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ABSTRACT

The analysis of microbial and palynological remains in Cambrian shales is useful for biostratigraphic and
palaeoecological purposes, but in outcrops affected by contact metamorphism, it can also be used for discriminating
burial and metamorphic temperatures. The microbial composition of the Miaolingian black shale from the Pleasant
View Formation (Inlet Group) in the Burin Peninsula consists of monospecific cyanobacterial associations of
Bavlinella faveolata, a cosmopolitan taxon that characterized eutrophication episodes in Neoproterozoic to
Miaolingian times. The specimens show varying degrees of degradation under transmitted light microscopy and
field emission gun scanning electron microscopy. Raman spectra of carbonaceous materials thermometry applied
to both the organic-walled microfossils and meshworks of amorphous organic matter has reported average
metamorphic temperatures of 300 to 343°C, whereas the standardized Crystallinity Index Standard value of 0.37 +
0.04 corresponds to a position slightly below the anchizone-epizone boundary, established at 300°C. The most
likely fit for the peak contact metamorphic temperature recorded in the Miaolingian black shale samples, collected
close to the Upper Devonian St. Lawrence granitic intrusions, is within the 300-350°C interval.

RESUME

L’analyse des restes microbiens et palynologiques dans les schistes cambriens est utile a des fins
biostratigraphiques et paléoécologiques, mais elle peut également servir a distinguer les températures
d’enfouissement et de métamorphisme dans les affleurements affectés par un métamorphisme de contact. La
composition microbienne des schistes noirs du Miaolingien provenant de la Formation de Pleasant View (Groupe
d’Inlet) dans la péninsule de Burin est formée d’associations cyanobactériennes monospécifiques de Bavlinella
faveolata, un taxon cosmopolite qui a caractérisé les épisodes d’eutrophisation au cours du Néoprotérozoique
au Miaolingien. Les spécimens présentent des degrés divers de dégradation sous microscopie pour examen par
transmission et sous microscopie électronique a balayage a canon a émission de champ. Les spectres Raman de
la thermométrie des matiéres carbonées appliqués aux microfossiles a paroi organique et aux réseaux de matiére
organique amorphe ont signalé des températures métamorphiques moyennes de 300 a 343 °C, alors que la valeur
normalisée de I'indice de cristallinité de 0,37 + 0,04 correspond & une position légerement au-dessous de la limite
entre 'anchizone et 'épizone, établie a 300 °C. L’estimation la plus probable de la température maximale de contact
métamorphique enregistrée dans les échantillons de schistes noirs du Miaolingien, prélevés a proximité des
intrusions granitiques du Dévonien supérieur de St. Lawrence, se situe dans I'intervalle de 300 a 350 °C.

[Traduit par la redaction]

INTRODUCTION phenomenon during the Phanerozoic (e.g., Martin 1996;

Large et al. 2015). In the sedimentary record, these episodes

Water eutrophication, the process by which a water body of eutrophication are usually represented by kerogenous
becomes overly enriched with nutrients, was a common black shale with a high Total Organic Carbon (TOC) per-

tFrom: Atlantic Geoscience Special Series “In recognition of the geological career of Sandra M. Barr". Atlantic Geoscience, 61, pp. 207-223.

ATLANTIC GEOSCIENCE 61, 207-223 (2025) doi:10.4138/atlgeo.2025.008 Copyright © 2025, the authors
ISSN:2564-2987. This article is licensed under CC-BY-4.0


mailto:blanca.m@igeo.ucm-csic.es
https://creativecommons.org/licenses/by/4.0/

ATLANTIC GEOSCIENCE - VOLUME 61 - 2025 208

centage (Kennedy et al. 2002; Sageman et al. 2003). Coeval
organic-rich black shales are found worldwide in formations
such as the Miaolingian-Lower Ordovician Alum Shale of
Scandinavia, which originated from algal-derived liptinite
macerals (Nielsen and Schovsbo 2007; Hagenfeldt et al.
2023), the Miaolingian-Furongian Kistedalen Formation of
Baltica (Palacios et al. 2022), the Miaolingian Manuels River
Formation of the Avalon Peninsula of Newfoundland, and
the Miaolingian Abbey Shale of southern England (Rushton
2011; Rees et al. 2014).

Marine transgressions (Botting et al. 2018) and volcanic
episodes (Longman et al. 2021) are both known to increase
nutrient flow to the oceans. The ash from nearby eruptions
carries nutrients such as phosphorus and iron (Wu et al.
2023), whereas hydrothermal fluids linked to volcanism and
tectonic activity can supply iron and rare earth elements
(Frei et al. 2013). This sudden input of nutrients fertilizes
the surface waters, triggering planktonic blooms that are
well-documented in modern day coastal areas (Kelly et al.
2023; Schils 2012) and in the fossil record (Wu et al. 2023;
Longman et al. 2021; Gaucher 2000; Gaucher et al. 2004;
Zhang et al. 2024). A high degree of primary productivity
on the upper water column generates a significant amount
of organic matter that accumulates on the seafloor. The de-
composition of that organic matter subsequently consumes
the available dissolved oxygen, inducing bottom water an-
oxia (Canfield and Thamdrup 2009) and possibly euxinic
conditions (Frei et al. 2013).

In western Avalonia, the beginning of Miaolingian times
was characterized by a generalized transgression and flood-
ing of an inherited horst-and-graben basin (Alvaro 2021;
Mills and Alvaro 2023; Alvaro and Mills 2024) that recorded
significant episodes of volcanic activity (e.g., Hay Cove vol-
canic rocks of Fletcher 2006; Chapel Arm Member of Mc-
Cartney 1967; Mills and Alvaro 2023). The acritarch content
of some Avalonian black shales (e.g., Flagg Cove, McNeil,
and Manuel Rivers formations) has been locally studied
in detail for biostratigraphic purposes (Hutchinson 1962;
Martin and Dean 1981; Palacios et al. 2011; Johnson et al.
2024), but their kerogenous content had not yet attracted
attention (but see discussions in Hutchinson 1962; Douglas
1983). An in-depth study of the black shales of the Manuels
River Formation at its type locality (Conception Bay South,
Newfoundland, Canada) reported a TOC percentage of up
to 3.36% and a burial temperature of ca. 280°C, based on
illite crystallinity (Austermann et al. 2021).

The study of the organic matter preserved in the Miaolin-
gian black shales of western Avalonia is complicated, in the
vicinity of Upper Devonian granites, by contact metamor-
phism. In the Little Lawn Harbour area of the Burin Pen-
insula, the black shales of the Pleasant View Formation are
partly silicified and contain dispersed, black carbonaceous
residue. The intrusion of the Upper Devonian St. Lawrence
granite (Kerr et al. 1993; Magyarosi et al. 2019) has enhanced
the thermal maturity of the organic matter and overprinted
the geochemical signals related to eutrophication processes.

The aims of this paper are threefold: (i) to characterize the

carbonaceous content preserved in the black shales of the
Miaolingian Pleasant View Formation in Little Lawn Har-
bour; (ii) to test the effectiveness of the Raman Spectroscopy
of Carbonaceous Materials (RSCM) thermometer on isolat-
ed organic-walled microfossil specimens extracted via acid
maceration, and to compare the temperature results to those
obtained via X-ray diffraction (XRD) and illite crystallinity;
and (iii) to gain insight into the thermal evolution and met-
amorphic grade of sedimentary strata neighbouring Upper
Devonian granites in the Burin Peninsula.

GEOLOGICAL CONTEXT

The Burin Peninsula is part of the Avalon Zone of New-
foundland (Fig. 1-inset), a part of the microcontinent of
Avalonia, which likely originated as a volcanic arc off the
west coast of Gondwana (O’Brien et al. 1996; Alvaro 2021
and references therein) recording some peri-Baltic influ-
ences (Beranek et al. 2023). This arc transitioned into a
rift system (Nance et al. 2002) during latest Ediacaran to
Miaolingian times (Alvaro 2021) and subsequently evolved
into a passive margin across the Furongian and Ordovi-
cian (Nance et al. 2008; Satkoski et al. 2010). The evolution
of Avalonia involved the formation of a Neoproterozoic
volcano-sedimentary complex that constitutes the base-
ment to the unconformably overlying marine sediment cov-
er, deposited between the latest Ediacaran and the Ordovi-
cian (O’Brien at al. 1990, 1996; van Staal et al. 2020).

The Burin Peninsula has been the subject of several map-
ping campaigns during the 20th century, including those of
Van Alstine (1948), Strong et al. (1976, 1978), and O’Brien
et al. (1977). Cambrian shelly fossils were studied by Bengt-
son and Fletcher (1983) and Landing and Westrop (1998),
and ichnofossils by Crimes and Anderson (1985) and Nar-
bonne et al. (1987), which led to the definition of the Global
Boundary Stratotype Section and Point of the Ediacaran-
Cambrian boundary at Fortune Head (Narbonne et al.
1987). Recently, the uppermost Ediacaran—-Cambrian cover
sequence of the Avalon Zone has been studied by Fletch-
er (2006), structural analyses were conducted by Mills and
Jones (2024), and Alvaro (2021) and Alvaro and Mills (2024)
have conducted detailed analyses of carbonate production
and penecontemporaneous hydrothermal activity. No de-
tailed metamorphic study of the Cambrian rocks on the
Burin Peninsula has yet been published. Hutchinson (1962)
argued that the Cambrian cover sequence on the Burin Pen-
insula displays a lower metamorphic grade than it does on
the Avalon Peninsula. Regarding the latter, Papezik (1974)
argued for an east-west gradient from prehnite-pumpellyite
to greenschist facies. However, more recent work by Aus-
termann ef al. (2021) supports a gradient from greenschists
facies at Bonavista to low-grade metamorphism and late
diagenesis westwards. Mills and Jones (2024) reported ev-
idence of contact metamorphism in areas proximal to the
Upper Devonian St. Lawrence granitic intrusion.

The South Burin area (Fig.1) is divided into three struc-
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Figure 1. Simplified geological map of the Burin Peninsula, Newfoundland, modified after Strong et al. (1978) and Mills
and Jones (2024), showing the location of sample 23AM229. Inset map shows the location of the geological map (red box)
and the Burin and Avalon peninsulas in the Avalon Zone of Newfoundland.

tural units (Strong et al. 1978), known as the West, Cen-
tral and East domains. The main stratigraphic units of the
central domain are the Ediacaran volcano-sedimentary
Marystown Group, the Cambrian Inlet Group and the Up-
per Devonian St. Lawrence Granite (Mills and Jones 2024).
The Inlet Group (Strong et al. 1978) is composed of marine
sedimentary rocks unconformably overlying the volcano-
sedimentary Burin (Strong et al. 1978) and Marystown
(Sparkes and Dunning 2014) groups. It comprises three
formations, from base to top, the Bay View, Salt Pond and
Pleasant View formations (Strong et al. 1978) (Fig. 2). The
Miaolingian Pleasant View Formation, the focus of this
research, has a lower member of grey limestone and dark
grey siltstone that grades upwards into a light green and
red mudstone, and an upper member of black, highly fissile
shale, and dark grey siltstone with light grey limestone nod-
ules (Strong et al. 1978). Both members are rich in trilobites,
reported by Van Alstine (1948) and Strong et al. (1978). The
presence of trilobites from the Paradoxides davidis and Hy-
drocephalus hicksii zones in the black shales of the upper
member provides a Miaolingian age for the unit and allows
biostratigraphic correlation with the Manuels River Forma-
tion of the Avalon Peninsula (Strong et al. 1978).

The samples studied here were collected from outcrop in
Little Lawn Harbour (46.92896°N/-55.481881°W), located
between the towns of Lawn, to the west, and St. Lawrence, to
the east. In this outcrop, the Pleasant View Formation con-
sists of black and dark grey-green shale, with pyrite veinlets
up to 5 mm thick (Fig. 3). These shales are partly silicified,
fracture conchoidally, and show tightly spaced and highly
penetrative cleavage (Mills and Jones 2024).

MATERIAL AND METHODS

Organic matter preserved in marine strata commonly
records a series of extensive biogeochemical transforma-
tions as a consequence of burial (Beyssac et al. 2002) and, in
this case study, by contact metamorphism (Mills and Jones
2024). As these transformations progress, both amorphous
and “poorly organized” organic matter, which have a sig-
nificant degree of disorder in their internal structure, grad-
ually acquire the well-ordered and crystalline structure of
graphite (Pasteris and Wopenka 2003). This biogeochemical
transformation can be tracked using different techniques:
change in colour of the organic matter from clear yellow to
black, as semi-quantified by the Thermal Alteration Index
(TAI) (Hayes et al. 1983), X-ray diffraction (Landis 1971)
and Raman spectrometry (Beyssac et al. 2002).

Sample 23AM229 is a greyish-black, laminated shale with
high pyrite content. To extract the organic walled microfos-
sils, the sample was subjected to acid digestion following the
palynological technique first developed by Vidal (1988) and
later adjusted by Palacios et al. (2022) in the Department of
Palaeontology at the University of Extremadura (UNEX),
Badajoz, Spain. The sample was shattered into small frag-
ments and macerated in 40% concentration hydrofluoric
acid for a period of two weeks. Two subsequent chemical
treatments were applied, each followed by a filtering
process: boiling in hydrochloric acid to remove the fluorides
creat-ed during the maceration, and the addition of hot
HNO, to eliminate most of the pyrite. The resulting liquids
were filtered using a 20 pm SEFAR mesh membrane,
obtaining a concentrated organic residue that was preserved
for long-term storage in ethanol.
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Figure 2. Simplified stratigraphic column of the Burin
Peninsula, Newfoundland, showing the Inlet Group, mod-
ified from Strong et al. (1978) and Mills and Jones (2024).

Transmitted light microscopy and Field Emission Gun
Scanning Electron Microscopy (FEGSEM)

Palynological slides were made using the organic residue
alongside a Petropoxy 154 resin (Burnham Petrographics
LLC). They were studied with a ZEISS Axio Imager Micro-
scope equipped with an Axiocam HRc digital camera at
UNEX. Photographs taken at different heights were com-
posited using CombineZP software. For FEGSEM analy-
sis, several drops of insoluble residue were deposited onto
a bio-adhesive strip, and the alcohol was left to evaporate.
The photomicrographs were taken using an Apreo 2S Ter-
mofisher Cryo-FEGSEM housed at the Non-Destructive
Technique Service (STND) at the National Museum of Nat-
ural Sciences (MNCN) in Madrid, employing the secondary
electrons (SE) mode, with the Everhart-Thornley detector
and at 5 kV of voltage. Some of the photomicrographs were
taken using the CRYO mode of FEGSEM, in which the sam-
ple is flash-frozen using liquid nitrogen before photography.
The specimens’ measurements were taken using Image]
(Abramoff et al. 2004) software.

Confocal Raman Spectroscopy and RSCM thermometer

Raman spectrometry has been employed extensively to
measure the degree of amorphous organic matter (AOM)
maturity, as it allows for rapid, non-destructive sampling
of different parameters simultaneously (Henry et al. 2019).
The Raman spectra of organic matter is characterized by the
presence of two main bands in the first order region (Tui-
nstra and Koenig 1970): (i) the graphite band or G-band is
located at ca. 1600 cm™ (Henry et al. 2019) and is the result
of in-plane vibration of aromatic carbons in the graphite

Figure 3. Field photograph of the Pleasant View Formation
black shale sampled for this study. Yellow arrow points to
pyrite vein; pocketknife for scale is 9 cm long.

structure (Beyssac et al. 2002); and (ii) the disorder band,
or D-band, is found at ca. 1350 cm™, and is the product of
in-plane defects caused by the presence of heteroatoms in
the crystal structure (Beny-Bassez and Rouzaud 1985). The
properties of both bands, such as peak position, intensity
ratio, or full width at half measure (FWHM), change ac-
cording to modifications in the degree of crystallinity and
the thermal evolution of the sample (Pasteris and Wopenka
2003), but can also be affected by the original complexity of
the organic matter precursor (Bower et al. 2013).

Raman spectrometry has been successfully used to mea-
sure the thermal maturity of acritarchs dating as far back
as the Mesoproterozoic and Neoproterozoic (Marshall et
al. 2005; Arouri et al. 2000; Alvaro et al. 2024). The Ra-
man Spectroscopy of Carbonaceous Materials (RSCM)
thermometer was first developed by Beyssac et al. (2002)
for metasedimentary rocks in the 330-650°C temperature
range. Lahfid et al. (2010) expanded that temperature range
to 200°C, into low-grade metamorphic conditions. In their
methodological review, Henry et al. (2019) summarized the
suitable analytical practices of this technique and associated
challenges.

The analyses were performed using the Thermofisher
XRD Raman Confocal Microscope, with attached Atlus
camera at the STND of the MNCN. The spectrometer is
equipped with an aperture of 25 pm, a 400 mm/lines grat-
ing and a spot size of 3.1 um. The sampling parameters
are adapted from the methodology of Henry et al. (2019),
modified to consider that the Raman laser available at the
MNCN has a slightly weaker 532 nm wavelength. Laser po-
tency was 0.4 MW, with a sample exposure time of 20 s, 4
sample exposures and the 50x objective. For analysis of the
standard parameters of the spectra, such as peak positions,
the intensity ratio and the FWHM of the main band peaks,
software Spectragryph (Menges 2022) was used. The digi-
tal treatment of the spectra was done applying the software
OMNIC (Thermofisher), and the spectra deconvolution was
achieved with the Peak Resolve tool.

Prior to Raman analysis, the organic residue was washed
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free of alcohol, avoiding interferences with the Raman sig-
nal of the AOM and facilitating disaggregation. To that end,
a small quantity of the residue was extracted using a Pasteur
pipette and deposited in a new vial, where it was left to set.
Distilled water was added to the vial and left in repose until
all the AOM sunk to the bottom. Then, the extra water was
removed, and the vial was filled again. This procedure was
repeated three times. Once the sample was free of alcohol,
a few drops were deposited in a strew section. The sample
points chosen all correspond to identifiable specimens. Fol-
lowing Henry et al. (2019), intra-particle variability was re-
duced, with 3-5 spectra taken at each sample point, and thin
parts and edges of the specimen were avoided. The selected
spectral range, from 2000 to 900 cm™, covers the first order
region of the AOM spectra (Tuinstra and Koening 1970).

The three best spectra of each targeted point were selected
based on their signal-to-noise ratio and their intensity and
averaged to reduce intraparticle heterogeneity. This aver-
aged spectrum was then subjected to smoothing using the
Savitzky-Golay smoothing filter with a 21-point quadratic
polynomial algorithm (Savitzky and Golay 1964). Finally,
spectra deconvolution was undertaken following the five-
band criteria of Lahfid et al. (2010), and a Voigt profile for
the bands (Beyssac et al. 2002). To calculate palaeotempera-
tures, the area ratios and linear equations of Beyssac et al.
(2002: R2), and Lahfid et al. (2010: RA1 and RA2) were
used. These three parameters were employed simultane-
ously because, based on previous indicators (Hayes et al.
1983; Bower et al. 2013) (TAI, shape of the spectra), sample
23AM?229 is believed to be located near the RA1/RA2 upper
boundary, and the R2 lower boundary. As such, using all
three ratios will offer a more accurate range, and reduce the
error associated with results that are close to the limits of
each parameter.

R2 = D1/(G+D1+D2)

RA1 = (D1+D4)/(D1+D2+D3+D4+G)
RA2 = (D1+D2)/(D2+D3+G)
TR2(°C) = —445R2+641

TRA1(°C) = (RA1-0.3758)/0.0008
TRA2(°C) = (RA2-0.27)/0.0045

XRD, Kiibler Index, and “Crystallinity
Index Standard” (CIS) for illite

The Little Lawn Harbour samples were washed, coarsely
crushed, and homogeneous chips were selected for X-ray
diffraction (XRD) analysis. For whole-rock and clay frac-
tion analysis, the samples were milled in an agate mortar
and prepared as disoriented powders and oriented aggre-
gates. The <2 pum clay fraction was extracted by repeated
centrifugation and supernatant removal, following Stokes’s
law. Oriented aggregates were obtained by sedimentation on
glass slides.

XRD analysis was conducted using a PANalytical X’Pert

Pro diffractometer (Malvern Panalytical, Malvern, UK)
with CuKa radiation (45 kV, 40 mA) and an X’Celerator
solid-state linear detector at the XRD laboratory of the
Mineralogy and Petrology Department at the University of
Granada (Spain). The measurements were taken with a step
increment of 0.008° 20 and a total counting time of 10 s/
step. Bulk rock and oriented clay analyses were also under-
taken using the STND’s non-destructive D8 Discover A25
Bruker microdifractometer, equipped with a CuKa source
and a diffraction angle 20 ranging from 2-70°. To prepare
the oriented samples at the STND, the powdered sample was
mixed with distilled water, left to decant, and the clay frac-
tion then removed again, divided into three sub-samples,
each subjected to a different treatment: (i) air dried at room
temperature; (ii) saturated in ethylene-glycol and left to air
dry at room temperature; (iii) heated to 550°C for a period
of three hours.

For illite “crystallinity” determination, sample prepara-
tion and Kiibler Index (KI) measurements followed the ex-
perimental conditions recommended by the IGCP 294 IC
Working Group (Kisch 1991). KI values (x) were converted
into CIS values (y) using the equation y = 0.972x + 0.1096
(r = 0.970), following the international standards of Warr
and Rice (1994) and Warr (2018). As KI and CIS scales are
not equivalent (Warr and Ferreiro-Mahlmann 2015), the
anchizone limits for CIS are set between 0.32 and 0.52° A20.

The measurement of the TOC content of the sample was
performed at MNCN using an elemental analyser Perkin El-
mer 2400 Series II, which measures both the total carbon
and the inorganic carbon content, thereby obtaining TOC
by subtraction of those values.

RESULTS
Macerated residue

The study of the organic residue using the transmitted
light microscope, the Confocal Raman spectrometer and the
FEGSEM has shown that its principal component consists
of monospecific associations of Bavlinella faveolata (Fig.
4a-g), encased in meshworks of amorphous organic matter
(Fig. 4d, ). Clusters of <5 um long needle-like crystals (Fig.
4d), have been identified as rutile accumulations based on
their Raman spectra. The AOM shows a significant degree
of thermal alteration, with a black colour indicating a TAI =
5 (Hayes et al. 1983). In FEGSEM, the AOM is revealed to be
composed, to a significant degree, by partly degraded debris
of Bavlinella faveolata (Fig.4e, g).

Raman parameters and RSCM

The Raman spectra of both AOM remains and individu-
alized specimens share the same arrangement, with two nar-
row bands separated by a saddle, with the D1-band located
at ca. 1344.52 + 1.25 cm™ and the G-band at ca. 1596.84 +
1.24 cm™ (Fig. 5a). The D1-band is the strongest, leading to
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R1 ratio of 1.17 + 0.02, and wider, with a FWHM of 74.62
+ 2.62 cm’, in contrast to the G-band’s at 53.74 + 2.79 cm™.
The saddle is only visible in the spectra that record the high-
est intensities, probably due to the low voltage employed.
After deconvolution (Fig. 5b), the position of D4 (1279.13
+2.79 cm!) and D3 (1547.49 + 3.98 cm™!) bands shifts to-
wards higher positions. D2 occurs in the expected position
at 1618.75 + 0.72 cm™ (Table 1).

The average area ratio values obtained are: R2 = 0.67 +
0.03, RA1 = 0.65 + 0.01 and RA2 = 1.65 + 0.09, which cor-
respond to mean temperatures of T(R2) = 343.71 + 12.38°C,
T(RA1) = 339.36  16.45°C, and T(RA2) = 305.81 + 20.85°C.
The lowest temperature recorded is 271.97 * 20.85°C at
sample point 7, and the highest is 365.70 £ 16.45°C at sam-
ple point 8 (Table 2).

XRD and illite crystallinity

The bulk rock diffractogram from the STND indicates
that the sample powder is composed of quartz, illite, cham-
osite, pyrite and albite (Fig. 6a). There is no visible shift in
peak position between the air-dried sub-sample and the
ethylene-glycol saturated subsample (Fig. 6b). The CIS val-
ues obtained using the equation referenced in the method
section oscillate between 0.33-0.42, with an average of 0.37
+0.04.-

Total organic carbon (TOC)

The Bernard calcimeter reports that the total percentage
of carbon in the sample is 0.35%, of which 0.15% is carbon-
ate and 0.20 % is TOC.

SYSTEMATIC PALAEONTOLOGY
Phylum Cyanobacteria Stanier et al. 1978

Genus Bavlinella (Schepeleva) Vidal 1976

Type species. Bavlinella faveolata Shepeleva 1962, emended
Vidal 1976

Bavlinella faveolata Shepeleva 1962, emended Vidal 1976
Fig. 4a—c, f—h1

Remarks. Bavlinella faveolata was first defined as Bavli-
nella faveolatus by Shepeleva (1962). Subsequently, Moor-
man (1974) described the species Sphaerocongregus varia-
bilis, which Vidal (1976) interpreted as a junior synonym
of Bavlinella faveolata. However, Muir (1977) and Foster et
al. (1985), among others, argued that the specimen from
Visingsé (Sweden) illustrated by Vidal (1976) was a fram-
boidal pyrite. In subsequent articles the name Sphaerocon-
gregus variabilis was used (Mansuy and Vidal 1983; Vidal
and Nystuen 1990). Nevertheless, German et al. (1989)
had already designated a lectotype for Bavlinella faveolata
based on material from the Kotlin Formation (Gaucher et al.
2003), further illustrated by Schopf (1992). Therefore, due
to the official designation of a lectotype, Sphaerocongregus
variabilis Moorman (1974) should be considered a junior
synonym of Bavlinella faveolata (Gaucher et al. 2003).

Material. Hundreds of specimens were prepared in paly-
nological slides and FEGSEM preparations, made with the
residue obtained after palynological maceration of partly
silicified black shales extremely rich in authigenic and fram-
boidal pyrite. The specimens show varying degrees of physi-
cal degradation and a high degree of thermal alteration.

Description. In thin-section (2D), each specimen is
sub-rounded, with a surface composed of small subspherical
cells, only visible in rare semi-transparent individuals (Fig.
4a), the vast majority being too opaque to see through (Fig.
4b). In the Darkfield mode of the Confocal Raman spec-
trometer, it is possible to observe the surface of opaque spec-
imens, although not in great detail (Fig. 4c). The FEGSEM
photomicrographs yield distinct views of 3D morphologies.
Isolated specimens are rare, the majority appearing in ag-
gregates of 2-3 spheres (Fig. 4f). In the best-preserved spec-
imens, it is possible to distinguish a thin outer vesicle layer,
covering a hexagonal honeycomb pattern emphasizing its
positive relief (Fig. 4g, h,). The cells in the pattern are hol-
low, separated by thin walls and, in most specimens, dam-
aged and deformed to different degrees (Fig. 4f, g). Smaller

Figure 4. (next page) (a) Photomicrograph of a semi-transparent specimen of Bavlinella faveolata in thin section. (b). Pho-
tomicrograph of an opaque specimen of Bavlinella favelota in thin section. (c) Photomicrograph of an opaque specimen of
Bavlinella faveolata as seen in darkfield mode in the Confocal Raman Microscope. Once darkfield mode is active, the inte-
rior morphology seen in the semi-transparent specimens becomes visible. (d) Photomicrograph of a cluster of amorphous
organic matter (AOM), in which some specimens of Bavlinella faveolata are visible. The red arrows point to rutile crystals.
(e) FEGSEM photomicrograph of AOM showing that its main components are degraded fragments of Bavlinella faveolata.
(f) CRYO-FEGSEM photomicrograph showing a degraded association of at least four vesicles of Bavlinella faveolata. The
hollow interior of the vesicles is visible. (g) CRYO-FEGSEM photomicrograph showing a meshwork of AOM composed of
degraded specimens of Bavlinella faveolata (left), and an individual vesicle that preserves part of the outer layer (right). In
the lower half of the vesicle, the outer layer has been destroyed, leaving the hexagonal cells visible. (h) FEGSEM photomi-
crograph of several specimens of Bavlinella faveolata alongside rutile crystals (red arrows). The specimens differ in size and in
the density of a honeycomb pattern. (h,) Close up of (h), in which the outer vesicle layer is visible, covering most of the
hexagonal cells. Scale bars: a,b =5 um; c-e, h =10 um; f, g, h, =4 um.
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specimens have a denser distribution of smaller cells that are
not as distinctly hexagonal in shape as those found in larger
individuals (Fig. 4g).

Dimensions. In thin-section, specimens range in diameter
from 3.1 to 9.1 pm (mean = 5.73 pm, ¢ = 1.58 um, N = 31),

and the cells are too small to be measured with the ZEISS
microscope. In FEGSEM, the size of individual specimens
ranges from an outlier of 3.27 to 12.39 um (mean = 5.94
pum, o = 2.85, N = 10). Cell sizes range from 0.30 to 1.15
pum (mean = 0.54, 0 = 0.25, N = 18). It is remarkable that
even the best-preserved specimens display deformed and
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Figure 5. (a) Overlapping Raman spectra of nine sampled points, after averaging and smoothing. (b) Deconvolution of the
Raman spectrum corresponding to sampling point 8, with the five bands in colour. Black line indicates the averaged and
smoothed spectrum prior to deconvolution, the red dashed line the fitted spectrum obtained with Peak Resolve.

damaged cells, somewhat controlling the final size and
shape of the specimens.

Comments. Bavlinella faveolata is a cosmopolitan fossil,
with a chronological range from the Cryogenian to the
Ordovician (Gaucher and Sprechman 1999; Reitz 1991)
and possibly reaching the Carboniferous (Shkrebta et al.
1973). It has been reported from the Iberian Peninsula
(Palacios 1983; Alvaro ef al. 2024), the Volga-Ural province
(Shepeleva 1962), the East European Platform (German et
al. 1989; Schopf 1992), South Africa (Gaucher and Germs
2006), Namibia (Gaucher et al. 2005), Germany (Pflug and
Reitz 1992), Uruguay (Gaucher 2000; Frei et al. 2013), Brazil

Table 1. Band position and FWHM.

(Chiglino et al. 2015), and Norway (Palacios et al. 2022). In
Norway (Vidal and Nystuen 1990), South Australia (Foster
et al. 1985), Arizona, USA (Nagy et al. 2009), and Alberta,
Canada (Moorman 1974), some specimens have also been
reported as Sphaerocongregus variabilis.

Although Bavlinella faveolata is abundant after acid mac-
eration of black shales (Palacios et al. 2022), it has also been
reported from thin-sections of chert (Frei et al. 2013) and
black limestone (Chiglino et al. 2015), and as etching res-
idue of phyllitic mica schists (Pflug and Reitz 1992), ker-
ogenous marlstones and limestones (Gaucher et al. 2005;
Gaucher and Germs 2006), and greywackes and siltstones
(Gaucher et al. 2003; Alvaro et al. 2024). Variably preserved

Sample D1 D2 D3

Point

position position position position position

D4 G D1 G
FWHM FWHM

P1 13449 1618.81 1547.26
p2 1343.6 1618.78 1544.24
P3 1347.1 1620.02 1550.95
P4 1344.3 1618.71 1544.61
P5 13432 1617.68 1546.16
P6 1345 1617.75 1545.01
p7 13454 1618.79 1548.31
12 1344 1619.39 1544.51
P9 1343.2 1618.85 1556.34
Average 1344.52 1618.75 1547.49
o (1) 1.25 0.72 3.98

1277.91 1598.1 75.32 53.591
1281.76 1595.2 76.357 55.406
1274.83 1595.8 70.983 51.968
1280.85 1597.4 76.109 54.539
1280.55 1595 73.354 54.359
1276.95 1597.4 76.109 54.539
1282.82 1598 71.834 52.543
1280.54 1596.6 79.075 54.992
1275.98 1598.1 72.477 51.764
1279.13  1596.84 74.62 53.74

2.79 1.24 2.62 1.35
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Table 2. RSCM results and corresponding temperatures.

Sample T=°C T=°C T=°C
R1 R2 RA1 RA2

Point (R2) (RAD) (RA2)
P1 1.17 0.67  0.66 1.74 340.81 358.03 327.74
P2 1.17  0.68 0.64 1.62 338.85 330.09 299.97
P3 1.21 0.65 0.65 1.65 351.13 346.47 307.39
P4 1.16 0.66  0.65 1.62 346.44 337.64 300.06
P5 1.17 0.66  0.63 1.60 346.23 318.66 295.47
P6 1.19 072 066 174 322.57 349.58 325.78
pP7 1.16 0.62 0.63 1.49 365.24 322.62 271.97
P8 1.19 0.7 067 178 331.04 365.7 336.48
P9 1.14  0.65 0.64 1.56 351.11 3254 287.47
Average 1.17 067  0.65 1.65 343.71 339.36 305.81
o (%) 0.02 0.03 0.01 0.09 12.38 16.54 20.85

microfossils in sedimentary rocks recording low-grade
metamorphism have been reported by Foster et al. (1985)
and Downie et al. (1971). Foster et al. (1985) argued that,
because of their composition and small size, specimens of
Sphaerocongregus variabilis (= Bavlinella faveolata) are re-
sistant to tectonometamorphic effects.

Recovery of abundant remains of Bavlinella faveola-
ta offers a unique opportunity for the application of the
RSCM thermometer due to: (i) its long chronological range;
(ii) its cosmopolitan character; (iii) its simple extraction via
acid maceration, although time consuming, yielding many
specimens and a high number of targeted points for anal-
ysis in strew section; and (iv) its uncomplicated taxonomic
identification under both confocal Raman microscopy and
FEGSEM microscopy, as its morphology is not deeply dam-
aged by low grade metamorphism (Downie et al. 1971; Fos-
ter et al. 1985), preserving most of its volume and features
intact up to the beginning of the greenschist facies (Stanev-
ich et al. 2005).

DISCUSSION

Bavlinella faveolata has been interpreted as both micro-
bial remains and dubiofossils. Originally, Shepeleva (1962)
defined the species based on 2D thin-sections, but Vidal
(1976) assigned to the species one specimen illustrated with
3D stereoscan photomicrographs, which was later identified
as a framboidal pyrite (Muir 1977; Foster et al. 1985). Muir
(1977) suggested subsequently that the genus Bavlinella
Shepeleva 1962 may represent a junior synonym of Pyrito-
sphaera Love, 1958, a framboidal pyrite mixed with inter-
crystalline amorphous organic matter (see also MacLean
et al. 2008: fig. 2A). This confusion raised doubts about the
taxonomic validity of the species. However, subsequent il-
lustrations in 2D and 3D of Bavlinella faveolata, alongside
analysis of its organic content, have been reported from
Cryogenian to Carboniferous strata (Shkrebta et al. 1973;

Chiglino et al. 2015; Gaucher et al. 2005, 2008; Prasad et al.
2010; Vavrdova 2008; Yin and Yuan 2007). Recently, Alvaro
et al. (2024) supported a cyanobacterial affinity for speci-
mens of Bavlinella faveolata in material extracted from the
uppermost Ediacaran greywackes of the Cijara Formation
in Spain, based on: (i) Raman spectra of both the micro-
fossils and their associated (partly degraded) AOM, and (ii)
some characteristic biomarkers containing the alkanes 17:1
and 7-methyl-heptadecane together with the saturated fatty
acids 16:0, the unsaturated fatty acids 18:1w7, 16:1 w7, 18:2
w6 and 18:3 w6, and hexose and pentoses, sugar moieties
that are part of heterocyst glycolipids.

In general, Bavlinella faveolata is commonly found in
rocks that originated in dysoxic to anoxic environments
(Frei et al. 2013). Massive occurrences of Bavlinella faveo-
lata-dominant (nearly monospecific) assemblages in Neo-
proterozoic strata have been interpreted as cyanobacterial
blooms related to the eutrophication of vast oceans (Gau-
cher et al. 2008; Nagy et al. 2009; Alvaro et al. 2024). How-
ever, since Cambrian times, their occurrences are no lon-
ger monospecific, and specimens co-occur as subsidiary
elements mixed with chronostratigraphically diagnostic
acritarchs (Yin et al. 2018; Le Hérissé et al. 2017; Palacios
et al. 2022).

The main taxonomic problem of this genus and species,
commonly found as spherical aggregates, relates to their
traditional 2D characterization, where part of their image
is necessarily out of focus. Considering the lack of distinct
diagnostic characters in 2D and the similar morphology
currently exhibited by some cyanobacteria (such as Mi-
crocystis Kiitzing, 1833, a unicellular cyanobacterial genus
bearing gas-filled vesicles and lacking individual sheaths
and known to regulate its buoyancy and form dense blooms;
Den Uyl et al. 2021), the morphotype of Bavlinella faveolata
does not necessarily represent a single biological species but
may represent a “wastebasket taxon” (Plotnick and Wagner
2006), a designation for specimens whose correct identifica-
tion is essentially impossible (“taphonomic wastebasket”) or
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Figure 6. (a) X-ray diffraction (XRD) diffractogram of sample 23AM229, with peaks corresponding to the main compo-
nents of the sample. (b) XRD of oriented clay aggregates after being left to dry at room temperature (black), hydrated with
ethylene-glycol (red), and heated up to 550°C for three hours (blue).

have been erroneously described and classified (“systemic
wastebasket”). Bavlinella faveolata’s simple morphology in
thin-section (circular disks with sub-spherical surfaces that
are not commonly visible in transmitted light) has led to
inappropriate assignations with other organic or inorganic
components, such as framboidal pyrite (Muir 1977; Foster
et al. 1985; MacLean et al. 2008). For a correct identification
of this taxon, SEM microphotography is a fundamental step.

Recently, Palacios et al. (2022) reported that the vesicles of
Bavlinella faveolata obtained from Miaolingian black shales

of Norway are not degraded. Based on this observation, the
authors suggested that the taxon may be a sulphur-reducing
bacteria linked to the degradation of organic matter and py-
rite formation. Because 2D illustrations lack the necessary
resolution to determine the degree of degradation of indi-
vidual vesicles, or to identify the AOM components, 3D im-
ages are necessary to solve this question. The degradation of
the Pleasant View Formation specimens is visually distinct
(Fig. 4e-g). Most vesicles have completely lost their outer
layer, and their hexagonal honeycomb pattern is incomplete,
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deformed and damaged (Fig. 4e-h). Degraded fragments of
Bavlinella faveolata constitute also the main component of
the AOM meshwork (Fig. 4f). Furthermore, monospecific
organic remains have so far only yielded specific cyanobac-
terial biomarkers (Alvaro et al. 2024).

To determine peak metamorphic temperatures, several
parameters are commonly used to constrain temperature
ranges, such as the degree of thermal alteration of the or-
ganic-walled microfossils, characterized with transmitted
light microscopy. The black microfossils correspond to a
TAI = 25 (Hayes et al. 1983), indicating temperatures in the
250-400°C range (Stanevich et al. 2005). A CIS value of 0.37
+ 0.04 places the rocks of Little Lawn Harbour slightly above
the anchizone-epizone boundary (0.32 A20), in the an-
chizone (Warr and Ferreiro-Mahlmann 2015), correspond-
ing to a temperature between 200-300°C, but closer to the
300°C boundary.

Another key indicator for the anchizone is the absence
of smectite (Kiibler 1967). As burial depth increases, smec-
tite progressively transforms into mixed smectite-illite in-
terlayers (at a temperature of 104°C), and finally, into pure
illite (at 137°C) (Aoyagi and Asakawa 1984). Smectite layers
tend to hydrate and swell when exposed to ethylene-glycol,
causing a shift in the peak positions compared to those of
the air-dried sample and these interlayers can be detected
by a shift in the oriented clay fraction diffractogram. This
shift is absent in our diffractograms, indicating an absence
of smectite in the illite structure (for further discussion, see
Austermann et al. 2021).

The Raman spectra obtained from the specimens of
Bavlinella faveolata show an arrangement similar to those
obtained by Lahfid et al. (2010) for rocks of ca. 300°C.
Both the D1 and G-bands are narrow, D1 is much narrow-
er than in more poorly organized AOM, and the D4 shoul-
der is much less pronounced (Bower et al. 2013; Alvaro
et al. 2024), which supports a temperature above 250°C.
The G-band peak position is located at 1596.84 + 1.24
cm™, which agrees with Beyssac et al. (2002) position of the
G-band shifts, ranging from 1600 cm™ to ca. 1580 cm, as a
result of the progressive increase in the metamorphic grade.
A peak position <1600 cm! indicates a metamorphic tem-
perature equal to or higher than 200°C (Rahl et al. 2005).
The intensity ratio between the two bands, R=1.17 + 0.02, is
>1, which corresponds to temperatures above 300°C (Lahfid
et al. 2010) as the intensity of the D-band increases with the
metamorphic grade and reaches a maximum at the chlorite
facies (lower greenschist), at ca. 300°C, and then decreases,
due to the elimination of the crystal lattice defects as perfect
graphitic order is approached (Wopenka and Pasteris 1993).
This shift is coincident with the split between the G and D2
bands, which are impossible to be separated at lower grades
(Lahfid et al. 2010).

Although the Peak Resolve software is able to identify all
five bands, both D4 and D3 are displaced towards higher
wavenumbers (D4 = 1279.13 + 2.79 cm’'; D3 = 1547.49 +
3.98 cm™) than those recorded by Lahfid et al. (2010), 1200
cm™ and 1500 cm™, respectively. This shift is probably con-

trolled by a combination of factors that can induce error in
the Raman spectrum (Henry et al. 2019), such as: (i) dif-
ferences in the equipment and experimental setup (e.g.,
the type of Raman spectrometer used), laser wavelength or
sampling parameters; (ii) use of different spectra processing
methods, particularly the digital deconvolution of the spec-
tra, as there is no consensus regarding the number of bands
or the best-fit profile: e.g., Beyssac et al. (2002) used four
bands with a Voigt fit, Lahfid et al. (2010) used five bands
with a Lorentzian fit, and Henry et al. (2019) argued against
deconvolution and suggested the application of automated
spreadsheet procedure for low maturity samples); (iii) dif-
ferences between sample media: e.g., petrographic thin sec-
tions (Beyssac et al. 2002), polished kerogen blocks or strew
sections; (iv) intra-particle variety and the type of organic
matter employed (amorphous organic matter, phytoliths,
coals, or identifiable microfossils).

The R2 parameter (Fig. 7a) (R2 = 0.67 £ 0.03) places sam-
ple 23AM229 inside the chlorite zone (lower greenschist fa-
cies) (Beyssac et al. 2002). Two sample points, P6 and P8,
have an R2 value >0.7, which indicates a temperature below
330°C. However, these outliers could be the result of in-
trasample heterogeneity (Henry et al. 2019). The RA1 (Fig.
7b) (0.65 + 0.01) and RA2 (Fig. 7c) (1.65 + 0.09) ratios and
their corresponding temperatures (339.36 + 16.64°C and
305.81 + 20.85°C) also fall within the lower greenschists fa-
cies. The R2 and RA1 parameters show a degree of overlap in
the higher temperature range, although RA2 is significantly
lower. The transformed CIS values of the five samples used
for illite “crystallinity” place below the anchizone-epizone
boundary, delimiting the lower temperature limit (Fig. 7d).

The dispersion values o f t he a rea r atios c orrespond t o
temperature errors of 15.39°C (R2 = + 0.03), 5.22°C (RAl
=+ 0.01) and 16.68°C (RA2 = £ 0.09). The 0 of R2 is sig-
nificantly lower than the + 0.08 reported by Beyssac et al.
(2002), likely owing to the Henry et al. (2019) methodolo-
gy, which reduces the inherent sampling error and the data
dispersion caused by intra-sample heterogeneity. Lahfid et
al. (2010) also reported a o of + 0.01 for RA1, whereas for
RA2, the o falls within their reported range. Beyssac et al.
(2002) considered the RSCM thermometer to have an ex-
pected maximum error of + 50°C. Again, all three tempera-
ture measurements show a ¢ below that error when convert-
ed to degrees (R2 = + 12.38°C, RA1 = + 16.54°C, RA2 = *
20.85°C).

The combined results of XRD analysis and Raman palae-
othermometer proxies allow establishment of an upper and
lower boundary for the peak metamorphic temperature of
sample 23AM?229. The standardized CIS and the RA2 pa-
rameters delimit a lower boundary close to 300°C, a tem-
perature that marks the anchizone-epizone boundary. The
R2 and RA1l parameters, on the other hand, suggest a
maximum temperature between 325 and 350°C, within the
epizone. In areas with a steep geothermal gradient, such as
contact metamorphism zones, the KI and vitrinite reflec-
tance decouple, due to the lower rate of change in clay min-
erals compared to organic matter (Srodon 1979). This likely
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Figure 7. (a) Results of the R2 parameter for the nine sampling points; error bars = 0.03. (b) Results of the RA1 parameter
for the nine sampling points; error bars = 0.01. (c) Results of the RA2 parameter for the nine sampling points; error bars =
0.08. (d) Graphic representation of the temperature range obtained for each sampling point by each parameter, alongside

the CIS transformed values obtained via X-ray diffraction.

accounts for the slightly lower temperature estimation
based on the CIS results relative to those based on RA2.

CONCLUSIONS

The study of Miaolingian black shales from Little Lawn
Harbour (Burin Peninsula, Newfoundland) has reported
the presence of monospecific associations of the cyano-
bacterium Bavlinella faveolata, and increased the current
knowledge regarding the metamorphic evolution of the
Burin Peninsula. Bavlinella faveolata is a cosmopolitan and
stratigraphically long-ranged taxon currently associated
with eutrophication processes, despite its problematic tax-
onomic history. The specimens reported in this work show
varying degrees of degradation under thin-section (2D) and
FEGSEM (3D). In 3D, their morphology is characterized by
spherical forms with a honeycomb cell pattern, with a thin
outer vesicle layer that is frequently damaged. The mesh-
work of amorphous organic matter that is visible in the pal-
ynological slides is confirmed to consist of degraded debris
of Bavlinella faveolata fragments.

The illite crystallinity, the Raman Spectrometry of Car-
bonaceous Material (RSCM) thermometer, the shape and
characteristics of the Raman spectra, and the Thermal
Alteration Index of the Bavlinella faveolata specimens
from sample 23AM229 place it with relative certainty in
the 300-350°C range. Two of the Raman thermometers (R2
and RA1) mark the upper boundary of the measure-
ments, with average temperatures of 343.71 + 12.38°C (R2)
and 339.36 + 16.45°C (RA1), corresponding to beginning of
the epizone and the greenschist facies. The RA2 thermo-
meter and the Crystallinity Index Standard (CIS) values
indicate a lower boundary, with a slight decoupling bet-
ween them. RA2 indicates an average temperature of
305.81 + 20.85°C, with half the datapoints above the deep
anchizone-epizone boundary. However, the CIS values
place consistently right below or close to the boundary,
with an average value of 0.37 + 0.04. These metamorphic
temperatures are consistent with the contact metamorph-
ism in proximity to the St. Lawrence Granite and the
strong geothermal gradient generated by contact meta-
morphism also explains the discrepancies between the
RSCM and the CIS results.
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