc
andkyd

are
natural numbers. Then we can construct a sequence of
f values on the grid points according to the proof of
existence of the solution; the main idea is illustrated in
Figure 1 and the detailed implementation is summarized
in Algorithm 1.

After f(xi, yj) are determined, we can find out the
optimal chemotherapy schedule for any(x, y), by iter-
atively comparingf(x(0), y(0)) and f(x(1), y(1)), and
store the 0-1 schedule in an array denoted byS. This is
illustrated in Algorithm 2.

If f(x, y) =∞, and we report that the patient cannot
be cured, it does not mean that we should give up treat-
ment. Instead, we shall aim at maximizing the survival
time before death. This can be achieved by defining an-
other function of the survival time asT ′(x, y, s), and
the optimal survival time as

g(x, y) = max
s∈S

T ′(x, y, s).

Then similar tof(x, y), we can have the dynamic equa-
tion for g(x, y) as

g(x, y) = max(g(x(0), y(0)), g(x(1), y(1))) + ∆t,

for xd < x ≤ 1 andyc < y < yd, and setg(x, y) =
0 for those dead andg(x, y) = ∞ for those cured.
Then, following the same steps in previous sections,
we can also construct the theorems and algorithms for
the optimal survival time, for which we omit the details
here.

5. Numerical Results and Comparative Studies

In this section, we first demonstrate the performance
of the proposed approach for a set of increment func-
tions given as follows.

In case of no treatment, the tumor cells grow expo-
nentially as

y(0) = yr
∆t

tc

c ,

whererc is a constant, andtc is the length of the life
cycle of tumor cells.

The host cells also grow exponentially withth as the
length of the life cycle. However, the baseth is no longer
a constant astc. Since the host cells density cannot
grow beyond 1, following the assumptions in section 2,
we can constructth = min(2, x+1

2x
), which means the

number of host cells can at most double after each life
cycle, and

x(0) = x(min(2,
x + 1

2x
))

∆t

t
h .

In case of chemotherapy, we simply assume a fraction
αh and αc of th and tc will be deducted, so that the
total density will decrease,

x(1) = x(min(2,
x + 1

2x
)(1− αh))

∆t

t
h ,

y(1) = y(rc(1− αc))
∆t

tc .

We carry out our experiment for two example sets of
parameters listed in Table 1. For simplicity, we take the
time unit as∆t = 1.

If we choose our grid size asδx = 0.001 andδy =
0.001, using Algorithm 1, we can get the optimal treat-
ment time for the whole domain of our interest. Neglect-
ing those states that are incurable, we have the results
shown in Figure 1.

Following Algorithm 2, we give our optimal treat-
ment time (OTT) and optimal chemotherapy scheduling
0-1 sequence for various(x, y) states listed in Table 2.

We can see from the results that more frequent
chemotherapy treatment is required in example 2 than
in example 1. This is because the drug is less effective
on tumor while having more impact on host cells, i.e.,
smallerαc and largerαh.

To illustrate the advantages of the proposed approach,
we compare it with the local search heuristic algorithm
proposed by Agur et.al. [13], the most recent work on
optimizing chemotherapy scheduling. Their multiple-
start local search algorithm searches for a locally opti-
mal treatment schedule that maximizes a well-defined
fitness function. The fitness function is mainly com-
posed of three parts, which depend on the cell density,
the index of whether the patient is cured, and the time
of cure. The algorithm divides the life-cycle of a cell
into critical and non-critical phases. By setting the crit-
ical phase to be the whole life-cycle, this algorithm and
our proposed approach are comparable for the same set
of parameters as in Examples 1 and 2, and the compar-
ative results on optimal treatment time are summarized
in Table 3.

From Table 3, we can see that for half of the 12
cases considered, both approaches achieved the same
optimal treatment time. For the other 6 cases, especially
for cases in which it takes a relatively longer time to
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Figure 1. Flowchart for Algorithm 1

Algorithm 1 Algorithm for Optimal Treatment Time.

set∆t, tolerance anderror > tolerance;
for i = 0 to kxd

or j = kyc
+ 1 to N do

f(xi, yj) =∞;
end for
for i = kxd

+ 1 to M andj = 0 to kyc
do

f(xi, yj) = 0;
end for
while error > tolerance do

for i = kxd
+ 1 to M andj = kyc

+ 1 to kyd
− 1 do

x(0) ← xi + ∆(0)xi; y(0) ← yj + ∆(0)yj ; x(1) ← xi + ∆(1)xi; y(1) ← yj + ∆(1)yj ;
Interpolatef(x(0), y(0)) andf(x(1), y(1)) from thef -values on nearby grid points;
fnew(xi, yj)← min(f(x(0), y(0)), f(x(1), y(1))) + ∆t;

end for
error ← maxi,j f(xi, yj)− fnew(xi, yj);
f ← fnew for i = 0, ..., M ,j = 0, ..., N ;

end while

cure a patient, our proposed approach was able to iden-
tify significantly shorter treatment schedules than those
achieved by the local search algorithm.

Moreover, regarding the computational cost, for any

pair of (x, y), the local search algorithm needs to be
implemented over multiple starting points to identify
the optimal treatment schedule. Our proposed approach,
on the other hand, only needs to implement Algorithm



182 Jiang, Liu, and Su – Optimizing Chemotherapy Scheduling

Algorithm 2 Algorithm for Optimal Scheduling for state(x, y)

Interpolatef(x, y) from thef -values on nearby grid points;
if f(x, y) =∞ then

report the result as cannot be cured;
else

initialize S;
period← 0;
while f(x, y) 6= 0 do

period← period + 1;
x(0) ← x + ∆(0)x; y(0) ← y + ∆(0)y; x(1) ← x + ∆(1)x; y(1) ← y + ∆(1)y;
Interpolatef(x(0), y(0)) andf(x(1), y(1)) from thef -values on nearby grid points;
if f(x(0), y(0)) > f(x(1), y(1)) then

(x, y)← (x(1), y(1));
S(period)← 1;

else
(x, y)← (x(0), y(0));
S(period)← 0;

end if
end while

end if

Table 1

Parameter Description Example 1 Example 2

∆t smallest chemotherapy interval 1 1
tc tumor cell life cycle 28 28
th host cell life cycle 8 8
rc tumor cell growth constant 2 2
αc tumor cell deduction percentage in chemotherapy 0.998 0.95
αh host cell deduction percentage in chemotherapy 0.3 0.55
xd host cell density level for death 0.8 0.4
yc tumor cell density level for cured 0.2 0.2
yd tumor cell density level for death 4 4

Parameters used for numerical experiment

1 once to achieve the optimal treatment time over the
whole region, which greatly reduces computational cost.
Notice that, for any given(x, y), Algorithm 2 can iden-
tify the optimal treatment schedule with negligible com-
putation time.

6. Conclusions and Discussions on Model Enhance-
ment

Optimization methods have recently been employed
to identify optimal chemotherapy scheduling, which is
a problem of great importance and thus needs to be
adequately addressed. We developed an iterative ap-
proach for optimizing chemotherapy scheduling, which
can incorporate any growth model for host and cancer

cells and is computationally tractable. Theoretical stud-
ies, simulation results as well as comparative studies
demonstrate the proposed approach to be promising.

In previous sections, to illustrate the main idea, we
simplified the chemotherapy model by neglecting some
details such as the dose amount of chemotherapy, prob-
abilistic moving from state to state, individualization
of the parameters for different patients, and cell-cycle
phase-specific scheduling. In this section, we show how
our model can be enhanced to incorporate these points.

6.1. Choice of Dose Amount

So far, while scheduling chemotherapy, we have
only considered two choices, treatment or no treatment.
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Figure 2. Graphical Results on Optimal Treatment Time

Table 2

Example (x, y) OTT Optimal Chemotherapy Schedule

1 (0.9, 0.5) 13∆t 1110001001001
(0.9, 1.0) 30∆t 111001001000100100010010010001
(0.9, 3.0) 57∆t 111001001000100100010010010001001000100100100010010001001
(0.95, 0.5) 6∆t 111101
(0.95, 1.0) 23∆t 11110100010010001001001
(0.95, 3.0) 51∆t 111101000100100010010010001001000100100100010001001

2 (0.65, 1.5) 38∆t 11111111101101101101101101101101101101
(0.65, 2.5) 48∆t 111111111011011011011011011011011011011011011011
(0.65, 3.5) 56∆t 11111111101101101101101101101101101101101101011011011011
(0.85, 1.5) 35∆t 11111111111101101101101101100111011
(0.85, 2.5) 47∆t 11111111111101101101101101101101101101101101101
(0.85, 3.5) 54∆t 111111111111011011011011011011011011011011011011011011

Results on Optimal Treatment Schedule

However, for the choice of treatment, the dose amount
can sometimes vary. Although theoretically, the dose
amount can be a real number, in practice it can only be
a multiple of a smallest unit. For this reason, we can
assume the dose amountl = 0, 1, 2, ..., n in the suit-
ably chosen unit, wheren is the largest allowable dose
amount to be used for a patient. Then instead of a 0-1
choice at each(x, y), we are facingn + 1 choices ofl,
with l = 0 standing for no treatment. Use∆(l)x, ∆(l)y
to denote the cell density increment in the correspond-
ing case, and follow the same reasoning in section 2, we

can reach a similar recurrent equation to the one in (1),

f(x, y) = min
l=1,...,n

f(x + ∆(l)x, y + ∆(l)y) + ∆t,

for the corresponding region ofx andy. The theorem
on the existence and uniqueness of the regular solution
still hold with the same proof. The algorithm just needs
to be changed slightly according to the new equation.

6.2. Probabilistic Moving among the States

By assuming cell density moves from(x, y) to (x +
∆(l)x, y+∆(l)y) during∆t with dose amountl, we are
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Table 3

Example (x, y) Algorithm 1 & 2 Local Heuristic Search Algorithm

1 (0.9, 0.5) 13∆t 13∆t

(0.9, 1.0) 30∆t 30∆t

(0.9, 3.0) 57∆t 68∆t

(0.95, 0.5) 6∆t 6∆t

(0.95, 1.0) 23∆t 24∆t

(0.95, 3.0) 51∆t 58∆t

2 (0.65, 1.5) 38∆t 38∆t

(0.65, 2.5) 48∆t 49∆t

(0.65, 3.5) 56∆t 59∆t

(0.85, 1.5) 35∆t 35∆t

(0.85, 2.5) 47∆t 47∆t

(0.85, 3.5) 54∆t 55∆t

The Optimal Treatment Time Achieved through the Proposed Approach and the Local Search Algorithm in [13]

essentially assuming this were a deterministic move-
ment from one state to another. However, in reality,
there are many other factors affecting the changing of
cell density, which means there is much randomness in
∆(l)x and∆(l)y.

Due to this randomness, we change our definition of
f(x, y) to be the optimal ”expected” time to cure, and
reconstruct our recurrent equation, taking probability
into account. In general, suppose at state(x, y), after
a period∆t with treatment levell, the state will move
to (x′, y′) with probability density functionp(l)(x′, y′),
then we can derive our new equation as

f(x, y) = min
l=1,...,n

∫

D

f(x′, y′)p(l)(x′, y′)dx′dy′ + ∆t,

whereD is a suitable region for the integral. We can
therefore modify our algorithm according to the given
p(l)(x′, y′). If the solution space is discretised, we may
employ Blackwell’s theorems for stochastic dynamic
programming to prove the existence and uniqueness of
the solution.

6.3. Cell-cycle Phase-Specific Scheduling

As discussed in [13], the effect of the drug used in
chemotherapy on the cell growth also depends on the
phase during the cell-cycle. Both host and tumor cells
are assumed to be sensitive to the chemotherapeutic
agents in only a few of the cell-cycle phases, which
are defined as critical phases. Due to this reason, cell-
cycle dependent chemotherapy is shown to favor peri-
odic treatment.

We can incorporate this point into our model by in-
creasing the dimension of the state space from 2 (host

and tumor) to 4 (host and tumor, in critical and non-
critical phases). More specifically, at a certain time, we
have a 4-dimensional vector(xa, xb, ya, yb) to denote
the cell densities for both the host and tumor cells in
critical and non-critical phases. Then assume after time
period∆t, it moves to state(x′

a, x′
b, y

′
a, y′

b). We can get
parallel results as we did in previous sections.

6.4. Individualization

Typically, the parameters in the density increment
functions such as∆(0)x should vary from person to
person. At the very beginning of the chemotherapy, we
can only use the average parameters at hand. During
the chemotherapy treatment, we can test the cell den-
sity level for the patient from time to time, and then
adjust the parameters. Statistical methods can be em-
ployed to achieve this. Each time when the parameters
are changed, we need to resolve our equations for better
scheduling.
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