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Abstract

Minimizing a nondecreasing separable concave cost function over a polyhedral set arises in capacity planning
problems where economies of scale and fixed costs are significant, as well as production planning when a learning
effect results in decreasing marginal costs. This is an NP-hard combinatorial problem in which the extreme points of
the polyhedral set must be enumerated, each of them a local optimum. Branch-and-bound methods have been frequently
used to solve these problems. Although it has been shown thatin general the bound provided by the surrogate dual is
tighter than that of the Lagrangian dual, the latter has generally been preferred because of the apparent computational
intractability of the surrogate dual problem. In this paperwe describe a branch-and-bound algorithm that exploits the
superior surrogate dual bound in a branch-and-bound algorithm without explicitly solving the dual problem. This is
accomplished by determining the feasibility of a set of linear inequalities.
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1. Introduction

Capacity planning is the first, and perhaps the most
fundamental, problem of production management. The
algorithm proposed and demonstrated here is intended
to assist the engineer responsible for the design of a pro-
duction facility or system of production facilities. Tak-
ing into full account the fixed costs of construction and
installation, economies of scale, and a matrix specifying
inputs and outputs per unit of capacity, the algorithm
selects from a set of available process units a subset of
units and their capacities which minimize total capital
investment costs and meets any requirements on system
output and limits on system input.

Min
n
∑

j=1

fj (xj) (1)

s.t.
n
∑

j=1

aijxj ≥ bi, i = 1, . . .m (2)

xj ≥ 0, j = 1, . . . n (3)

Email: Han-suk Sohn [hsohn@nmsu.edu], Dennis L. Bricker
[dennis-bricker@uiowa.edu].

wherexj is the capacity of processj
aij is the input-output coefficient of processj (if pos-

itive, aij is the output of producti per unit capacity
of processj; if negative, the input of producti per unit
capacity of processj).

biis the required net output of producti if positive,
or if negative, (the negative of) the limit on resource i
(labor, raw material, space, etc.)

fj is the investment cost function of processj:

fj (xj) =

{

0 , if xj = 0

φj + αjx
βj

j , if xj > 0 (4)

whereφj is a nonnegative fixed cost of installing pro-

cessj and the log-linear functionαjx
βj

j is the variable
cost (0≤ βj ≤ 1). A similar model arises in produc-
tion planning when a learning effect results in decreas-
ing marginal costs. (See, for example, Hax and Majluf
[14] and Yelle [27].) This problem subsumes the lin-
ear fixed-charge problem (whenβ=1) or the pure fixed
charge problem (β=0).

This problem is essentially a combinatorial one, in
that its solution must be one of the finite number (viz.,
(

m + n
m

)

) of basic solutions of the system of linear

constraints. That is, the solution is determined by the

c© 2008 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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choice of processes to be included in the production fa-
cility, together with a choice of those input/output re-
quirements to be slack. These choices determine a basis
and thereby a basic solution with its process capacities
specified.

2. The Nonconvex Problem

The capacity planning problem described above be-
longs to a more general class of optimal resource allo-
cation problems:

P : Find Φ = Min {f (x) : Ax ≥ b, x ∈ C} (5)

whereA ∈ Rm×n, b ∈ Rm, C is a closed cone within
Rn

+ (the nonnegative orthant), and the cost functionf :
Rn

+ has the properties:
i) f is explicitly quasiconcave onC, i.e., f is qua-

siconcave and for allx1 ∈ C, x2 ∈ C, and x0 =
λx1 + (1 − λ)x2 where0 < λ < 1, f (x1) > f (x2)
implies thatf (x0) > f (x2) = Min {f (x1) , f (x2)}.
(In particular, concavity off implies explicit quasicon-
cavity.)

ii) f is lower semicontinuous onC, i.e., the level set
{x ∈ C : f (x) ≤ k} is closed for allk.

iii) f is isotone onC, i.e., x1 ≤ x2 implies that
f (x1) ≤ f (x2) .
(1) f is homogeneous, i.e.,f (0) = 0.

The Cauchy-Weierstrass existence theorem, given prop-
erties (ii) and (iii), assures us that problemP , if feasi-
ble, assumes its minimum value in the feasible region.
If P is infeasible, then by adopting the convention that
the minimum of the empty set is +∞, we obtain a well-
defined minimum. After discussing the more general
case, we shall in later sections present results for the
case in whichC is a closed polyhedral cone, assuring
us that the minimum off in problemP is attained at a
vertex of the feasible region.

A large number of resource allocation problems in
which economies of scale are significant are included
in this general formulation, including many in logistics,
such as facility location, production planning, trans-
portation planning, as well as plant capacity planning.

The problem of optimally allocating resources when
economies of scale are prevalent is fraught with pitfalls,
in that mathematical programming algorithms will quite
often converge to local but not global solutions. Mc-
Cormick [20] surveyed methods proposed at that time
for obtaining globally optimal solutions to nonconvex
problems, and concluded:

“The branch-and-bound approach, relying on the use
of underestimating convex functions, seems the most
reasonable approach at this time. The efficiency it offers
depends upon how quickly the regions which do not
contain the global solution are eliminated.”

Since that time, several other classes of algorithms
for problemP have been proposed, including extreme
point ranking, concavity cut reduction, and outer ap-
proximation. Benson [2] states that

”In recent years, probably the most popular technique
used in algorithms for problemP is branch-and-bound.”

In addition to the deterministic algorithms which have
been mentioned above, many stochastic algorithms have
been proposed for global optimization. (See Bomze [4].)
We will restrict the discussion to the class of branch-
and-boundalgorithms, of which our algorithm is a mem-
ber.

In general, branching consists of partitioning the set
C (more generally not a cone, and usually a hyper-
rectangle) into disjoint subsets{Ck : k = 1, 2, ..., K}
and the associated subproblems

Pk : Find Φk = Min {f (x) : Ax ≥ b, x ∈ Ck} (6)

are either solved, or else fathomed by demonstrating
thatΦk exceeds an incumbent value, i.e., a value known
to be attainable.

Falk [8] developed much of the theoretical basis for
this approach, assumingC is compact, while Falk and
Soland [11] and Jones and Soland [17] describe imple-
mentations whenf is a piecewise-linear separable func-
tion and theCk ’s are closed hyperrectangles. A lower
bound onΦk is obtained by replacingf by its convex
envelope over the feasible region. This approach has
been applied to more structured problems in time-cost
tradeoffs in project scheduling [10], in transportation
planning [22], and in facility location [23].

Another branch and bound approach (cf. Carillo
[7] and Horst [16]) assumes thatC is a simplex, and
branches by creating simplex-partitions{Ck}. Lower
bounds are again obtained by use of the convex enve-
lope off taken overCk, which is represented in terms
of the vertices ofCk.

Making use of the fact that, whenf is concave, the
global optimizer ofP also optimizes the convex enve-
lope off taken over the feasible region, Falk and Hoff-
man [9] presented an algorithm which represents both
the feasible region (assumed to be polyhedral and com-
pact) and the convex envelope off taken over the fea-
sible region, in terms of its extreme points. The prob-
lem is initially relaxed by selecting a subset of the con-
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straints, and a master problem is formed using the ex-
treme points of the feasible region of this relaxation.
A column generation scheme is then used to refine this
(outer) approximation.

By seeking local optima and generating cuts which
eliminate these local optima, cutting plane algorithms
are also able to find the global optimum. (cf. Cabot [6],
Taha [24], and Tui [25].)

Falk [8] considered the problemP assuming only that
f is lower semicontinuous andC compact, and demon-
strated that the solution of the bounding problem ob-
tained by replacingf : C by its convex envelope taken
over the convex hull ofC is equal to the solution of
the Lagrangian dual of the original problem. Thus the
strength of the bound which is obtained is directly re-
lated to the size of the Lagrangian duality gap. Green-
berg and Pierskalla ([12], cf. also [13]) demonstrated
that the surrogate dual problem, to be described below,
has in general a smaller duality gap, thereby provid-
ing a more effective bound. The surrogate dual is lesser
known and less frequently utilized, however, because of
its apparent computational intractability.

If C is not compact, but is a closed cone in the non-
negative orthant andf has the properties assumed in
P , then for the purpose of bounding a solution of our
problemP in a branch and bound algorithm, one need
not solve the surrogate dual problem in order to make
use of its superior bound in eliminating regions not con-
taining the global optimizer [5]. Instead, the effective-
ness of the surrogate dual as a bound may be tested
by a search for a feasible solution of a system of lin-
ear inequalities. Success in this search guarantees that
the surrogate dual will eliminate the region being con-
sidered. Since solving a linear system of inequalities (a
computationally tractable problem) will take advantage
of the superior performance of the intractable surrogate
dual as a bounding problem, a new class of algorithms
may be designed which provides alternatives to existing
algorithms.

3. Surrogate Duality

Surrogate constraints were first used in implicit enu-
meration algorithms for zero-one integer linear pro-
gramming problems. A surrogate constraint is a convex
combination of an original set of inequality constraints.
The constraint thus obtained is implied by the original
set of constraints, so that fathoming tests may be per-
formed on this derivative constraint as a substitute for
the original constraints.

The theory of surrogate duality was developed by
Greenberg and Pierskalla [12] for more general mathe-
matical programming problems. Suppose that the orig-
inal primal problem is

P ′ : Find Φ = Min {f (x) : g (x) ≥ b, x ∈ X} , (7)

wheref : Rn → Rl, g : Rn → Rm, andX is a closed
subset ofRn. Given a vector of surrogate multipliers
u ∈ Rm

+ (the nonnegative orthant), a surrogate constraint
ug (x) ≥ ub is defined. The surrogate problem is there-
fore

S (u) = Min {f (x) : ug (x) ≥ ub, x ∈ X} (8)

Since the optimal solution of (7) is feasible in the surro-
gate problem (8),S (u) clearly provides a lower bound
for the solution of (7). The surrogate dual problem is to
find the greatest lower bound provided by the family of
surrogate problems, i.e.,

Ŝ = Max
u≥0

S (u) (9)

The duality gap of the surrogate dual is less than or
equal to that of the more familiar Lagrangian dual, i.e.,

L̂ ≤ Ŝ ≤ Φ (10)

where
L̂ = Max

λ≥0
L (λ)

and
L (λ) = Min

x∈X
f (x) − λ [g (x) − b]

Even though there may exist a gap between the opti-
mal values of the primal and dual problems when the
objective function or feasible region is not convex, the
surrogate dual (9) can provide a lower bound for use
in fathoming subproblems in a branch and bound algo-
rithm.

Because of the economies of scale and lack of any
upper bounds onx (other than those which might be
included in the relaxed constraintsAx ≥ b), the optimal
vector of activity levels satisfying the single surrogate
constraintuAx ≥ ub need have at most one positive
activity level. That is, the minimum of an explicitly
quasiconcave function occurs at an extreme point of the
feasible region:

Theorem 1 (Martos [19]). φ (x) is quasiconcave in
the convex setX ⊂ Rn, if and only if for each nonempty
polyhedronY ∆ ⊂ X any global vertex-minimum point
of φ (x)in Y ∆ is a global minimum point inY ∆.
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Thus, considering problem P and its surrogate dual,
letting Aj denote columnjof the matrixA, andej the
jth unit coordinate vector, the extreme points of this
feasible region, other than perhaps the origin, are each

of the form
(

ub/
uAj

)

ej , where
(

ub/
uAj

)

≥ 0. If

ub ≤ 0, thenx = 0 is both feasible and optimal, while
if ub > 0 anduA ≤ 0, then the surrogate problem is
infeasible. Define the functionfj (t) = f (tej).

Our interest lies in whether̂Sexceeds some quantity
V , e.g., an incumbent value.

Elsewhere we have proved the following result which
states that the condition̂S > V may be tested by a
search for a feasible solution of the set of linear inequal-
ities:

Theorem 2 ([Bricker [5]). Let f : Rn
+ be an isotone,

lower semicontinuous, explicitly quasiconcave and ho-
mogeneous function,A ∈ Rm×n, andb ∈ Rm. Then
the surrogate dual solution of the primal problem

Min {f (x) : Ax ≥ b, x ≥ 0}

exceeds a finite scalar valueV if and only if one of the
following conditions is satisfied:

(a) b ≤ 0 andV > 0.
(b) the primal problem is infeasible.
(c) there exists a solution of the linear system







u
[

b − f−1
j (V ) Aj

]

≥ 0, j ∈ J1

uAj ≤ 0, j ∈ J2

ub > 0, u ≥ 0

wherefj (t) ≡ f (tej), ej being thejth unit coordinate
vector, and

J1 = {j : fj (t) ≥ V for somet ≥ 0}

J2 = {j : fj (t) < V for all t ≥ 0}

This feasibility test may be interpreted geometrically
as a search for a hyperplane with nonnegative nor-
mal vector, separating the vectorb from each of the
points

{

f−1
j (V )Aj : j ∈ J1

}

, the origin, and the rays
{

Aj : j ∈ J2

}

. This test can also be given an economic
interpretation: ifV is a capital investment budget for a
production facility, thenf−1

j (V ) is the capacity of pro-
cessj if the budget were allocated exclusively to that
process. If this capacity is finite,f−1

j (V )Aj is then
the vector of outputs of processj. The test above then
amounts to searching for a set of inputsu1, u2, . . . um,
one for each output, with the property that the combined
value of the required outputsb1, b2, . . . bm exceeds the

combined value of the outputs of each activity when
operated at capacity. If the budget were to permit an
unlimited level of activityj thenu is to be selected so
that the combined values of the outputs of a unit level
of activity, i.e.,uAj , must be negative, i.e., the value
of inputs (negative components ofAj) must exceed the
value of outputs (positive components ofAj). If such a
set of valuesu ≥ 0 can be found, then we can conclude
thatV < Ŝ.

4. Example I

Consider the simple problem
Φ = Min f1(x1) + f2(x2) + f3(x3)
s.t. 1.25x1 + 3x2 +5x3 ≥ 15 (11)
4 x1 + 2x2 + x3 ≥ 11
x1 ≥0, x2 ≥0, x3 ≥0
where the functionsfj (j = 1, 2, 3) are of the form

(4), with φ, α, andβ as specified in Table 1.

Table 1

j x y z

φj xux yux xu5
αj xu4 xu5 xuy5
βj wu6 wu8 wu7

Characteristics of example

Variablesx1, x2, andx3 might represent the levels
of activity of three proposed production facilities, while
15 and 11 are the required outputs of two products. The
operating cost of facilityj includes a fixed chargeφj

for opening the facility plus a production costαjx
βj

j

which exhibits economies of scale.
The inverse functionf−1

j represents the activity level
of facility as a function of the operating budget allocated
to it. Thus, for an operating budgetV , facility j may
operate at a level

f−1
j (V ) =







(

V −φj

αj

)
1/βj if V ≥ φj

0 if 0 ≤ V < φj

Since clearlyΦ < +∞ andb > 0, the test of the validity
of the inequality

Ŝ > V

is, according to Theorem 2, the test of the feasibility of
the linear system






[

15 − 1.25f−1
1 (V )

]

u1 +
[

11 − 4f−1
1 (V )

]

u2 ≥ 0
[

15 − 3.00f−1
2 (V )

]

u1 +
[

11 − 2f−1
2 (V )

]

u2 ≥ 0
[

15 − 5.00f−1
3 (V )

]

u1 +
[

11 − f−1
3 (V )

]

u2 ≥ 0
(12)



Sohn and Bricker – Algorithmic Operations Research Vol.3 (2008) 67–78 71

Suppose we apply the surrogate test above, “arbitrar-
ily” using V =4.8. Thenf−1

j (4.8)is 5.05192, 2.08493,
and 4.00213 forj=1, 2, 3, respectively. To determine
whether the surrogate dual value exceeds 4.8, we need
to test the feasibility of















8.68510 u1 − 9.20767 u2 ≥ 0
8.74522 u1 + 6.83015 u2 ≥ 0
−5.01066 u1 + 6.99787 u2 ≥ 0
u1 ≥ 0, u2 ≥ 0

(13)

The system of inequalities (13) is feasible (e.g.,u1 =
0.52,u2 = 0.48), implying that the surrogate dual ex-
ceeds 4.8. (In fact, an enumeration of the basic solu-
tions will determine that the optimal solution is found at
x = (2.13333, 0, 2.46667) which has cost of 7.15751.
The surrogate duality gap for this problem is therefore
at leasto7ux575xtg4u8pv7ux575x or approximately
33%.

5. Implementation

In what follows, we will consider separable concave
investment cost functions

f (x) =

n
∑

j=1

fj (xj)

wherefj (xj) satisfies the form (4) for a given fixed
costφj > 0, and parametersαj ≥ 0 and 0< βj ≤ 1.
The elasticityβjaccounts for economies of scale. (For
example, if the elasticityβj is 0.9, then increasing the
capacityxj by 10% increases the variable portion of
the investment costfj by approximately 9%) We will
refer to the variablesxj asstructuralvariables indexed
by J = {1, 2, ..., n} ,and the surplus variables in the
inequalitiesAx ≥ b as logical variables indexed by
I = {1, 2, ..., m} . As explained above, since we are
enumerating the bases of a set of linear inequalities, we
will construct an enumeration tree with subproblems
defined by a specification of those variables which have
been forced into the basis as well as those which have
been excluded from the basis. Partition the structural
variables by

J = J+ ∪ Jo ∪ Jf

whereJ+ andJo denote the indices of the structural
variables which have been forced into and excluded
from the basis, respectively, andJf denotes the indices
of the structural variables whose status has not yet been

determined (free variables). Likewise, partition the set
of logical variablesIby

I = I+ ∪ Io ∪ If

whereI+, Io, andIf correspond in meaning toJ+, Jo,
andJf . Then the subproblem at a node of the enumer-
ation tree is

∑

j∈J+

φj + Min
∑

j /∈Jo

f̄j (xj)

s.t.
∑

j /∈Jo

aijxj > bi, i ∈ I+ (14)

∑

j /∈Jo

aijxj = bi, i ∈ Io

∑

j /∈Jo

aijxj ≥ bi, i ∈ If

xj ≥ 0, j ∈ J+ ∪ Jf , xj = 0 for xj ∈ Jo.

where

f̄j (xj) =

{

αjx
βj

j if j ∈ J+

φj + αjx
βj

j if j ∈ Jf

If the incumbent value isV , then the current subproblem
may be fathomed, provided that the surrogate dual value
exceedsV . This condition is satisfied if there exists a
nonnegative solutionu ∈ Rmto the inequalities







u
[

b − f−1
j (V )Aj

]

≥ 0, j /∈ Jo

ub > 0
u ≥ 0, i /∈ Io

that is,

m
∑

i=1



bi −

(

V

αj

)
1/βj

aij



 ui ≥ 0, j ∈ J+

m
∑

i=1

(

bi −
(

V −φj

αj

)
1/βj aij

)

ui ≥ 0, j ∈ Jf
(15)

m
∑

i=1

biui > 0,

uj ≥ 0 for i ∈ I+ ∪ If , ui = 0 for i ∈ Io

The search for a feasible solution of (15) may be per-
formed by one of several alternatives, e.g.,(i) an adap-
tation of therelaxation algorithm of Agmon [1] and
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of Motzkin and Schoenberg [21], a method often used
in a search for optimal multipliers when solving La-
grangian dual problems (where it is known as the sub-
gradient algorithm [15]),(ii) theellipsoid algorithm of
Khachian [18] (cf. also Bland et al. [3]),or (iii) a Phase-
One Simplex LP algorithm. The first two are iterative
methods which converge to a feasible solution (the el-
lipsoid method in a number of iterations polynomial in
the length of the problem data string) if such a solution
exists. In practice, we will terminate the selected algo-
rithm after a specified number of iterations, abandoning
the attempt to fathom the node of the enumeration tree.

Fathoming process.
At each node of the branch-and-bound tree, we use

the following procedure as fathoming process:
Step 1: fixed costs of variables which have been

forced into the basis are summed.
Step 2a: if it is greater than the incumbent, the node

is fathomed.
Step 2b: Otherwise, an attempt is made to fathom

by the surrogate bound. If that fails, then try obtaining
a feasible solution to subproblem and possibly fathom
by infeasibility or update incumbent. This attempt is
abandoned if not successful within a specified number
of iterations.

Step 3: If both of these two attempts to fathom fail,
separate subproblem into two subproblems and fathom
each of them.

Linear programming approximation. If a node can-
not be fathomed, before branching we compute an upper
bound on the optimum by finding a feasible solution to
the problem (14). This is accomplished by solving the
optimization problem (14) with the objective replaced
by a linear approximation cx, i.e.,

∑

j∈J+

φj + Min
∑

j∈J+∪Jf

cjxj (16)

wherecj is chosen to be either
(i) marginal costs at ub

uAj (whereuis the multiplier
vector upon termination of the relaxation algorithm),

i.e., cj = df
dx

(

ub
uAj

)

= αjβj

(

ub
uAj

)βj−1
, or

(ii) the average unit cost

cj = fj

(

ub
uAj

)

/

ub
uAj

(See Figure 1.) In either case, the value of the objec-
tive function of (16), evaluated at the solution of the
LP, provides an upper bound on the optimum which, if

less thanV , becomes the new incumbent. (If the LP is
determined to be infeasible, then of course the node is
fathomed.)

Fig. 1. Linear approximations of objective function

Branching process.
Branching must be done from nodes which cannot be

fathomed. This is accomplished by selecting a variable
and constructing two descendent nodes—one in which
the variable is forced into the basis, and the other in
which the variable is excluded from the basis. Logical
variables will be selected only when no free structural
variables remain. The choice of structural variable may
be made based upon one of the following criteria:
(1) select the structural variable with largest cost co-

efficientα.
(2) select the structural variable with largest fixed cost

ϕ.
(3) select the structural variable with largest cost at

ub/
uAj .

If no free structural variables remain, the logical variable
corresponding to the largest surrogate multiplier will be
selected for branching.

Test Problems.
Random problems were generated according to the

following scheme:
(1) integer constraint coefficients are uniformly dis-

tributed in a specified interval.
(2) a specified densityδ is achieved by replacing

randomly-selected constraint coefficients with
zero (while avoiding the creation of columns with
zero density).

(3) fixed costs (ϕ), cost coefficients (α) and exponents
(β) are uniformly distributed in specified intervals.
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(4) the right-hand-side vectorb was assigned by fixing
a specified fractionρ of the variables at a spec-
ified valueξ and evaluating the linear constraint
functions at this point.

6. Example II.

A problem with 5 constraints and 20 structural vari-
ables was randomly generated with the following char-
acteristics:
• constraint coefficients are uniform in [-2, +10]
• density 75%
• right-hand-sidesb obtained by evaluating the linear

functions after fixing
• 25% of the variables at the value 5
• fixed costsϕ uniform in [2,5]
• cost coefficientα uniform in [0.5, 2.0]
• cost exponentβ uniform in [0.5, 1]
The cost parameters and constraint parameters are
shown in Tables 2 and 3, respectively.

Table 2

j ϕ[j] α[j] β[j]

1 3 1.98 0.55
2 5 1.87 0.69
3 4 1.65 0.64
4 4 0.52 0.86
5 4 0.18 0.78
6 5 0.10 0.74
7 3 0.53 0.80
8 5 1.93 0.67
9 5 0.16 0.92
10 4 0.42 0.70
11 3 0.27 0.64
12 5 0.43 0.59
13 5 1.49 0.83
14 5 1.04 0.56
15 4 0.13 0.93
16 3 0.67 0.79
17 4 0.92 0.97
18 4 0.46 0.94
19 4 0.66 0.85
20 4 1.22 0.58

Cost parameters for the5 × 50 example problem

Up to 50 iterations of the relaxation algorithm will
be used here for testing the surrogate dual bound. The
LP, which is solved at nodes at which 3 or more vari-
ables have been either forced into or out of the basis,
uses as its objective the marginal costs at the point with

xj =

∑

i

uibi

∑

i

uiaij

whereu is the most recently computed

surrogate multiplier vector.
Branch-&-Bound Algorithm
Current Parameters
The current values of parameters to be used in the

branch-
and-bound algorithm are:
TAU = reflection factor = 1.5
EPS1 = tolerance for fathoming = 0.0001
Max Relax = max # relaxation iterations = 50
Do LP level = level of tree at which LP is attempted

= 3
Rule for choosing structural variable for branch based

upon:
Maximum Cost of F(Ub/UA)
LP objective computed by
marginal cost at X=Ub/UA
****************************************
A total of 497 nodes of 53130 ( 0.935 %) were ex-

amined,
of which
432 nodes were fathomed by surrogate dual bound,
4 nodes were fathomed by excessive fixed costs,
3 nodes were fathomed by infeasibility of LP.
The total number of basic solutions (both feasible and

infeasible) of the constraints is

(

20
5

)

= 53130. In this

example, 497 nodes of the enumeration tree were gener-
ated, which is less than 1% of the number of basic solu-
tions. The overwhelming majority of these nodes were
fathomed by the surrogate dual. The optimal solution
(shown in Table 4) has two positive structural variables,
contributing approximately 44% and 56%, respectively,
to the total cost.

Table 4

j xj Cost F%

5 11.666667 5.2231818 44.27
10 13.333333 6.5745801 55.72

Surplus in Constraints (Ax − b)
i S[i]
1 1.6666667
4 60.0
5 50.0

Optimal solution of the 5×20 example problem
with optimal cost 11.7977618611
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Table 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 b

-1 3 -1 0 -1 0 0 6 0 4 0 5 0 3 2 6 6 5 4 5 ≥ 40
2 1 -1 4 0 0 2 3 1 3 4 3 2 1 3 2 5 0 4 6 ≥ 40
5 6 4 0 3 4 0 2 0 0 0 0 0 0 0 0 5 3 1 4 ≥ 35
0 6 0 1 4 0 0 0 5 4 0 0 1 0 1 0 0 -1 0 4 ≥ 40
1 0 0 6 5 3 3 2 0 2 5 5 0 4 0 4 0 -1 -1 0 ≥ 80

Constraint parameters for 5×20 example problem.

7. Computational Experience and Analysis of re-
sults

Although the algorithm does not require the explicit
computation of the surrogate dual value, in the exper-
iments below the effort was expended to compute and
report this dual value for the root node of the enumer-
ation tree, i.e., the original problem.

The proposed algorithm was implemented in the APL
language using APL+Win 3.6. To compare the perfor-
mance of the surrogate dual bound with that of the La-
grangian dual bound, one hundred problems with 50
constraints and 100 structural variables were randomly
generated with the same characteristics as Example II.
Table 5 summarizes the computational results for each
of the one hundred problems. Note that the surrogate
dual provided a tighter lower bound than the Lagrangian
dual. The smallest gap between the surrogate dual bound
and the Lagrangian dual bound (as a percentage of the
surrogate dual bound) is 0.369%, the mean is 21.885%,
and the largest gap is 50%. Note also that, compared
to the Lagrangian dual bound (LR), while the surrogate
value (SD) takes much longer to compute the simple test
of the inequalities (ST) is equally effective or even bet-
ter in bounding within a branch-and-bound algorithm.
On the average, the surrogate dual bound takes 20 times
longer computational times than the Lagrangian dual
bound. However, the simple test of the inequalities takes
85% less time than the Lagrangian dual bound.

Table 5

GAP (%) Time Ratio Time Ratio
(LR/SD) (LR/ST)

Min 0.369 0.017 1.832
Mean 21.885 0.050 7.409
Max 50.000 0.316 27.089

Summary of computational results

To test the performance of the implemented branch-
and-bound algorithm for problems with a variety of
characteristics, smaller test problems were randomly
generated. Five levels were used for constraint coeffi-

cient density, and two levels each for fixed costs, cost
coefficients, and cost exponents, providing forty dif-
ferent combinations. Specifically, these problems pos-
sessed the following characteristics:
• #constraints: 5
• #variables: 20
• #basic solutions: 53130
• Constraint coefficients: integers uniform in [-5, 10]
with densityδ = 1%, 25%, 50%, 75%, or 100%
• Fixed costs: integers uniform in either [0, 5] or [5, 10]
• Cost coefficientα uniform in either [0, 5] or [1, 10]
• Cost exponentβ uniform in either [0.1, 0.5] or [0.5,

1]
One hundred problems were generated from each of the
forty different combinations. Computational results are
recorded in Tables 5 and 6. The first column of these
tables represents problem generation parameters, i.e., it
consists of three alphabetic letters ( L or H indicating
the lower or higher interval, respectively, for fixed costs,
cost coefficientsα, and cost exponentsβ) and one nu-
merical number (1, 25, 50, 75, or 100, representing the
densityδ. (For example, problems in the setLHH5 have
fixed costs, cost coefficients, and cost exponents sam-
pled from the intervals [0,5], [1, 10], and [0.5, 1], re-
spectively, and 5% density.) The other statistics in these
tables are defined as follows:

NN = number of nodes evaluated
NN% = ratio of NN to total number of basic solutions
NS = number of nodes fathomed by surrogate bound
NS% = fraction of nodes which were fathomed by

surrogate dual bound
NF = number of nodes fathomed because sum of fixed

cost exceeds incumbent
NF% = fraction of nodes which were fathomed be-

cause of excessive fixed costs
NI = number of nodes fathomed because of infeasible

LP
NI% = fraction of nodes which were fathomed by

infeasible LP
NJ = number of basic structural variables in optimal

solution
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F% = optimal fixed costs as fraction of total costs
%GAP = surrogate duality gap as percent of optimal

cost
Statistical analysis based on both Tables 6 and 7 has

been performed to identify the parameter(s) that causes
the change in the surrogate duality gap.

Fig. 2. Box-and-Whisker Plot

Effect of magnitude of fixed costs:In this research we
have used two intervals in testing for the effect of fixed
costs: uniform in either [0, 5] or [5, 10]. The Tukey’s
studentized range (HSD) means comparison test (Tukey
[26]) has been performed to check if the average solu-
tion gap is same with two intervals tested. It is observed
that the average surrogate duality gap between two in-
tervals tested isnot significantly different. Thus, the re-
sult suggests that the variation of surrogate duality gap
does not depend on the value of the fixed cost in the
interval tested. The box-and-whisker plot displayed in
Figure 2a provides a graphical view of this result.

Effect of magnitude of cost coefficient (α: Two inter-
vals were used in testing for the effect of the cost coef-
ficient: uniform in either [0, 5] or [1, 10]. The Tukey’s
studentized range (HSD) means comparison test has
been performed to check if the average solution gap is
same across the two intervals tested. The analysis shows
that the low value of cost coefficient is associated with
the variation of the surrogate duality gap that is signifi-
cantly different from the high value of cost coefficient.
Furthermore, we note that problems with smaller cost
coefficients have smaller surrogate duality gaps. The
box-and-whisker plot also indicates that the surrogate
duality gap may be more variable with low values of
cost coefficients than with high values (See Figure 2b).

Effect of magnitude of cost exponent (β: Two intervals

were used in testing for the effect of the cost exponent:
uniform in either [0.1, 0.5] or [0.5, 1]. The Tukey’s stu-
dentized range (HSD) means comparison test has been
performed to check if the average solution gap is same
with two intervals tested. We indicate that there is a sig-
nificant difference in the surrogate duality gap across
the value ofβ : the result suggests that the surrogate
duality gap is larger for problems with higher value of
cost exponent (See Figure 2c).

Effect of problem density: In this research we have
used five categories for problem density: 1%, 25%, 50%,
75%, or 100%. The Tukey’s studentized range (HSD)
means comparison test has been performed to check
whether the average solution gap is the same with five
different density values. Test results shows that problem
densities of both 1% and 100% are associated with a
surrogate duality gap that is significantly different from
the other three density types: changing density between
1% and 100% has no significant influence on the vari-
ation of the surrogate duality gap and so we have com-
bined these two groups. On the other hand, we note that
changing density among these four new groups (1 &
100%, 25%, 50%, and 75%) has a significant influence
in accounting for the variation in the surrogate duality
gap. We observe that problems with either 1% or 100%
density are relatively easier to solve than those with
other densities, and problems with 50% density are the
most difficult (See Figure 2d).

8. Conclusion

We have presented a surrogate dual for the linearly-
constrained capacity planning problem with (separable)
fixed charges and continuous economies of scale of the
form (4). This problem subsumes the linear fixed-charge
problem (β =1) and the pure fixed charge problem
(β =0).

Duality theory assures us that the surrogate duality
gap is no larger than the Lagrangian duality gap, al-
though the surrogate dual is generally more difficult to
solve. We have shown, however, that the ability of the
surrogate dual to fathom subproblems in a branch-and-
bound algorithm may be determined without directly
solving the surrogate dual itself, but that a simple test of
the feasibility of a certain linear system of inequalities
will suffice.

To compare the performance of the surrogate dual
bound with the one of the Lagrangian dual bound, one
hundred randomly generated problems with 50 con-
straints and 100 structural variables were tested. In this
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Table 6

NN NN% NS NS% NF NF% NI NI% NJ F% GAP
LLL1 696.7 1.31 56.95 25.40 28.30 12.50 23.38 2.60 1.41 51.96 15.99
LLL25 7333.0 13.80 319.50 10.89 247.00 3.31 197.50 2.51 1.96 56.38 33.57
LLL50 6970.0 13.12 343.10 11.62 281.40 3.62 222.60 3.05 1.98 52.81 34.05
LLL75 1615.0 3.04 131.40 19.34 86.53 8.52 79.77 3.47 1.70 53.06 22.32
LLL100 365.0 0.69 53.86 26.24 29.40 15.17 25.99 2.42 1.36 57.02 13.57
HLL1 421.7 0.79 27.66 14.90 97.22 27.31 13.81 2.27 1.08 75.31 10.52
HLL25 3031.0 5.71 133.20 8.14 317.00 12.94 59.14 2.29 1.59 71.30 33.98
HLL50 3113.0 5.86 136.10 6.44 440.40 16.25 95.29 3.08 1.87 76.44 39.93
HLL75 964.6 1.82 63.15 11.28 184.20 23.37 38.01 3.46 1.49 73.91 26.64
HLL100 328.9 0.62 32.19 14.53 92.34 28.41 11.81 2.46 1.10 74.10 12.86
LHL1 596.2 1.12 61.59 29.75 16.07 9.78 27.27 2.42 1.57 51.19 27.92
LHL25 12720.0 23.93 472.70 11.10 57.59 1.81 376.90 2.21 1.98 41.10 37.76
LHL50 12120.0 22.81 460.30 13.61 60.71 1.85 497.40 3.17 2.19 45.94 43.26
LHL75 3425.0 6.45 295.30 22.10 47.95 4.85 236.70 4.28 1.95 48.58 39.02
LHL100 771.7 1.45 94.18 32.21 20.54 7.48 60.62 2.57 1.58 48.98 27.16
HHL1 644.9 1.21 42.57 24.57 43.05 16.97 14.74 2.14 1.28 70.09 20.13
HHL25 6156.0 11.59 405.70 10.77 252.20 5.18 129.00 2.10 1.76 61.60 39.31
HHL50 4016.0 7.56 253.70 13.46 228.30 7.33 95.44 2.71 1.80 64.45 40.50
HHL75 867.6 1.63 89.31 21.67 113.40 11.78 38.33 3.25 1.58 68.33 32.86
HHL100 230.9 0.43 37.37 27.39 34.23 15.61 8.57 2.29 1.18 66.10 20.05
LLH1 3651.0 6.87 284.80 29.02 21.45 5.72 279.10 3.08 1.88 44.86 29.46
LLH25 15470.0 29.12 379.90 13.24 46.19 1.20 458.00 2.14 2.25 36.68 33.13
LLH50 16680.0 31.39 436.60 13.60 22.04 0.97 606.40 2.86 2.42 42.06 38.35
LLH75 6771.0 12.74 248.90 26.19 2.36 2.79 440.20 3.13 2.05 41.41 32.95
LLH100 1955.0 3.68 159.60 32.47 7.92 10.09 169.80 2.43 1.84 49.01 27.29
HLH1 1908.0 3.59 140.00 23.34 126.30 12.48 104.60 3.32 1.51 59.22 26.53
HLH25 6514.0 12.26 382.90 11.20 99.25 3.40 172.90 2.20 1.93 57.25 39.35
HLH50 7347.0 13.83 510.10 15.41 188.70 2.98 269.40 3.03 2.08 57.69 42.96
HLH75 1105.0 2.08 156.60 24.37 55.64 7.04 66.28 3.49 1.77 60.42 34.37
HLH100 310.1 0.58 48.22 30.67 27.46 13.31 16.58 2.28 1.54 65.27 26.97
LHH1 5934.0 11.17 241.10 32.71 1.52 5.54 425.80 2.06 1.81 33.93 26.32
LHH25 23850.0 44.90 441.40 10.39 0.12 0.24 787.60 2.27 2.60 29.56 36.32
LHH50 21490.0 40.44 366.60 14.69 0.15 0.40 928.00 2.50 2.48 27.66 34.59
LHH75 14720.0 27.71 274.90 23.92 2.36 1.74 886.10 3.04 2.24 33.63 33.07
LHH100 8929.0 16.81 150.80 34.68 0.55 5.44 675.90 2.48 1.92 33.27 28.28
HHH1 3343.0 6.29 214.70 30.99 24.78 6.70 240.90 2.98 1.69 48.31 28.01
HHH25 13640.0 25.68 536.90 12.40 74.44 1.67 459.20 2.14 2.16 45.18 37.65
HHH50 10960.0 20.63 513.30 16.32 111.40 1.33 435.70 2.93 2.27 49.51 39.31
HHH75 3970.0 7.47 286.60 24.60 31.76 4.17 240.20 3.41 1.96 49.56 35.92
HHH100 1884.0 3.55 167.90 32.96 15.40 8.66 159.90 2.49 1.66 52.12 28.43

Mean values
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Table 7

NN NN% NS NS% NF NF% NI NI% NJ F% GAP
LLL1 113 0.21 28 22.42 3 7.32 2 1.27 1 48.26 12.38
LLL25 2461 4.63 180 8.85 4 0.74 52 2.49 2 57.02 38.20
LLL50 2313 4.35 211 8.50 6 0.89 81 2.70 2 50.08 39.60
LLL75 417 0.78 55 17.88 4 4.35 11 2.99 2 49.77 28.66
LLL100 85 0.16 29 22.68 3 11.43 1 1.30 1 57.04 6.11
HLL1 205 0.39 19 10.89 56 29.58 5 2.21 1 74.69 3.85
HLL25 1639 3.09 87 5.40 230 12.66 34 2.02 2 71.43 39.11
HLL50 2271 4.27 80 4.01 319 17.31 76 3.03 2 77.06 43.65
HLL75 507 0.95 50 8.33 119 23.91 16 3.16 1 74.26 31.85
HLL100 261 0.49 19 11.11 63 31.68 6 2.56 1 77.54 5.71
LHL1 55 0.10 19 30.50 2 4.65 0 0.00 2 51.62 29.31
LHL25 4261 8.02 192 7.07 1 0.01 32 2.10 2 38.11 42.10
LHL50 1911 3.60 179 11.67 1 0.00 46 3.20 2 43.60 45.57
LHL75 533 1.00 94 20.83 1 0.27 18 4.78 2 49.81 42.97
LHL100 47 0.09 18 30.47 1 1.42 0 0.00 2 47.75 30.03
HHL1 89 0.17 24 22.22 4 16.23 2 1.77 1 72.83 13.72
HHL25 3521 6.63 170 7.83 24 1.31 45 1.67 2 57.95 45.24
HHL50 1479 2.78 132 11.84 10 2.43 36 2.70 2 64.33 44.16
HHL75 377 0.71 62 22.22 5 4.91 10 3.05 2 71.11 39.27
HHL100 101 0.19 27 28.21 4 13.91 2 2.22 1 65.77 17.79
LLH1 85 0.16 29 27.71 0 0.00 1 1.41 2 45.73 29.31
LLH25 2177 4.10 102 6.42 0 0.00 36 2.02 2 35.72 33.48
LLH50 3533 6.65 158 6.21 0 0.00 70 2.87 2 40.81 38.07
LLH75 219 0.41 39 22.57 0 0.00 7 1.75 2 38.17 33.21
LLH100 11 0.02 5 33.33 1 1.86 0 0.00 2 48.53 28.32
HLH1 247 0.46 34 22.22 3 5.88 7 2.56 1 58.20 31.91
HLH25 2771 5.22 157 8.28 1 0.07 30 1.96 2 53.30 40.83
HLH50 3117 5.87 246 13.76 1 0.05 57 3.05 2 55.68 42.90
HLH75 313 0.59 37 22.22 2 2.01 6 3.10 2 58.44 37.94
HLH100 59 0.11 19 33.33 2 6.45 1 1.70 2 67.43 32.99
LHH1 9 0.02 5 33.33 0 0.00 0 0.00 2 32.77 27.22
LHH25 6183 11.64 64 4.48 0 0.00 86 2.16 3 27.29 33.92
LHH50 3367 6.34 43 5.86 0 0.00 53 2.43 2 25.59 33.52
LHH75 223 0.42 6 17.04 0 0.00 6 1.33 2 29.53 31.64
LHH100 9 0.02 5 44.44 0 0.00 0 0.00 2 28.95 28.35
HHH1 71 0.13 22 33.33 0 0.00 1 1.40 2 45.54 31.67
HHH25 1941 3.65 113 7.51 0 0.00 32 2.08 2 43.05 37.71
HHH50 1313 2.47 142 12.74 0 0.00 20 2.70 2 46.81 40.32
HHH75 471 0.89 55 22.37 0 0.00 11 2.88 2 48.92 36.83
HHH100 45 0.08 14 33.33 1 2.02 0 0.00 2 47.93 32.21

Median values
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experiment, the tighter bound was obtained with the
surrogate dual for every test problem.

In order to characterize problems of this class hav-
ing relatively small surrogate duality gaps, a statistical
analysis of the surrogate duality gap of four thousand
randomly generated problems with various problem pa-
rameters (density of linear constraints, fixed costsφ,
cost coefficientsα, and exponentsβ) was performed.
This analysis suggests that these gaps are smaller for
problems with either very high or very low density, and
for problems with small values ofα or β.
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