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Utilizing the Surrogate Dual Bound in Capacity Planning with Economies of
Scale
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Dennis L. Bricker
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Abstract

Minimizing a nondecreasing separable concave cost functiver a polyhedral set arises in capacity planning
problems where economies of scale and fixed costs are samifias well as production planning when a learning
effect results in decreasing marginal costs. This is an [MRFtombinatorial problem in which the extreme points of
the polyhedral set must be enumerated, each of them a lotiahwm. Branch-and-bound methods have been frequently
used to solve these problems. Although it has been showrntiygneral the bound provided by the surrogate dual is
tighter than that of the Lagrangian dual, the latter has getlg been preferred because of the apparent computational
intractability of the surrogate dual problem. In this papee describe a branch-and-bound algorithm that exploits the
superior surrogate dual bound in a branch-and-bound altfori without explicitly solving the dual problem. This is
accomplished by determining the feasibility of a set ofdmi@equalities.
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1. Introduction wherez;is the capacity of process
a;;is the input-output coefficient of procepsif pos-

Capacity planning is the first, and perhaps the most itive, a;; is the output of product per unit capacity
fundamental, problem of production management. The of processj; if negative, the input of producper unit
algorithm proposed and demonstrated here is intendedcapacity of process).
to assist the engineer responsible for the design of a pro-  j,is the required net output of producif positive,
duction faClllty or SyStem of prOdUCtion facilities. Tak- or if negative, (the negative Of) the limit on resource i
ing into full account the fixed costs of construction and (1abor, raw material, space, etc.)
installation, economies of scale, and a matrix specifying /;is the investment cost function of procgss
inputs and outputs per unit of capacity, the algorithm 0. if 2. =0
selects from a set of available process units a subset of f; (z;) = { ' !
units and their capacities which minimize total capital J

investment costs and meets any requirements on system wh'erequ ISa nonhega'uve f|x_ed COE}, _Of |nstaII|r_19 pro-
output and limits on system input. cessj and the log-linear function;;z;”is the variable

cost (0< B; < 1). A similar model arises in produc-
Ll tion planning when a learning effect results in decreas-
Min Z fj (z5) (1) ing marginal costs. (See, for example, Hax and Majluf
=1 [14] and Yelle [27].) This problem subsumes the lin-

b + ozja:@j Jifz; >0 )

n ear fixed-charge problem (whetx1) or the pure fixed
s.t. Z ai;x; > bii=1,...m (2) charge problem4=0).
j=1 This problem is essentially a combinatorial one, in
;>0,j=1,...n (3) that its solution must be one of the finite number (viz.,

_— mn ) of basic solutions of the system of linear
Email: Han-suk Sohn [hsohn@nmsu.edu], Dennis L. Bricker m Y

[dennis-bricker@uiowa.edul]. constraints. That is, the solution is determined by the
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choice of processes to be included in the production fa-
cility, together with a choice of those input/output re-

Sohn and Bricker— Surrogate Dual Bound in Capacity Planning

“The branch-and-bound approach, relying on the use
of underestimating convex functions, seems the most

guirements to be slack. These choices determine a basiseasonable approach at this time. The efficiency it offers
and thereby a basic solution with its process capacities depends upon how quickly the regions which do not

specified.

2. The Nonconvex Problem

The capacity planning problem described above be-
longs to a more general class of optimal resource allo-
cation problems:

P: Find®=Min{f(z): Az >bxzcC} (5
whereA € R™*" b € R™, C'is a closed cone within
R’ (the nonnegative orthant), and the cost functfon
R has the properties:

i) f is explicitly quasiconcave of, i.e., f is qua-
siconcave and for alky € C, 22 € C, andzy =
Azy 4+ (1 —A)xe where0 < A < 1, f(z1) > f(x2)
implies thatf (zo) > f (z2) = Min {f (z1), f (x2)}.
(In particular, concavity of implies explicit quasicon-
cavity.)

i) fis lower semicontinuous ofl, i.e., the level set
{zx € C: f(x) <k} is closed for allk.

iiiy f is isotone onC, i.e., x; < xo implies that
f(@1) < f(22).

(1) f is homogeneous, i.ef,(0) = 0.

The Cauchy-Weierstrass existence theorem, given prop-

erties (ii) and (iii), assures us that probldh if feasi-
ble, assumes its minimum value in the feasible region.
If P is infeasible, then by adopting the convention that
the minimum of the empty set isx, we obtain a well-
defined minimum. After discussing the more general

contain the global solution are eliminated.”

Since that time, several other classes of algorithms
for problem P have been proposed, including extreme
point ranking, concavity cut reduction, and outer ap-
proximation. Benson [2] states that

"In recent years, probably the most popular technique
used in algorithms for problet is branch-and-bound.”

In addition to the deterministic algorithms which have
been mentioned above, many stochastic algorithms have
been proposed for global optimization. (See Bomze [4].)
We will restrict the discussion to the class of branch-
and-bound algorithms, of which our algorithm is a mem-
ber.

In general, branching consists of partitioning the set
C (more generally not a cone, and usually a hyper-
rectangle) into disjoint subsetCy, : k =1,2,..., K}
and the associated subproblems

Py : Find®, =Min{f (z): Az > b,z € Cx} (6)

are either solved, or else fathomed by demonstrating
that®, exceeds an incumbent value, i.e., a value known
to be attainable.

Falk [8] developed much of the theoretical basis for
this approach, assuming is compact, while Falk and
Soland [11] and Jones and Soland [17] describe imple-
mentations whetf is a piecewise-linear separable func-
tion and theCy’s are closed hyperrectangles. A lower
bound on®,, is obtained by replacing by its convex
envelope over the feasible region. This approach has
been applied to more structured problems in time-cost

case, we shall in later sections present results for thetradeoffs in project scheduling [10], in transportation

case in whichC' is a closed polyhedral cone, assuring
us that the minimum of in problemP is attained at a
vertex of the feasible region.

A large number of resource allocation problems in
which economies of scale are significant are included
in this general formulation, including many in logistics,
such as facility location, production planning, trans-
portation planning, as well as plant capacity planning.

The problem of optimally allocating resources when
economies of scale are prevalent is fraught with pitfalls,
in that mathematical programming algorithms will quite
often converge to local but not global solutions. Mc-
Cormick [20] surveyed methods proposed at that time
for obtaining globally optimal solutions to nonconvex
problems, and concluded:

planning [22], and in facility location [23].

Another branch and bound approach (cf. Carillo
[7] and Horst [16]) assumes thét is a simplex, and
branches by creating simplex-partitiof€’;, }. Lower
bounds are again obtained by use of the convex enve-
lope of f taken overC},, which is represented in terms
of the vertices of’}.

Making use of the fact that, whefiis concave, the
global optimizer ofP also optimizes the convex enve-
lope of f taken over the feasible region, Falk and Hoff-
man [9] presented an algorithm which represents both
the feasible region (assumed to be polyhedral and com-
pact) and the convex envelope pftaken over the fea-
sible region, in terms of its extreme points. The prob-
lem is initially relaxed by selecting a subset of the con-
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straints, and a master problem is formed using the ex-

treme points of the feasible region of this relaxation.
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The theory of surrogate duality was developed by
Greenberg and Pierskalla [12] for more general mathe-

A column generation scheme is then used to refine this matical programming problems. Suppose that the orig-

(outer) approximation.

By seeking local optima and generating cuts which
eliminate these local optima, cutting plane algorithms
are also able to find the global optimum. (cf. Cabot [6],
Taha [24], and Tui [25].)

Falk [8] considered the problemassuming only that
f is lower semicontinuous and compact, and demon-
strated that the solution of the bounding problem ob-
tained by replacing : C by its convex envelope taken
over the convex hull of” is equal to the solution of
the Lagrangian dual of the original problem. Thus the
strength of the bound which is obtained is directly re-
lated to the size of the Lagrangian duality gap. Green-

inal primal problem is

P Find® =Min{f(z):g(z) >bxze X}, (7)
wheref : R* — R!, g: R* — R™, andX is a closed
subset of R™. Given a vector of surrogate multipliers
u € R'"'(the nonnegative orthant), a surrogate constraint
ug (x) > ub is defined. The surrogate problem is there-
fore

S(u)=Min{f(z): ug(z) >ubjx € X} (8)
Since the optimal solution of (7) is feasible in the surro-
gate problem (8)S (u) clearly provides a lower bound

berg and Pierskalla ([12], cf. also [13]) demonstrated for the solution of (7). The surrogate dual problem is to

that the surrogate dual problem, to be described below, find the greatest lower bound provided by the family of
has in general a smaller duality gap, thereby provid- syrrogate problems, i.e.,

ing a more effective bound. The surrogate dual is lesser
known and less frequently utilized, however, because of
its apparent computational intractability.

If C'is not compact, but is a closed cone in the non- The duality gap of the surrogate dual is less than or

negative orthant ang' has the properties assumed in  equal to that of the more familiar Lagrangian dual, i.e.,
P, then for the purpose of bounding a solution of our

S = Max S (u) 9)

problemP in a branch and bound algorithm, one need L<S8<® (20)
not solve the surrogate dual problem in order to make

use of its superior bound in eliminating regions not con- Where .

taining the global optimizer [5]. Instead, the effective- L =Max L(})

ness of the surrogate dual as a bound may be tested
by a search for a feasible solution of a system of lin- an
ear inequalities. Success in this search guarantees that
the surrogate dual will eliminate the region being con-
sidered. Since solving a linear system of inequalities (a
computationally tractable problem) will take advantage
of the superior performance of the intractable surrogate
dual as a bounding problem, a new class of algorithms
may be designed which provides alternatives to existing
algorithms.

LX) =Min f(z) = Alg(x) —b]
rzeX

Even though there may exist a gap between the opti-
mal values of the primal and dual problems when the
objective function or feasible region is not convex, the
surrogate dual (9) can provide a lower bound for use
in fathoming subproblems in a branch and bound algo-
rithm.

Because of the economies of scale and lack of any
upper bounds orx (other than those which might be
included in the relaxed constrairds: > b), the optimal
vector of activity levels satisfying the single surrogate

Surrogate constraints were first used in implicit enu- constraintudxz > ub need have at most one positive

meration algorithms for zero-one integer linear pro- activity level. That is, the minimum of an explicitly
gramming problems. A surrogate constraint is a convex quasiconcave function occurs at an extreme point of the
combination of an original set of inequality constraints. feasible region:
The constraint thus obtained is implied by the original  Theorem 1 (Martos[19]). ¢ (z) is quasiconcave in
set of constraints, so that fathoming tests may be per-the convexseX c R",if and only if for each nonempty
formed on this derivative constraint as a substitute for polyhedrony® c X any global vertex-minimum point
the original constraints. of ¢ (x)in Y2 is a global minimum point iy 2.

3. Surrogate Duality



70

Thus, considering problem P and its surrogate dual,
letting A7 denote columrjof the matrix4, ande; the
jth unit coordinate vector, the extreme points of this

Sohn and Bricker— Surrogate Dual Bound in Capacity Planning

combined value of the outputs of each activity when
operated at capacity. If the budget were to permit an
unlimited level of activityj thenu is to be selected so

feasible region, other than perhaps the origin, are eachthat the combined values of the outputs of a unit level

of the form (“b/uAj) e;, where (Ub/uAj) > 0. If

ub < 0, thenz = 0 is both feasible and optimal, while
if ub > 0 anduA < 0, then the surrogate problem is
infeasible. Define the functiofy; (¢t) = f (te;).

Our interest lies in whethefexceeds some quantity
V, e.g., an incumbent value.

Elsewhere we have proved the following result which
states that the conditio > V may be tested by a
search for a feasible solution of the set of linear inequal-
ities:

Theorem 2 ([Bricker [9]). Let f : R} be an isotone,
lower semicontinuous, explicitly quasiconcave and ho-
mogeneous functiond € R™*", andb € R™. Then
the surrogate dual solution of the primal problem

Min {f (z) : Ax > b,z > 0}

exceeds a finite scalar valteif and only if one of the
following conditions is satisfied:

@b<0andV > 0.

(b) the primal problem is infeasible.

(c) there exists a solution of the linear system

ulb—fH(V)AT] >0, €
uAj§O,j€J2
ub > 0,u >0

wheref; (t) = f (te;), e; being thejth unit coordinate
vector, and

Ji={j: f;(t) >V for somet > 0}

Jo=A{j:f; (t) <Viorallt>0}

This feasibility test may be interpreted geometrically
as a search for a hyperplane with nonnegative nor-
mal vector, separating the vectbrfrom each of the
points{ f;* (V) A7 : j € J;}, the origin, and the rays
{47 : j € J»}. This test can also be given an economic
interpretation: ifl” is a capital investment budget for a
production facility, therjy‘j‘1 (V) is the capacity of pro-
cessj if the budget were allocated exclusively to that
process. If this capacity is finitef,j_1 (V) A7 is then
the vector of outputs of procegs The test above then
amounts to searching for a set of inputsus, . . . u,,,

one for each output, with the property that the combined
value of the required outputs, bs, . .. b, exceeds the

of activity, i.e.,uA’, must be negative, i.e., the value
of inputs (negative components df ) must exceed the
value of outputs (positive components4f). If such a
set of values:, > 0 can be found, then we can conclude
thatV < S.

4. Examplel

Consider the simple problem

®  =Min fi(z1) + fa(z2) + f3(23)

s.t. 1.2%; + 3xo +5x5 > 15 (11)

4oy +209+23 >11

z1 >0, 29 >0, 23 >0

where the functiong; (j = 1,2, 3) are of the form
(4), with ¢, o, and as specified in Table 1.

Table 1
J_|x y z
¢; | xux | yux | xub5
o; | xud | xud | xuyb
B; | wub | wu8 | wu?

Characteristics of example

Variableszy, xo, andxzs might represent the levels
of activity of three proposed production facilities, while
15 and 11 are the required outputs of two products. The
operating cost of facilityj includes a fixed charge;
for opening the facility plus a production cosy:c?j
which exhibits economies of scale.

The inverse functiorf;1 represents the activity level
of facility as a function of the operating budget allocated
to it. Thus, for an operating budgét, facility j may
operate at a level

1
N /B
(V;_;‘H) B; it V> ¢,
0if 0 <V < ¢,

Since clearlyp < +oc andb > 0, the test of the validity
of the inequality R

S>V
is, according to Theorem 2, the test of the feasibility of
the linear system

(15— 1.25f7 (V)] ur + [11 —4f7 " (V)] uz > 0

[15—=3.00f5 " (V)] wr + [11 =2/, (V)] ug > 0

(15— 5.00f5 " (V)] ur + [11— f51 (V)] uz >0
(12)
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Suppose we apply the surrogate test above, “arbitrar- determined (free variables). Likewise, partition the set
ily” using VV=4.8. Thenfj*1 (4.8)is 5.05192, 2.08493, of logical variables/by

and 4.00213 forj=1, 2, 3, respectively. To determine ,

whether the surrogate dual value exceeds 4.8, we need I=1turrur

to test the feasibility of wherel*, I°, andI/ correspond in meaning tot, J°,

f -
8.68510 uy — 9.20767 up > 0 anJt. Th.en the subproblem at a node of the enumer
8.74522 uy + 6.83015 ug > 0 (13) ation free 1s
5. . > . -
5 (;1(())66 u1>466 99787 ug > 0 Z ; + Min Z i (x)
up 2 Y,u2 =2 jeJt jgJe
The system of inequalities (13) is feasible (euq.,= sit. Y aija; > biie It (14)
0.52,uo = 0.48), implying that the surrogate dual ex- jéJe
ceeds 4.8. (In fact, an enumeration of the basic solu-
tions will determine that the optimal solution is found at Z aijr; = bt € I°
x = (2.13333, 0, 2.46667Avhich has cost of 7.15751. igJe
The surrogate duality gap for this problem is therefore . ]
at leasto7ux575xtg4u8pv7ux575¢ or approximately > aij; >biiel
33%. j¢Je
x;>0,j€JTUJ z;=0fora; € J°
5. Implementation where
In what follows, we will consider separable concave i(a)) = Of.ij?j if jeJr
investment cost functions I ¢; +aza it je s

n

If the incumbentvalue i%", then the current subproblem
fla)= Z fi (z5) may be fathomed, provided that the surrogate dual value
=1 exceeds/. This condition is satisfied if there exists a

where f; (z;) satisfies the form (4) for a given fixed nonnegative solution € R™to the inequalities

costo; > 0, and parameters; > 0 aqd 0< B < 1. wlb—f (V) AT] >0, j ¢ Jo
The elasticity 3;accounts for economies of scale. (For ub > 0 ’

example, if the elasticitys;is 0.9, then increasing the w>0,idI°

capacityx; by 10% increases the variable portion of -

the investment cosf; by approximately 9%) We will  that is,

refer to the variables; asstructuralvariables indexed 1

by J = {1,2,...,n} ,and the surplus variables in the m v\ /B .
inequalitiesAx > b aslogical variables indexed by Z bi — <a—7> aij | ui 20, j€J

I ={1,2,...,m}. As explained above, since we are =1

enumerating the bases of a set of linear inequalities, we

will construct an enumeration tree with subproblems i

defined by a specification of those variables which have /=

been forced into the basis as well as those which have

been excluded from the basis. Partition the structural i

variables by Z biu; > 0,
J=JtuJouJ! =t

1
—o.\ /8:
bi_(va—j%) bi aij)%‘ZO, jedi s

. . + £ — ; o
where Jt and J° denote the indices of the structural uj 2 0forie ImUI,u;=0fori el

variables which have been forced into and excluded The search for a feasible solution of (15) may be per-
from the basis, respectively, and denotes the indices ~ formed by one of several alternatives, e(g),an adap-
of the structural variables whose status has not yet beentation of therelaxation algorithm of Agmon [1] and



72 Sohn and Bricker— Surrogate Dual Bound in Capacity Planning

of Motzkin and Schoenberg [21], a method often used less than/, becomes the new incumbent. (If the LP is
in a search for optimal multipliers when solving La- determined to be infeasible, then of course the node is

grangian dual problems (where it is known as the sub-
gradient algorithm [15])(ii) the ellipsoid algorithm of
Khachian [18] (cf. also Bland et al. [3}r (iii) a Phase-
One Simplex LP algorithmThe first two are iterative
methods which converge to a feasible solution (the el-
lipsoid method in a number of iterations polynomial in
the length of the problem data string) if such a solution
exists. In practice, we will terminate the selected algo-
rithm after a specified number of iterations, abandoning
the attempt to fathom the node of the enumeration tree.

Fathoming process.

At each node of the branch-and-bound tree, we use
the following procedure as fathoming process:

Step 1: fixed costs of variables which have been
forced into the basis are summed.

Step 2a: if it is greater than the incumbent, the node
is fathomed.

Step 2b: Otherwise, an attempt is made to fathom
by the surrogate bound. If that fails, then try obtaining
a feasible solution to subproblem and possibly fathom
by infeasibility or update incumbent. This attempt is
abandoned if not successful within a specified number
of iterations.

Step 3: If both of these two attempts to fathom fail,

fathomed.)

Fi=L
Cslope i %Bj(uu_jf) !

T+ o

P

Fig. 1. Linear approximations of objective function

Branching process.

Branching must be done from nodes which cannot be
fathomed. This is accomplished by selecting a variable
and constructing two descendent nodes—one in which
the variable is forced into the basis, and the other in

separate subproblem into two subproblems and fathom,,hich the variable is excluded from the basis. Logical

each of them.

Linear programmingapproximation. If a node can-

variables will be selected only when no free structural
variables remain. The choice of structural variable may
be made based upon one of the following criteria:

not be fathomed, before branching we compute an upper (1) select the structural variable with largest cost co-

bound on the optimum by finding a feasible solution to
the problem (14). This is accomplished by solving the
optimization problem (14) with the objective replaced
by a linear approximation cx, i.e.,

Z (bj + Min Z CiT;

jeJgt jeJruJf

(16)

where; is chosen to be either
(i) marginal costs at#f’j (whereuis the multiplier
vector upon termination of the relaxation algorithm),

i d b b \Bi—1
ie. o =& (34) = a8 (345)7or
(i) the average unit cost
b
c; = fj (uuW)/ ub_
uAI

(See Figure 1.) In either case, the value of the objec-
tive function of (16), evaluated at the solution of the
LP, provides an upper bound on the optimum which, if

efficienta.

(2) select the structural variable with largest fixed cost
®.

(3) select the structural variable with largest cost at
ub -

/uA-7'
If no free structural variables remain, the logical var@bl

corresponding to the largest surrogate multiplier will be
selected for branching.

Test Problems.

Random problems were generated according to the
following scheme:

(1) integer constraint coefficients are uniformly dis-
tributed in a specified interval.

(2) a specified density is achieved by replacing
randomly-selected constraint coefficients with
zero (while avoiding the creation of columns with
zero density).

(3) fixed costs¢g), cost coefficientsd() and exponents
(B) are uniformly distributed in specified intervals.
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(4) theright-hand-side vectémwas assigned by fixing
a specified fractiorp of the variables at a spec-
ified value¢ and evaluating the linear constraint
functions at this point.

6. Examplell.

A problem with 5 constraints and 20 structural vari-
ables was randomly generated with the following char-
acteristics:
constraint coefficients are uniform in [-2, +10]
density 75%
right-hand-side$ obtained by evaluating the linear
functions after fixing
25% of the variables at the value 5
fixed costsp uniform in [2,5]
cost coefficienty uniform in [0.5, 2.0]
cost exponeng uniformin [0.5, 1]

The cost parameters and constraint parameters are

shown in Tables 2 and 3, respectively.

Table 2
el o] Bl
1 3 1.98 0.55
2 5 1.87 0.69
3 4 1.65 0.64
4 4 0.52 0.86
5 4 0.18 0.78
6 5 0.10 0.74
7 3 0.53 0.80
8 5 1.93 0.67
9 5 0.16 0.92
10 4 0.42 0.70
11 3 0.27 0.64
12 5 0.43 0.59
13 5 1.49 0.83
14 5 1.04 0.56
15 4 0.13 0.93
16 3 0.67 0.79
17 4 092 0.97
18 4 0.46 0.94
19 4 0.66 0.85
20 4 1.22 0.58

Cost parameters for thg x 50 example problem

Up to 50 iterations of the relaxation algorithm will
be used here for testing the surrogate dual bound. The
LP, which is solved at nodes at which 3 or more vari-
ables have been either forced into or out of the basis,
uses as its objective the marginal costs at the point with

73

z; = Zﬁ wherew is the most recently computed
i

surrogéte multiplier vector.

Branch-&-Bound Algorithm

Current Parameters

The current values of parameters to be used in the
branch-

and-bound algorithm are:

TAU = reflection factor = 1.5

EPS1 = tolerance for fathoming = 0.0001

Max_Relax = max # relaxation iterations = 50

Do_LP_level = level of tree at which LP is attempted
=3

Rule for choosing structural variable for branch based
upon:

Maximum Cost of F(Ub/UA)

LP objective computed by

marginal cost at X=Ub/UA

*k%k

*kkkkk *kkk *% *% *kkk

A total of 497 nodes of 53130 ( 0.935 %) were ex-
amined,

of which

432 nodes were fathomed by surrogate dual bound,

4 nodes were fathomed by excessive fixed costs,

3 nodes were fathomed by infeasibility of LP.

The total number of basic solutions (both feasible and
infeasible) of the constraints i 250 =53130. In this
example, 497 nodes of the enumeration tree were gener-
ated, which is less than 1% of the number of basic solu-
tions. The overwhelming majority of these nodes were
fathomed by the surrogate dual. The optimal solution
(shown in Table 4) has two positive structural variables,

contributing approximately 44% and 56%, respectively,
to the total cost.

Table 4
J x; Cost F%
5 11.666667 5.2231818 44.27
10 13.333333 6.5745801 55.72
Surplus in ConstraintsAz — b)
i S[i]
1 1.6666667
4 60.0
5 50.0

Optimal solution of the %20 example problem
with optimal cost 11.7977618611
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Table 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 b
-1 3 1 0 1 0 0 6 0 4 0 5 0 3 2 6 6 5 4 5 > 40
2 1 -1 4 0 0 2 3 1 3 4 3 2 1 3 2 5 0 4 6 > 40
5 6 4 0 3 4 0 2 0 O 0 0 0 0 0 0 5 3 1 4 > 35
0O 6 0 1 4 0 O O 5 4 0 0 1 0 1 0 0 -1 0 4 > 40
1 0 0 6 5 3 3 2 0 2 5 5 0 4 0 4 0 -1 -1 0 > 80
Constraint parameters for:620 example problem.
7. Computational Experience and Analysis of re- cient density, and two levels each for fixed costs, cost
sults coefficients, and cost exponents, providing forty dif-

ferent combinations. Specifically, these problems pos-
Although the algorithm does not require the explicit sessed the following characteristics:
computation of the surrogate dual value, in the exper- ¢ #constraints: 5
iments below the effort was expended to compute and ¢ #variables: 20
report this dual value for the root node of the enumer- o #basic solutions: 53130
ation tree, i.e., the original problem. e Constraint coefficients: integers uniform in [-5, 10]
The proposed algorithm was implemented in the APL  with densityd = 1%, 25%, 50%, 75%, or 100%

language using APL+Win 3.6. To compare the perfor- o Fixed costs: integers uniformin either [0, 5] or [5, 10]
mance of the surrogate dual bound with that of the La- ¢ Cost coefficientr uniform in either [0, 5] or [1, 10]
grangian dual bound, one hundred problems with 50 o Cost exponens uniform in either [0.1, 0.5] or [0.5,
constraints and 100 structural variables were randomly 1]
generated with the same characteristics as Example Il.one hundred problems were generated from each of the
Table 5 summarizes the computational results for each forty different combinations. Computational results are
of the one hundred problems. Note that the surrogate recorded in Tables 5 and 6. The first column of these
dual provided a tighter lower bound than the Lagrangian tap|es represents problem generation parameters, i.e., it
dual. The smallest gap between the surrogate dual bouncgonsists of three alphabetic letters ( L or H indicating
and the Lagrangian dual bound (as a percentage of thethe |ower or higher interval, respectively, for fixed costs,
surrogate dual bound) is 0.369%, the mean is 21.885%, cost coefficientsy, and cost exponent$) and one nu-
and the largest gap is 50%. Note also that, comparedmerical number (1, 25, 50, 75, or 100, representing the
to the Lagrangian dual bound (LR), while the surrogate densitys. (For example, problems in the 4atiH5 have
value (SD) takes much longer to compute the simple test fixed costs, cost coefficients, and cost exponents sam-
of the inequalities (ST) is equally effective or even bet- pled from the intervals [0,5], [1, 10], and [0.5, 1], re-

ter in bounding within a branch-and-bound algorithm.  gpectively, and 5% density.) The other statistics in these
On the average, the surrogate dual bound takes 20 timegaples are defined as follows:

longer computational times than the Lagrangian dual NN = number of nodes evaluated
bound. However, the simple test of the inequalities takes  \Nos, = ratio of NN to total number of basic solutions
85% less time than the Lagrangian dual bound. NS = number of nodes fathomed by surrogate bound

Table 5 NS% = fraction of nodes which were fathomed by
GAP (%) | Time Ratio | Time Ratio surrogate dual bound
(LR/SD) (LR/ST) NF = number of nodes fathomed because sum of fixed
Min 0.369 0.017 1.832 cost exceeds incumbent
Mean | 21.885 0.050 7.409 NF% = fraction of nodes which were fathomed be-
Max | 50.000 0.316 27.089 cause of excessive fixed costs
NI = number of nodes fathomed because of infeasible

Summary of computational results Lp

To test the performance of the implemented branch-  NI% = fraction of nodes which were fathomed by
and-bound algorithm for problems with a variety of infeasible LP
characteristics, smaller test problems were randomly NJ = number of basic structural variables in optimal
generated. Five levels were used for constraint coeffi- solution
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F% = optimal fixed costs as fraction of total costs = were used in testing for the effect of the cost exponent:
%GAP = surrogate duality gap as percent of optimal uniformin either [0.1, 0.5] or [0.5, 1]. The Tukey’s stu-
cost dentized range (HSD) means comparison test has been

Statistical analysis based on both Tables 6 and 7 hasperformed to check if the average solution gap is same
been performed to identify the parameter(s) that causeswith two intervals tested. We indicate that there is a sig-
the change in the surrogate duality gap. nificant difference in the surrogate duality gap across
the value ofg : the result suggests that the surrogate
duality gap is larger for problems with higher value of

h : i cost exponent (See Figure 2c).
; ; - Effect of problem densityn this research we have
used five categories for problem density: 1%, 25%, 50%,

75%, or 100%. The Tukey’'s studentized range (HSD)
means comparison test has been performed to check
(s} Fired Cost (EAlpha whether the average solution gap is the same with five
different density values. Test results shows that problem

é by densities of both 1% and 100% are associated with a
Effect of magnitude of fixed costa:this research we

{
: : surrogate duality gap that is significantly different from
the other three density types: changing density between
have used two intervals in testing for the effect of fixe
costs: uniform in either [0, 5] or [5, 10]. The Tukey’s

1% and 100% has no significant influence on the vari-

i R ation of the surrogate duality gap and so we have com-
studentized range (HSD) means comparison test (Tukey
[26]) has been performed to check if the average solu-

(B & Density bined these two groups. On the other hand, we note that
tion gap is same with two intervals tested. It is observed

changing density among these four new groups (1 &
100%, 25%, 50%, and 75%) has a significant influence
in accounting for the variation in the surrogate duality
d 9ap. We observe that problems with either 1% or 100%
density are relatively easier to solve than those with
that the average surrogate duality gap between two in-8. Conclusion
tervals tested isot significantly different. Thus, the re-
sult suggests that the variation of surrogate duality gap We have presented a surrogate dual for the linearly-
does not depend on the value of the fixed cost in the constrained capacity planning problem with (separable)
interval tested. The box-and-whisker plot displayed in fixed charges and continuous economies of scale of the

P
P

High

GAP %)
GAP

Fig. 2. Box-and-Whisker Plot

other densities, and problems with 50% density are the
most difficult (See Figure 2d).

Figure 2a provides a graphical view of this result. form (4). This problem subsumes the linear fixed-charge
Effect of magnitude of cost coefficient (Two inter- problem (3 =1) and the pure fixed charge problem

vals were used in testing for the effect of the cost coef- (3 =0).

ficient: uniform in either [0, 5] or [1, 10]. The Tukey’s Duality theory assures us that the surrogate duality

studentized range (HSD) means comparison test hasgap is no larger than the Lagrangian duality gap, al-
been performed to check if the average solution gap is though the surrogate dual is generally more difficult to
same across the two intervals tested. The analysis showsolve. We have shown, however, that the ability of the
that the low value of cost coefficient is associated with surrogate dual to fathom subproblems in a branch-and-
the variation of the surrogate duality gap that is signifi- bound algorithm may be determined without directly
cantly different from the high value of cost coefficient. solving the surrogate dual itself, but that a simple test of
Furthermore, we note that problems with smaller cost the feasibility of a certain linear system of inequalities
coefficients have smaller surrogate duality gaps. The will suffice.
box-and-whisker plot also indicates that the surrogate To compare the performance of the surrogate dual
duality gap may be more variable with low values of bound with the one of the Lagrangian dual bound, one
cost coefficients than with high values (See Figure 2b). hundred randomly generated problems with 50 con-
Effect of magnitude of cost exponefit Two intervals straints and 100 structural variables were tested. In this
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Table 6
NN NN% | NS NS% | NF NF% | NI NI% | NJ F% GAP
LLL1 696.7 1.31 56.95 | 25.40| 28.30 | 12.50| 23.38 | 2.60 | 1.41 | 51.96 | 15.99
LLL25 7333.0 | 13.80| 319.50| 10.89 | 247.00| 3.31 | 197.50| 2.51 | 1.96 | 56.38 | 33.57
LLL50 6970.0 | 13.12| 343.10| 11.62 | 281.40| 3.62 | 222.60| 3.05 | 1.98 | 52.81 | 34.05
LLL75 1615.0 | 3.04 131.40| 19.34| 86.53 | 8.52 | 79.77 | 3.47 | 1.70 | 53.06 | 22.32
LLL100 365.0 0.69 53.86 | 26.24| 29.40 | 15.17| 25.99 | 2.42 | 1.36 | 57.02 | 13.57
HLL1 421.7 0.79 27.66 | 1490| 97.22 | 27.31| 13.81 | 2.27 | 1.08 | 75.31 | 10.52
HLL25 3031.0 | 5.71 133.20| 8.14 | 317.00| 12.94 | 59.14 | 2.29 | 1.59 | 71.30 | 33.98
HLL50 3113.0 | 5.86 136.10 | 6.44 | 440.40| 16.25| 95.29 | 3.08 | 1.87 | 76.44 | 39.93
HLL75 964.6 1.82 63.15 | 11.28 | 184.20| 23.37| 38.01 | 3.46 | 1.49 | 73.91 | 26.64
HLL100 328.9 0.62 32.19 | 1453| 92.34 | 28.41| 11.81 | 2.46 | 1.10 | 74.10| 12.86
LHL1 596.2 1.12 61.59 | 29.75| 16.07 | 9.78 | 27.27 | 2.42 | 1.57 | 51.19| 27.92
LHL25 12720.0| 23.93 | 472.70| 11.10| 5759 | 1.81 | 376.90| 2.21 | 1.98 | 41.10 | 37.76
LHL50 12120.0| 22.81 | 460.30| 13.61| 60.71 | 1.85 | 497.40| 3.17 | 2.19 | 45.94 | 43.26
LHL75 3425.0 | 6.45 295.30 | 22.10| 47.95 | 485 | 236.70| 4.28 | 1.95 | 48.58 | 39.02
LHL100 771.7 1.45 94,18 | 32.21| 20.54 | 7.48 | 60.62 | 2.57 | 1.58 | 48.98 | 27.16
HHL1 644.9 1.21 | 42,57 | 2457 | 43.05 | 16.97 | 14.74 | 2.14 | 1.28 | 70.09 | 20.13
HHL25 6156.0 | 11.59 | 405.70| 10.77 | 252.20| 5.18 | 129.00| 2.10 | 1.76 | 61.60 | 39.31
HHL50 4016.0 | 7.56 253.70 | 13.46 | 228.30| 7.33 | 95.44 | 2.71 | 1.80 | 64.45| 40.50
HHL75 867.6 1.63 89.31 | 21.67| 113.40| 11.78| 38.33 | 3.25 | 1.58 | 68.33 | 32.86
HHL100 230.9 0.43 37.37 | 27.39| 34.23 | 15.61 | 8.57 2.29 | 1.18 | 66.10 | 20.05
LLH1 3651.0 | 6.87 284.80| 29.02| 21.45 | 5.72 | 279.10| 3.08 | 1.88 | 44.86 | 29.46
LLH25 15470.0| 29.12 | 379.90 | 13.24 | 46.19 | 1.20 | 458.00| 2.14 | 2.25 | 36.68 | 33.13
LLH50 16680.0 | 31.39 | 436.60 | 13.60| 22.04 | 0.97 | 606.40| 2.86 | 2.42 | 42.06 | 38.35
LLH75 6771.0 | 12.74 | 248.90| 26.19 | 2.36 2.79 | 440.20| 3.13 | 2.05 | 41.41| 32.95
LLH100 1955.0 | 3.68 159.60 | 32.47 | 7.92 10.09 | 169.80| 2.43 | 1.84 | 49.01 | 27.29
HLH1 1908.0 | 3.59 140.00 | 23.34 | 126.30| 12.48 | 104.60| 3.32 | 1.51 | 59.22 | 26.53
HLH25 6514.0 | 12.26 | 382.90| 11.20| 99.25 | 3.40 | 172.90| 2.20 | 1.93 | 57.25 | 39.35
HLH50 7347.0 | 13.83 | 510.10| 15.41| 188.70| 2.98 | 269.40| 3.03 | 2.08 | 57.69 | 42.96
HLH75 1105.0 | 2.08 156.60 | 24.37 | 55.64 | 7.04 | 66.28 | 3.49 | 1.77 | 60.42 | 34.37
HLH100 310.1 0.58 | 48.22 | 30.67 | 27.46 | 13.31| 16.58 | 2.28 | 1.54 | 65.27 | 26.97
LHH1 5934.0 | 11.17 | 241.10| 32.71| 1.52 5.54 | 425.80| 2.06 | 1.81 | 33.93| 26.32
LHH25 23850.0| 44.90 | 441.40| 10.39| 0.12 0.24 | 787.60| 2.27 | 2.60 | 29.56 | 36.32
LHH50 21490.0| 40.44 | 366.60| 14.69 | 0.15 0.40 | 928.00| 2.50 | 2.48 | 27.66 | 34.59
LHH75 14720.0| 27.71 | 274.90| 23.92 | 2.36 1.74 | 886.10| 3.04 | 2.24 | 33.63 | 33.07
LHH100 8929.0 | 16.81 | 150.80| 34.68 | 0.55 5.44 | 675.90| 2.48 | 1.92 | 33.27 | 28.28
HHH1 3343.0 | 6.29 214.70 | 30.99| 24.78 | 6.70 | 240.90| 2.98 | 1.69 | 48.31 | 28.01
HHH25 13640.0| 25.68 | 536.90 | 12.40| 74.44 | 1.67 | 459.20| 2.14 | 2.16 | 45.18 | 37.65
HHH50 10960.0| 20.63 | 513.30| 16.32 | 111.40| 1.33 | 435.70| 2.93 | 2.27 | 49.51 | 39.31
HHH75 3970.0 | 7.47 286.60 | 24.60 | 31.76 | 4.17 | 240.20| 3.41 | 1.96 | 49.56 | 35.92
HHH100 1884.0 | 3.55 167.90 | 32.96 | 15.40 | 8.66 | 159.90| 2.49 | 1.66 | 52.12 | 28.43

Mean values
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Table 7

NN NN% | NS | NS% | NF | NF% | NI | NI% | NJ | F% GAP
LLL1 113 | 0.21 28 2242 | 3 732 | 2 127 | 1 48.26 | 12.38
LLL25 2461 | 4.63 180 | 8.85 | 4 074 | 52| 249 | 2 57.02 | 38.20
LLL50 2313 | 4.35 211 | 850 | 6 089 | 81| 270 | 2 50.08 | 39.60
LLL75 417 | 0.78 55 17.88 | 4 4.35 11| 299 | 2 49.77 | 28.66
LLL100 85 0.16 29 2268 | 3 1143 1 1.30 | 1 57.04 | 6.11
HLL1 205 | 0.39 19 10.89 | 56 29.58 | 5 221 |1 74.69 | 3.85
HLL25 1639 | 3.09 87 540 | 230 | 1266 | 34 | 202 | 2 71.43 | 39.11
HLL50 2271 | 4.27 80 401 | 319 | 17.31| 76 | 3.03 | 2 77.06 | 43.65
HLL75 507 | 0.95 50 8.33 119 239116 | 3.16 | 1 74.26 | 31.85
HLL100 261 | 0.49 19 11.11| 63 31.68| 6 256 | 1 77.54 | 5.71
LHL1 55 0.10 19 30.50| 2 465 | 0 0.00 | 2 51.62 | 29.31
LHL25 4261 | 8.02 192 | 7.07 1 001 | 32| 210 ]| 2 38.11 | 42.10
LHL50 1911 | 3.60 179 | 1167 | 1 0.00 | 46 | 3.20 | 2 43.60 | 45.57
LHL75 533 1.00 | 94 2083 | 1 0.27 18 | 4.78 | 2 49.81 | 42.97
LHL100 47 0.09 18 3047 | 1 142 | 0 0.00 | 2 47.75 | 30.03
HHL1 89 0.17 24 2222 | 4 16.23| 2 1.77 | 1 72.83 | 13.72
HHL25 3521 | 6.63 170 | 7.83 | 24 131 | 45| 167 | 2 57.95 | 45.24
HHL50 1479 | 2.78 132 | 11.84 | 10 243 | 36| 270 | 2 64.33 | 44.16
HHL75 377 | 0.71 62 2222\ 5 4,91 10 | 3.05 | 2 71.11| 39.27
HHL100 101 | 0.19 27 28.21| 4 1391 2 222 |1 65.77 | 17.79
LLH1 85 0.16 29 2771 0 0.00 | 1 141 | 2 4573 | 29.31
LLH25 2177 | 4.10 102 | 6.42 | O 0.00 | 36| 202 | 2 35.72 | 33.48
LLH50 3533 | 6.65 158 | 6.21 | O 0.00 | 70 | 287 | 2 40.81 | 38.07
LLH75 219 | 0.41 39 2257 0 0.00 | 7 1.75 | 2 38.17 | 33.21
LLH100 11 0.02 5 3333 1 186 | O 0.00 | 2 48.53 | 28.32
HLH1 247 | 0.46 34 22.22| 3 588 | 7 256 | 1 58.20 | 31.91
HLH25 2771 | 5.22 157 | 8.28 1 0.07 | 30| 196 | 2 53.30 | 40.83
HLH50 3117 | 5.87 246 | 13.76 | 1 0.05 | 57| 3.05| 2 55.68 | 42.90
HLH75 313 | 0.59 37 2222 2 201 | 6 310 | 2 58.44 | 37.94
HLH100 59 0.11 19 33.33| 2 6.45 1 1.70 | 2 67.43 | 32.99
LHH1 9 0.02 5 33.33| 0 0.00 | O 0.00 | 2 32.77 | 27.22
LHH25 6183 | 11.64 | 64 448 | 0O 0.00 | 86| 2.16 | 3 27.29 | 33.92
LHH50 3367 | 6.34 | 43 586 | 0O 0.00 | 53| 243 | 2 25.59 | 33.52
LHH75 223 | 0.42 6 17.04| 0 0.00 | 6 1.33 | 2 29.53 | 31.64
LHH100 9 0.02 5 4444 | 0 0.00 | O 0.00 | 2 28.95| 28.35
HHH1 71 0.13 22 33.33| 0 0.00 | 1 1.40 | 2 4554 | 31.67
HHH25 1941 | 3.65 113|751 | O 0.00 | 32| 208 | 2 43.05 | 37.71
HHH50 1313 | 2.47 142 | 12.74| 0O 0.00 | 20| 270 | 2 46.81 | 40.32
HHH75 471 | 0.89 55 2237| 0 0.00 | 11| 288 | 2 48.92 | 36.83
HHH100 45 0.08 14 3333 1 202 | O 0.00 | 2 4793 | 32.21

Median values
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experiment, the tighter bound was obtained with the
surrogate dual for every test problem.

In order to characterize problems of this class hav-
ing relatively small surrogate duality gaps, a statistical
analysis of the surrogate duality gap of four thousand

randomly generated problems with various problem pa-

rameters (density of linear constraints, fixed casts
cost coefficientsy, and exponentg) was performed.

This analysis suggests that these gaps are smaller for

problems with either very high or very low density, and
for problems with small values af or S.
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