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Environmental Changes at Port au Choix as
Reconstructed from Fossil Midges

SANDRA M. ROSENBERG, IAN R. WALKER,

and JOYCE B. MACPHERSON

INTRODUCTION

THE NORTHWESTERN COAST of the island of Newfoundland offers many potentially

rich and exciting sites for palaeoenvironmental exploration. Intensive archaeologi-

cal research at Port au Choix has led to the discovery of numerous, well-preserved

prehistoric sites identified as Maritime Archaic Indian (MAI; Tuck 1976), Dorset

and Groswater Palaeoeskimo (Harp 1964; Renouf 1994), and Recent Indian (Teal

2001). Archeological evidence can thus be compared to other palaeoenvironmental

records to determine whether correlations exist.

Most terrestrial palaeoclimate reconstructions for Newfoundland have been

inferred from palaeobotanical evidence (Macpherson 1982, 1995a, 1996; Ander-

son and Macpherson 1994). More recently, however, aquatic midges (especially

the Chironomidae, or non-biting midges) have emerged as a promising new tool for

palaeoclimate reconstructions (Battarbee 2000). This paper presents the first

midge-based climate reconstruction for Newfoundland. Reconstructed summer

lake water temperatures at Bass Pond are correlated to the initial settlement and

subsequent migration and extinction of past cultures in the Port au Choix region.

Furthermore, although midges are recognized as useful palaeosalinity indica-

tors, they have seldom been used as sea-level indicators (Walker 2001). We use a

midge palaeosalinity inference model to demonstrate that midge records may yield

important data relevant to coastal emergence and submergence patterns.
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FOSSIL MIDGES AS PALAEOENVIRONMENTAL INDICATORS:

A BRIEF REVIEW

Chironomids (Class Insecta, Order Diptera) are common aquatic insects. Their life

cycle includes four distinct stages: egg, larva, pupa and adult (Figure 1). The adult

flies deposit eggs in water which later hatch into larvae. As larvae they are one of

the most abundant organisms living in the bottom substrata of lakes, ponds and

streams (Walker 1987). The larval stage consists of four consecutive instars

(stages). At the end of each instar, a chitinous head capsule is shed. These head cap-

sules (Figure 2) provide the basis for palaeoenvironmental assessments (Walker

2001). At the end of the fourth instar, the larvae pupate and later emerge as adult

non-biting midges.

Midges have become important for palaeoclimatic studies because their re-

mains are abundant and well preserved in lake sediments. In addition, the short life

cycles of these insects (typically about one year in much of southern Canada) allow

them to respond rapidly to changes in environmental conditions that may affect the

lake (e.g., chemistry, temperature). As there are many different midge species, each

with distinct ecological requirements, their assemblages in lake sediments can be

good indicators of present and past ecological conditions (Walker 1987, 2001).

By examining fossil midge assemblages within each stratigraphic level in a

lake sediment core, it can be determined how the assemblages have changed over

time. By identifying the preserved head capsules of various Chironomidae, and ex-

amining how the species assemblage has changed over time, we may infer how cli-

mate and other aspects of the environment have changed.

Midge assemblages can be used to reconstruct water oxygen content, lake wa-

ter acidity, and other water quality variables including, as is the focus of this paper,

temperature and salinity (Walker 2001). Many recent studies in the Maritime prov-

inces have used midge-temperature inference models to quantitatively reconstruct

past climates and late-glacial climatic oscillations (i.e., the Killarney Oscillation

and the Younger Dryas; Walker et al. 1991; Levesque et al. 1993, 1997). Walker

(2001) provides a more extensive review of their use in palaeoecology.

Early midge research was qualitative, based, for example, on the subjective in-

terpretation of changes in the abundance of cold-adapted species (Walker and

Mathewes 1987). Recently, a more quantitative approach has been used. A mathe-

matical model or transfer function derived from multivariate statistics is used to

quantify the correlation between modern midge assemblages and surface water

temperature. Ultimately, these models allow water or air temperatures to be quanti-

tatively reconstructed (cf. Walker et al. 1997).

Past climatic changes would have affected the diverse resources required by

prehistoric cultures. Thus, in response to climate change, aboriginal people may

have either adapted their hunting, fishing, and survival technologies to the chang-

ing environment, or abandoned settlements and migrated to better locations. If the
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Figure 1. Chironomid life cycle (adapted from Walker 1987).

Figure 2. Fossil head capsule of Cricotopus ornatus type, Bass Pond (170-cm

level).



people could not cope with the changing climate and resources, they and their cul-

ture would eventually disappear. Since midges are thought to be good indicators,

they will be used to reconstruct past climatic changes, and to determine whether

correlations exist with the archaeological records.

Midges are also sensitive to salinity and therefore fossil midge assemblages

can be used to reconstruct the palaeosalinity history of a lake (Walker et al. 1995).

Recent studies in western North America have related changes in salinity to climate

(Heinrichs et al. 1997, 2001). However, since Bass Pond lies adjacent to the ocean,

past changes in its salinity were likely driven by sea-level changes and salt-water

intrusions from the Gulf of St. Lawrence during storms.

PORT AU CHOIX CASE STUDY

Methods

Field and Laboratory Methods

Bass Pond is a small (~ 6.5 ha) lake, 9 metres above sea level, to the west of Port au

Choix (Figure 3). It was sampled in the spring of 1993, using a Livingstone-type

piston corer. A 210-centimetre-long core was removed from the deepest area of the

pond (0.95 m). The core was then wrapped in aluminum foil and stored in a cold

room at 4°C.

The sediment core was subsampled every 5 centimetres. Subsamples normally

consisted of 1 cubic centimetre of sediment, but in some instances up to 2 cubic

centimetres were examined in order to obtain a minimum of 50 chironomid head

capsules per interval. Only the top 170 centimetres of the core was used, because

the intervals from 175 to 210 centimetres contained too few head capsules to be sta-

tistically useful. Although the interval from 175 to 180 centimetres had only nine

head capsules, five of these nine were noted as being morphologically very similar,

or identical, to Cricotopus ornatus (Figure 2), an indicator of saline conditions

(Walker et al. 1995; Heinrichs et al. 1997).

Isolation of midge head capsules from the lake sediment followed the proce-

dures outlined by Walker (2001). Midge head capsules were identified at x100-400

magnification. Identifications were based on descriptions from keys by Oliver and

Roussel (1983), Wiederholm (1983) and Walker (1988, 1996-2000). If a midge

head capsule had more than half of a complete mentum (the principal toothed

mouthpart of the insect, Figure 2), it was counted as one head capsule. If it con-

tained exactly half of a mentum, it was counted as one half. Head capsules retaining

less than half of the mentum were not counted.
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Statistical Methods

TILIA (version 2.0.b.4) was used to collate the raw data and a midge percentage dia-

gram was generated in TILIA-GRAPH (version 2.0.b.5). The program CONISS was

used to perform a stratigraphically constrained incremental sum-of-squares cluster

analysis (Grimm 1987). This allowed intervals with major changes in midge com-

munities to be distinguished throughout the core (Figure 4).

A midge-temperature inference model for Atlantic Canada developed by

Walker et al. (1997) was used to infer summer surface-water temperatures for each

interval in the core. This mathematical model demonstrates a significant relation-

ship between summer surface-water temperatures and midge assemblages.

Since no midge-salinity inference model is available for eastern Canada, a pre-

liminary reconstruction was attempted based on a mathematical model developed

by Heinrichs et al. (2001) for western Canada. In using this model it is assumed that

the midge-salinity relationships are similar in eastern and western Canada. The va-

lidity of this assumption needs to be carefully tested in future work, particularly in

coastal/estuarine locations.

RESULTS

Chronology

All dates in the text have been converted to calibrated calendar years (cal BP; Table

1). A median basal date of 10,057 cal BP
1

was obtained for the 210-200-centimetre

interval in Bass Pond through bulk radiocarbon dating (Table 1). This date has an

unusual
12

C/
13

C ratio (R. McNeely pers. comm.). It is possible that “radioactively
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Figure 3. Map indicating the location of Bass Pond near Port au Choix, Newfound-

land.
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Figure 4. Midge percentage diagram from Bass Pond.
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dead” carbon in the underlying carbonate rocks may have been incorporated into

the sediment, producing a date that appears older than the actual age of the sedi-

ment. This seems likely since the Bass Pond sediment core contained high quanti-

ties of carbonates. Similar contamination effects have been noted at other sites in

Atlantic Canada (Wolfe and Butler 1994; Stea and Mott 1998; Andrews et al. 1999)

and elsewhere.

Radiocarbon dating using the atomic mass spectrometry method was carried

out on terrestrial plant fossils from five other levels in the core (Table 1). Ages for

other depths in the core were estimated by linear interpolation.

ZONE DESCRIPTIONS

The fossil record illustrates distinct fluctuations in the midge assemblages, based

on the percentage abundances of individual midge species (Figure 4). In addition to

chironomids, data are presented for Bezzia and Dasyhela-type biting midges

(members of the family Ceratopogonidae). The diagram has been divided into five

midge assemblage zones (BPC-1 through BPC-5; Table 2) based upon

stratigraphically constrained incremental sum-of-squares cluster analysis. Zones

mark where major changes in midge community composition occur and thus may

relate to significant changes in palaeoclimate, palaeosalinity, or both. Some midge

taxa are abundant throughout all five assemblage zones and thus are not useful as

discriminators of environmental change. These ubiquitous taxa include members

of the subtribe Tanytarsina (e.g., Tanytarsus lugens type, Tanytarsus sp. C type), as

well as the Tribe Pentaneurini.
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BPC-1 (9000 to 7900 cal BP)

In BPC-1, an increase in warm-adapted midges (e.g., Chironomus and

Dicrotendipes) was observed (Figure 4). Chironomus is predominant in temperate

lakes with summer bottom-water oxygen depletion (Walker 1987). Dicrotendipes

is a midge widely distributed south of treeline (Oliver and Roussel 1983). These

data may relate to a warming trend often seen in the early Holocene.

BPC-2 (7900 to 6500 cal BP)

A decline in temperate midge taxa (e.g., Chironomus and Dicrotendipes) was noted

in BPC-2 (Figure 4). An apparent lack of cold-adapted species is generally noted in

this zone, although towards the end of the zone a few fossils of the cold-water

midge Heterotrissocladius were noted. Heterotrissocladius is abundant in arctic

lakes as well as cold bottom waters of deep, pristine lakes in southern Canada

(Walker et al. 1997). Since this pond is shallow, there is no summer refuge for

cold-water insects in this lake. Consequently, most of the climate-inferred assess-

ments in this study are based on the presence/absence of warm-adapted midge taxa

which are mostly characteristic of shallow, near-shore environments.

BPC-3 (6500 to 4900 cal BP)

The significant reduction in overall midge abundance at the beginning of zone

BPC-3 marks this zone change (Figure 4). The head capsule concentration de-

creased at the 110-centimetre interval, approximately 6500 cal BP (Figure 5); the

average count below 100 centimetres was 325 head capsules per cubic centimetre,

and the average above 100 centimetres was 86 head capsules per cubic centimetre.

An increase in the abundance of several warm-adapted midge taxa (e.g.,

Microtendipes, Polypedilum, and Stempellinella/Zavrelia) was also observed.

Both Microtendipes and Polypedilum are midges widely distributed south of

treeline (Oliver and Roussel 1983).

BPC-4 (4900 to 2400 cal BP)

In Zone BPC-4, Cladopelma, Microtendipes, and Stempellinella/Zavrelia in-

creased, at least initially, whereas Chironomus, Dicrotendipes, and Polypedilum

decreased (Figure 4). All of these taxa are warm-adapted (Walker et al. 1997). To-

wards the end of zone BPC-4, several taxa (Stempellinella/Zavrelia,

Endochironomus, Glyptotendipes, and Microtendipes) declined. All of these taxa

are warm-adapted with distributions extending little, if at all, into arctic or alpine

environments (Walker et al. 1997).
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Figure 5. Midge-inferred palaeoenvironmental data for Bass Pond: head capsule

concentrations in Bass Pond sediments, inferred maximum summer surface-water

temperatures, and palaeosalinity reconstruction.



BPC-5 (2400 cal BP to the present)

In BPC-5, a resurgence of temperate midge taxa (e.g., Chironomus, Dicrotendipes,

and Microtendipes) was observed (Figure 4). Dicrotendipes and Microtendipes are

characteristic of warm, shallow-water habitats (Walker et al. 1997). Walker et al.

(1997) have estimated the temperature optimum for Chironomus at 24.7ºC; how-

ever, the genus is widely distributed, with some Chironomus species’ distributions

extending even into the high arctic (Walker 1988).

Quantitative Midge Palaeotemperature Estimates

A midge-temperature inference model developed by Walker et al. (1997) was used

to reconstruct temperature changes from Bass Pond’s midge fossil record (Figure

5). Due to a lack of good analogues for the data point at 170 centimetres, it has been

removed from the reconstructed palaeotemperatures. Apart from the basal sample

(170-165 cm), early and mid-Holocene inferred summer water temperatures

(Zones BPC 1 to 3) are generally warm, varying between 19 and 23ºC. A distinct

cooling trend is indicated beginning in BPC-4, approximately 4900-2400 cal BP.

The lowest inferred temperature, about 16°C, was reconstructed for about 2200 cal

BP. This temperature minimum was followed by an inferred warming trend, with a

maximum temperature of 22°C being reconstructed at the 20-centimetre level in

BPC-5.

It is important to note that the temperature inferences are for maximum sum-

mer surface-water temperatures, which are typically 4°C higher than mean July air

temperatures (Livingstone et al. 1999). Since Bass Pond is a very shallow lake, its

surface-water temperature would tend to be slightly higher, at least briefly during

the summer. The current mean July air temperature at Rocky Harbour, Newfound-

land is 15.6°C; thus, a maximum summer surface-water temperature of �20°C

would not be unusual today.

Midge Palaeosalinity Estimates

The palaeosalinity reconstruction for Bass Pond (Figure 5) indicates a decrease in

salinity from 2.7 grams/litre initially (subsaline) to less than 0.6 grams/litre by 7000

cal BP. The reconstruction indicates freshwater conditions thereafter, with the ex-

ception of a salinity peak of 1.9 grams/litre around 2000 cal BP. The peak salinity at

2000 cal BP could record an exceptional storm surge, for example, linked to a hurri-

cane. This idea is speculative. The salinity reconstruction should be verified using

additional indicators (e.g., diatoms).
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DISCUSSION

Relationship between inferred palaeoclimate and the
archaeological record

The pattern of deglaciation and accompanying sea level changes has allowed many

coastal archaeological sites to be well preserved in the Port au Choix region of

Newfoundland (Tuck 1976; Grant 1994; Liverman 1994; Renouf 1999; Bell et al.

this volume). The region offers researchers an opportunity to explore potential cor-

relations between the long human cultural record and diverse other

palaeoenvironmental data. Although it has been suggested that patterns of cultural

migration cannot be inferred from vegetation history (Fitzhugh and Lamb 1985),

previous palynological research (Macpherson 1995b) suggested that major clima-

tic trends inferred at Bass Pond could be correlated with settlement patterns of both

MAI and Dorset Palaeoeskimos.

The first evidence of the MAI (6290 cal BP; Bell and Renouf this volume) sug-

gests their arrival at Port au Choix during a warm period in BPC-3 (Figure 5). Sus-

tained MAI occupation (4800 cal BP; Bell and Renouf this volume) began during an

inferred cooling period at the beginning of BPC-4. They disappeared more than

1500 years later with the beginning of a more drastic and prolonged inferred cool-

ing trend (Figure 5).

At about 3000 cal BP, the Groswater Palaeoeskimos began to occupy the area

(Bell and Renouf this volume). The midge-inferred temperature record suggests

that the Groswater Palaeoeskimos occupied the region through a prolonged cool

phase (Figure 5). The appearance of the Dorset Palaeoeskimos (around 2000 cal

BP) occurred at a time when midge-inferred temperatures began to increase (Figure

5). The Recent Indian culture appeared as this warming trend continued. Whether

these cultures became extinct as the region was subsequently repopulated by other

people, or whether their populations just migrated to other areas is still open to de-

bate.

It thus appears that summer temperature may be a significant indicator for the

succession of cultures as revealed in the Port au Choix archaeological record. Since

chironomids are thought to be among the best indicators of local climate change

(Battarbee 2000), midge stratigraphies may provide key evidence for interpretation

of the prehistoric cultural record.

Midge-inferred salinity

The initial occurrence of Cricotopus ornatus type chironomid remains at Bass

Pond, and the midge-inferred palaeosalinity record both suggest a decreasing salin-

ity trend at Bass Pond through the early Holocene, with freshwater conditions being

established prior to around 7000 cal BP. Statistical tests suggest that the midge

fauna at Bass Pond may portray a stronger palaeosalinity than palaeotemperature
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signal. The first axis of the midge fossil data in detrended correspondence analysis

correlates more strongly with the palaeosalinity record (r = -0.88 on log (salinity))

than with the palaeotemperature record (r = 0.14).

The relatively great abundance of grasses (Poaceae) and other herbs in the pol-

len diagram from Bass Pond may be indicative of a salt marsh environment during

Bass Pond’s initial stages (Macpherson 1995b). Macpherson (1995b) places the

isolation of Bass Pond at approximately 7500 cal BP (~130 cm) due to the rapid in-

crease in the freshwater alga, Pediastrum, above this level. This estimate is 1000

years earlier than proposed by Grant’s (1994) and Bell et al.’s (this volume)

sea-level curves. As salinity decreased, so did the head capsule concentration in the

sediments, indicating a transition from the more productive salt marsh to the less

productive upland environment around 6500 cal BP (Figure 5). There is some varia-

tion in the emergence dates suggested by these indicators. The precise timing is dif-

ficult to resolve since the transition was likely very gradual, and different indicators

will respond to different aspects of this transition. For example, the vegetation re-

sponse may indicate when much residual salt had been leached from the marsh, and

the resulting soil was sufficiently well drained to allow trees and shrubs to colonize

the former marsh. The composition of the midge community was likely directly im-

pacted by salinity, but the head capsule concentrations more likely reflect a slower

decline in overall nutrient availability.

Interpretation of the later salinity peak around 2000 cal BP is more speculative,

but may be due to a marine incursion (storm surge or tsunami) or the reworking of

marine sediments. Intense tropical storms are common in Atlantic Canada. In con-

trast, little is known about tsunami frequency. Newfoundland was hit by a 12-metre

tsunami in 1929 following an earthquake centred 350 kilometres south of the island

(Liverman et al. 2001). Such events probably also occurred in the past. Bell et al.

(this volume) link this salinity peak to anthropogenic factors.

The pattern of sea level regression and transgression along the west coast of

Newfoundland varies markedly along a north-south axis. Since deglaciation, sea

level has continuously fallen at the northern tip of the island (a type-A sea-level

curve; Bell et al. this volume). However, farther south at St. George’s Bay (Bell et

al. 2003), sea level reached a lowstand about 9700 cal BP, and sea level has been

slowly rising for several millennia (producing a type-B relative sea-level curve ).

Bell et al. (this volume) place the transition between these two patterns of sea-level

change to the south of Port au Choix. The coastline at Port au Choix would therefore

have emerged continuously since deglaciation. Emergence was likely very rapid

initially, but may have been much slower after 7000 cal BP (Bell et al. this volume).

This slow emergence of Bass Pond would be consistent with the gradual transition

we perceive in the pollen and midge fossil data, thereafter allowing occasional

salt-water incursions to have occurred.
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CONCLUSION

Analysis of Bass Pond sediments provided an indication of past changes in

palaeoclimate and palaeosalinity. Changes in the midge-inferred temperatures

show some degree of correspondence with the disappearance of the Maritime Ar-

chaic culture (3270 cal BP), the subsequent appearance of the Groswater

Palaeoeskimos (3000 cal BP), and the appearance of the Dorset Palaeoeskimo peo-

ple (2000 cal BP). Furthermore, the midge-inferred palaeosalinities appear to pro-

vide a useful indication of basin isolation from the sea. Thus, although they have

rarely been used in this context, midge palaeoecological studies may be usefully

applied in future archaeological and sea-level research.
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