Abstracts
Résumé
Cet article examine comment l'analytique de l'apprentissage, l'intelligence artificielle (IA) et la chaîne de blocs transforment la personnalisation de l'éducation. En explorant la littérature récente, il identifie les contributions et les défis de ces technologies dans l'amélioration des parcours éducatifs. L'analyse suggère que l'intégration de ces technologies offre des opportunités uniques pour la personnalisation de l'apprentissage, tout en soulevant des questions importantes sur la sécurité, la confidentialité et l'équité. La convergence de l'IA, de l'analytique de l'apprentissage et de la technologie de la chaîne de blocs promet une révolution dans la manière dont l'éducation est délivrée et reçue, permettant une adaptation précise au profil de chaque apprenant. Cette intégration technologique, cependant, exige une réflexion approfondie sur les cadres éthiques et réglementaires pour garantir que la personnalisation de l'éducation bénéficie à tous, sans compromettre la sécurité des données ni accentuer les inégalités. L'article plaide pour une collaboration étroite entre développeurs technologiques, éducateurs et décideurs politiques pour relever ces défis et exploiter pleinement le potentiel de ces technologies émergentes dans l'éducation.
Mots-clés :
- analytique de l'apprentissage,
- intelligence artificielle,
- chaîne de blocs,
- personnalisation de l'éducation,
- éthique dans l'éducation,
- apprentissage adaptatif,
- accès équitable à l'éducation
Abstract
This article examines how learning analytics, artificial intelligence (AI), and blockchain technology are transforming the personalization of education. By exploring recent literature, it identifies the contributions and challenges of these technologies to enhancing educational pathways. The analysis suggests that the integration of these technologies offers unique opportunities for learning personalization, while raising important questions about security, privacy, and equity. The convergence of AI, learning analytics, and blockchain technology promises a revolution in the way education is delivered and received, allowing for precise adaptation to each learner's profile. However, this technological integration requires deep reflection on ethical and regulatory frameworks to ensure that education personalization benefits everyone, without compromising data security or exacerbating inequalities. The article advocates for close collaboration between technological developers, educators, and policymakers to address these challenges and fully exploit the potential of these emerging technologies in education.
Keywords:
- learning analytics,
- artificial intelligence,
- blockchain,
- education personalization,
- ethics in education,
- equitable access to education,
- adaptive learning
Resumen
Este artículo examina cómo la analítica del aprendizaje, la inteligencia artificial (IA) y la tecnología de cadena de bloques están transformando la personalización de la educación. A través de la exploración de la literatura reciente, se identifican las contribuciones y desafíos de estas tecnologías en la mejora de los itinerarios educativos. El análisis sugiere que la integración de estas tecnologías ofrece oportunidades únicas para la personalización del aprendizaje, al mismo tiempo que plantea cuestiones importantes sobre seguridad, privacidad y equidad. La convergencia de la IA, la analítica del aprendizaje y la tecnología de cadena de bloques promete una revolución en la forma en que se imparte y recibe la educación, permitiendo una adaptación precisa al perfil de cada aprendiz. Sin embargo, esta integración tecnológica requiere una profunda reflexión sobre los marcos éticos y regulatorios para asegurar que la personalización de la educación beneficie a todos, sin comprometer la seguridad de los datos ni exacerbar las desigualdades. El artículo aboga por una colaboración estrecha entre desarrolladores tecnológicos, educadores y responsables de políticas para abordar estos desafíos y aprovechar plenamente el potencial de estas tecnologías emergentes en la educación.
Palabras clave:
- analítica del aprendizaje,
- inteligencia artificial,
- personalización de la educación,
- ética en la educación,
- acceso equitativo a la educación,
- aprendizaje adaptativo,
- cadena de bloques
Resumo
Este artigo examina como a análise da aprendizagem, a inteligência artificial (IA) e o blockchain estão transformando a personalização da educação. Ao explorar a literatura recente, ele identifica as contribuições e os desafios dessas tecnologias para melhorar os caminhos educacionais. A análise sugere que a integração dessas tecnologias oferece oportunidades únicas para a personalização da aprendizagem, ao mesmo tempo em que levanta questões importantes sobre segurança, privacidade e justiça. A convergência da IA, da análise de aprendizagem e da tecnologia blockchain promete uma revolução na forma como a educação é oferecida e recebida, permitindo uma adaptação precisa ao perfil de cada aluno. Essa integração tecnológica, no entanto, exige uma consideração cuidadosa das estruturas éticas e regulatórias para garantir que a personalização da educação beneficie a todos, sem comprometer a segurança dos dados ou exacerbar a desigualdade. O artigo defende a colaboração estreita entre desenvolvedores de tecnologia, educadores e formuladores de políticas para enfrentar esses desafios e explorar todo o potencial dessas tecnologias emergentes na educação.
Palavras chaves:
- análise de aprendizagem,
- inteligência artificial,
- blockchain,
- personalização da educação,
- ética na educação,
- acesso equitativo à educação,
- aprendizagem adaptativa
Download the article in PDF to read it.
Download
Appendices
Bibliographie
- Alammary, A., Alhazmi, S., Almasri, M., et Gillani, S. (2019). Blockchain-based applications in education: A systematic review. Applied Sciences, 9(12), 2400. https://doi.org/10.3390/app9122400
- Anne, A. et El Bahlouli, Y. (2023a). Les technologies des registres distribués et de la chaîne de blocs en éducation. The Conversation. https://tinyurl.com/mu6r765r
- Anne, A. et El Bahlouli, Y. (2023b). La Technologie des registres distribués (TRD) : usages et perspectives dans le secteur de l’éducation. Médiations et médiatisations, (14). https://doi.org/10.52358/mm.vi14.307
- Arndt, T., et Guercio, A. (2020). Blockchain-based transcripts for mobile higher-education. International Journal of Information and Education Technology, 10(2). https://doi.org/10.18178/ijiet.2020.10.2.1344
- Ausubel, D. P. (1968). Educational Psychology: A Cognitive View. Holt, Rinehart and Winston.
- Baker, R. S., et Siemens, G. (2014). Educational data mining and learning analytics. Dans R. Keith Sawyer (dir.), Cambridge Handbook of the Learning Sciences (p. 253-272). Cambridge University Press.
- Bandura, A. (1977). Social Learning Theory. Prentice Hall.
- Bhaskar, P., Tiwari, C. K., et Joshi, A. (2021). Blockchain in education management: present and future applications. Interactive Technology and Smart Education, 18(1), 1-17. https://doi.org/10.1108/ITSE-07-2020-0102
- Bidarra, J., et Mamede, H. (2019). Artificial Intelligence et Blockchain in Online Education. Dans G. Ubachs (dir.), The Envisioning Report for Empowering Universities (3rd ed., p. 27-29). EADTU. https://tinyurl.com/bde6zduj
- Bruner, J. S. (1960). The Process of Education. Harvard University Press.
- Bryson, J. J. (2019). The Past Decade and Future of AI’s Impact on Society. Towards a New Enlightenment? A Transcendent Decade. BBVA. https://www.joannajbryson.org/publications/the-past-decade-and-future-of-ais-impact-on-society
- Creswell, J. W., et Creswell, J. D. (2017). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4e éd.). Sage Publications.
- Crompton, H., et Burke, D. (2023). Artificial intelligence in Higher Education: the state of the field. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00392-8
- Devedžić, V. (2004). Web Intelligence and Artificial Intelligence in Education. Journal of Educational Technology & Society, 7(4), 29‑39. https://www.jstor.org/stable/jeductechsoci.7.4.29
- Dickler, R. (2021). Learning with and from Artificial Intelligence-Driven Analytics. Society for Learning Analytics Research (SoLAR). https://www.solaresearch.org/2021/11/learning-with-and-from-artificial-intelligence-driven-analytics/
- Dillenbourg, P. (2000). Collaborative learning: Cognitive and Computational Approaches. Advances in Learning and Instruction Series. Computers & Education. https://doi.org/10.1016/S0360-1315(00)00011-7
- Drachsler, H., et Greller, W. (2016). Privacy and analytics: It's a DELICATE issue a checklist for trusted learning analytics. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 89-98. https://doi.org/10.1145/2883851.2883893
- Engeström, Y. (1987). Learning by Expanding: An Activity-Theoretical Approach to Developmental Research. Orienta-Konsultit. https://lchc.ucsd.edu/mca/Paper/Engestrom/Learning-by-Expanding.pdf
- Gašević, D., Dawson, S., et Siemens, G. (2014). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64-71. https://doi.org/10.1007/s11528-014-0822-x
- Greene Nolan, H., et Vang, M. C. (2023). Automated Essay Scoring in Middle School Writing: Understanding Key Predictors of Students’ Growth and Comparing Artificial Intelligence- and Teacher-Generated Scores and Feedback [Report]. Digital Promise. https://eric.ed.gov/?id=ED629956
- Guan, X., Yan, H., Wang, Z., Gao, P., et Ding, B. (2023). Research on Teaching Reform of Artificial Intelligence Course Based on CDIO. SHS Web of Conferences, 152, Article 03005. https://doi.org/10.1051/shsconf/202315203005
- Holmes, W., Bialik, M., et Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign.
- HolonIQ. (2023). Artificial Intelligence in Education. 2023 Survey Insights. https://www.holoniq.com/notes/artificial-intelligence-in-education-2023-survey-insights
- Inamorato Dos Santos, A. (dir.), Grech, A., et Camilleri, A. F. (2017). Blockchain in Education. Joint Research Centre. Science for Policy Report. European Commission. https://doi.org/10.2760/60649
- Jacob, S., Souissi, S. et Duplantis, L. (2023). Intelligence artificielle et transformation de l'évaluation de programme. Chaire de recherche sur l’administration publique à l’ère numérique, Université Laval. https://tinyurl.com/22c6sbxr
- Kabudi, T., Pappas, I. O., et Olsen, D. H. (2021). AI-enabled Adaptive Learning Systems: A systematic mapping of the literature. Computers & Education: Artificial Intelligence, 2, article 100017. https://doi.org/10.1016/j.caeai.2021.100017
- Kelly, G. (1955). The Psychology of Personal Constructs. W.W. Norton & Company.
- Lai, C.-L. (2021). Exploring University Students’ Preferences for AI-Assisted Learning Environment: A Drawing Analysis with Activity Theory Framework. Educational Technology & Society, 24(4), 1‑15. https://www.jstor.org/stable/48629241
- Luckin, R., Holmes, W., Griffiths, M., et Forcier, L. B. (2016). Intelligence Unleashed: An argument for AI in Education. Pearson Education. https://tinyurl.com/5n88z5tu
- Nagel, D. (2023). Learning Analytics and the Future of Change in the Classroom. Campus Technology. https://tinyurl.com/bdfwuynp
- Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books.
- Pedró, F., Subosa, M., Rivas, A. et Valverde, P. (2019). Artificial intelligence in education: challenges and opportunities for sustainable development. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000366994
- Piaget, J. (1952). The Origins of Intelligence in Children. International Universities Press, Inc.
- Saastamoinen, K., Rissanen, A., et Mutanen, A. (2023). Intelligent Learning in Studying and Planning Courses—New Opportunities and Challenges for Officers. International Baltic Symposium on Science and Technology Education. Scientia Socialis Ltd. https://eric.ed.gov/?id=ED629134
- Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380-1400. https://doi.org/10.1177/0002764213498851
- Slade, S., et Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist, 57(10), 1510-1529. https://doi.org/10.1177/0002764213479366
- Torraco, R. J. (2016). Writing Integrative Literature Reviews: Using the Past and Present to Explore the Future. Human Resource Development Review, 15(4), 404-428. https://doi.org/10.1177/1534484316671606
- Truby, J. (2018). Decarbonizing Bitcoin: Law and Policy Choices for Reducing the Energy Consumption of Blockchain Technologies and Digital Currencies. Energy Research & Social Science, 44, 399-410. https://doi.org/10.1016/j.erss.2018.06.009
- University of Southern California (2021). Organizing your social sciences research paper. 6. The Methodology. USC Libraries. https://libguides.usc.edu/writingguide/methodology
- University System of Georgia (2024). University System of Georgia Working with Georgia State University’s National Institute for Student Success. https://tinyurl.com/bdcwp828
- Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes. Harvard University Press.
- Whittemore, R., et Knafl, K. (2005). The integrative review: updated methodology. Journal of Advanced Nursing, 52(5), 546–553. https://doi.org/10.1111/j.1365-2648.2005.03621.x
- Zook, M., Barocas, S., Boyd, D., Crawford, K., Keller, E., Gangadharan, S. P., Goodman, A., Hollander, R., Koenig, B. A., Metcalf, J., Narayanan, A., Nelson, A., et Pasquale, F. (2017). Ten simple rules for responsible big data research. PLoS Computational Biology, 13(3). https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005399