
All rights reserved © Preeminent Academic Facets Inc., 2008 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des
services d’Érudit (y compris la reproduction) est assujettie à sa politique
d’utilisation que vous pouvez consulter en ligne.
https://apropos.erudit.org/fr/usagers/politique-dutilisation/

Cet article est diffusé et préservé par Érudit.
Érudit est un consortium interuniversitaire sans but lucratif composé de
l’Université de Montréal, l’Université Laval et l’Université du Québec à
Montréal. Il a pour mission la promotion et la valorisation de la recherche.
https://www.erudit.org/fr/

Document généré le 4 août 2025 12:23

Algorithmic Operations Research

Global convergence of a primal-dual interior-point method for
nonlinear programming
Igor Griva, David F. Shanno, Robert J. Vanderbei et Hande Y. Benson

Volume 3, numéro 1, winter 2008

URI : https://id.erudit.org/iderudit/aor3_1art02

Aller au sommaire du numéro

Éditeur(s)
Preeminent Academic Facets Inc.

ISSN
1718-3235 (numérique)

Découvrir la revue

Citer cet article
Griva, I., Shanno, D. F., Vanderbei, R. J. & Benson, H. Y. (2008). Global
convergence of a primal-dual interior-point method for nonlinear
programming. Algorithmic Operations Research, 3(1), 12–29.

Résumé de l'article
Many recent convergence results obtained for primal-dual interior-point
methods for nonlinear programming, use assumptions of the boundedness of
generated iterates. In this paper we replace such assumptions by new
assumptions on the NLP problem, develop a modification of a primal-dual
interior-point method implemented in software package LOQO and analyze
convergence of the new method from any initial guess.

https://apropos.erudit.org/fr/usagers/politique-dutilisation/
https://www.erudit.org/fr/
https://www.erudit.org/fr/
https://www.erudit.org/fr/revues/aor/
https://id.erudit.org/iderudit/aor3_1art02
https://www.erudit.org/fr/revues/aor/2008-v3-n1-aor_3_1/
https://www.erudit.org/fr/revues/aor/


Algorithmic Operations Research Vol.3 (2008) 12–29

Global convergence of a primal-dual interior-point method for nonlinear
programming

Igor Griva

George Mason University, Departments of Math Sciences and CDS, Fairfax, VA 22030

David F. Shanno

Rutgers University, RUTCOR, New Brunswick, NJ 08903

Robert J. Vanderbei

Princeton University, Department of ORFE, Princeton NJ 08544

Hande Y. Benson

Drexel University, Department of Decision Sciences, Philadelphia, PA 19104

Abstract

Many recent convergence results obtained for primal-dual interior-point methods for nonlinear programming, use
assumptions of the boundedness of generated iterates. In this paper we replace such assumptions by new assumptions
on the NLP problem, develop a modification of a primal-dual interior-point method implemented in software package
LOQO and analyze convergence of the new method from any initial guess.
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1. Introduction

The primal-dual interior-point algorithm imple-
mented in LOQO proved to be efficient for solving
nonlinear optimization problems ([1–3,15,18]). The
algorithm applies Newton’s method to the perturbed
Karush-Kuhn-Tucker system of equations on each step
to find the next primal-dual approximation of the solu-
tion. The original algorithm [18] implemented inLOQO

at each step minimized a penalty barrier merit function
to attempt to ensure that the algorithm converged to a
local minimum. A more recent version ofLOQO [2]
utilizes a memoryless filter to attempt to achieve the
same goal. Neither method has been proven convergent
under general conditions.

In this paper, we analyze convergence to a first-order
KKT point from an arbitrary initial guess for a general

1 Research of the first and the third authors was supported
by NSF grant DMS-9870317 and ONR grant N00014-98-1-
0036. Research of the second author was supported by NSF
grant DMS-0107450

algorithm combining features of the previously men-
tioned versions ofLOQO. This is done under assump-
tions made only on the problem under consideration,
rather than assumptions about the performance of the
algorithm. The latter appear in many convergence anal-
yses (see e.g. [5,6,9,12,16,19]). The full implementa-
tion of the studied algorithm in theLOQO framework
remains for future work. An implemented preliminary
version of the algorithm converges to a minimum of
some problems, on whichLOQO previously failed.

2. Problem formulation

The paper considers a method for solving the follow-
ing optimization problem

min f(x),

s.t. x ∈ Ω,
(1)

where the feasible set is defined asΩ = {x ∈ IRn :
h(x) ≥ 0}, andh(x) = (h1(x), . . . , hm(x)) is a vec-
tor function. We assume thatf : IRn → IR1 and all

c© 2008 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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hi : IRn → IR1, i = 1, . . . , m are twice continuously
differentiable functions. To simplify the presentation we
do not consider the equality constraints in this paper.
This will be done in the subsequent paper.

After adding nonnegative slack variablesw =
(w1, . . . , wm), we obtain an equivalent formulation of
the problem (1):

min f(x),

s.t. h(x) − w = 0,
w ≥ 0.

(2)

The interior-point method places the slacks in a bar-
rier term leading to the following problem

min f(x) − µ
m
∑

i=1

log wi,

s.t. h(x) − w = 0,

(3)

whereµ > 0 is a barrier parameter. The solution to this
problem satisfies the following primal-dual system

∇f(x) − A(x)T y = 0,
−µe + WY e = 0,

h(x) − w = 0,
(4)

wherey = (y1, . . . , ym) is a vector of the Lagrange
multipliers or dual variables for problem (3),A(x) is
the Jacobian of vector functionh(x), Y and W are
diagonal matrices with elementsyi andwi respectively
ande = (1, . . . , 1)T ∈ IRm.

3. Assumptions

We endowIRn with thel∞ norm‖x‖ = max1≤i≤n |xi|,
and we endow the spaceIRm,n with the associated

operator norm‖Q‖ = max
1≤i≤m

(

n
∑

j=1

|qij |
)

.

We invoke the following assumptions throughout the
paper.

A1. The objective function is bounded from below:
f(x) ≥ f̄ for all x ∈ IRn.

A2. The constraintshi(x) satisfy the following con-
ditions

lim
‖x‖→∞

min
1≤i≤m

hi(x) = −∞. (5)

and
√

log

(
∣

∣

∣

∣

max
1≤i≤m

hi(x)

∣

∣

∣

∣

+ 1

)

≤ − min
1≤i≤m

hi(x) + C

(6)

for all x ∈ IRn, where0 < C < ∞ depends only on the
problem’s data.

A3. The minima (local and global) of problem (1)
satisfy the standard second order optimality conditions.

A4. For eachµ > 0 the minima (local and global) of
problem (3), satisfy the standard second order optimal-
ity conditions.

A5. Hessians∇2f(x) and ∇2hi(x), i = 1, . . . , m
satisfy Lipschitz conditions onIRn.

Several comments about the assumptions: assump-
tion (A1) does not restrict the generality. In fact, one
can always transform functionf(x) using monotone in-
creasing transformationf(x) := log(1 + ef(x)), which
is bounded from below.

Assumption (A2) not only implies that the feasible
setΩ is bounded, but also implies some growth condi-
tions for the functionshi(x). In fact, it tells us that there
is no functionhi0(x) that grows significantly faster than
some other functionshi(x), i 6= i0, decrease on any un-
bounded sequence. The cases when functionshi(x) do
not satisfy assumption (A2) may involve exponentially
growing functionshi(x). Let us consider the following
example. The feasible setΩ1 = [−1, 1] ⊂ IR1 can be
defined using two inequalities:h1(x) = x + 1 ≥ 0 and
h2(x) = 1 − x ≥ 0. In this case functionsh1(x) and
h2(x) satisfy assumption (A2). However, the same set
Ω1 can be defined differently:h1(x) = ex − e−1 ≥ 0
andh2(x) = e−x − e−1 ≥ 0. In this case, for exam-
ple, if x increases unboundedly functionh1(x) grows
exponentially, but functionh2(x) stays always bounded
from below and does not decrease fast enough. There-
fore functionsh1(x) andh2(x) do not satisfy assump-
tion (A2).

Most practical problems, including problems with
linear and quadratic constraints, convex problems (when
functionshi(x) are concave), nonconvex quadratic and
many others satisfy assumption (A2). We believe that
this assumption does not greatly restrict the generality.
The assumption is critical for the convergence analysis
because the interior-point algorithm decreases a value
of a penalty-barrier merit function and we need assump-
tion (A2) to ensure that the merit function has bounded
level sets.

Let us assume that the active constraint set atx∗ is
I∗ = {i : hi(x

∗) = 0} = {1, . . . , r}. We consider the
vectors functionshT

(r)(x) = (h1(x), . . . , hr(x)), and its
JacobianA(r)(x). The sufficient regularity conditions

rank A(r)(x
∗) = r, y∗

i > 0, i ∈ I∗

together with the sufficient condition for the minimum
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x∗ to be isolated

sT H(x∗, y∗)s ≥ ρsT s, ρ > 0, ∀s 6= 0 : A(r)(x
∗)s = 0,

whereH(x, y) is a Hessian of the Lagrangian for prob-
lem (1), comprise the standard second order optimality
conditions, or Assumption (A3).

Assumption (A4) is equivalent to the following con-
dition to hold∀µ > 0 :

sT (H
(

xµ, µC−1(xµ)e
)

+ µAT (xµ)C−2(xµ)A(xµ))s

≥ ρµsT s,

ρµ > 0, ∀s 6= 0,

where(xµ, wµ) is the solution of the barrier subproblem
(3),H(x, y) is a Hessian of the Lagrangian for problem
(1) andC(x) is a diagonal matrix with the elements
ci(x) = hi(x), i = 1, . . . , m.
Remark 1 It follows from Assumption A3 that the
Slater’s condition holds: there exists̄x ∈ IRn such that
hi(x̄) > 0, i = 1, . . . , m.

All the assumptions (A1)-(A5) are imposed on the
problem, not on the sequence generated by the algo-
rithm. Our intention is to identify a class of noncon-
vex problems for which the interior-point algorithm is
convergent. The following lemma follows from the as-
sumptions.
Lemma 1 Under assumptions (A1)-(A3) a global solu-
tion (xµ, wµ) to the problem (3) exists for anyµ > 0.

Proof. Problem (3) is equivalent to the following
problem:

min B(x, µ)
x ∈ IRn,

whereB(x, µ) = f(x) − µ
∑m

i=1 log hi(x). It follows
from assumption (A2) that the feasible setΩ is bounded.
Let x̄ be the point that exists by Remark 1 and a con-
stantMµ = 2B(x̄, µ). It is easy to show that the set
Ωµ = {x ∈ Ω : B(x, µ) ≤ Mµ} is a closed bounded
set. Therefore due to continuity ofB(x, µ) there exists
a global minimizerxµ such thatB(x, µ) ≥ B(xµ, µ)
on the setΩµ and consequently on the feasible setΩ.
Lemma 1 is proven.

4. Interior-point algorithm

In the following we use the following notations.

p = (x, w), z = (p, y) = (x, w, y),

σ = ∇f(x) − A(x)T y,

γ = µW−1e − y,

ρ = w − h(x).

b(z) = (σT , (WY e)T ,−ρT )T ,

bµ(z) = (σT , (WY e)T − µeT ,−ρT )T ,

To control the convergence we need the following
merit functions:

ν(z) = ‖b(z)‖ = max {‖σ‖, ‖ρ‖, ‖WY e‖}

νµ(z) = ‖bµ(z)‖ = max {‖σ‖, ‖ρ‖, ‖Wγ‖} ,

Lβ,µ(z) = f(x) − µ

m
∑

i=1

log wi + yT ρ +
β

2
ρT ρ.

The functionν(z) measures the distance between the
current approximation and a KKT point of the problem
(1). The functionνµ(z) measures the distance between
the current approximation and a KKT point of the bar-
rier problem (3). The penalty-barrier functionLβ,µ(z)
is the augmented Lagrangian for the barrier problem (3).
We show later that the primal direction decreases the
value ofLβ,µ(z), which makes the algorithm descend
to a minimum rather than another first order optimality
point.

Newton’s method applied to the system (4) leads to
the following linear system for the Newton directions




H(x, y) 0 −A(x)T

0 Y W
A(x) −I 0









∆x
∆w
∆y



 (7)

=





−∇f(x) + A(x)T y
µe − WY e
−h(x) + w



 ,

whereH(x, y) is the Hessian of the Lagrangian of prob-
lem (1). Using the notations introduced at the beginning
of this section, the system (7) can be rewritten as

D(z)∆z = −bµ(z),

where

D(z) =





H(x, y) 0 −A(x)T

0 Y W
A(x) −I 0



 .

After eliminating∆w from this system we obtain the
following reduced system
[

−H(x, y) A(x)T

A(x) WY −1

] [

∆x
∆y

]

=

[

σ
ρ + WY −1γ

]

.

(8)
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After finding ∆y, we can obtain∆w by the following
formula

∆w = WY −1(γ − ∆y).

The explicit formulas for the solution to the primal-
dual system (8) are given in [18] (Theorem 1):

∆x = N−1
(

−σ + AT (W−1Y ρ + γ)
)

,
∆w = −ρ + A∆x,
∆y = γ + W−1Y (ρ − A∆x),

(9)

whereN = N(x, w, y) = H(x, y)+A(x)T W−1Y A(x)
andA = A(x).

If the matrix N(x, w, y) is not positive definite the
algorithm replaces it with the regularized matrix

N̂(x, w, y) = N(x, w, y) + λpI, λ ≥ 0, (10)

where I is the identity matrix inIRn,n to guarantee
that the smallest eigenvalue of̂N is greater than some
λ0 > 0. The parameterλp is chosen big enough to
guarantee that̂N(x, w, y) is positive definite.

Together with the primal regularization we consider
also the dual regularization of system (7)




H(x, y) 0 −A(x)T

0 Y W
A(x) −I λdI









∆x
∆w
∆y



 = (11)





−∇f(x) + A(x)T y
µe − WY e
−h(x) + w



 ,

whereλd > 0 is a regularizing parameter. Clearly, for
λd = 0 the system is the original one. Using the no-
tations introduced at the beginning of this section, we
can rewrite (11) as follows

Dλd
(z)∆z = −bµ(z),

where

Dλd
(z) =





H(x, y) 0 −A(x)T

0 Y W
A(x) −I λdI



 .

The explicit formulas for finding primal and dual di-
rections are similar to (9)

∆x = N−1
λd

(−σ+

AT
[

WY −1 + λdI
]−1

(ρ + WY −1γ)),

∆y =
[

WY −1 + λdI
]−1 (

ρ + WY −1γ − A∆x
)

,
∆w = −ρ + A∆x + λd∆y,

(12)

where,
Nλd

(x, y, w)=H(x, y)+A(x)T
[

WY −1 + λdI
]−1

A(x).
Again, if the matrixNλd

(x, w, y) is not positive definite
the algorithm replaces it with the regularized matrix

N̂λd
(x, w, y) = Nλd

(x, w, y) + λpI, λ ≥ 0, (13)

whereI is the identity matrix inIRn,n to guarantee that
the smallest eigenvalue of̂Nλd

is greater than some
λ0 > 0.

As it will be shown later the primal and the dual reg-
ularizations ensure that the primal directions is descent
for the penalty-barrier merit function.

One pure step of the interior-point method (IPM) al-
gorithm(x, w, y) → (x̂, ŵ, ŷ) is as follows

x̂ = x + αp∆x, (14)

ŵ = w + αp∆w, (15)

ŷ = y + αd∆y, (16)

whereαp andαd are primal and dual steplengths. The
primal and dual steplengths are chosen to keep slack
and dual variables strictly positive:

αp = min

{

1;−κ
wi

∆wi
: ∆wi < 0

}

, (17)

αd = min

{

1;−κ
yi

∆yi
: ∆yi < 0

}

, (18)

where0 < κ < 1.
As we show later the pure interior point method con-

verges to the primal-dual solution only locally in the
neighborhood of the solution. However, far away from
the solution the algorithm does not update dual vari-
ables at each step and often uses only primal direction
(∆x, ∆w) to find the next approximation.

Let us describe the algorithm in more detail. The
algorithm starts each iteration by computing the merit
functionν(z), the barrier parameterµ by the following
formula

µ := min{δν(z), ν(z)2}, (19)

where0 < δ < 1. Then the algorithm calculates the
merit functionνµ(z) and the dual regularization param-
eter as follows:

λd = min{λdmax, νµ(z)}, (20)

whereλdmax is a fixed largest dual regularization pa-
rameter chosen by considerations following from con-
vergence analysis (Lemma 2 and 3). Such a choice of
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the dual regularization is needed to guarantee that it
vanishes in the neighborhood of the solution of problem
(3), where due to Assumption A4 the dual regularization
is not required. Then the algorithm solves the primal-
dual system (11) for the primal-dual Newton directions
(∆x, ∆w, ∆y). To solve the system (11) the algorithm
uses a sparse Cholesky factorization developed in [17].
It is possible that while performing the factorization
the algorithm learns that the matrixNλd

(x, w, y) is not
positive definite. In this case the algorithm regularizes
the matrixNλd

(x, w, y) by formula (13) and begins the
factorization again. It keeps increasing the parameterλp

in formula (13) until a positive definite factorization is
completed.

The algorithm then selects primal and dual steplengths
αp andαd by formulas (17)-(18) for the parameterκ
chosen by formula

κ = max{0.95, 1 − ν(z)} (21)

and finds the next primal-dual candidatex̂ := x +
αp∆x, ŵ := w + αp∆w andŷ := y + αd∆y.

The fundamental difference between this algorithm
and basic interior-point algorithms is we require the
candidatêz = (x̂, ŵ, ŷ) to satisfy two criteria. First,̂z
must reduce the merit functionν(z) by a chosena priori
desired factor0 < q < 1. If it succeeds in obtaining this
reduction, after that the factorization ofNλd

(x̂, ŵ, ŷ),
which will be used to calculate the search direction
at ẑ, is done. IfNλd

(x̂, ŵ, ŷ) is positive definite,̂z is
accepted and the algorithm continues. IfNλd

(x̂, ŵ, ŷ)
is not positive definite,̂z fails as it does if a sufficient
reduction of the merit functionν(z) is not obtained. In
both of these cases, the Lagrange multipliersy are not
changed. The primal direction∆p = (∆x, ∆w), which
will be shown to be a descent direction forLβ,µ(p, y),
is used to update the primal iterates, where the primal
steplengthαp is backtracked to satisfy the Armijo rule

Lβ,µ(p + αp∆p, y)−Lβ,µ(p, y) ≤ (22)

ηαp 〈∇pLβ,µ(p, y), ∆p〉 ,

where0 < η < 1.
The convergence analysis of the algorithm shows that

under the assumptions (A1)-(A5) in the neighborhood
of the solution the candidatêz never fails the tests
(Lemma 8) and the algorithm always uses the primal-
dual direction∆z to find the next approximation. On
the other hand, to ensure convergence, the algorithm
changes the dual variablesy only when the next dual ap-
proximationŷ is closer to the dual solution either to the

original problem (1) or to the barrier problem (3). The
motivation for such careful treatment of the dual vari-
ables lies in the fact that in nonlinear programming in
nonconvex regions, poor dual approximations may re-
sult from the solution of the primal-dual equation. These
approximations can hamper convergence and even pre-
vent it, which happens often in practice when they be-
come unbounded. If the algorithm reaches an approx-
imation p̂ = (x̂, ŵ) of the first order optimality point
of the unconstrained minimization of the merit func-
tion Lβ,µ(p, y), it then changes the dual variables by
the formula

ŷ := y + βρ(x̂, ŵ), (23)

whereρ(x, w) = w − h(x), to obtain a better dual ap-
proximation. If ẑ reduces the merit functionνµ(z), the
algorithm acceptŝz as new primal-dual approximation.
Otherwise, the algorithm keeps the Lagrange multipli-
ers unchanged and increases the penalty parameterβ.

It is appropriate to say several words about the
choice of the dual regularization parameterλd and the
penalty parameterβ. These parameters are chosen to
satisfy two conditions: a) the primal Newton direction
(∆x, ∆w) must be a descent direction for the merit
function Lβ,µ(z) and b) the regularization parameter
λd > 0 must become zero when the trajectory of the
algorithm approaches the primal-dual solution of the
barrier subproblem (3).

To prove global convergence of the algorithm we use
the following choice of the parameters at each iteration:
λd = min{λdmax, νµ(z)}, β = 1/λd, λdmax = 1

β0
,

whereβ0 is the smallest value of the penalty parameter
estimated in Lemma 2. It will be shown later that such
choice of the parameters satisfies the conditions (a) and
(b) and allows us to prove global convergence of the
algorithm.

The formal description of the algorithm is in Figure
1.

5. Convergence analysis

We need the following auxiliary lemmas for the con-
vergence analysis.
Lemma 2 For any y ∈ IRm, β ≥ β0 = 2mµ and
µ > 0, there exists a global minimum

Sβ,µ(y) = min
x∈IRn, w∈IRm

++

Lβ,µ(x, w, y) > −∞. (24)

Proof. Let us fix any w̄ ∈ IRm
++ and setM =

2Lβ,µ(x̄, w̄, y), where x̄ exists by Slater’s condition
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Initialization:
An initial primal-dual approximationz0 = (p0, y0) = (x0, w0, y0) is given
An accuracyε > 0 and largest tolerance for the penalty parameterBIG are given
Parameters0 < η < 0.5, 0 < δ < q < 1, τ > 0, θ > 0 are given
Set z := z0, r := ν(z0), µ := min{δr, r2}, rµ = νµ(z0), β := β0 ≥ 2mµ, λd := min{ν(z0), 1

β0
},

Iterations counters := 0, Dual iterates update counterk := 0, primal := 0.
Computations:
While r > ε and β < BIG do
BOL (Beginning of the loop)

Factorize the system (11), Start withλp = 0, Increaseλp until the factorization of (11) is successful
Find directions:∆z := PrimalDualDirection(z, λd)
Set s := s + 1
Set κ := max{0.95, 1 − r}
Choose primal and dual steplengths:αp and αd by the formulas (17)-(18)
Set p̂ := p + αp∆p, ŷ := y + αd∆y

l1: If primal = 0, ν(ẑ) ≤ qr and the Cholesky factorization of (11) is successful withλp = 0 and then
Set z := ẑ, r := ν(ẑ), µ := min{δr, r2}, rµ := νµ(ẑ), λd := min{νµ(ẑ), 1

β
}, k := k + 1

Else
l2: Set primal := 1, β = 1/λd

Backtrackαp until Lβ,µ(p + αp∆p, y) − Lβ,µ(p, y) ≤ ηαp 〈∇pLβ,µ(p, y), ∆p〉
Set p̂ := p + αp∆p

l3: If ‖∇pLβ,µ(p̂, y)‖ ≤ min {τ‖ρ(p̂)‖, β/k} , and y + βρ(p̂) ≥ δµŴ−1e, then
l4: ŷ := y + βρ(p̂)
l5: If νµ(ẑ) ≤ qrµ, then

Set z := ẑ, rµ := νµ(ẑ), k := k + 1, primal := 0
If ν(ẑ) ≤ qr, then

Set r := ν(ẑ), µ := min{δr, r2}, λd := min{νµ(ẑ), 1
β
}, rµ = νµ(ẑ)

Else
l6: Set p := p̂, β := 2β, λd := 1

β

Else
Set p := p̂

EOL (End of the loop)
OUTPUT z

Fig. 1. IPM algorithm.

(Remark 1). The functionLβ,µ(x, w, y) is continuous
on (x, w) ∈ IRn × IRm

++ therefore to prove the lemma
it is enough to show the following set

Rβ =
{

(x, w) ∈ IRn × IRn
++ : Lβ,µ(x, w, y) ≤ M

}

is a bounded and closed set.
First we show that the setRβ is bounded. Let us as-

sume thatRβ is unbounded. Then there exists an un-
bounded sequence{pl} = {(xl, wl)} defined onIRn ×
IRm

++ such that
(a) x0 = x̄, w0 = w̄,
(b) liml→∞ ‖pl − p0‖ = ∞,
(c) liml→∞ Lβ,µ(xl, wl, y) ≤ M.

We are going to show that for any sequence satisfying
(a) and (b) we have

lim
l→∞

Lβ,µ(xl, wl, y) = ∞, (25)

which contradicts (c).
Let P = {pl} = {(xl, wl)} be a sequence sat-

isfying conditions (a) and (b). Let us introduce
sequences{ρl

i} = {wl
i − hi(x

l)} and {ϕl
i} =

{β
2 ρl

i
2

+ yiρ
l
i − µ log(hi(x

l) + ρl
i)}, i = 1, . . . , m.

Sincef(x) is bounded from below, to prove (25) it is

enough to show that

lim
l→∞

m
∑

i=1

ϕl
i = ∞. (26)

Let us first consider the simpler case when the
sequence{xl} corresponding to the sequenceP is
bounded. In this case, the corresponding sequence
{wl} is unbounded. We can assume that there exists
a nonempty index set of constraintsI+ such that for
any indexi ∈ I+ we haveliml→∞ wl

i = ∞ (otherwise
we consider the corresponding subsequences). Since
for any indexi = 1, . . . , m the sequence{hi(x

l)} is
bounded, we haveliml→∞ ρl

i = ∞ for i ∈ I+, and
hence

lim
l→∞

ϕl
i = lim

l→∞

β

2
ρl

i

2
+ yiρ

l
i − µ log(hi(x

l) + ρl
i))

= ∞, i ∈ I+,

and (26) holds true.
Now we study the case when the sequenceS = {xl}

corresponding to the sequenceP is unbounded. Let us
first estimate separatelyϕl

i for any1 ≤ i ≤ m. In case
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hi(x
l) ≤ 1, then

ϕl
i =

β

2
ρl

i

2
+ yiρ

l
i − µ log(hi(x

l) + ρl
i)

≥ β

2
ρl

i

2
+ yiρ

l
i − µ log(1 + ρl

i) ≥ −B1 (27)

for someB1 ≥ 0 large enough.
If hi(x

l) ≥ 1 then, keeping in mind thathi(x
l)+ρl

i >
0, we have

ϕl
i =

β

2
ρl

i

2
+ yiρ

l
i − µ log(hi(x

l) + ρl
i)

=
β

2
ρl

i

2
+ yiρ

l
i − µ log hi(x

l) − µ log

(

1 +
ρl

i

hi(xl)

)

≥ β

2
ρl

i

2
+ yiρ

l
i − µ log hi(x

l) − µ − µ
ρl

i

hi(xl)

≥ β

2
|ρl

i|
2 − |yi||ρl

i| − µ log hi(x
l) − µ − µ|ρl

i|

≥ −µ loghi(x
l) − B2,

whereB2 is large enough. Invoking inequality (6) we
obtain

−µ log hi(x
l) − B2 ≥ −µ log

(

max
1≤i≤m

hi(x
l)

)

− B2

≥ −µ log

(∣

∣

∣

∣

max
1≤i≤m

hi(x
l)

∣

∣

∣

∣

+ 1

)

− B2

≥ −µ(C − min
1≤i≤m

hi(x
l))2 − B2

= −µ(C − hi0(x
l))2 − B2

≥
{

−µC2 − B2, if hi0(x
l) ≥ 0

−µ(C + ρl
i0)

2 − B2, if hi0(x
l) < 0

≥ −µ max
{

C2, (C + ρl
i0)

2
}

− B2,

wherei0(x) ∈ Argmin1≤i≤mhi(x) andi0 = i0(x
l).

Keeping in mind thatwl
i0

> 0, it follows from (5)
that

lim
l→∞

ρl
i0 = +∞.

Hence for all sequence numbersl large enough we have

ϕl
i ≥ −µ(C + ρl

i0)
2 − B2. (28)

Combining (27) and (28), we obtain forl large
enough (thathi0(x

l) < 0)

m
∑

i=1

ϕl
i = ϕl

i0 +
∑

i6=i0:hi(xl)<1

ϕl
i +

∑

i:hi(xl)≥1

ϕl
i

≥ β

2
ρl

i0

2
+yiρ

l
i0−µ log ρl

i0−mB1−
(

µ(C + ρl
i0)

2 + B2

)

m.

The inequalityβ > 2µm guarantees that for suchβ
condition (26) holds. Thus, condition (25) also holds,
and we have the contradiction. Therefore the setRβ is
bounded.

It is easy to see that the setRβ is closed. Therefore
Lβ,µ(xl, wl, y) reaches its global minimum onIRn ×
IRm

++.
Lemma 2 is proven.

Remark 2 Following the proof of Lemma 2 we can
show that there exists a global minimum

S∞ = min
x∈IRn, w∈IRm

+

‖ρ(x, w)‖2 > −∞, (29)

and that any set

R∞ =
{

(x, w) ∈ IRn × IRn
+ : ‖ρ(x, w)‖2 ≤ M

}

is bounded.
Lemma 3 For any β > 0, there existsα > 0 such
that for any primal-dual approximation(x, w, y) such
that w ∈ IRm

++, y ∈ IRm
++, the primal direction∆p =

(∆x, ∆w), obtained as the solution of the system (11)
with the primal regularization rule (13) and the dual
regularization parameterλd = 1

β , is a descent direction
for Lβ,µ(p, y) and

〈∇pLβ,µ(p, y), ∆p〉 ≤ −α‖∆p‖2.

Proof. For the regularization parameterλd = 1/β,
the primal-dual system (11) is as follows





H(x, y) 0 −A(x)T

0 Y W
A(x) −I 1

β I









∆x
∆w
∆y



 = (30)





−∇f(x) + ∇h(x)T y
µe − WY e
−h(x) + w





After solving the third equation for∆y and eliminating
∆y from the first two equations we obtain the following
reduced system for the primal directions
[

H + βAT A −βAT

−βA W−1Y + βI

] [

∆x
∆w

]

=

[

−σ + βAT ρ
γ − βρ

]

(31)
On the other hand the gradient ofLβ,µ(x, w, y) with

respect tox andw is as follows

∇xLβ,µ(x, w, y) = σ − βAT ρ,
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∇wLβ,µ(x, w, y) = −γ + βρ.

Therefore, assuming that matrix

Nβ = H + AT
[

β−1I + Y −1W
]−1

A

is positive definite ( otherwise the algorithm always in-
creasesλp such that the smallest eigenvalue of matrix
Nβ exceeds parameterλ0 > 0. ), we have by Lemma
A1 from the Appendix

[

∇xLβ,µ

∇wLβ,µ

]T [
∆x
∆w

]

=

−
[

∆x
∆w

]T [
H + βAT A −βAT

−βA W−1Y + βI

] [

∆x
∆w

]

≤ −αmax{‖∆x‖, ‖∆w‖}2, (32)

whereα depends only on parametersλ0, β and‖A(x)‖.
Lemma 3 is proven.

We will need also several lemmas about local con-
vergence properties of the algorithm.
Lemma 4 If z∗ = (x∗, w∗, y∗) is a solution to the
problem (2) then the matrix

D(z∗) =





H(x∗, y∗) 0 −A(x∗)T

0 Y ∗ W ∗

A(x∗) −I 0





is nonsingular and hence there existsM∗ > 0 such that

‖D−1(z∗)‖ ≤ M∗. (33)

Proof. The proof is straightforward (see e.g. [8]).
Let Ωε(z

∗) = {z : ‖z − z∗‖ ≤ ε} be the ε-
neighborhood of the solution to the problem (2).
Lemma 5 There existsε0 > 0 and0 < L1 < L2 such
that for any primal-dual pairz ∈ Ωε0

(z∗) the merit
functionν(z) satisfies

L1‖z − z∗‖ ≤ ν(z) ≤ L2‖z − z∗‖. (34)

Proof. Keeping in mind thatν(z∗) = 0 the right in-
equality (34) follows from Lipschitz continuity ofν(z)
on the bounded setΩε0

. Therefore there existsL2 > 0
such that

ν(z) ≤ L2‖z − z∗‖.
Let us prove the left inequality. From the definition of
the merit functionν(z) we obtain

‖σ‖ ≤ ν(z), (35)

WY e ≤ ν(z), (36)

‖ρ‖ ≤ ν(z). (37)

Let us linearizeσ, WY e andρ at the solutionz∗ =
(x∗, w∗, y∗).

σ(z) =σ(z∗) + H(x∗, y∗)(x − x∗) − AT (x∗)(y − y∗)

+ O‖x − x∗‖2

WY e =W ∗Y ∗e + Y ∗(w − w∗) + W ∗(y − y∗)

+ O‖w − w∗‖‖y − y∗

−ρ(z) = − ρ(z∗) + AT (x∗)(x − x∗) − (w − w∗)

+ O‖x − x∗‖2.

By Lemma 4 the matrix

D∗ = D(z∗) =





H(x∗, y∗) 0 −A(x∗)T

0 Y ∗ W ∗

A(x∗) −I 0





is nonsingular and there is a constantM∗ such that
‖D−1(z∗)‖ ≤ M∗. Therefore we have

‖z − z∗‖ ≤ M∗ν(z) + O‖z − z∗‖2.

ChoosingL1 = 1/(2M∗), we obtain the left inequality
(34), i.e.

L1‖z − z∗‖ ≤ ν(z).

Lemma 5 is proven.
Also, we need the following Banach Lemma (see e.g.

[10] for a proof).
Lemma 6 Let matrix A ∈ IRn,n be nonsingular and
‖A−1‖ ≤ M. Then there existsε > 0 small enough
such that any matrixB ∈ IRn,n satisfying‖A−B‖ ≤ ε
is nonsingular and the following bound holds

‖B−1‖ ≤ 2M.

Lemma 7 There existsε0 > 0 and M2 > 0 such that
for any primal-dual pairz = (x, w, y) ∈ Ωε0

(z∗) and
λd ≤ ε0 the matrix

Dλd
(z) =





H(x, y) 0 −A(x)T

0 Y W
A(x) −I λdI





has an inverse and its norm satisfies

‖D−1
λd

(z)‖ ≤ M2. (38)
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Proof. It follows from the Lipschitz conditions and
boundedness ofΩε0

(z∗) that we have

‖Dλd
(z) −D(z∗)‖ ≤ C1ε0,

for someC1 > 0. Therefore, by Lemmas 4 and 6 there
existsM2 > 0 such that

‖Dλd
(z)−1‖ ≤ M2.

for ε0 > 0 small enough. Lemma 7 is proven.
The following assertion is a slight modification of the

Debreu theorem [7].

Assertion 1. Let H be a symmetric matrix,A ∈ IRr×n,
Λ = diag(λi)

r
i=1 with λi > 0, and θ > 0 such that

ξT Hξ ≥ θξT ξ, ∀ξ : Aξ = 0. Then there existsk0 > 0
large enough that for any0 < θ1 < θ the inequality

ξT
(

H + kAT ΛA
)

ξ ≥ θ1ξ
T ξ, ∀ξ ∈ IRn (39)

holds for anyk ≥ k0.

The next lemma follows from Assertion 1.
Lemma 8 There existsε0 > 0 small enough that for
any approximation of the primal-dual solutionz =
(x, w, y) ∈ Ωε0

(z∗), z 6= z∗, λd = νµ(z) and µ =
min{δν(z), ν(z)2}, the matrixNλd

(x, y, w) is positive
definite.

Proof. Let us assume that the active constraint
set atx∗ is I∗ = {i : hi(x

∗) = 0} = {1, . . . , r}.
Also, we consider the vector functionhT

(r)(x) =

(h1(x), . . . , hr(x)) and its JacobianA(r)(x). The suf-
ficient regularity conditions

rank A(r)(x
∗) = r, y∗

i > 0, i ∈ I∗

together with the sufficient conditions for the minimum
x∗ to be isolated

ξT H(x∗, y∗)ξ ≥ θξT ξ, θ > 0, ∀ξ 6= 0 : A(r)(x
∗)ξ = 0

comprise the standard second order optimality condi-
tions.

It follows from Assertion 1 and the second order
optimality conditions that the matrixM(x∗, y∗) =
H(x∗, y∗) + kA(r)(x

∗)T A(r)(x
∗) is positive definite

for somek ≥ k0 and therefore the matrixM(x, y)
remains positive definite in someε0 neighborhood of
the solution(x∗, y∗).

The matrixNλd
(x, y, w) can be written as follows

Nλd
(x, y, w) = H(x, y)+ (40)

A(r)(x)T
[

W(r)Y
−1
(r) + λdI

]−1

A(r)(x)

+A(m−r)(x)T
[

W(m−r)Y
−1
(m−r)+λdI

]−1

A(m−r)(x),

where the second and the third terms correspond to
active and inactive constraints. Keeping in mind (34),
we have

λd = νµ(z) ≤ (1 + δ)ν(z) ≤ L2(1 + δ)ε0.

Also, due to the standard second order optimality con-
ditions for the active constraints, we have|wi| ≤ ε0 and
τa ≤ yi ≤ 2τa, i = 1, . . . , r for someτa > 0. There-
fore, we obtain
[

W(r)Y
−1
(r) + λdI

]−1

≥ τa

1 + 2τa(1 + δ)L2
ε−1
0 I(r),

(41)
whereI(r) is the identity matrix.

The third term of (40) corresponding to the inac-
tive constraints is positive semi-definite. Therefore, by
choosingε0 > 0 small enough we can make the ele-

ments of the diagonal
[

W(r)Y
−1
(r) + λdI

]−1

as large as

necessary. Therefore the positive definiteness of the ma-
trix Nλd

(x, y, w) follows from the result thatM(x, y)
andNλd

(x, y, w) − M(x, y) are positive definite pro-
vided thatε0 is sufficiently small.
Remark 3 It follows from Lemma 8 that in the neigh-
borhood of the solution the interior-point algorithm
does not perform the primal regularization of the Hes-
sianH(x, y) when solve the system (11) for finding the
primal-dual directions.
Lemma 9 There existsε0 > 0 such that if any approx-
imation of the primal-dual solutionz = (x, w, y) ∈
Ωε0

(z∗), with the barrier, dual regularization and
steplength obtained by the formulas (17)-(21) and the
primal-dual direction∆z = (∆x, ∆w, ∆z) obtained
from the system (11) then

‖ẑ − z∗‖ ≤ c‖z − z∗‖2,

whereẑ is the next primal-dual approximation obtained
by formulas (14)-(16) andc > 0.

Proof. Letε0 > 0 be small enough that the conditions
of Lemmas 5-8 hold true. Letz = (x, w, y) ∈ Ωε0

(z∗).
Let us denote‖z − z∗‖ = ε ≤ ε0. For ε0 small enough
and using (34), we have

µ = ν(z)2 ≤ L2
2ε

2. (42)



Griva et al. – Algorithmic Operations Research Vol.3 (2008)12–29 21

It follows from formulas (34), (38) and (42) that

‖bµ(z)‖ = νµ(z) ≤ ν(z) + µ ≤ c1ε,

for some c1 > 0. Since the algorithm computes
the primal-dual direction by the formula∆z =
−Dλd

(z)−1bµ(z), then keeping in mind (38), we have

‖∆z‖ ≤ M2c1ε. (43)

First we prove an estimation for the primal and dual
steplengths obtained by formulas (17), (18) and (21).
The second equation of the system (11) can be rewritten
as follows

yi∆wi + wi∆yi = µ − wiyi, i = 1, . . . , m.

Therefore, keeping in mind thatµ > 0 andwiyi > 0,
we have

yi∆wi + wi∆yi ≥ −wiyi, i = 1, . . . , m.

or

−∆wi

wi
≤ 1 +

∆yi

yi
, i = 1, . . . , m,

By Assumption (A3) for the set of active constraints we
have|wi| ≤ ε andyi ≥ τa > 0. Therefore keeping in
mind (43) for the indicesi : ∆wi < 0 we have

− wi

∆wi
≥ 1

1 + ∆yi

yi

≥ 1

1 + M2c1ε
τa

≥ 1 − c2ε, (44)

wherec2 = M2c1

τa
. By formulas (21) and (34) we have

κ ≥ 1 − ν(z) ≥ 1 − L2ε. (45)

Therefore combining formulas (17), (44) and (45) we
obtain

1 − c3ε ≤ αp ≤ 1. (46)

Following the same scheme we establish a similar esti-
mate for the dual steplength

1 − c4ε ≤ αd ≤ 1. (47)

Let us denoteA ∈ IRn+2m the diagonal matrix with
the elementsαi = αp, i = 1, . . . , n + m andαi = αd,
i = n + m + 1, . . . , n + 2m. UsingA, the next primal-
dual approximation̂z is computed by the formula

ẑ = z + A∆z.

Combining formulas (46) and (47) we obtain

‖I −A‖ ≤ c5ε, (48)

wherec5 = max{c3, c4}. Now we estimate the distance
between the next primal-dual approximationẑ and the
solution. We have

ẑ − z∗ = z −AD−1
λd

(z)bµ(z) − z∗

= A(z − z∗) −AD−1
λd

(z)bµ(z) + (I −A)(z − z∗)

= AD−1
λd

(z)(Dλd
(z)(z−z∗)−bµ(z))+(I−A)(z−z∗)

= AD−1
λd

(z)[D(z)(z − z∗) − b(z)+

(Dλd
(z) − D(z))(z − z∗) + b(z) − bµ(z)]

+ (I −A)(z − z∗).

Using the Taylor expansion ofb(z∗) aroundz we obtain

0 = b(z∗) = b(z) + D(z)(z∗ − z) + O‖z − z∗‖2,

or
D(z)(z − z∗) − b(z) = O‖z − z∗‖2.

Therefore, using formulas (19), (20), (34), (42) and (48),
we have

‖ẑ−z∗‖≤M2[‖D(z)(z−z∗)−b(z)‖+‖Dλd
(z)−D(z)‖

‖z − z∗‖ + ‖bµ(z) − b(z)‖] + c5‖z − z∗‖2

= M2[c6ε
2 + νµ(z)ε + µ] + c5ε

2

≤ M2[c6ε
2 + L2ε

2 + L2
2ε

3 + L2
2ε

2] + c5ε
2

≤ cε2,

wherec = M2(c6 + 3L2) + c5. Lemma 9 is proven.
Now we are ready to prove the main theorem about

convergence properties of the IPM algorithm.
Theorem 1 Under assumptions (A1)-(A5), the

IPM algorithm generates a primal-dual sequence
{zs = (xs, ws, ys)} such that any limit point̄x of the
primal sequence{xs} is a first-order optimality point
for the minimization of thel2 norm of the vector of the
constraint violationv(x) = (v1(x), . . . , vm(x)), where
vi(x) = min{hi(x), 0} :

V (x) = ‖v(x)‖2.

If, in particular, V (x̄) = 0 thenx̄ = x∗ is a a first order
optimality point of problem (1).

Proof. We considere several possible cases.
Case 1.The approximationzs is such that the con-

ditions in line l1 of the algorithm (see Figure 1) hold
for all k ≥ s. Such possibility exists due to Lemmas
5, 9 and Remark 3 in some neighborhood of a local or
global minimizer. In this case

lim
k→∞

ν(zk) = 0.
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The trajectory of the algorithm corresponds to the pure
interior-point method.

Case 2.Either of the last two conditions in line l1 of
the algorithm does not hold for some approximationzs.
In this case, the algorithm switches to the unconstrained
minimization mode (primal = 1.) The penalty param-
eterβ > 0 is chosen by the rule given in line l2 of the
algorithm description (see Figure 1) so that the primal
direction∆p is a descent direction for the augmented
Lagrangian by Lemma 3, therefore the algorithm de-
scends to an approximation of the first order optimality
point of the minimization of the augmented Lagrangian
Lβ,µ(p, ys) in p.

Indeed, for any primal-dual pointzsk and fixedβ >
0 from Lemma 2 follows the boundedness of the set
Psk

= {p : Lβ,µ(p, ysk) ≤ Lβ,µ(psk , ysk)}. Let psk

be a starting point of an unconstrained minimization of
Lβ,µ(p, ysk) in p. By Lemma 3 the condition number
of the matrix in equation (31) is uniformly bounded
with respect top ∈ Psk

for any fixed Lagrange mul-
tipliers ysk and the penalty parameterβ. This bound-
edness of the condition number and bactracking with
the Armijo rule (22) guarantee that the algorithm even-
tually descends to the approximationp̂ of the first or-
der optimality point of the unconstrained minimization
Lβ,µ(p, ys) in p (see e.g. [4], Proposition 1.2.2. or [13],
Sections 3.1, 3.2). Therefore there exists the iteration
numbersk+1 such that

‖∇pLβ,µ(psk+1
, ysk)‖ ≤ min

{

τ‖ρ(psk+1
)‖, β/k

}

,
(49)

The gradient of the augmented Lagrangian then be-
comes small enough so the conditions in line l3 of the
algorithm hold true.

In the following discussion, we assume that this first
order optimality point is a minimum (local or global).
The case if it is not a minimum is left for the later
discussion(Case 2b). After finding an approximation
of an unconstrained minimizer ofLβ,µ(p, ysk) in p,
the algorithm changes the Lagrange multipliers (line
l4 of the algorithm) by the formula (23). Letzsk and
zsk+1 be two subsequent iterates of the augmented La-
grangian method with the updated Lagrange multipli-
ers:ysk+1 := ysk + βρ(xsk+1 , wsk+1), ys = ysk , s =
sk, . . . , sk+1 − 1.

Theorem 5 from [14] implies that under Assumptions
A4 and A5 there exists a neighborhood of the mini-
mum of the barrier subproblemΩεµ

(zµ) and the num-
berβµ > 0 such that ifysk ∈ Ωεµ

(zµ) andβ ≥ βµ, for
the new primal-dual approximationzsk+1 the following

estimation hold

‖zsk+1 − zµ‖ ≤ cµ(1 + τ)

β
‖zsk − zµ‖, (50)

whereτ > 0 is used in condition (49) (line l3) of the
algorithm, andcµ > 0 is a constant depending only on
the characteristics of the barrier subproblem (3) at the
solutionzµ. The inequality (50) and Lipschitz continu-
ity of νµ(z) on the bounded setΩεµ

(zµ) implies that

νµ(zsk+1) ≤ qνµ(zsk) (51)

for β large enough. This can be shown using the con-
siderations similar to those in Lemma 5. Therefore vio-
lation of the inequality (51) (line l5) can be due to any
of the following reasons:zsk ∈ Ωεµ

(zµ), psk+1 is an
approximation a minimizer, butβ is not large enough
(Case 2a), zsk /∈ Ωεµ

(zµ) (Case 2b). The latter case
includes also the situation ifpsk is an approximation of
some other than a minimum first order optimality point
of the unconstrained minimization of the augmented
Lagrangian. According to the algorithm, the case (2b)
leads to an unbounded increase of the penalty parame-
ter β.

Case 2a.Let zsk ∈ Ωεµ
(zµ). Therefore by the Theo-

rem 5 of [14] for the condition (50) to hold, the penalty
parameterβ > 0 must be large enough. The algorithm
increasesβ, adjusts the dual regularization parameter
(line l6 of the algorithm) and continues the minimiza-
tion of Lβ,µ(p, ysk) in p. Eventually whenβ becomes
large enough and (50) implies (51). Therefore the up-
date of the Lagrange multipliers reduces the value of
the merit functionνµ(z) by a chosen factor0 < q < 1.

In this case, the minimization of the merit function
Lβ,µ(p, ysk) in p for a largerβ followed by the La-
grange multipliers update attracts the trajectory to the
solution to the barrier problem (3). For the value of the
merit functionν(z) the following estimation holds

ν(zsk+1) ≤ νµ(zsk+1)+µ = νµ(zsk+1)+min{δr, r2},
(52)

wherer is the previous best value of the merit function
ν(z) and0 < δ < 1. The value of the barrier parameter
µ is smaller than the previous best value of the merit
function ν(z) before the parameterµ was decreased.
Therefore the reduction of the merit functionνµ(z) will
guarantee the reduction of the merit functionν(z). Thus
the reduction of the merit functionν(z), finding the
approximation of a minimizerzµ followed by the further
reduction of the barrier parameterµ eventually brings
its trajectory to the neighborhood of some minimizer
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Ωε0
(z∗). Then the algorithm converges to the solution

by Case 1with an asymptotic quadratic rate.
Case 2b.In this case, there is no guarantee that (50)

holds and the new approximationzsk+1 is close to the
minimizer of the barrier subproblemzµ, i.e the inequal-
ity (51) (line l5) may not hold an infinite number of
times while the penalty parameterβ increases unbound-
edly. In this case, the algorithm does not change the
Lagrange multipliersy by formula (23) since this up-
date does not reduce the value of the merit function
νµ(z). Therefore, the algorithm doubles penalty pa-
rameter (line l6 of the algorithm) and eventually turns
into the sequence of unconstrained minimizations of the
merit functionLβ,µ(p, y) in p followed by an increase
of the penalty parameterβ. The vector of the Lagrange
multipliers y does not change according to the algo-
rithm. In this case, we show that any limit point of the
primal sequence{xs} is actually a first order optimality
point for the minimization of thel2 norm of the vector
of the constraint violationv(x) = (v1(x), . . . , vm(x),
wherevi(x) = min{hi(x), 0} :

V (x) = ‖v(x)‖2.

First we establish that the primal sequence{ps} is
bounded. Consider the monotone increasing sequence
2mµ ≤ βs0 ≤ βs1 ≤ . . . ≤ βsk ≤ . . . . We can rewrite
a merit functionLβ,µ(p, y) as follows

Lβ,µ(p, y) = Lµ(p, y) +
β

2
ρT ρ

= (1 + β − β0)

[

1

1 + β − β0

(

Lµ(p, y) +
β0

2
ρT ρ

)

+

β − β0

2(1 + β − β0)
ρT ρ

]

=
1

ξ
[ξg1(p, y) + (1 − ξ)g2(p, y)] =

1

ξ
θξ(p, y),

where Lµ(p, y) = f(x) − µ
∑m

i=1 log wi + yT ρ,
ξ = 1/(1 + β − β0), g1(p, y) = Lµ(p, y) + 0.5β0ρ

T ρ,
g2(p, y) = 0.5ρT ρ and θξ(p, y) = ξg1(p, y) + (1 −
ξ)g2(p, y). Therefore the sequence of unconstrained
minimizations of the merit functionLβsk ,µ(p, y)
in p for the monotone nondecreasing sequence
β0 ≤ βs1 ≤ . . . ≤ βsk ≤ . . . is equivalent to the
sequence of unconstrained minimizations of function
θξ(p, y) in p for the monotone nonincreasing sequence
1 = ξ0 ≥ ξs1 ≥ . . . ≥ ξsk . . . > 0.

Suppose that the primal sequence{ps} is unbounded.
Sinceps = (xs, ws) ∈ IRn×IRm

++, by Remark 1 follow-
ing Lemma 2, the sequence{gs

2}, wheregs
2 = g2(p

s, y)
is unbounded and

lim
l→∞

sup
0≤s≤l

gs
2 = +∞. (53)

We will show that (53) implies that

lim
l→∞

inf
0≤s≤l

gs
1 = −∞ (54)

with gs
1 = g1(p

s, y), which contradicts again Lemma 2.
First, we renumber the sequence{ps} as follows

p0 = ps0 , ps0+1, . . . , ps0+d0 = ps1 , ps1+1, . . . , ps1+d1

= · · · = psk , psk+1, . . . , psk+dk , . . .

so all ps, s = sk, . . . , sk + dk correspond to the same
value ofξsk . For anyk, for all s = sk, . . . , sk + dk − 1
we have

ξskgs+1
1 + (1 − ξsk)gs+1

2 ≤ ξskgs
1 + (1 − ξsk)gs

2,

or, equivalently

gs
1 − gs+1

1 ≥ 1 − ξsk

ξsk
(gs+1

2 − gs
2). (55)

After the summation of the inequality (55) over alls =
sk, . . . , sk + dk − 1, we obtain

gsk

1 − gsk+dk

1 ≥ 1 − ξsk

ξsk
(gsk+dk

2 − gsk

2 ). (56)

After the summation of the inequality (56) for allk =
0, 1, . . . j and keeping in mind thatgsk+dk

1 = g
sk+1

1 and
gsk+dk

2 = g
sk+1

2 for k = 0, 1, . . . , j − 1, we obtain

g0
1 − g

sj+dj

1 ≥
j
∑

i=1

1 − ξsi

ξsi
(gsi+di

2 − gsi

2 ). (57)

Assuming thats = sj + dj we recall that

lim
l→∞

sup
0≤s≤l

gs
2 = lim

l→∞
sup

0≤s≤l

j
∑

i=1

(gsi+di

2 − gsi

2 ) = +∞.

Since the sequence{ξsk} is monotonically decreasing

to zero, the sequence
{

1−ξsk

ξk

}

is monotone, increasing

and unbounded and greater than or equal to one starting
with k = k0. Without restricting the generality, we can
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assume thatk0 = s1. Therefore by Lemma (A3) from
the Appendix we have

lim
l→∞

sup
0≤s≤l

j
∑

i=1

1 − ξsi

ξsi
(gsi+di

2 − gsi

2 ) = +∞.

Therefore using (57) we obtain

lim
l→∞

sup
0≤s≤l

(g0
1 − gs

1) = +∞,

or equivalently

lim
l→∞

inf
0≤s≤l

gs
1 = −∞,

which contradicts Lemma 2. Therefore our assumption
of unboundedness of the sequence{ps} was not correct
and we conclude that the primal sequence{ps} gener-
ated by the algorithm is bounded.

Now we show that any limit point of the primal se-
quence{xs} generated by the algorithm is actually the
first order optimality point for minimization of thel2
norm of the vector of the constraint violationv(x) =
(v1(x), . . . , vm(x)), wherevi(x) = min{hi(x), 0} :

V (x) = ‖v(x)‖2.

The necessary conditions for the primal pairp̂ =
(x̂, ŵ) to be a minimizer of merit functionLβ,µ(p, y)
in p is the following system

∇f(x̂) − A(x̂)T (y + βρ(p̂)) = 0,

−µŴ−1e + y + βρ(p̂) = 0.
(58)

Therefore the only reason that the merit functionνµ(ẑ)
is not zero for the triplêz = (x̂, ŵ, ŷ), where ŷ =
y + βρ, is infeasibility:ρ(x̂, ŵ) 6= 0.

Let us consider the sequence{zs}, zs = (xs, ws, ys)
generated by the algorithm. The dual sequence{ys}
does not change from some point on. We assume that
ys = y for s ≥ s0. Also, the asymptotic infeasibility
takes place:lims→∞ ρi(x

s, ws) 6= 0 for some indexi.
We denoteI− the index set of all the indices such that
lims→∞ ρi(x

s, ws) 6= 0 for i ∈ I−.
According to the algorithm, for the sequence of the

primal approximations of exact minimizers, we have

∇f(xsk) − A(xsk)T (y + βsk ρ(xsk , wsk)) = βskΥsk
n ,

−µW−1
k e + y + βskρ(xsk , wsk ) = βskΥsk

m ,
(59)

wherelimk→∞ Υsk
n = 0 andlimk→∞ Υsk

m = 0.

If the primal sequence(xsk , wsk) satisfy the system
(59), then it satisfies the following system

∇f(xsk )/βsk − A(xsk )T y/βsk + A(xsk )ρ(xsk , wsk))

= Υsk
n ,

− µ/βsk + W sky/βsk + W skρ(xsk , wsk)

= W skΥsk
m , (60)

Therefore keeping in mind the boundedness of the
sequence{(xsk , wsk)}, we have

lim
k→∞

A(xsk )ρ(xsk , wsk) = 0, (61)

lim
k→∞

(wsk

i − hi(x
sk ))wsk

i = 0, i = 1, . . . , m. (62)

and
lim

k→∞
wsk

i ≥ 0, i = 1, . . . , m. (63)

It is easy to verify that conditions (61)-(63) are also
the first-order optimality conditions for the problem

min ‖w − h(x)‖2
2,

s.t. w ≥ 0.
(64)

and, in turn, for the problem

min [V (x)]
2
, x ∈ IRn.

The theorem is proven.

6. Numerical testing

As it follows from Theorem 1, in the worst case, the
algorithm minimizes the constrain violation of the non-
linear problem. However, we believe that in most cases
the algorithm finds the first order optimality point. To
demonstrate this, we implemented the algorithm within
LOQO software package and tested the code using the
Hock and Schittkowski [11] problems.

We consider differentiable problems only with in-
equality constraints and bounds. The results are shown
in the Tables 1 and 2. In the tables for each problem
we show the name of the problem, the number of vari-
ables, the number of constraints, the number of itera-
tions, running time on IBM Laptop with Red Hat Linux
Fedora Core 2.0, 1GB of main memory and 1.3GHz
clock speed, optimal objective value, and if the problem
convex or not. The iteration limit was set to 1,000,000
iterations. All the problems were formulated in AMPL.
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Out of 65 differentiable problems with inequality
constraints the algorithm solved 61 including all 20 con-
vex problems. It follows from the proof of Theorem 1
that in case of solving convex problems with bounded
feasible sets the algorithm is guaranteed to find a global
minimum of the problem becauseCase 2bin the proof
of Theorem 1 is not possible under the imposed as-
sumptions. Further, the algorithm solved 41 out of 45
nonconvex optimization problems.

We would like to mention that among the unsolved
problems hs013 violates the assumption A3. For prob-
lems hs097, hs098 and hs116 the iterates of the al-
gorithm are attracted to the areas where infeasibility
is around10−4. Such behavior of the algorithms is in
agreement with Theorem 1.

7. Concluding remarks

In this paper we analyzed convergence of the primal-
dual interior-point algorithm for nonlinear optimization
problems with inequality constraints. The important fea-
tures of the algorithm are the primal and dual regular-
izations, which guarantee that the algorithm decreases
the merit functionLβ,µ(x, w, y) in (x, w) in order to
drive the trajectory of the algorithm down to the neigh-
borhood of a first order optimality point.

Another important feature of the algorithm is that it
stabilizes a sequence of primal iterates in the sense that
at the worst case the algorithm finds a first order opti-
mality point of thel2-norm of the constraint violation
without any assumptions on the sequence of primal and
dual iterates. Such assumptions have been common in
recent convergence proofs.

In the worst case the algorithm can be “trapped” in
areas of where the constraints of the problem are in-
consistent. For example, the constraintsx2 − x ≥ 0,
x ≥ 10−5 are inconsistent aroundx = 0. Therefore if
an initial guessx0 = 0 the algorithm stays in the neigh-
borhood of 0 and never converges to a feasible point.

We believe that in similar situation, most of interior-
point algorithms will generate a sequence of unbounded
Lagrange multipliers. Having an assumption of bound-
edness of iterates simply eliminates such cases. By drop-
ping the assumption of the boundedness of the iterates
in this paper we bring these cases into consideration and
guarantee that the sequence of primal iterates does not
diverge.

The next important step is to generalize the theory
for equality constraints and to work on numerical per-
formance of the algorithm. CurrentlyLOQO implements

only a primal regularization. Therefore in the future we
will modify LOQO to include new features of the algo-
rithm studied in this paper such as the dual regulariza-
tion and more careful updating of the dual variables. We
believe that such modifications can potentially improve
the robustness of the solver.

8. Appendix

Lemma A1. Let matricesN = A−BT C−1B andC
be symmetric positive definite with the smallest eigen-
valuesλN > 0 andλC > 0. Then the matrix

M =

[

A BT

B C

]

is also positive definite with the lower bound for the
smallest eigenvalueλM > 0 depending onλN , λC and
‖B‖.

Proof. Let the size ofA andN be n × n, the sizes
of B andC bem × n andm × m respectively. Let us
show that for anyz = (x, y) 6= 0 quadratic formzT Mz
is positive. Since matrixN is positive definite, we have

xT (A − BT C−1B)x ≥ λNxT x.

Therefore

[xT yT ]

[

A BT

B C

] [

x
y

]

= xT Ax + yT Cy + 2yT Bx

≥ λNxT x + xT BT C−1Bx + yT Cy + 2yT Bx

= λNxT x + (C−1Bx + y)T C(C−1Bx + y)

≥ λNxT x + λC(C−1Bx + y)T (C−1Bx + y)

≥ λmin

(

xT x + (C−1Bx + y)T (C−1Bx + y)
)

= λmin

(

xT
(

(I + (C−1B)T (C−1B)
)

x + yT y

+2yT (C−1B)x
)

= λmin[xT yT ]

[

I+(C−1B)T (C−1B) (C−1B)T

C−1B I

][

x
y

]

= λmin[xT yT ]Q

[

x
y

]

≥ λminλQ[xT yT ]

[

x
y

]

.

where λmin = min{λN , λC} and λQ is the small-
est eigenvalue ofQ. Keeping in mind thatλ−1

Q =

‖Q−1‖2 ≤ √
n + m‖Q−1‖, we estimate‖Q−1‖ :

‖Q−1‖ =

∥

∥

∥

∥

∥

[

I + (C−1B)T (C−1B) (C−1B)T

C−1B I

]−1
∥

∥

∥

∥

∥
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Table 1

Hock and Schittkowski nonlinear problems with inequality constraints
Name Variables Constraints Iterations Runtime f(x*) Type
hs001 2 0 34 0.003 1.03E-20 convex
hs002 2 0 21 0.002 4.941229318 convex
hs003 2 0 6 0.001 4.46E-09 convex
hs004 2 0 7 0 2.666666668 nonconvex
hs005 2 0 8 0 -1.913222955 nonconvex
hs010 2 1 9 0.001 -1 convex
hs011 2 1 8 0.001 -8.498464222 convex
hs012 2 1 11 0.001 -30 convex
hs013 2 1 (IL) nonconvex
hs015 2 2 38 0.003 306.5000015 nonconvex
hs016 2 2 17 0.001 0.25 nonconvex
hs017 2 2 28 0.002 1.00000001 nonconvex
hs018 2 2 19 0.002 5 nonconvex
hs019 2 2 19 0.002 -6961.814063 nonconvex
hs020 2 3 16 0.001 40.19872981 nonconvex
hs021 2 1 11 0.001 -99.96 convex
hs022 2 2 7 0.001 1.000000035 convex
hs023 2 5 17 0.002 2 nonconvex
hs024 2 2 11 0.001 -1 nonconvex
hs025 3 0 34 0.015 1.15E-18 nonconvex
hs029 3 1 10 0.001 -22.62741655 nonconvex
hs030 3 1 8 0.001 1 convex
hs031 3 1 10 0.001 5.999999375 nonconvex
hs033 3 2 21 0.002 2 nonconvex
hs034 3 2 13 0.001 -0.834032445 convex
hs035 3 1 8 0.001 0.111111117 convex
hs036 3 1 134 0.027 -3300.000002 nonconvex
hs037 3 1 17 0.002 -3456 nonconvex
hs038 4 0 40 0.004 7.26E-24 nonconvex
hs043 4 3 9 0.001 -44 convex
hs044 4 6 13 0.002 -13 nonconvex
hs045 5 0 28 0.003 1 nonconvex
hs057 2 1 2365 1.335 0.030647619 nonconvex

=

∥

∥

∥

∥

[

I −(C−1B)T

−C−1B I + (C−1B)(C−1B)T

]∥

∥

∥

∥

≤ 1+‖(C−1B)T ‖+‖(C−1B)‖+‖(C−1B)(C−1B)T ‖
= L < +∞, if ‖B‖ < +∞.

Therefore, we have

[xT yT ]M

[

x
y

]

≥ λM [xT yT ]

[

x
y

]

,

whereλM ≥ min{λN , λC}(L
√

n + m)−1. The lemma
is proven.

Lemma A2. Let the numbersa1, . . . , an, n ≥ 2 be
such that

l
∑

i=1

ai ≤ 0 for l = 1, . . . , n − 1 (65)

and
n
∑

i=1

ai > 0, (66)

the numbersb1, . . . , bn, n ≥ 2 such that1 ≤ b1 ≤ b2 ≤
· · · ≤ bn then the following estimation holds

n
∑

i=1

aibi ≥
(

n
∑

i=1

ai

)

b1 > 0. (67)
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Table 2

Hock and Schittkowski nonlinear problems with inequality constraints
Name Variables Constraints Iterations Runtime f(x*) Type
hs059 2 3 53 0.012 -6.749505274 nonconvex
hs064 3 1 19 0.001 6299.84205 convex
hs065 3 1 13 0.001 0.953528857 convex
hs066 3 2 12 0.001 0.518163274 convex
hs070 4 1 22 0.011 0.17517448 nonconvex
hs072 4 2 267 0.028 727.6793469 convex
hs076 4 3 9 0.001 -4.681818182 convex
hs083 5 3 22 0.002 -30665.53897 nonconvex
hs084 5 3 29332 40.357 -5280335.069 nonconvex
hs085 5 36 16748 24.066 -1.905155258 nonconvex
hs086 5 6 13 0.001 -32.3486783 nonconvex
hs088 2 1 810 0.598 1.362656814 nonconvex
hs089 3 1 393 0.633 1.362656814 nonconvex
hs090 4 1 1109 2.257 1.362656814 nonconvex
hs091 5 1 1075 4.408 1.362656777 nonconvex
hs092 6 1 1106 4.846 1.362656767 nonconvex
hs093 6 2 20 0.002 135.0759628 nonconvex
hs095 6 4 3128 3.908 0.01561953 nonconvex
hs096 6 4 2809 1.087 0.01561953 nonconvex
hs097 6 4 (IL) nonconvex
hs098 6 4 (IL) nonconvex
hs100 7 4 10 0.001 680.6300599 convex
hs101 7 6 239 0.223 1809.764762 nonconvex
hs102 7 6 222 0.215 911.8805717 nonconvex
hs103 7 6 309 0.225 543.6679738 nonconvex
hs105 8 0 23 0.216 1136.360984 nonconvex
hs106 8 6 44 0.009 7049.248019 nonconvex
hs108 9 13 38 0.007 -0.866025404 nonconvex
hs110 10 0 7 0.001 -45.77846971 convex
hs113 10 8 12 0.001 24.30620911 convex
hs116 13 15 (IL) nonconvex
hs117 15 5 16 0.003 32.34867896 nonconvex

Proof. First, we notice that for the given numbers
a1, . . . , an, we have

n
∑

i=l

ai > 0 for l = 1, . . . , n, (68)

otherwise we come to contradiction to (65) and (66).
Also, we notice the specifics of the trivial case: if

the numbers̄a1 and ā2 are such that̄a1 + ā2 > 0 and
ā2 > 0, (ā1 can be either negative or nonnegative) then

ā1b1 + ā2b2 ≥ (ā1 + ā2)b1 > 0, (69)

if 1 ≤ b1 ≤ b2.
Using inequality (69) recursively and keeping in mind

(68), we have

k
∑

i=1

aibi =
k−2
∑

i=1

aibi + (ak−1bk−1 + akbk)

≥
k−2
∑

i=1

aibi + (ak−1 + ak)bk−1

=

k−2
∑

i=1

aibi + āk−1bk−1

=

k−3
∑

i=1

aibi + ak−2bk−2 + āk−1bk−1
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≥
k−3
∑

i=1

aibi + (ak−2 + āk−1)bk−2

=

k−3
∑

i=1

aibi + āk−2bk−2 ≥ · · ·

≥ a1b1 + ā2b2 ≥ (a1 + ā2)b1 =

(

k
∑

i=1

ai

)

b1 > 0,

whereāl = al + · · ·+ak > 0, l = 1, . . . , k. The lemma
is proven.

Lemma A3. Let series
∑∞

i=0 ai be such that the se-
quence of the largest partial sums{sk}, where

sk = sup
0≤l≤k

l
∑

i=1

ai

is unbounded monotone and increasing, i.e.

lim
k→∞

sk = +∞. (70)

Also let a sequence{bk} with bk ≥ 1 be monotone
increasing and such thatlimk→∞ bk = +∞. Then for
the series

∑∞
i=0 aibi the sequence of the largest partial

sums{pk}, where

pk = sup
0≤l≤k

l
∑

i=1

aibi

is also unbounded monotone increasing, i.e.

lim
k→∞

pk = +∞.

Proof.To prove the lemma we are going to show that
pk ≥ sk for k = 0, 1, 2, . . . . Without loss of generality
we assume thats0 = a0 are positive, otherwise we can
add any positive number in the series

∑∞
i=0 ai as the

first term without changing the property (70). Thus the
sequence{sk} has the following property

0 < s0 = sq0
· · · = sq1−1 < sq1

= sq1+1

= · · · = sq2−1 < · · · .

In other words, the sequence{sk} is segmented into
an infinite number of groups where all the elements of
each individual groups are equal.

Since there is one to one correspondence between the
sequences{sk} and{ak}, whereak is thek-th term of
the series

∑∞
i=0 ai, we can use the same enumeration for

{ak} described above and based on the sequence{sk}.

Consequently, we will the same introduced enumeration
of all the rest sequences{bk}, {akbk} and{pk}.

Such enumeration helps us to understand some useful
properties of the elements of considered sequences. First
of all, it is easy to see thataqi+1 ≤ 0, if aqi+1 6= aqi+1

,
andaqi

> 0, i = 0, 1, 2, . . . . Moreover, we have

li
∑

j=qi+1

aj ≤ 0, li = qi+1, . . . , qi+1−1, i = 1, 2, . . . .

and
qi+1
∑

j=qi+1

aj > 0, i = 1, 2, . . . .

Therefore using Lemma A2, we have

qi+1
∑

j=qi+1

ajbj ≥
qi+1
∑

j=qi+1

ajbqi+1

= bqi+1

qi+1
∑

j=qi+1

aj

≥
qi+1
∑

j=qi+1

aj

Sinces0 = sq0
is positive then we havepq0

≥ sq0
.

Assuming thatpqi
≥ sqi

, we obtain

pqi+1
≥ pqi

+

qi+1
∑

j=qi+1

ajbj ≥ pqi
+

qi+1
∑

j=qi+1

aj ≥

sqi
+

qi+1
∑

j=qi+1

aj = sqi+1
.

Therefore by induction we havepk ≥ sk for k =
0, 1, 2, . . . and

lim
k→∞

pk = +∞.

The lemma is proven.
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