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Reducing the tongue—and—groove underdosage in MLC shape nm
decomposition

Thomas Kalinowski
Institut fur Mathematik, Universitat Rostock, 18051 Rk, Germany

Abstract

We present an algorithm for optimal step-and-shoot matileollimator field segmentation minimizing tongue-and-
groove effects. Adapting the concepts of [7] we charactetie minimal decomposition time as the maximal weight
of a path in a properly constructed weighted digraph. We alkow that this decomposition time can be realized by
a unidirectional plan, thus proving that the algorithm froj®] is monitor unit optimal in general and not only for
unidirectional leaf movement. Our characterization of thamimal decomposition time has the advantage that it can be
used to derive a heuristic for the reduction of the numberhafpe matrices following the ideas of [7].

Key words: leaf sequencing, radiation therapy optimization, intgnsiodulation, multileaf collimator, IMRT

1. Introduction

An important method in cancer treatment is the use
of high energetic radiation. In order to kill tumor cells
the patient is exposed to radiation that is delivered by a
linear accelerator whose beam head can be rotated abou
the treatment couch. Inevitably the healthy tissue sur-
rounding the tumor is also exposed to some radiation.
So the problem arises to arrange the treatment in a way
such that the tumor receives a sufficiently high uniform
dose while the damage to the normal tissue is as small ~ Fig. 1. The leaf pairs of a multileaf collimator (MLC)
as possible. The standard approach to this problem is
as follows. First the patient body is discretized into so

calledvoxels The set of voxels is then partitioned into . o L, ceEee X
is to divide the optimization into two phases. At first,

three sets: the clinical target volume, the critical struc- b | d ding f :
tures and the remaining tissue. There are certain dose? Set of beam angles and corresponding fluence matri-

constraints for each of these parts. Basically the dose in €S @re determined. In a second step a sequence of leaf

the target volume has to be sufficient to kill the cancer- pqsmons for_the MLC for_ each of the a_mg_les 1S deter-
ous cells and the dose in the critical structures must not MiN€d that yields the desired fluence distribution. Very

destroy the functionality of the corresponding organs. recently there have been attempts to combine both steps

The determination of a combination of radiation fields into one optimization routine [5,12]

is usually done by inverse methods based on certain [N thiS paper we concentrate on the second step, the
physical models of how the radiation passes through a Sh@P€ matrix decomposition problem. Suppose we have
body. In the early 1990's the method of intensity modu- fixed the beam angles from which the radiation is re-
lated radiation therapy (IMRT) was developed in order leased, apd _for gach of the beam angles.we are given a
to obtain additional flexibility. Using a multileaf colli-  fluénce distribution that we want the patient to be ex-
mator (MLC) it is possible to form homogeneous fields posed to. After dlscretlzmg_the_ be_am _uﬁtx_elswe can

of different shapes. By superimposing some homoge- assume that the fluence distribution is given as a non-

neous fields an intensity modulated field is delivered. N€9ative intégem x n—matrix A. Each row of the ma-
An MLC consists of two banks of metal leaves which X corresponds to a pair of leaves of the MLC, and the

block the radiation and can be shifted to form irregu- €Nty @i represents the required fluence at bigelj).
When the MLC is used in the so called step—and—shoot

Email: Thomas Kalinowski [thomas.kalinowski@uni- mode the given fluence distribution is realized by super-
rostock.de]. imposing a number of differently shaped homogeneous

larly shaped beams (Fig. 1).
The most common approach in treatment planning
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fields coming from different combinations of the leaf
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may lead to underdosage effects in these regions, as is

positions. For example, Figure 2 shows a sequence ofillustrated in Figure 4 for the fluence matrik= (2 3).

leaf positions for the matrix

1330
e
0110\ (0110 1000y W
2\ go11]* {1111 * (0011
1100/ \0000 1110

In order to minimize this effect we require that <
a;+1,; implies that bixel(i + 1, j) is exposed when-
ever bixel(i, j) is exposed (similarly foi — 1 instead
of ¢ + 1). Thus we assure that the overlap region of
two bixels always receives the smaller one of the rele-
vant doses. We say that a shape matrix decomposition
of A satisfies the tongue—and—groove constraint (TGC)
if this condition holds for all used shape matrices. This
intuitive concept of minimizing underdosage is made
more precise in Lemma 1 below. Of course, when the
total delivery time increases due to adding the TGC, the

where the shading indicates the region which is covered ;| leakage radiation through closed leaves also in-

by the leaves.

The problem of realizing a given intensity matrik
leads to the problem of representiA@s a positive inte-
ger combination of certaif0, 1)—matrices, called shape

creases, so there might be a tradeoff between reduction
of TG-underdosage and increasing leakage. But numer-
ical experiments indicate that the increase of delivery

time compared to the unconstrained case is rather small.

matrices, which represent the possible leaf positions. So Starting with [3] and [6] several algorithms were

the realization in Fig. 2 corresponds to the decompo-
sition in (1). In order to compare different decompo-
sitions of an intensity map we consider two quantities
(where we adopt the terminology of [1]). For a decom-
position A = S°F | 4, S, the sum of the coefficients
is proportional to the total irradiation time and is called
decomposition timeDT = >t uj. The numbert

of used shape matrices, callddcomposition cardinal-
ity (DC), influences the total treatment time due to the

proposed for the shape matrix decomposition problem
[1,2,4,8,13,14]. Methods for eliminating the tongue—
and—groove underdosage were presented in [9-11]. The
algorithm from [9] isDT—optimal, as is shown for uni-
directional plans in [9] and will be proved without re-
striction for the leaf movement direction in the present
paper. Adapting the approach of [4], in [7] we charac-
terized the minimaDT for the decomposition with ICC

as the maximal weight of a path in a certain digraph.

setup time between the delivery of different shapes. Our |, this paper we further modify this approach such that

objectives in constructing a decomposition are to mini-
mize bothDT and DC. In this paper we consider two
additional constraints that come from the technical re-
strictions in many of the available MLCs. The interleaf
collision constraint (ICC) forbids the overlapping of op-
posite leaves in adjacent rows. Another restriction is

due to the tongue—and-groove leaf arrangement of the

MLCs (see Fig. 3).

\l/ Radiation

Fig. 3. The tongue—and—groove design of the leaves of an

MLC.

There is a narrow strip in the border region between

two adjacent rows that is covered by both leaves and this

the TGC is included. In addition, we present a greedy
heuristic for the reduction of the number of shape ma-
trices and present some numerical test results.

2. Mathematical formulation of the DT-decomposition
problem with ICC and TGC

Throughoutthe rest of the paper, for a natural number
n, [n] denotes the s€tl, 2, ..., n} and for natural num-
bersm < n, [m,n] denotes the setm,m +1,...,n}.

In this section we formulate the shape matrix decom-
position problem and give a min—max—characterization
of the optimal solution very similar to the one used in

[7]. We start with a formal characterization of the shape
matrices that are allowed in a decomposition of a given
intensity matrixA.

Definition 1. Let A be an intensity matrix. Aml—shape
matrix is anm x n-matrix .S = (s;;) with entries from
{0,1}, such that there exist integets r; (i € [m])
with the following properties:

li<mr (2 € [m]), (2)
ifly<j<mr . .

Sid = {(1) Iotilefwjis: ' (€l j e, @

(4)
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Fig. 2. A realization of the intensity matrid using an MLC. The numbers below the leaf positions indicate number of

monitor units required.

leaf sequence with
tongue-and-groove underdosage

1 R\

leaf sequence without
tongue-and-groove underdosage

Fig. 4. Two different realizations of the same fluence maffixe numbers next to the leaf positions indicate the irtamhaimes

for the corresponding beams. In the left version the oveblkeiveen bixelg1,1) and (

ICC: I; <7Tig1, 5 >lipzn (ie[m—1]), (5)
and we have
Qij < Q41,5 A\ Sij = 1=
TGC: Sit+l,5 = 1 (Z € [m - 1]7 J € [n]), (6)

aij < ai—1,5 N sig =1=
Si—1,j = 1 (Z S [2,m], j € [n])

A shape matrix decompositi@f an intensity matrix
A is a representation

t
A= Z upS*)
k=1

(7)

with positive integersu;, and A—shape matrices %)

(k € [t]). The decomposition timel}T") of this decom-
position is 22:1 u, and the shape matrix decompo-
sition problem is to find, for givem, a shape matrix
decomposition with minimalDT. We want to give a

precise description of the sense in which condition (6) we haveT'G(i,j) = 0 for all (i,j) € [m

2, 1) receives no radiation at all.
composition (7) at bixe(s, j) by

(k) o (k)

TG(i,§) = min{aij, ait1,5} — Zk 1 UkSi5 Sy,

(i € [m—1],j € [n]).

The sum in the right hand side of this equation is the
total fluence delivered to the overlap between roasd

7+ 1 in columnyj, because this overlap is open in the
k—th shape if and only ifs*l(.f) = sgfgd = 1. This sum

is at mostmin{a;;, ai+1,;}:

t

(k)
=z Z ZJ Sit1,5

Z uks”
k=1 k=1

and similarly fora;1 ;. ThusT(i,j) > 0 and every
positive value ofl'(z, j) indicates an underdosage. The
following lemma states that the underdosage is mini-
mized for every(i, j) if all the shape matrices satisfy
condition (6).

Lemma 1. For a decompositiomd = >t u; 5™,

— 1] x [n] if

ensures that the TG-underdosage is minimized. For thisand only if every shape matri¢*) satisfies (6).
purpose we define the tongue and groove error of a de-Proof. By symmetry, we may assumg; < a;11,;. We
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obtainT'(i, j) = 0 if and only if For convenience we denote this maximal weight by
c(A):
(k) _
i = Zws Z“ 5 J S 37 c(A) = max{w(P) : Pisa(0,1)—pathinG}. (8)
d thi th it and onl f ~ 1wh Observe that the results from [4] and [7] can be seen as

a(n) Is is the case if and only 4}, ; = 1 whenever characterizations of the minimal DT in terms of maxi-

s = 1. _ o U mal path weights for different variants of the problem

_In order to characterize the minimal DT we use a corresponding to manfacturer specific restrictions.
similar approach as in [7]. We construct a digraph= e MLC without restriction of leaf movement: use the

(V. E) as follows. graphG without the vertical arcs.

e MLC with interleaf collision but without tongue and
groove: use the same gragh but with modified
weights for the vertical arcs.

So the only case that cannot be treated in this framework

V= {0,130 (fm] x [0, + 1))
E=FE, UFEUFE3UE, where

={(0,(i,0)):i € [m]} U {((¢,n +1),1):i € [m]}, is an MLC with tongue and groove and without interleaf
={((4,5),(i+1,7) : i€[m—1], j€n]} collision.
={((4,5), (i —1,7)) : i€[2,m], j€[n]},
E4 ={((&,j —1),(4,7)) : i €[m], j € [n+1]}. 3. The lower bound

Here0 and1 serve as starting and end point, respectively, . ) ) )

and the vertices iim| x [n] correspond to the entries In this sectlt_)n we show that the maximal weight of
of A. The two extra columngm| x {0} and [m] x a (0, 1)—path n G is a lower bqund for _theDT of
{n+ 1} have the purpose to simplify the notation: they & decomposition of4, thus proving the first half of
assure that for everfj, j) € [m] x [n] there are vertices Theorem 1. The bgsm idea of the proof is a pomblnatlon
(i,j —1) and(i,j + 1). Without this, in several of the of the arguments in [1] and [9], the main difference to

arguments below, it would be necessary to treat the first [9] being that we do not require the leaf sequence to
and the last column separately (tfeand1 would have be un|d|rect_|or_1al. For our argument below we need an
to play the role ofi, 0) and(i,n+ 1), respectively). To ~ €xact description of how the numbers

be able to treat the first and theth column exactly as

the remaining columns, we also puty = a; 11 =0 a(i,j) = max{w(P) : Pisa(0,(i,j)) —pathinG}

(i € [m]). We define the weight function : E — Z: can be computed. This description is given in Algorithm
. , , 1.
0,(¢,0)) = , 1),1)=0(: e , . o .
w(0,(,0)) = w(lin +1), 1) (i € [m)) The underlying principle can be described as follows.
w((i,j), (i +1,7)) = min{0, ai+1,; — ai;} We proceed columnwise. Assuming we have already de-
) ] termined the values in columpi— 1 we initialize col-
o emedl el =) umnjwith ai,j) == ali,j— 1)+ w((j - 1), (i, ))-
w((i,7), (1 — 1,5)) = min{0, a;—1,; — a;;} After that we modify these values in order to satisfy the
(i€f2m) jen-1),  condiions
w((i,j—1),(i,5)) = max"[O,ai,j - ?i,j—l} a(i,j) > a(i—1,7) +w((i — 1,4), (4,5))
(i € [m], j € [n+1]). fori € [2,m)],
Example 1. Figure 5 showsG' corresponding to the a(i,j) = a(i+1,j) + w((i+1,4), (i, 5))
matrix fori e [m —1].
450145
4241314
1232124 ) Now the statement of the following lemma is obvious.
533253 Lemma 2. Algorithm 1 computes the numbex$i, j)

The following theorem, which is proved in Sections 1N ime O(m?n). . . _
3. and 4., is the main result of this paper and the basis SUPPOseA = >, _, S® is a shape matrix decom-
of the decomposition algorithm. position of A. We characterize t]?e shapg matsi¥) by
Theorem 1. The minimal DT of a shape matrix decom-  its left and right leaf positions™ andr{*) (i  [m]).
position of a nonnegative matrit equals the maximal ~ For (i, j) € [m] x [n + 1], let L;; denote the set of in-
weight of a(0,1)—path inG. dicesk with ll@ < j, and similarly, letR;; denote the
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0 -1 0 0 —9 ol |1 ol||0
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—1 _
o[ o0 of| o "ol 3,0
5 0 0 0 3 0 0

Fig. 5. The digraphG corresponding to matrix A.

Algorithm 1 (Computation of the numbers(i, 7)).
fori=1,...,mdoa(il) :=a;
for j=2,...,n+1do

fori=1,...,mdoa(ij) :=a(i,j—1)+w((i,j—1),(7))

fori=2,...,mdo

it i, j) < ali - 1,4) +w((i - 1,5), (i, j)) then
Oé(l,j) = Oé(l - 17]) + U}((Z - 11j)a (Z,]))
if a(i—1,7) < afij) +w((@+1,7), (7)) thenUpdat e(z — 1)

FunctionUpdat e (k)
a(k, j) = ok +1,7) + w((k +1,5), (4, 7))

if £ >2anda(k —1,j) < a(kj) +w((k,j),(k—1,7)) then Updat e(k — 1)

set of indicest with ry“) < j. More formally,
Lij={kel] : 1" <j},

Ry={kel] : r <j}.

Then|L;,| is the number of shape matrices which con-
tribute to rowi, andmax;c,, | Lin| is @ lower bound
for the DT'. In the next lemma we collect some simple
observations about the sels; and R;;.
Lemma 3. (1) For (4,j) € [m] x [n], R;; C L;; and
|Lij \ Rij| = aij.
(2) For (i,j) € [m] x [n], |Lij| > [Lij-a] +
maX{O, Aj5 — ai_’j,l}.
(3) For (’L,_]) S [2,m] X [n], Rifl_’j - Lij andRij -
Liflyj.
(4) For (i, 7) € [2,m] x [n],

ai—1,j < a;=>Li—1,; \ Ri—1,; C Lij \ Ry;
ai—1,j > ajj=> Li—1,; \ Ri—1,; 2 Lij \ Rij

proves the second claim. Using the ICC we obtain the
first inclusion in the third statement:
(k)

keRi_1; = rz@lgj = ;' <j = k€L,
and similarly the second one. For the fourth statement,
assumez;_1 ; < a;;. Using the TGC we obtain

keLioij\Rio1j = s;4; ij

— ke Lij \ R”

This gives the first implication, and the second one is
proved similarly. O

Next, we show that the numbers (¢, j) bound the
cardinalities|L;;| from below.
Lemma 4. For (i,7) € [m] x [n], we havea(i, j) <
| L]
Proof. We proceed by induction. Fgr= 1, a(i, 1) =
a;1 and the claim is obvious, since we need at least
shape matrices Wit[‘Ek) = 0. Suppose the statement of
the lemma is false, and lgtbe the index of the first

Proof. The first statement is a simple consequence of the column where, for some row we haven(i, j) > |Lijl-

facts thatrfk) <jJ implieslfk) < jand thatsl(.f) =1if
and only ifk € L;; \ R;;. The second statement is clear
if Qij < Qi j—1, SinceLi7j71 - ng If Q5 > Qjj—1,
there must be at least; — a; ;_, shape matrice§*)

with s§f> =1 andsg?_l = 0. For these shape matrices

we havelgk) =j—1,s0k € L;; \ L; j_1 and this

From Lemma 3 we get

|Lij| > |Lij—1| + max{0, a;; — a; -1}

Hence after the initialization of columnin Algorithm
1 (line 3), we still havex(i, j) < |L;;| for all i € [m)].
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Now let: be the index of the row where the claim of the
lemma is violated for the first time when the algorithm
is running. Consider this first violation and assume it
occurs in line 6 of Algorithm 1. The case that it occurs
in the functionUpdat e (k) is treated analogously.
Case l.a;-1,; < a;;. Inthiscasev((i—1,7), (i,7)) =

0, hence the updating step of the algorithm is

a(i, j) := a(i — 1, 7). By (iii) and(iv) in Lemma 3

we have

Ri—1; CLjandL;_1; \ Ri—1,; C Ly;.

HenceL;_;; C L;;, and consequently(i,j) =
a(i—1,7) < |L;;|, contradicting the assumption that
the step leads to a violation of the claim.

Case 2.a;-1,; > a;;. Now the considered step is
Oé(l]) = a(z’ - 1,]) - (ai_l,j - aij). Again by(lll)
and(iv) from Lemma 3,

Ri—1; C LijandLi; \ Rij C Li—1; \ Ri—1,;.
This implies (usindi) from Lemma 3)

|Lij| > |Ri—1,;] + |Li;j \ Rijl
= (|Li71,j| - aiq,j) + ai;
>afi—1,7) —ai—1,; + ai; = (i, j),

contradicting the assumption. O
Lemma 4 shows that the number§&, n) (i € [m]) are
lower bounds for théDT'. We state this conclusion as a
lemma.

Lemma 5. For any shape matrix decomposition of an
intensity matrixA, we have

DT > max a(i,n) = c(A).

1€ [m]

4. The algorithm

We compute a shape matrix decomposition4oaic-
cording to Algorithm 2. This is essentially a reformula-
tion of the algorithm of Kamath et al. [9], but we need
it in this form in order to show that our characterization
of the minimal DT in Theorem 1 is correct.

Algorithm 2 (DT-optimal shape matrix decomposition)
fork=1,...,¢(A) do

fori=1,...,mdo

lgk) :=max{j € [0,n] : a(i,j) <korj=n}
rgk) c=min{j € [n+1] : a(i,j) >k +a; or
j=n+1}

for (4,j) € [m] x [n] do
) )1 if lgk) <j< Tl(k)

" 10 otherwise

Lemma 6. From Algorithm 2 we obtain a shape matrix
decomposition oft with DT = ¢(A).

Proof. Clearly, the DT of the sum of shape matrices
returned by the algorithm is(4). We divide the proof
of the theorem into three parts.

Claim 1. The matricesS(*) form indeed a decomposi-

tion of A, that meanst = 3¢ 5,
Fix some(i, j) € [m] x [n]. We have

(zg’“ <j <= a(i,j) zk) and

(Tgk) > j = a(z’,j) <k+aij).

) _

Together we obtaln;( = 1 = ai,j) —ay <

k < ali,jg), hencezz(fl) ij = a;;, and this proves
the claim.

Claim 2. The matricesS(*) satisfy the ICC.
Assume the claim is false. That means, for same
[e(A)] andi € [m — 1], 1 >+ orr® <1 we

consider only the first case since the second one can be

treated similarly. We puf = rgﬂ. By construction and
our assumption, we have

ali,j) <k and a(i+1,j) > k+ ait1,;-
But on the other hand,
a(i,j) = a(i+1,5) + w((i +1,7), (i, 7))
= a(z’ + 1,]) + min{O, aij — ai+17j},
thusa(i, j) > k, and this contradiction proves the claim.
Claim 3. The matricesS®) satisfy the TGC.
Supposen;; < a;+1,; and s(k) 1, or equivalently
z§k> <ji< rl(k). By construction, this implies
k<a(i,j) <k+a;. (9)
Observe, that
w((i,7), (i +1,7)) = 0 and
U)((’L + 17j)7 (17])) = Qj5 — Gj41,5,
sincea;; < ai+1,5. Using (9), we obtain the bounds

a(i+1,5) = a(i,j) +w((i,5), (i + 1, 7))
=a(i,j) > k and

k+ai; > a(i,j) > ali+1,5) +w((i+1,5),(4,5))
kE+ai; >ali+1,7) + (@i — aiy1,5)-

Hencek < a(z’ + 1,7) < k+ ait1,5, and according to

Algorithm 2, Serl . = 1. Thus the first TGC is satisfied,

and the second one is proved similarly. O
Together, Lemmas 5 and 6 prove Theorem 1.
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5. Minimizing the number of shape matrices

The problem of minimizing the number of shape ma-
trices is NP—hard even for a single row intensity matrix
[1]. So it is natural to look for a heuristic approach that
yields decompositions with a small number of shape
matrices within a reasonable time even if optimality is

not always reached. In [7] we used a greedy strategy

in order to find a decomposition with minimalT" and

a small number of shape matrices for MLCs with ICC
but neglecting the TGC. This method can be modified
to respect the TGC. In order to characterize the maxi-
mal coefficientu for which there is and-shape matrix
S, such that.S can be a term in &7-optimal decom-
position of A, we need the following lemma.

Lemma 7. Let A = >, _, uxS™ be a decomposi-
tion of A (i.e. theS*) are A—shape matrices), and put
A = Aand A®) = A —SF,_ up SE) for k € [t].
Then, for everyt € [ ] we have

° sz(f) = 1andsl+1j =0 => a(f b > 1(1_7_1,17) +
u (i€[m—1], j€[n]),

. sz(.;.“) = 1ands§k)17 =0 = al(»f_l) > Z(kllj) +
u (i €[2,m], j€ n]).

Informally speaking, if we consider the sequence of
matrices startlng withkd and subtracting one by one the
S®*) taking S(*) exactly u; times, the lemma claims
that in each step we subtract df-shape matrix, where
A’ is the resulting matrix after the previous step.

Proof. Assume the contrary and l&tbe the first index
where one of the two claims fails to be true. By sym-
metry, we assume

o

AL
1+1 \J

(k=1) _ (k-1)

1, =0, a; <y tu.

SinceS* is anA-shape matrix, the TGC implies; >
a;+1,5. From our assumption we obtajrﬁf) < a§i>17j,
hence
(k) _ (k) _
s;; =0 and s;;j. =1
for somek’ > k, contradicting the assumption thgft:")
is an A—segment. O

We call a pair(u, S) of a positive integer: and an
A-shape matrixS anadmissible segmentation paif
e A —uS is nonnegative,

® S = 1 and8i+17j =0 = Q;j > Q41,5 +
u (ie[m—1], j €[n]),
® S = 1 andsi_Lj =0 = Qi > Q;—1j +

uw (i€ [2,m], j€ln]),
o ¢(A—uS)=c(A) —u.
Now we proceed exactly as in [7]: we find an admissible
segmentation paifu, S) with maximalu and continue
with A — «S until we reach the zero matrix. In order to
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derive an upper bound for the coefficienin an admis-
sible segmentation pair, S), we use an idea from [2]
and identify the set of segments with the set of paths
from D to D’ in the layered digrapf = (W, F'), con-
structed as follows. The vertices in theth layer corre-
spond to the possible leaf positionsinro@ < i < m)

and two additional vertice® and D’ are added:

={@,lr):iem], 1l €0,n], rell+1,
..,n+1]}U{D,D'}.

Between two vertice§i, [, ) and (i + 1,1, ') there is

an arc if the corresponding leaf positions are consistent
with the ICC, i.e. ifi’ < r ands’ > [. In addition, the
arc setF’ contains all arcs fronD to the first layer and
from the last layern to D’, so

F=F (D)UF_(D')U

Fy (D) ={(D,(1,L,r) = (1,L,r) e W},
F_ (D)= {((m,l,r),D") : (m,l,r) € W},
Fo () ={(G,Lr),G+1,U.7") U <r, v >1}.

There is a bijection between the possible leaf positions
and the paths fronD to D’ in T'. This is illustrated in
Fig. 6 which shows the paths in for m = 4, n = 2,
corresponding to the shape matrices

10 1
(‘f %) (straight lines) and( ) (dashed lines)
10

01

For each verteXi, [, r) let uy(¢,, ) denote an upper
bound for the coefficient in an admissible segmentation
pair (u, S) whereS is a shape matrix witl; = [ and

r; = r. Then any admissible segmentation pair.S)
corresponds to a path

l)7 (1,[1,7"1), (2,12,7’2), ey (m,lm,rm),D/

with the following properties.
e Fori € [m], uo(i,l;,75) > u.
e Fori € [m — 1] andj € [n],

l; <j<ligr0rrip <j<ry = a5 > Gig1,5 + 4,
lisi<j<lLiorr <j<ripr = Qiy1,; = Qij + u.

If we have good upper boundg (i, 1, ), this yields a
considerable reduction of the set of shape matrices that
have to be considered in the search for an admissible
segmentation pair. In our implementation we used the
bound from the following lemma.
Lemma 8. Fori € [m], letg; = ¢(A) — 3°7_; max{0,
a;j — a; ;—1}, and supposéu, S) is an adm|55|ble seg-
mentation pair with parameterg, r; (: € [m]). Then
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BEbe

Fig. 6. The vertices of® for m = 4, n = 2 and two(D, D")—paths.

for i € [m], 6. Test results

u<g ifr,=10+1 (20)

) We implemented Algorithm 3 in C++ and computed
u < min{g; + max{0, a; r—1 —a;r}, gi+max{0, a; ;41

decompositions foll5 x 15—matrices, where the en-

— @i}, %(gi +max{0, a; ;41 — ai} + max{0, tries are chosen uniformly and independently from
Qipe1 — i p)}if ;> 1+ 1 (11) {0,...,L}. Table 2 shows the results for different val-
ues of L, where for each row of the table we averaged

Proof. For brevity of notation, lei;; = max{0, a;; - over 1000 sample matrices. In the second column we

a; j—1} for (4, j) € [m] x [n]. Observe tha} "7, d;; is

just the weight of the path Table 1
07 (270),(2,1),,(Z,TL),(Z,TL+1),1 L DT DC DC CPU time
in G. The fact thatu, S) is an admissible segmentation (plain) _ (reduced) (sec)
pair implies, 4 212 21.0 18.0 93
n 7 349 342 24.1 276
10 48.2 46.3 28.1 399
r< —
Zdw < o(d) —u, (12) 13 617 57.9 312 556
=1 16 748 68.2 335 647

whereA’ = (aj;) = A —uS andd}; = max{0,a;; — - . ]
a1} W r; =1+ 1, a}; = ay for all j and this Test results for randord5 x 15-matrices with entries

implies (10). For (11), observe that from {0,...., L}.

i = digipr —min{u, dig g},
d/ - di’” + maX{O’ u— maX{Oa Qr;—1 — aim}}a

1,74

have the averagPT, which is the same as for the algo-
rithm of Kamath et al. [9]. The third column shows the

di; = dyj for j & {liz1,7i}. DC of a decomposition according to Algorithm 2 (or
With (12) we obtain equivalently the algorithm of Kamath et al.). Clearly,
" . this algorithm just aims at minimizing th®7T" with-

> i1 dig — min{u, dig, 41 }} 4+ max{0, u — max{0, out taking theDC into account, hence thBC almost
Qir,—1 — Qir } 1} < c(A) — u, equals theDT'. In the fourth column we have thBC
hence of the decompositions according to Algorithm 3, and

) we see that this approach yields considerable savings in
u — min{u, di 41} + max{0,u — max{0, a1~ terms of the number of used shape matrices. The CPU
Gir }} < gi times (on a 2GHz workstation with 2GB RAM) in the
and this implies (11). O third columns show that the algorithm is practicable
Algorithm 3 summarizes our greedy approach for the for intensity matrices of the considered size (note that
construction of a@)T-optimal shape matrix decomposi- the times are for the decomposition of 1000 matrices,
tion with a smallDC. so the average time for a single matrix is still below
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Algorithm 3 (DT-optimal shape matrix decomposition with reduced DC)
while A # 0 do
Determine the complexity(A) and the numbersy(i, [, r) for

i € [m], 1l €[0,n], r € [n+ 1] according to Lemma 8
u:=max{k : ThereisapattP fromDto D inT

complete:=false;

while (not completedo
for the pathsP in T with ug(z,1,7) > k for all (i,1,7) € P do

if (not complete}then
Let S be the shape matrix correspondingRo
if (u,.S) is an admissible segmentation ptien

complete:=true
if (not completel :=u — 1

A=A-5

a second). But of course the backtracking for deter-
mining the maximal value ofi becomes very slow for
larger matrices, and more efficient methods are needed

with ug(z,1,7) > k for all (i,1,r) € P}

for matrix dimensions of practical relevance.

In order to evaluate the influence of the TGC, in Table
3 we compare results for different types of constraints.

Table 2
L  unconstrained only ICC ICC and TGC
DT DC DT DC DT DC
4 179 109 195 145 212 18.0
7 295 131 31.7 182 349 241
10 409 147 43.8 20.7 482 28.1
13 524 15.8 55.7 225 617 31.2
16 63.8 16.8 67.7 240 748 335

Test results for random5 x 15-matrices with entries

from {0, ..., L} for different types of constraints.

Finally, we also tested our algorithm with 13 clini-

Table 3

unconstrained  with ICC  with ICC and TGC
0. size DT DC DT DC DT DC

>

1 10x11 16 8 16 8 17 11
2 10 x 9 6 7 16 8 19 13
3 9x9 20 8 20 10 20 12
4 9x9 19 8 19 11 21 15
5 10 x 8 15 7 18 9 19 11
6 9x9 17 9 17 9 19 11
7 10 x 8 18 7 18 10 21 12
8 14x12 22 9 22 10 25 14
9 14x10 26 10 30 15 34 19
10 14x10 22 9 23 13 28 15

11 15x10 22 10 22 11 25 16
12 15x11 23 10 23 12 23 16
13 14x10 23 9 24 11 27 17

Test results for clinical matrices.

addition, we derived a heuristic approach to the reduc-
tion of the number of shape matrices. Two open ques-
tions arise immediately and are the subject of ongoing
research. 1. Is there a nice characterization for the min-

cal matrices, each with 10 fluence levels. The results imal decomposition time if we have no interleaf con-

are shown in Table 4. The computation times for these straint but still want to eliminate tongue-and-groove un-
matrices were negligible (less than a second).

Clearly, the addition of the TGC causes an increase in cient heuristic for the decomposition cardinality?

the DT and in the DC. Further investigations are neces-
sary in order to evaluate the potential tradeoff between

derdosage? 2. What about a computationally more effi-

DT (and corresponding leakage) and tongue and grooveReferences

underdosage.
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