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K3 3 Minorsand the Maximum-Flow Problem

Donald K. Wagner

Mathematical, Computer, and Information Sciences DivisiOffice of Naval Research, Arlington, VA 22203, U.S.A.

Abstract

Let G be a graph, and let be an edge ofy. The main result of this paper is that any instance of the mari-flow
problem onG having e as the “return” edge can be solved in linear time providétldoes not have &3 3 minor
containinge. The primary tool in proving this result is a new graph decaosifion. In particular, it is shown that it7
is 3-connected and does not havekg s minor containinge, then it can be decomposed into planar graphs, “almost”

planar graphs, and copies df’s.

Key words: Maximum flow, Planar graphdss.s minor

1. Introduction

is specified a$G, e, u), ande = st, there is nothing to
distinguish the source noddrom the sink node. This

This paper is concerned with the maximum-flow does not cause any confusion, however, since a flow
problem. A basic knowledge of this problem is as- (D, z) maximizes the net flow atif and only if (D', z)
sumed — see, for example, Ahuja, Magnanti, and Orlin maximizes the net flow at, whereD’ is obtained from
[1]. For the present purpose, an instance of the problem D by reversing the orientation on each arc.

is specified aqG, s,t,u), whereG is an undirected
graph,s andt are distinguishedourceandsink nodes
of G, andu is a vector of real-valued, nonnegative,
edgecapacities A flow is a pair (D, z), whereD is
an orientation ofy andx is a nonnegative, real-valued
vector indexed on the arc set @f. For a given flow
(D,z) and nodei of D, definenet flowat i to be
x(6%(i)) — (6~ (7)), whered * (i) (respectivelyd (7))
denotes the set of arcs that have nedes their head
(respectively, tail). (Here, for a subset dfof arcs or
edgesz(A) =34 ) Aflow (D, z) is feasibleif,
for each arcf of D, xy < uy and for each node of

D other thans andt, the net flow at equals zero. The
valueof a flow (D, z) is equal to the net flow at A
maximumflow is one of maximum value. Aninimum
cut is an st-cut (in either the directed or undirected
sense, as appropriate) of minimum capacity.

Without loss of generality, it can be assumed tfat
has a unique edge joiningandt of capacity zero. Such
an edge is called threturnedge. Throughout this paper,
the existence of the return edge is taken as a given.

Now, consider an instan¢é-, e, u) of the maximum-
flow problem whereG is planar. (Note, given the as-
sumption about the existence of the return edgest,
this is equivalent to saying thét\e is “st-planar”; that
is, it has a planar embedding in which two designated
nodes,s andt, lie on the same face.) Ford and Fulk-
erson [5] provided a specialized augmenting-path pro-
cedure for computing a maximum flow @&, e, u) as-
suming a planar embedding 6f was given; this al-
gorithm pre-dates their well-known algorithm [6] for
general directed graphs by a year or so. (See Schri-
jver [15] for a comprehensive treatment of the history
of the maximum-flow problem.) Berge and Ghouila-
Houri [3] extended the Ford and Fulkerson algorithm
to directed planar graphs. AB(n logn) version of the
Berge and Ghouila-Houri algorithm was developed in
Itai and Shiloach [11]. (Throughout, and m denote
the number of nodes and edges, respectively;y 9fA
different approach for planar graphs was developed by
Hassin [7], who provided a@(n)-time reduction of the

Given the existence of a return edge, an instance of Maximum-flow problem or@7 to a shortest-path prob-

the maximum-flow problem can equivalently be speci-

fied by (G, e, u), whereG andu are as before, andis

lem on its planar dual. Combined with tli&(n)-time
algorithm for solving the shortest-path problem on pla-

an edge of capacity zero. Note, however, if an instance Nar graphs due to Henzinger, Klein, Rao, and Subrama-

Email: Donald K. Wagner [don.wagner@navy.mil].

nian [8], this yields arD(n)-time algorithm for solving
the maximum-flow problem oG, e, ).

(© 2008 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All righreserved.
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The main purpose of this paper is to show that the mostk nodes in common. §E;, E->} is ak-separation,
linear-time solvability of the maximum-flow problem theneach of); andF; arek-separatorsA k-separation
can be extended beyond planar graphs, and in particular{ E1, E»} of a connected graply is an internal k-
to graphs that do not havelg§s; ; minor containing the  separationifE;| > k+1 < |E;|. A k-connected graph
return edge. This is done by employing a new graph is internally (k + 1)-connectedf it does not have an
decomposition that essentially reduces the problem to internal k-separation.
the planar case. In this paper, 2- and 3-separations play a crucial role,

Others have looked at solving graph optimization as do the related notions of 2- and 3-sum decomposi-
problems when thé(s 3 minors are excluded entirely;  tions, which are defined as follows. L&, F»} be
see, for example, Manor and Penn [13] and the refer- a 2-separation of &-connected grapldr. Let f be a
ences contained therein. Additionally, there has been new edge, and lef¥’ be the graph obtained by adding
work on solving optimization problems when other mi-  f to (3 joining the two nodes iV (G[E;]) NV (G[E3]).
nors are excluded, such &5; see, for example, Bara- Fori € {1,2}, defineG; to be G'[E; U {f}]. Then,
hona [2]. An important distinguishing feature of the {G,, G,} is a2-sum decompositioaf G, and f is the
present work is that the mind; 3 is excluded only  connectingedge. Now, let{ E1, E»} be an internaB-
“locally” (i.e., through the return edge), not “globally”.  separation of &-connected graplsi. For each pair of
This feature can also be seen in the work of Seymour non-adjacentnodes ii(G[E;])NV (G[E2]), add a new
[16], Truemper [20], and Tseng and Truemper [21] in edge joining the pair; denote the resulting graphy
the context of matroids. Let T denote the set of edges @f that have both ends

The remainder of this paper is structured as follows. in V(G[E;]) N V(G[E»]). Fori € {1,2}, defineG; to
The next section contains the decomposition for graphs be G’[E; U T]. Then,{G;, G2} is a3-sum decomposi-
that do not have &3 3 minor containing a fixed edge tion of G, andT is theconnectingriangle.

e. This decomposition is Completely independent of the The fo||owing properties of 2- and 3-sum decompo-
maximum-flow problem. The decomposition forms the sjtions are well known and straightforward to prove.
basis of two algorithms to follow. The first, contained

in Section 3, is a linear-time algorithm for recognizing LEMMA 1.Let{G1, G2} be ak-sum decomposition of a
graphs that do not havelgs 5 minor containing a fixed ~ k-connected graply, for k € {2,3}. Then,Gy and G,
edge. The second, contained in Section 5, is a linear- &re k-connected and are isomorphic to proper minors

time algorithm for solving the maximum-flow problem of G.O

on a graph that does not havég,; minor containing Two special kinds of internal 3-separations are
the return edge. Section 4 is a brief section containing an noaqed. Both are defined relative to a fixed edge.
algorithm for the target-flow problem, which is needed  gpeifically, let{ £, , £} be an internal 3-separation of
for the maximum-flow algorithm that follows. The final '3 gnnected grapfi, and lete be a fixed edge off.
section briefly indicates how to extend the algorithm of ¢, ih ends of: are in’V(G[El]) NV (G[E:)), then the

Section 5 to solve the directed version of the maximum- 3-separatior{ E1, E» | is said to bestraddledby e. Ob-
flow problem. serve that is in this case,is in the connecting triangle
of the corresponding 3-sum decomposition. The sec-
2. Graph decomposition ond special internal 3-separation is as follows. Suppose
E; has exactly seven edges, sayi, . .., fs. Suppose
A basic knowledge of graph theory is assumed. Un- further that{e, f1, f2}, {e, fs, fa}, and{e, fs, fc} are
defined terminology is standard; see, for example, Di- triangles of G such that no two of{ fi,..., f¢} are
estel [4] or West [24]. parallel. Then,G[E4] is a crown and {E;, Ex} is a
Graph connectivity plays a central role in the graph crown 3-separation ofG with respect toe. Observe
decomposition described here. The notion of connec- that the crownG/[E1] has three nodes of degree two,
tivity used here is that of Tutte [22]. In particular, a which by the 3-connectivity of, constitute the set
connected grapty is n-connectegfor n > 2, if it does V(G[E1]) NV (G[E2]). It also has two nodes of degree
not have ak-separation for any: < n, where ak- four, which are the ends of
separation for a positive integek, of G is a partition Let G be a 3-connected graph, and ¢ebe an edge
{E4, E,} of the edge set such thigt, | > k& < |F2| and of G. Let{F4, E>} be a crown 3-separation 6f with
the edge-induced subgrapB$E; | and G[E:] have at respect toe, wheree € E;. Let {G1, G2} be the cor-
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responding 3-sum decomposition.d$ is planar, then consists of exactly three nodes, namely, andz. From

G is said to becrown-planarwith respect tce. the above(=, has at least four nodes, and therefore at
The primary decomposition tool used in this paper is least one node not il (G[E;]) NV (G[Ex]). By the 3-
the following. LetG be a 3-connected graph, anddet connectivity ofG, this node is incident to at least three

st be an edge ofi. If G\ {s,t} is 2-connected, then de- edges. These three incident edges plus the edge in
fine {G'} to be thee-decompositionf G. Otherwise, as-  Ei1, and therefordE,;| > 4. Similarly, G has a node
sume that’\{s, t} has a 1-separation,andlet ..., v, not in V(G[E1]) N V(G|E)), and thereforéF,| > 3.

denoteits cut nodes. L&, . . ., V;, denotethe node sets  Observe thatz has at least five nodes, and since it is
of the blocks ofG\ {s, t}. Let (G, e)* denote the graph ~ 3-connected, it has at least eight edges. Thus, either
obtained fromG by adding avirtual edge joining ev-  |Ez| > 4 or |[E;| > 5. In the latter case, re-defing,

ery non-adjacent pair of nodes{r, t} x {vy,...,vp,}. andE; by transferringe from E; to Es. It follows that

WhereH := (G, e)™, the e-decompositiorof G is de- {E1, E>} is an internal 3-separation 6f straddled by,

fined to be the sefH[Vi U{s,t}],..., H[ViU{s,t}]}. the 3-sum decomposition of which is equalta,, G2 }
The main goal of this section is to prove the following for an appropriately defined graygh,.

theorem. Now, observe that the grapfiz\{s,¢} is equal to

the graphG\{s,t} with the end blockB removed.
THEOREM 1. Let G be a3-connected graph, and let  (That is, deleting all of the nodes @, except forz,

e be an edge of>. Then, G does not have &3 from G\{s,t}.) It follows that D — {G;} is the e-

minor containinge if and only if every member of the decomposition of3. O

decomposition ofr is either planar, crown-planar with In many situations in this section, it is easier to deal

respect tee, or isomorphic to’s. with K3 3 subdivisions rather than minors. The follow-
The proof of Theorem 1 is broken down into a se- ing result, which is straight_forwarq and used without

quence of results, which will be collected into a concise further reference, makes this possible.

proof later in the section. LEMMA 3. LetG be a3-connected graph, and letbe
The next lemma relates 3-sum decompositions and an edge of5. Then,G has aK’; 5 minor containinge

e-decompositions. LeD be thee-decomposition of a  if and only if G has aK 5 subdivision containing. O

3-connected grapl, and letd be a member oD. The next lemma shows that the property of hav-

Using the above notation, ib = {G}, defineG tobe  ing a K3 5 minor containinge is inherited undere-
the (unique)end member ofD; otherwise, define the  gecompositions.

endmembers o) to be those members that correspond

to theendblocks of G\ {s, t}; that is, those blocks that LEMMA 4. Let G be a 3-connected graph, and let
contain exactly one ofvy, ..., v,}. e be an edge ofG. Then, some member of the

decomposition oty has aK3 3 minor containinge if
LEMMA 2. Let G be a3-connected graph, let = st and only ifG does.

be an edge of5, and suppose tha&\{s,t} is not Proof. Let e — st, and letH = (G, e)".

3-(;:Coonmnegtseit?c.) dlse(?(l; t')l'iein tﬁgrc(je é?(iesrgbaer: igieﬂ; First, letJ be a member of the-decomposition ot~
P ) ’ that has &3 3 minor containinge. Then, it has &3 3

zgaaerglor;sogesi?)?ril:do?wﬁi:u?:utr?waggzlo’rﬁ?(})éiftci)én subdivision, sayk, containinge. If K does not contain
2 P g b " any virtual edges, then it is also a subgraphthfas

Moreover,.D — {G1} is thee-decomposition of,. required. If K does contain a virtual edge, it is shown
Proof. Observe that each end block@f\{s,t} con-  each such edge df can be replaced by a path 6fin
tains at least two nodes. Therefore, each end membersych a way that the result isIg3 3 subdivision ofG'.
of D contains at least four nodes. Let B be the unique block of¥\{s,t} such that
SinceG, is an end member adb, there exista corre-  J = H[V(B) U {s,t}]. Let f be a virtual edge of.
sponding end block off\{s,¢}. Let B denote thisend  Then, f joins s (say) to a node; of B, wherez, is also
block, and letz denote unique cut node 6f\{s, ¢} in a cut node ofG\{s,t} Observe that no other virtual
B. edge ofK can be incidentta, for if such an edge were
Let F, be those edges @f; that are edges aF, and to exist, it would joinz; to ¢, implying thatK contains
define B> := F(G) — E;. From the definition of the  a triangle on node$s, ¢, z; }, which is impossible in a
e-decomposition, it follows that' (G[E1]) NV (G[Ez]) K3 3 subdivision. Sincez; is a cut node ofG\{s, t}
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and sinceG is 3-connected, there exists a path, say paths that share an end withare called theprincipal

Zy, from z; to s in G, no edges of which are from
B. Similarly, one can construct pattis, . .., Z, one
for each remaining virtual edge &f. Observe that the
pathsZi, ..., Z; are pairwise internally node disjoint.
Thus, replacing the virtual edges &f with the paths
Z1, ..., Zy produces d s 3 subdivision ofG.

Now, supposé- has ak3 3 subdivisionk containing
e. Observe thak(\{s, ¢t} contains a cycle; leB be the
block of G\{s, t} that contains this cycle, and Idtbe
the unique member of the-decomposition of7 such
thatJ = H[V(B) U {s,t}]. If K is a subgraph of,

paths of H with respect ta; the remaining three paths
are thesupportpaths ofH. The K3 5 subdivisionH of

G is good(respectivelybad) with respect te if all six
(respectively, at most five) of the principal paths with
respect tee consist of a single edge.

LEMMA 6. Let G be a3-connected graph, and let

be an edge ofs. Assume tha€z does not have s 3

minor that contains or an internal 3-separation that
is straddled bye. Then, everys 5 subdivision ofG is

good with respect te.

then the lemma is proved. Thus, assume this is not the Proof.If G is planar orisomorphic tés, then, vacu-

case. Now, observe that the edgesiofot in J can

ously, everyKs 3 subdivision ofG is good with respect

be partitioned into internally node-disjoint paths, each t0 e Thus, Theorem 2 implies thét has ak’s 5 minor,

of which starts at a node dB and ends at either or
t. Let Zy,..., Z; denote these paths, and lgt . .. | z;

and thus, aK3 3 subdivision. Lete = st. By Lemma
5, s andt are independent degree-three nodes in every

denote their respective starting nodes. Observe that thef<s,3 subdivision ofG. If the theorem is not true, then

21, ..., 2 are distinct cut nodes @f\ { s, t}. Therefore,
by the definition of thee-decomposition, each one of
z1,..., 2 IS adjacent is to botkh and¢ by an edge of/
not in K. It follows that the pathgly, ..., Z; of K can
be replaced by edges dfto produce &3 3 subdivision
of J.O

The nexttheorem is a well-known result of K. Wagner
[23].

THEOREM 2. Let G be a3-connected graph. Theiy
does not have d; 3 minor if and only ifG is planar
or isomorphic toK;. O

The next result, ois 5 subdivisions, is due t8iran
[17]. If a graphH is a subdivision of a graplk, and
s andt are non-adjacent nodes &f, thens andt are
independenin H.

LEMMA 5. LetG be a3-connected graph, and let= st
be an edge of5. If e is not contained in anyx; s
subdivision of7, then, for every s 3 subdivisionH of
G, s andt are independent degree-three nodegiofD

Let G be a graph, and |ef be a subgraph aofi. Let
P be a path of7, the end nodes of which are nodes of
H, and the internal nodes of which are not node#{of
Then, the subgrapH U P of G is said to be obtained
from H by adjoining P, and P is anadjoinablepath of
G with respect toH.

Let G be a graph, and letbe an edge ofr. Let H be
a K 3 subdivision ofG, and suppose thatjoins two
independent degree-three nodesfbf Since K3 3 has
nine edges, the graptl consists of nine paths, each of
which is a subdivision of an edge &f; 5. The six such

there exists &3 3 subdivision ofG, say H, in which
some principal path with respect tg say ()1, has at
least two edges. Let denote the end node ¢f; not in
{s,t}. Let Q2 denote the other principal path that has
as an end node, and 18t denote the support path that
hasy as an end node. Denote the other end nodg, of
by z. Consistent with the above, assuitieand @, are
chosen so that the number of edge$inis as small as
possible.

Claim: If an adjoinable path of7 with respect toH
has one end that is an internal node of eitferor Qs,
then the other end of the path is a nodé/gf), UQ2 U
S1).

Proof of Claim If the other end of the path is not in
V(Q1UQ2US1), then it is easy to check that adjoining
the path toH results in a graph that hasfg; 3 minor
that containg, a contradictionEnd of Claim.

Observe tha{@Q, U Q2 U {e}, E(H) — (Q1 UQ2 U
{e})} is an internal 3-separation df straddled bye.
SinceG does not have an internal 3-separation straddled
by e, there exists an adjoinable paly of GG, one end
of which, saypy, is a internal node of); (say), and the
other end of which, say,, is notinV(Q; U Q2). By
the Claim,r; is a node ofSy; if it is an internal node of
S1, then a contradiction to the choice £f is obtained
by adjoining R, to H and deleting the internal nodes
of the yp,-subpath of subpath @,. Thus,r; = z.

Observe thafQ:UQ2US1, E(H)—(Q1UQ2US1)}
is an internal 3-separation &f straddled by. SinceG
does not have an internal 3-separation straddled, by
there exists an adjoinable pafty of G with respect to
H, one end of which, say., isinV(Q1UQ2US1), the
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other end of which, say, is notinV (Q,UQ-2US; ), and K3 3 minor containinge, a contradiction. Thus, it can
neither end of which is id s, t, z}. By the Claim,ps is be assumed tha{e, sv,tv, sw, tw, sy, ty}, E(G) —
a node ofS; andr, is a node ofS; (say). Moreoverps {e, sv,tv, sw,tw, sy, ty}} is a crown 3-separation of

must equay, for otherwise a contradiction to the choice G. Let {G1, G2} be the corresponding 3-sum decom-
of H is obtained by adjoinind?; to H and deleting the  position.

internal nodes of ther,-subpath ofS,. By the Claim, To show thatG is crown-planar with respect tg it
R, and R, are node disjoint. NowH U R; U R, has a suffices to show thatrs is planar. To this end, suppose
K3 3 minor that containg, a contradictionD this is not the case. By Lemma @y is 3-connected.

By Theorem 2, is either isomorphic td<; or has a
K3 3 minor. In the former case, it is easy to see tfyat
has aK3 3 minor containinge, a contradiction. In the
latter case(= has aK3 3 subdivision for whiche does

The following result can be seen an a generalization
of Theorem 2. It was inspired by a similar type result
for matroids due to Tseng and Truemper [21]. A version

of this result was independently discovered by Mohar not join independent nodes, contradicting Lemmais.

[14] Lemma 7 has as a corollary the following result,
LEMMA 7. Let G be a3-connected graph, and let which was proved by Thomas [19]. The corollary, in
be an edge ofs. Assume tha€z does not have d; 3 turn, generalizes a result &firan [17].

minor that contains: or an internal 3-separation that

Irzst?gtdtlcid gﬁsl—:g;ilf tpc))lla{nar, crown-planar with graph, and lete be an edge of7. Assume tha€’ does
P ’ P 5 not have ak; 3 minor that contains. Then, eitheid
Proof.By Theorem 2, eithe is planar, isomorphic g planar or isomorphic taks. O

to K5, or has ak(3 3 minor. Thus, by Lemma & has The next result examines further the structure of

a K3 3 subdivision, sayH, that is good with respectto  crown-planar graphs occuring in ardecomposition,
e. Lete = st, and letz denote the common end node  showing that they are “almost” planar.

of the three support paths &f. Let v, w, andy denote
the remaining degree-three nodesthfLet Sy, S, and ~ LEMMA 8. Let G be3-connected a graph, and letbe
S5 denote the three support pathskfwith respect to ~ @n edge ofy. Assume that does not have &' ; minor
e, and without loss of generality, assume that the ends cOntaininge or an internal3-separation straddled by.
of S; arey andz. Let{E, E5} be a crowrB-separation of7 with respect
Observe thaf{S:, sy, ty, e}, E(H)—{S, sy, ty, e} } toe wlth e € FEy. _Then,(_? is crown-planar with respect
is an internal 3-separation df straddled bye. Since 0 e if and only if G\ f is 3-connected and planar for
G does not have an internal 3-separation straddled by @Y edgef adjacent toe.
e, there exists an adjoinable paly of G with respect Proof. First, suppose that is crown-planar with re-
to H, one end of which is if/(S;), the other end of  spect toe. Let e = st, and letf = sy be an edge of
which is in V(S2) (say), and neither end of which is G adjacent tce. It is first shown thaty has degree at
equal toz. Similarly, there exists an adjoinable path least four inG. If not, then the three edges incident to

COROLLARY. Let G be an internally 4-connected

R> of G with respect taH, one end of which i§7(S3), y together with the edge comprise a 3-separator of
the other end of which is iV (S;) (say), and neither G, the corresponding 3-separation of which is an inter-
end of which is equal ta. nal 3-separation straddled lay a contradiction. Thus,

Observe thaf{{e, sv, tv, sw, tw, sy, ty}, S1 U Sz U y has degree at least four . Also, by definition,s
S3U R1 U R} is a crown 3-separation with respectto  has degree four id.
of HUR;UR,. Thus, eithel= has a crown 3-separation To show thai?\ f is 3-connected, suppose that it has

with respect tce or there exists an adjoinable pafit a 2-separatiofiFy, F»} with e € F. Letp andg denote
of G with respect toH U R; U Ry, one end of which  the two nodes iV (G[F1]) N V(G[F:]). Observe that
is in {s,t} and the other end of which, call i, is in {F1, F, U{f}} is a 3-separation aff. Moreover, since

V(S1US2US3UR1URy). If r3 # z, then observe that  both ends off have degree at least four, it is an internal
HU Ry UR;U R3 contains a bad(s 3 subdivision with 3-separation. Also, observe that sincend f are in
respect toe, which, by Lemma 6, is a contradiction. a triangle ofG, it must be the case thate {p,q}.
(Note, if r3 € {v,w,y}, then, by the 3-connectivity of ~ This shows thaf F;, F» U {f}} is straddled bye, a
G, R3 has at least two edges.) Thus, = z. It can contradiction.

now be checked thalf U R; U Ry U R3 contains a If G\f is not planar, then Theorem 2 implies that it
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is either isomorphic taXs or has aK3 3 minor and,

therefore, ak(s 3 subdivision. Evidentlys has degree
three inG\ f. If G\ f is isomorphic toK, s has degree
four in G\ f, a contradiction. Similarly, ifG\ f has a

K3 3 subdivision, then, by Lemma 5, has degree at
least four inG\ f, a contradiction.

Now, suppose that\ f is 3-connected and planar for
any edgef adjacentte. Let{G1, G2} be the 3-sum de-
composition corresponding to the internal 3-separation
{E\, E>}. Evidently, G2 is isomorphic to a minor of
G\ f, and thus is planaf

The proof of Theorem 1 can now be presented.

Proof of Theorem 1First, assume every member of
the e-decomposition of7 is planar, crown-planar with
respect toe, or isomorphic toK5, and suppose that
G has aK3 3 minor containinge. By Lemma 4, some
memberJ of the e-decomposition has &3 5 minor
containinge. Clearly,J cannot be planar or isomorphic
to K5. Thus,J is crown-planar with respect ta

Let K be aK3 3 subdivision ofJ containinge. Since
the maximum degree iK is three, there exists an edge
f of J adjacent toe that is not inK. Thus, K is a
subgraph of/\ f, contradicting Lemma 8.

Now, suppose that? has noK; 3 minor containing
e. Let J be a member of the-decomposition ofG.
By Lemma 4,J has noK3 3 minor containinge. By
definition of thee-decomposition,/J does not have an
internal 3-separation straddled by Thus, by Lemma
7, J is either planar, crown-planar with respectar
isomorphic toK5. O

The final two results of the section are useful in the
derivation of the time complexity of the algorithms to
follow. In particular, it is shown that if a simple 2-
connected grapl¥ has an edge that is not contained
in a K33 minor, then the number of edges 6f is
bounded bysn — 12. The analogous well-known bound
for simple planar graphs i8n — 6; see, for example,
Diestel [4].

LEMMA 9. LetG be a simple-connected graph having
at least three nodes. If, for some edgeG does not

have aK3 3 minor containinge, thenG has at most

5n — 12 edges.

Proof. First, assume thafr is 3-connected, and so
Lemma 7 applies. If5 is planar, theni has at most
3n — 6 edges, which since > 3, is at mostn — 12. If
G\ f is planar for some edgg of G andn > 5 (which
is true if G is crown-planar with respect to(by Lemma
8) or isomorphic toK5), thenG has at mosBn — 5
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edges. Since > 5,3n—5 < 5n—12. Thus, by Lemma
7, it can be supposed th@thas an internal 3-separation
straddled bye. Let {G;, G2} be the corresponding 3-
sum decomposition, and ldét denote the number of
edges ofG in E(G1) N E(G3). By Lemma 1,G; and
G4 are both 3-connected and neither hak'g; minor
containinge. Now, using the facts that = |E(G1)| +
|E(G2)|—6+k, |V(G1)|+|V(G2)| =n+3andk < 3,
the result follows by induction.

Second, suppose thét is 2-connected, but not 3-
connected. Le{ E;, F»} be a 2-separation af with
e € E,. Let {G1, G2} be the corresponding 2-sum de-
composition, and lef be the connecting edge. Observe
G (say) might not be simple because of a possible
edge parallel tof; if such an edge exists, denote it by
g. By Lemma 1,G1, G2, andGi\g (if g exists) are 2-
connected. Also, it is straightforward to check neither
G1 norGy\g (if ¢ exists) has d(3 3 minor containing
e, and thatG, does not have &3 3 minor containing
f. Now, using the facts that/ (G1)|+ |V (G2)| = n+2
andm = |E(G1)| + |E(G2)| — 2, the result follows by
induction.O

LEMMA 10.LetG be a3-connected graph, and letbe

an edge of~. Then, the total number of edges occuring
in the members of the decomposition of7 is at most
m + 5n.

Proof. Let k; denote the total number of edges that
belong to exactly one member of thedecomposition,
let k> denote the total number of times that the edge
appears in some member of thalecomposition, and
let k3 denote the total number of remaining edges; that
is, those edges, other thanthat appear in more than
one member of the-decomposition. Thus, the total
number of edges occuring in the members of the
decomposition of7 is k1 + ko + ks.

Considerk;. Observe that the only edges that appear
in exactly one member of thedecomposition must be
edges ofGG. Thus,k; < m.

Considerks. Let e st. The edgee occurs ex-
actly once in every member of thedecomposition. The
number of members of the-decomposition is equal
to the number of blocks of\{s, ¢}, which in turn is
bounded byn. Thus,ky < n.

Considerks. Observe that the edges, other thathat
appear in more than one member of thdecomposition
are precisely those edges &f := (G, ¢e)™ that join
eithers or ¢t to a cut node of7\ {s,¢}. Let{v1,...,v,}
denote the cut nodes @f\{s,t}. Consider an edg¢
joining vy to s. Then, the number of timeg appears
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in some member of the-decomposition is equal to the
number of blocks of7\{s, ¢} that containv,; denote
this number byd;. Thus, k3 = 27 | d;. Now, it is
easy to see (by induction, for example) that_, d;

is bounded by twice the number of blocks@f{s,t},
which in turn is bounded bgn. Thereforeks < 4n.O

Combining Lemmas 9 and 10 evidently yields an
O(n) bound on the total number of edges occuring in the
members of the-decomposition of a grap&’ having
no K3 3 minor containinge.

3. A recognition algorithm

This section provides an algorithm for recognizing
whether a grapldéz contains ak’; 3 minor containing a
fixed edgee of G. The algorithm relies on having the
e-decomposition of¥ on hand. Thus, the first step is to
compute the=-decomposition.

Algorithm Decomp below computes thedecompos-
ition by essentially implementing its definition. For this
algorithm, letG be a 3-connected graph, anddet st
be an edge of7. It assumed thaf7 is represented by
adjacency lists. For a nodeof G, denote the adjacency
list of y by La(y).

algorithm decomp;
begin
delete nodes s and t from G and let H be the
resulting graph;
compute the block®,, ...
and cut nodes of H;
fori=1,...,kdo
begin
V(J;) =V (B;)U{s,t};
E(J;) := {vy € E(G)[{v,y} C V(J;)}U
{sv]v is a cut node of H;sv ¢ E(G)}U
{tv|v is a cut node of H;tv ¢ E(G)};
end;

7Bk

end;
PrRoPOSITION 1. Algorithm Decomp correctly com-
putes thee-decomposition o7 in O(m + n) time.

Proof. The correctness of the algorithm follows di-
rectly from the definition of the-decomposition.
The first step is to construct the graffh:= G\ {s, t}.
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The second step is to compute the blockgiofThis
can be done irO(m + n) time using the algorithm of
Tarjan [18].

The last step is to add the nodesandt¢ to each
block of H. First, for each nodg of H, construct a list
B, of the set of blocks of{ that containy; evidently,
nodes that appear in more than one block are the cut
nodes of H. This requires scanning the list of nodes
in each block once, and so requir@sz:f:l [V (B))])
time, which is easily seen (by induction, for example) to
beO(n). Now, consider the node Create an (initially
empty) adjacency list fog for each block ofH. Then,
scanL¢(s), and for each nodgon L¢(s) and for each
z € By,addy to L (s) ands to Ly (y). If yis a
cut node ofH, markit. Finally, for each unmarked cut
nodev and for eachx € B,, addv to L, (s) ands to
L ;. (v). In this way,s (and analogously) can be added
in O(n) time. O

The recognition algorithm is now described.

algorithm recog;
begin
if m > bn — 12 then G has a K3 3 minor
containing e¢;
compute are-decompositionD of G}
flag < true;
while D # () do
begin
choose H € D;
if H is not planar, crown-planar with
respect to e, or isomorphic to K5
then flag < false;
D~ D-{H};
end;
if flag = false then G has a K3 3 minor
containing e;else G does not havea K 3
minor containing e;
end;

PrRoPOSITION2. Algorithm Recog correctly determines
whether a3-connected graplé: has aK; 3 minor con-
taining e in O(n) time.

Proof. The correctness of the algorithm follows di-
rectly from Theorem 1 and Lemma 9.

Computing thee-decomposition of7 requiresO(n)

To do this, one first copies all the adjacency lists, except time by Proposition 1 and the firgt statement.

for those corresponding toand¢. Then, one scans the
adjacency lists corresponding to the neighbors of ¢,
removing each occurrence efandt. Clearly, this can
be done inO(m + n) time.

Determining whether a give? is planar requires
O(|V (H)|) time using the algorithm of Hopcroft and
Tarjan [10].

Determining whether a giveH is isomorphic toK 5
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can evidently be done in constant time. resulting from the first execution of thehile loop.
Determining whether a giveH is crown-planar with Now, consider any cuD in G. If f ¢ D, then
respect ta: can be done itO(|V (H)|) time as follows. v (D) =u(D), andif f € D, thenu'(D) = u(D) —¢.
First, determine ifH has a crown 3-separation with It follows that, after one execution of thehile loop, C
respect tee; this requires constant time since a crown is a minimum cut in(G, e, v’).
has just seven edges. Next, form the corresponding 3- Repeating the above argument implies that after the
sum decomposition, and determine if the member of the final execution of thevhile loop, C' is a minimum cut,
3-sum decomposition not containirgis planar; this  and its capacity is equal to the target valueThere-
requiresO(|V (H)|) time. fore, by the Max-Flow-Min-Cut Theorem [5], the final
By Lemmas 9 and 10} ;. , |V(H)| is O(n). O maximum-flow computation of the algorithm produces
the desired flow.
With respect to the running time of the algorithm,
clearly the dominant steps are the two maximum-flow

As part of the maximum-flow algorithm of the next Computationst]
section, the followingrarget-Flow Problenmeeds to be
solved: given an instanc@=, e, «) of the maximum-
flow problem and dargetflow valuev, find a feasible
flow in (G, e, u) of valuew, or determine no such flow
exists. In principle, the target-flow problem can be easily
reduced to the maximum-flow problem — just subdivide
the edge: into two edges, one of capacityand one of
capacity zero. The nature of the maximum-flow algo-
rithm presented in the next section, however, precludes
this approach. The following algorithm will suffice.

4. The Target-Flow Problem

5. A Maximum-Flow Algorithm

Theorem 3 below is the main result of the paper.
The basic idea of the proof is to use 2- and 3-sum
decompositions to reduce the original maximum-flow
problem on7 to a sequence of maximum-flow problems
on “easy” graphs.

The relationship between 2- and 3-sum decomposi-
tions and maximum flows is not a new; for example,

algorithm target; it can be seen in the matroid work of Seymour [16]
begin and Truemper [20]. In particular, the work of Truemper
compute a maximum flow of value z and a [20] shows how to compute a maximum flow using 2-
minimum cut C'in (G, e, u); and 3-sum decompositions. Applied here, the Truemper
if v > z then (G, e, u) does not have a target approach would lead to a polynomial-, but not linear-
flow of value v; time, algorithm. The proof of Theorem 3 below yields
while 4(C) > v do a linear-time algorithm.
begin
egchoose an edge f of C having positive THEOREM 3_. The maximum-flow p_roblerfG,e_, y),
capacity; whereG is S|mplg and h.as ndSs 3 minor containing
§ — min{us, u(C) — v}; e, can be solved i (n) time.
Up — uf —0; Proof. The proof is via a sequence of reductions.
end; Throughout the proof, it is assumed, by Lemma 9, that
compute a maximum flow in (G, e, u); m is O(n). Also, as usual, let = st.
end;

(I) Reduction to th@-Connected Case

PROPOSITION3. Algorithm Target correctly computesa 1€ first step is to show that it can be assumed that
target flow of value in (G, e, u). Moreover, the running G is 2-connected. It is well known that, for any edfje

time of the algorithm is equal to that of solving the Ot contained in the block of that contains:, there
maximum-flow problertG, e, ). exists a maximum flow in which the flow gfiis zero.

Thus, computing a maximum flow can be confined to
the block ofG that containg, which can be computed
in O(n) time; see, for example, Tarjan [18]. Thus, it is
assumed that? is 2-connected.

Proof. If v > z, then clearly(G, e, u) does not have
a target flow of value. Thus, assume < z. LetC be
the minimum cut computed by the algorithm. Consider
the first execution of thevhile loop. In particular, letf
and$ be as defined, and let be the capacity vector (II) Reduction to th&-Connected Case
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The next step is to show that the maximum-flow prob-
lem (G, e,u) can be reduced in linear time to solv-
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one can always find a 2-separatiph, , E2} of G such
thate € F; and in the resulting 2-sum decomposi-

ing a sequence of maximum-flow problems, where each tion {G1, G>}, G is either 3-connected, a cycle, or a
problem in the sequence is defined on a graph that isbond (i.e., the planar dual of a cycle). Applying this

3-connected and does not contairka ; minor using

choice of 2-sum decomposition recursively reduces the

its return edge, and such that total size of this sequencemaximum-flow problem or+ to solving a sequence of

of graphs in linear in the size a¥.

(IIa) Maximum Flows an@-Sum Decompositions

The first step in defining this sequence is to examine
the relationship between an instance of the maximum-
flow problem and a 2-sum decomposition in the under-
lying graph. So, suppose th@tis not 3-connected, and
let {E1, E2} be a 2-separation aff with e € E;. Let
{G1, G2} be the corresponding 2-sum decomposition,
and letf be the connecting edge. By Lemma,;, and
G- are 2-connected. Moreover, it is straightforward to
verify that G, (respectively(G2) does not have & 3
minor containinge (respectively, f). First, consider
solving the maximum-flow problertGs, f,u?), where
each edge of/,, except forf, inherits is capacity from
G. Letv? denote the maximum-flow value. Now, con-
sider (G, e,u'), whereu; = v* and all other edges
of G inherit their capacity fromG. Then, it is well
known and not hard to see that the maximum-flow value
for (G, e,u') is equal to that of G, e, u). Moreover,

a maximum flow for(G,e,u) can be found by first
computing a maximum flow( D, z!) in (G1,e,ul),
then computing a feasible flowD,,z*) of value z}
in (Ga, f,u?) (using Algorithm Target), and finally
by combining these two flows into a flogD, =) for
(G, e, u).

Combining (D1, z') and (D3, z?) into a maximum
flow (D, z) of (G,e,u) is done as follows. First, it is
assumed that the source node for the f(d, 2%) co-
incides with the tail off in Dy; if not, then the orienta-
tion of the arcs inD-, need to be reversed. Second, by
definition, each edge a¥ appears in exactly one ¢,
or Go. Thus, one can construct a feasible flolv, x)
for (G,e,u) by simply, for each edge af, taking its
orientation and flow from eithefD;, z!) or (Ds, z:?),
as appropriate. Now, it is straightforward to see that
(D, x) is a maximum flow for(G, e, u).

(1Ib) The Reduction Procedure

To turn the above relationship between maximum
flows and 2-sum decomposition into a computationally
efficient algorithm requires two straightforward ideas.
First, one chooses the 2-sum decomposition judiciously,

and second one applies this judicious choice recursively.

Tutte [22] and Hopcroft and Tarjan [9] showed that

maximum-flow and target-flow problems on a collection
of graphs, say{H., ..., H,}, every member of which

is either 3-connected, a cycle, or a bond. Moreover,
Hopcroft and Tarjan [9] showed that the sequence of
2-separations necessary to genefdi®, ..., H,} can

be found inO(n) time and that the size of the collec-
tion, i.e.,> ", |V(H;)|, is O(n). Observe that solving

a maximum-flow or target-flow problem on a cycle or
bond can trivially be done in linear time (in the size of
the cycle or bond). Thus, i@(n) time, the maximum-
flow problem onz can be reduced to solving a sequence
of maximum-flow and target-flow problems, each of
which is on a graph that is 3-connected and does not
have ak3; 3 minor using its return edge. Moreover, the
total size of the graphs in the sequenc®is:). So, in
particular, if each of these 3-connected maximum-flow
or target-flow problems can be solved in linear time,
so can the original problen(G, e, «). By Proposition

3, each of the target-flow problems is computationally
equivalent to a maximum-flow problem. Thus, it suf-
fices to consider the maximum-flow problem whén

is 3-connected.

(IIT) Reduction to the Planar Case

Assume that7 is 3-connected. By Lemma @ is ei-
ther planar, crown-planar with respectdoisomorphic
to K5, or has an internal 3-separation straddledeby
These cases are considered one at a time. As a first step,
it is shown that one can recognize which case is appli-
cable inO(n) time. Clearly, recognizing if7 is isomor-
phic to K5 can be done in constant time. Also, it is well
known that planarity can be recognized@in) time;
see, for example, Hopcroft and Tarjan [10]. Determin-
ing whetherG has an internal 3-separation straddled by
e can be done irD(n) time using Algorithm Decomp,
sinceG has an internal 3-separation straddledebiy
and only if itse-decomposition has at least two mem-
bers. Finally, by Lemma 7, the only other possibility for
G is that it is crown-planar with respect é¢oMoreover,
in this last case, it can further be assumed thHatoes
not have an internal 3-separation straddlecby

(II1a) The Base Cases
This subcase considers that cases wteis either
planar, crown-planar with respect tg or isomorphic
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to K. For each of these three cases, it is shown how that everyst-cut of G contains exactly one of andg.

to solve the maximum-flow problef@, e, «) in linear

From the Max-Flow-Min-Cut Theorem [5], it follows

time. For the planar case, this is done using the Hassinthat the maximum-flow value fafG, e, v’) is equal to

[7] reduction to the shortest-path problem. For the latter

that of (G, e, u) minusuy. Thus, a maximum flow for

two cases, this is done by reducing them to the planar (G, e, v) can be found by first solving the maximum-

case.

flow problem(G, e, v'), and then augmenting the flow

The Hassin reduction can be applied to either directed on f and g by u; units. Sinceu, = 0, in solving

or undirected graphs. For what follows, it is better to

use directed graphs. That is, the undirected maximum-

flow problem is first converted to an equivalent directed
maximum-flow problem, to which the Hassin reduction

is applied. The reason for doing this is to ensure that the

resulting solutior( D, x) to the maximum-flow problem
(G, e, u) satisfies the following propert#; . Direct ap-

plication of the Hassin reduction t@~, e, u) does not
ensure this.

Property P;: No arc of D is directed intas or out of
t.

AssumingG is planar, consider the following directed
graphG*. Each ofG edge incident ta is directed away
from s, each edge incident tas directed towards and

(G, e,u'), the edgef can be a priori deleted. By Lemma
8 (or by inspection, in the case &fs), G\ f is planar.
Therefore, both the crown-planar case and Ahecase
reduce to the planar case @(n) time.

(I1Ib) Maximum Flows and-Sum Decompositions

The next step is to analyze the relationship between
an instance of the maximum-flow problem and a 3-
sum decomposition, defined relative to an internal 3-
separation straddled ky in the underlying graph. The
step is conceptually similar tt/ 7a), although the de-
tails are more complicated. In particular, it is shown
that such an instance of the maximum-flow problem can
be reduced to solving maximum-flow problems on the
members of the associated 3-sum decomposition.

each remaining edge is replaced by a pair of oppositely  Let{E;, F,} be an internal 3-separation straddled by

directed arcs. The arc capacities 16f are inherited
from G; that is, for each arc of7*, define its capacity
to be equal to the corresponding edgetyfin partic-
ular, the two arcs in an oppositely directed pair have
the same capacity. Let* denote the resulting capac-
ity vector. Then, it is straightforward to see that solv-
ing the directed maximum-flow probleft*, s, ¢, u*)
solves(G, e, u).

ByHassin [7],the maximum-flow problef@™, st,u*)

e. Let{G1, G2} be the corresponding 3-sum decompo-
sition, and lefl” be the connecting triangle. Lét, ¢, 2}
denote the node set @f. Two maximum-flow problems
are defined orG,. For both problems, initially define
the capacity of all virtual edges to be zero; all other
edges inherit their capacity fro. Let f = sz and

g = tz denote the two edges a@f — {e}. For the first
maximum-flow problem orG,, denoted(Gy, e, u?!),
re-define the capacity gfto beco, and letv?' denote re-

can reduced to a shortest-path problem on the planarsulting maximum-flow value. For the second maximum-

dual of G*. Finding the planar dual can be done’in)
time; see, for example, Hopcroft and Tarjan [10] and
Mehlhorn and Mutzel [12]. Solving the shortest-path
problem on the planar dual requir@$n) time using the
algorithm of Henzinger, Klein, Rao, and Subramanian
[8]. Converting the shortest-path solution into one for
maximum-flow problem is straightforward, and can be
done inO(n) time. Thus, solving the maximum-flow
problem(G, e, u) whenG is planar require®(n) time.
Now, consider the case whefkis isomorphic taK 5
or crown-planar with respect to In the latter case, it is
assumed that’ does not have an internal 3-separation
straddled bye. Observe that is in a triangle ofG.
Let f and g be the other two edges of the triangle,
and without loss of generality, assume that < wu,.
Consider reducing the capacity of bofhandg by u,
and letu’ denote the resulting capacity vector. Observe

flow problem onGi2, denoted Gs, e, u??), re-define the
capacity off to beoo, and letv?? denote the resulting
maximum-flow value. Now, considéé, e, u'), where
u' is defined as follows. All edges df;, except for
those inT, inherit their capacity fromG; edgese, f,
andg have respective capacities of zevd!, andv?2.

Let (D1, x') be a maximum flow fofGy, e, u'). The
goal is to show that this flow can be extended to a
maximum flow(D, z) for (G, e,u). It is assumed that
(D1, x1) satisfies Property;. In addition, consider the
following property.

Property P,: The flow on the arc fron f, g} having
the smaller capacity with respect td is equal to its
capacity, and the flow on the arc having the greater
capacity is at least that of the edge having the smaller
capacity.
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It is claimed that, without loss of generality, it can be
assumed th&tDy, z ) satisfies Property.. To see this,
let 5 denote the smaller of the two capacitiesfadndg,
and consider modifying' by reducing the capacities of
fandg by é. Letw’ denote the resulting capacity vector.
Observe that everyt-cut of G; contains exactly one
of f andg. From the Max-Flow-Min-Cut Theorem [5],
it follows that the maximum-flow value fafG1, e, u’)
is equal to that ofG1, e, u!) minusd. Now, consider
a maximum flow(D’, ') for (G, e, u’). Augmenting
the flow on f and g be § units produces a maximum
flow for (D, e, u') satisfying Property?, as claimed.

In extending the maximum flow(D;,z!) for
(G1,e,ut) to a maximum flow(D, x) for (G,e,u),
two cases are considered. For the first case, which as-,
sumes:c} > z,, the full details are below. The second
case, which assumes > :vj, is symmetric with the
first and thus is left to the reader.

Assuming a:} > x , definey = a:f — xl. Con-
sider the instance of the maximum-flow problem ob-
tained from(Ga, e, u?!) by re-defining the capacity on
the edgey to be if ¢ is a virtual edge, and to be, + v
otherwise; denote this problem K¢, e, v*), and let
(D2, 2?) be a maximum flow for(Ga, e, u*). It is as-
sumed that D, #2) satisfies Property;.

Given (Dy,z') and (D9, 2?), a flow (D,z) for
(G, e,u) is constructed as follows. Each edge(dthat
is not in T takes its orientation and flow from either
(Dy,z') or (D3, 2?), as appropriate. The edgesTh
are handled as follows. Edgeevidently is assigned
a flow of zero, and is oriented fromto ¢. If f is an
edge ofG (i.e., it is not a virtual edge of"), then it
is oriented froms to z, and assigned a flow equal to
thexfc. Finally, if g is an edge of7, then it is oriented
from z to ¢ and assigned a flow equal i@ — ~. Note,
PropertyP; is satisfied.

To show tha( D, x) is a maximum flow fo(G, e, u),
it is first shown that it is feasible. It is easily seen that
the flow satisfies the capacity constraints on the edges.
Also, for any node other than ¢, or z, it easily seen that
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In particular, it needs to be shown that the flow @n
is nonnegative. This follows immediately from the next
claim.

Claim: In (Dy, 2?), 2 > .

Proof of Claim The claim is proved by showing that
either~y equals zero, or that the edgeis in a mini-
mum cut of(Ds, z2) with respect to the capacity vec-
tor w*, which implies (by a standard network-flow re-
sult — see Ahuja, Magnanti, and Orlin [1]) that the
flow on g is equal to its capacity, and therefore at least
~. First, suppose that?' < v?2. Then, PropertyP,
implies thaty = 0. On the other hand, suppose that

v*? < v?'. By definition,y = x} — x}, which implies
thaty < v?! —z]. By PropertyP;, the right-hand side
is equal tov?! — v22, That is,v?? 4+ v < v?!. Observe

v¥2 4y (respectrvelyvzl) is the capacity of a minimum-
capacity st-cut of (G, e, u*) that containg (respec-
tively, f). In other words, there exists a minimum cut
of (G2, e, u*) that containg, which implies thay is in
a minimum cut of(D», 2?) as requiredEnd of Claim

It has just been shown thébD, z) is a feasible flow
for (G, e,u). The next step is to show that it is a max-
imum flow. To this end, it is first shown that the value
of the flow (D, z) is equal to the value of the flow
(Dy,z'). From the definition of(D, ), this can be
done by showing that the value of the flguD,, 22)
is equal to:vj This, in turn, is done by showing that
the capacity of a minimum cut Gz, e, uv*) equals
x} If a minimum cut of (Gz, e, u*) containsf, then
the minimum-cut capacity equatg’. If a minimum
cut of (Go, e, u*) containsg, then the minimum-cut ca-
pacity equals?? + ~. Thus, the minimum-cut capac-
ity in (G2, e,u*) equalsmin{v?!,v?2 + v}. Now, if
v2! < 0?2, then PropertyP, implies that implies the
minimum-cut capacity iGs, e, u*) equalsz’, as re-
quired. If, on the other hand;?2 < v?!, then Prop-
erty P, implies v*? = x;, which, in turn, implies that
v 4y = xf Therefore the minimum-cut capacity in
(G2,e,u*) equalsmin{v?', z}}, which equalsr}, as

the net flow at the node is equal to zero. Consider node required.

z. The net flow at is equal to zero in bothD;, z!) and
(D2, 2?). In constructing D, ), the flows onf andg
from (Dy, 2!') are ignored, which, by the definition of
~ and PropertyP;, contributes—~ to the net flow at

n (D, ). Also, in constructing D, z), the flow ong

in (Dq, %) is decreased by, which, by PropertyP;,
contributest~ to the net flow at in (D, ). Thus, the
net flow atz in (D, ) is zero. Finally, it needs to be
shown that the nonnegativity constraints are satisfied.

The second, and final step, in showing that =) is a
maximum flow for(G, e, u) is to show that the capacity
of a minimum cut in(G, e, v) is no more than that in
(G1,e,u'). The result then follows from the Max-Flow-
Min-Cut Theorem [5]. LetX; be a minimum cut of
(G1,e,ut). Suppose thak; containsf; an analogous
argument can be made ¥; containsg. By definition,
there exists ast-cut, sayYy, of (G, e, u') that contains
f and has capacity?’. It is now straightforward to see
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that the set consisting ak; U Y7 minus any virtual
edges is ant-cut of G, the capacity of which is equal
to that of X;. (1]

(II1c¢) The Reduction Procedure

The final step in the proof of the theorem is now
at hand. In particular, it needs to be shown that the
above relationship between maximum flows and 3-sum [3)
decompositions can be turned into a computationally
efficient procedure for reducing the 3-connected case to [4]
the planar case.

[5]

Similar to (I1b), this is done by first making a judi-
cious choice for the 3-sum decomposition, and then ap-
plying this choice recursively. In particular, By11b),
Theorem 1, and recursive application of Lemma 2, the
maximum-flow problem orZ reduces to solving a se-
guence of maximum-flow problems on the members of
the e-decomposition of, each of which is either pla-
nar, crown-planar with respect tg or isomorphic to
K. By Proposition 1, finding the-decomposition can
be done irD(n) time. By (I11a), all of these individual
maximum-flow problems can be solved in linear time. [9]
By (IIIa) and Lemma 10, the total time spent solving
the maximum-flow problems i®(n). Thus, it follows
that the maximum-flow problerfG, e, u) can be solved
in O(n) time. O

(2]

(6]

[7]
(8]
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