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Abstract 

We studied student learning in the MOOC 8.MReV Mechanics ReView, run on the 
edX.org open source platform. We studied learning in two ways. We administered 13 
conceptual questions both before and after instruction, analyzing the results using 
standard techniques for pre- and posttesting. We also analyzed each week’s homework 
and test questions in the MOOC, including the pre- and posttests, using item response 
theory (IRT). This determined both an average ability and a relative improvement in 
ability over the course. The pre- and posttesting showed substantial learning: The 
students had a normalized gain slightly higher than typical values for a traditional 
course, but significantly lower than typical values for courses using interactive 
engagement pedagogy. Importantly, both the normalized gain and the IRT analysis of 
pre- and posttests showed that learning was the same for different cohorts selected on 
various criteria: level of education, preparation in math and physics, and overall ability 
in the course. We found a small positive correlation between relative improvement and 
prior educational attainment. We also compared homework performance of MIT 
freshmen taking a reformed on-campus course with the 8.MReV students, finding them 
to be considerably less skillful than the 8.MReV students. 
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Introduction 

The recent release of hundreds of free online courses in MOOCs (massive open online 
courses) by organizations such as Coursera, edX, and Udacity has been so dramatic that 
an article in the New York Times proclaimed 2012 the “Year of the MOOC” (Pappano, 
2012). These MOOCs,  often digitizations of standard, relatively introductory courses 
from top 50 universities (and especially MIT, Harvard, Berkeley, and Stanford), have 
provoked multidimensional discussions and special issues of various publications. 
Nevertheless, few studies have attempted to use MOOC data to address the central 
question:  “is there learning in MOOCs?” Even though documenting learning is a stated 
goal of some institutions offering MOOCs, there have been few developments in 
answering this question (Hollands & Tirthali, 2014). In their thorough treatment of the 
current state of MOOCs and related research, Hollands and Tirthali point out that the 
lack of consistent data and the voluntary nature of the student participants, who aren’t 
forced to take a pre- and posttest, for example, has been a roadblock. Hollands and 
Tirthali did find research on student retention, motivation, and behaviors within a 
MOOC. 

In this paper, we report an initial study of learning in a MOOC, 8.MReV – Mechanics 
ReView – offered from June 1 to August 27, 2013 on the open source platform edX.org. 
The course materials were written by the RELATE education group (Research in 
Learning, Assessing, and Tutoring Effectively, http://RELATE.MIT.edu). This is a 
“second course” in introductory Newtonian Mechanics, designed to help students 
familiar with the topic at a high school level gain a more expert-like perspective on the 
subject by learning a categorization scheme for the domain and applying it to work 
through sophisticated problems that typically involve several physics principles 
simultaneously (e.g., conservation of both momentum and energy). In addition, we 
made a concerted effort to attract high school physics teachers to enroll in our course. 

We emphasize that measurements of learning in a MOOC are made in an online 
environment that allows students to consult reference materials both inside the course 
(e.g., course resources available to students at that point in time) and outside the course 
(e.g., Google, Wikipedia, or a textbook). This applies to homework as well as to the pre- 
and posttesting, in contrast to on-campus pre-post testing which is done in a closed-
book, no Internet environment. Furthermore, because on-campus assessments are done 
on paper, students are usually restricted to only one response. In contrast, online 
students are usually allowed several attempts to get the answer correct and are told 
whether each response is correct. (We only analyzed the first attempt to make it more 
similar to a traditional pre- and posttest.)  Thus, our definition of learning involves 
improvement in answering questions with, rather than without, outside assistance. 
While this may be a more authentic activity than closed-book examinations, it blurs the 
comparison of our pre- to posttest results with those from on-campus students. 

We used two major approaches to evaluate learning in our MOOC. The first was to give 
an identical pretest and posttest using the same set of mostly conceptual questions 

http://creativecommons.org/licenses/by/4.0/


     
Learning in an Introductory Physics MOOC: All Cohorts Learn Equally, Including an On-Campus Class 

Colvin, Champaign, Liu, Zhou, Fredericks, and Pritchard 
 

Vol 15 | No 4             Creative Commons Attribution 4.0 International License Sept./14 
  
      265 

(Hestenes, Wells, & Swackhamer, 1992). The results were analyzed in terms of the 
fractional reduction in the number of incorrect answers on the pretest as measured by 
the posttest. This quantity is referred to as the normalized gain by Hake (1998).  

The second approach involved using item response theory (IRT) to analyze the pre- and 
posttest results as well as the weekly performance of the students. IRT establishes an 
“ability” for each student based not on total score, but on the difficulty and 
discrimination of the questions (items) that that student attempted (Meyer & Zhu, 
2013).  (Discrimination, or slope, is related to the difference in performance of high 
versus low ability students on that item.) This is especially important in MOOCs where 
not all students respond to the same set or number of items. We selected cohorts based 
on education level, preparation in calculus and physics, and on overall skill in the 
course. The weekly performance of selected cohorts of MOOC students were compared 
with each other as well as with students in an on-campus course (8.011). The 8.011 IRT 
analysis was based on homework assignments containing roughly two-thirds of the 
same questions as the MOOC, also delivered on the same edX platform. 

 

Data 

 

Description of Mechanics ReView MOOC: 8.MReV 

The 8.MReV course grew from a short Mechanics ReView course that runs at MIT 
during January for students who received a D in MIT’s large-enrollment fall Mechanics 
course. The key feature of the ReView course was that faculty and staff interact with 
two-person groups of students to help them focus on problem solving using our 
modeling applied to problem solving pedagogy (Pawl, Barrantes, & Pritchard, 2009). 
This in-class work required preparing the students for class, a need that RELATE met by 
developing an online eText and assigning pre-class homework at different levels of 
difficulty. These online materials, augmented by additional problems and weekly 
quizzes, were offered as a free open online course twice in 2012 using the LON-CAPA 
platform. Development of the 8.MReV course studied here involved transferring much 
of this course to the edX platform and supplementing it with more problems (Fredericks 
et al., 2013). 8.MReV was run in the summer of 2013 with both general and teacher-
targeted publicity. 

8.MReV includes three basic types of problems: (1) checkpoint questions embedded in 
the eText for the purpose of guiding the reader and checking for understanding, (2) 
homework problems at different levels of difficulty (Teodorescu, Pawl, Rayyan, 
Barrantes, & Pritchard, 2010), and (3) weekly test questions. In the course, the tests are 
referred to as quizzes, in part, to lower student anxiety. Because there is no final exam 
the quizzes count heavily toward earning the certificate. Students must obtain at least 
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60% of the total credit available to earn a certificate; 1,030 students earned certificates 
in the summer 2013 8.MReV. 

The online course included 288 homework items and 115 quiz items. These common 
questions allowed us to easily compare performance in the two courses. There were 
three optional units at the end of 8.MReV; because these units were not required to earn 
a certificate they were not included in this analysis. Although approximately 17,000 
people signed-up for 8.MReV, most dropped out with no sign of commitment to the 
course; only 1500 students were “passing” or on-track to earn a certificate after the 
second assignment. For the IRT analysis we included only the 1,080 students who 
attempted more than 50% of the questions in the course, 95% of whom earned 
certificates. Most of those completing less than 50% of the homework and quiz 
problems dropped out during the course and did not take the posttest, so their learning 
could not be measured. 

For most homework and quiz items students were allowed multiple attempts at a correct 
answer: several for multiple-choice items and typically ten attempts for symbolic, free-
response items. Informing a student of an incorrect response and allowing additional 
attempts improves test information and affords a more reliable ability estimate than 
only using the student’s first response (Attali, 2010). We only modeled up to eight 
attempts, since very few students used more then eight attempts for quiz and homework 
items. Most items only needed three or four attempts to accurately model student 
behavior. 

 

Methods and Theoretical Framework 

 

Pre- and Posttesting in the MOOC 

A pretest was given before students started working with the materials in 8.MReV. The 
pretest consisted of 15 questions, three of which came from the Mechanics Baseline Test 
(Hestenes & Wells, 1992) and four of which came from the Mechanics Reasoning 
Inventory (Pawl et al., 2011). The posttest contained the same 15 questions plus two 
multiple-choice items from the Mechanics Baseline Test. See Table 2 in the Appendix 
for a list of pre- and posttest problems. 

The pretest, called Quiz 0, was given at the beginning of the course with this note from 
the instructor, Professor Pritchard. 
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Why Quiz 0? 

It may seem strange to start a course with a quiz, but it is important for 
you to take this quiz, especially because this course is for people with 
“some knowledge of mechanics.” 

It will give us important insight into what you and the class bring to the 
course in terms of various skills. 

It will give you practice taking a quiz (and will not count in your grade). 

It will give you an idea of the variety of problem types you’ll experience in 
this course. 

In the future analysis of these data we will be able to give new students 
guidance on whether they’re ready for this course. 

So we hope you will make a conscientious effort to do well on this quiz. 

This pretest was then hidden from the students several weeks into the course, so that 
they could neither review these questions nor refer to them when answering the 
posttest. The posttest questions were contained in the last two weekly tests, although 
some of the better students had amassed sufficient points for a certificate and didn’t 
take these tests. Of the 3,899 students who attempted at least one item on the pretest, 
the mean number of items attempted was 10.0; of the 1,117 students who attempted at 
least one item on the posttest, the mean number of items attempted was 8.2. 

These 15 questions weighed conceptual knowledge more heavily than algebraic ability. 
With the exception of two questions requiring symbolic entries, all of the items were 
multiple choice questions. Two questions were given only on the posttest as part of a 
study on the residual effects of student memory on pre- and posttesting, and are not 
included in this analysis. 

Item Response Theory (IRT) 

IRT judges student ability by taking into account a student’s specific performance on 
each item. An item is a single question that demands a unique student response that 
generally can be judged right or wrong. We considered each item separately, even where 
two items are from the same multi-part problem. IRT stands in contrast to classical test 
theory where the unit of analysis is the entire test, usually scored as the total number of 
items correct (Mellenbergh, 2011; Crocker & Algina, 1986). 

An advantage of IRT is that it gives accurate estimates of students’ abilities even when 
students have not taken the same set of items. This is particularly important in this 
study because students do not need to complete all of the homework and quiz questions 
in 8.MReV or 8.011 to pass the course, so students do not generally attempt all available 
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problems. IRT is also preferable because it extracts more information than simply using 
the total number of items correct by accounting for the difficulty of each item and each 
item’s ability to discriminate between students of higher and lower abilities 
(Hambleton, Swaminathan, & Rogers, 1991). 

IRT relates a student’s performance on a set of items to the student’s ability (skill) on an 
underlying trait or proficiency, referred to as s, in this study. Many IRT models exist; all 
contain at least one parameter related to the item and at least one parameter related to 
the student (Hambleton et al., 1991). IRT allows students and items to be placed along 
the same proficiency scale, where higher numbers indicate more difficult items and 
more proficient students. IRT’s 2-parameter logistic model (2PL) is a common example: 

( )
( )

( )1

i i

i i

a s d

i a s d

eP s
e

−

−
=

+
 (Hambleton et al., 1991), 

where ia  and id  are the parameters for item i and s is the examinee’s ability, also 
referred to as proficiency or ability. ( )iP s is the probability that an examinee with ability 

s will correctly respond to item i. The d-parameter is the item difficulty parameter. The 
a-parameter is the discrimination parameter and can be thought of as the correlation 
between performance on an item and performance on the test or complete set of items 
as a whole. An assumption of IRT is unidimensionality, that there is only one dimension 
or factor affecting the likelihood of a student’s correct response, namely, the student’s 
underlying ability. If unidimensionality holds, the probability of correctly answering an 
item should increase as the level of ability increases.  

IRT is sophisticated “grading with respect to a curve”: Student abilities are constrained 
in an IRT analysis to have a mean of 0 and a standard deviation of 1. Thus a time series 
of IRT scores of a student in a class that is learning does not show absolute learning (as 
measured above by pre-post testing), but rather improvement relative to “class 
average.” However, weekly IRT ability is a good measure for comparing two different 
cohorts undergoing two different pedagogical treatments, or even different cohorts of 
students undergoing the same pedagogical treatment, for example, to investigate the 
effects of demographics or study patterns on relative learning rates. 

Multiple Attempts 

To incorporate multiple attempts (IRT), we modeled student ability with an extension of 
item response theory that accounts for ordered response categories, not just binary 
(right or wrong) responses. Samejima’s graded response model (1997) is an extension of 
IRT’s 2-parameter-logistic model described earlier and was developed to model ordered 
scores or responses to an item. This could be an essay scored with a point-based rubric, 
for example, or the number of correct steps an examinee performs in an algebra 
problem with a clear set of steps required for a complete response. As suggested by 
Attali (2010), modeling the number of attempts a student needs before a correct 
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response is analogous to these ordered categories, with the fewer attempts required 
indicating more ability.  

The graded response model (GRM) models the likelihood that an examinee with a given 
ability will provide a response in each category. In this study, the categories correspond 
to the attempt with a correct response. The probability of a correct answer on the second 
attempt is modeled as the product of the probabilities of correct responses on the third, 
fourth, and fifth attempts and the probability of an incorrect response on the first 
attempt. The GRM assumes that a positive response in category n implies positive 
responses in all lower, that is, easier categories. This assumption is reasonable in this 
application where it would be reasonable to assume that an examinee who correctly 
responds to an item on the 2nd attempt (and is so informed in real time) would correctly 
answer on the third, fourth, and fifth attempts if indeed they were made. The item 
parameters and student ability estimates are calculated using maximum likelihood 
estimation via the psychometric software MULTILOG (Thissen, 1991). 

Item Calibration 

Using the graded response model, we initially calibrated quiz and homework items 
separately. We first looked for items not fitting the model, meaning that for a particular 
item students with less ability were more likely to respond correctly to the item on an 
earlier attempt than strong students, for example. These items prevented the model 
from converging such that it was impossible to calibrate the other items. We identified 7 
quiz and 32 homework out of 138 and 256, respectively, for removal from the IRT 
analysis. Because there were so many items in total, this had little to no effect on the 
final estimates of student ability. Once a decision was made about which items to 
remove, all homework and quiz items were calibrated simultaneously using the 
combined student pool from 8.MReV and 8.011. The item parameters from this joint 
calibration were then used to obtain ability estimates for each student’s weekly 
homework and quiz performances. We calculated each student’s ability on each weekly 
topic. The distribution of student abilities for each week was re-centered such that the 
mean ability for each week was zero, allowing a week-by-week comparison of changes in 
ability. 

 

Pre- and Posttest Results 

 

Pre- and Posttest Analysis with Normalized Gain 

To assess whether students exhibited learning in the MOOC, we analyzed the pre- and 
posttest results in two different ways: using traditional pre- and posttesting procedures 
(Hake, 1998) involving normalized gain and using IRT. Item response theory can judge 
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the ability of students from different subsets of the items, allowing us to include a larger 
fraction of our students in the pre-post comparison. To effectively compare pre- and 
posttest scores using the normalized gain technique, students need to have attempted 
the same set of questions on both tests, which limits the number of students in each 
cohort. In part to increase the sample size, the pre-post test analysis was performed on 
two subsets of questions: (1) six questions involving force and motion that could be 
compared with Hake’s study (1998), (2) five purely conceptual questions on more 
advanced topics, and (3) seven questions consisting of these five plus two questions 
requiring symbolic responses rather than multiple choice. There were 419 students who 
attempted all six questions in subset 1 on both the pre- and posttests, 343 students who 
attempted all five subset 2 questions on both the pre- and posttests, and 176 students 
for subset 3. Data for these three question sets are presented in Hake’s format in Figures 
1-3 where the various cohorts are analyzed independently. 

The 6,000-student study by Hake (1998), which investigated about 60 different classes 
ranging from high school to top quality colleges, showed that the normalized gain is 
typically 0.23 for traditionally taught courses, but increases to about 0.48 for 
interactively taught courses. The clearest comparison with Hake’s numbers is subset 1, 
questions involving force and motion, as shown in Figure 1. 

 

Figure 1. The negative slope of the red line, constrained to go through the point (6,0), 
indicates the normalized gain that best fits the 419 students who answered all 6 force-
related items on both pre and post tests. The mean pretest and gain scores, with 
standard errors, are also shown for various cohorts. “No math” indicates the cohort of 
students without college-level calculus. 
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Figure 2. The negative slope of the red line, constrained to go through the point (5,0), 
indicates the normalized gain that best fits the 343 students who answered all 5 non- 
force-related items on both pre and post tests. The mean pretest and gain scores, with 
standard errors, are also shown for various cohorts. 

 

Thus we have observed learning as measured by normalized gain that is between these 
limits. While both of our gains, 0.30 and 0.33 (+/-0.02), are closer to the gains Hake 
reported for traditional on-campus courses, they lie above all of the 14 traditional 
classes studied by Hake, suggesting that our students learn conceptual topics slightly 
better than in a traditional, lecture-based, class. This comparison is blunted by the fact 
that typically 19% of the first responses to a question were preceeded by reference to in-
course resources, about a 1:1 ratio with the percentage of wrong answers. (Previously we 
found this ratio to be 1:3 in spite of a penalty that served to discourage students from 
giving wrong answers [Lee, Palazzo, Warnakulasooriya, & Pritchard, 2008].) More 
investigation shows several differences between student behavior on pre and posttest. 
Good comparisons of MOOCs and traditional courses with pre- and posttests must 
await a MOOC testing platform that prevents students from visiting other sites or 
materials before making their first response. 

It is noteworthy that constraining the fit to pass through zero for a perfect score on the 
pretest does not add significantly to the uncertainty and thus is consistent with the data. 
We have termed such a situation one of “pure learning” (Pritchard, Lee, & Bao, 2008), 
which means that the data are consistent with the hypothesis that the number of 
initially incorrect answers given by each student (or each cohort) is reduced by a 
fraction equal to the normalized gain. The fact that no cohorts lie significantly below or 
above the best fit line in Figure 2 and Figure 3 should allay concerns that less well 
prepared students cannot learn in MOOCs.  

Our concept test spanned a wider range of topics than Hake’s study, which concerned 
topics covered in the first four weeks of 8.MReV. Furthermore, the questions on the 
Force Concept Inventory are narrow in scope, unlike the non-force questions in our pre- 
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and posttests that required analyzing answers, providing reasons for conceptual 
judgments, and finding the mistake in a given solution. However, the normalized gain 
seems insensitive to the particular questions used. Indeed, Hake’s study reached its 
conclusions by amalgamating results from both the Force Concept Inventory and the 
Mechanics Baseline Test (which had some non-conceptual problems requiring choice 
among numerical answers and some questions on topics beyond the FCI). This 
insensitivity is further emphasized by the similarity of our results for force questions 
and all other questions (see Figures 1 and 2). 

Relative Performance of Various Cohorts 

The large enrollment and diverse demographics of the MOOC student body allow us to 
separately analyze and compare the relative learning of various cohorts of students in 
8.MReV. We have formed and analyzed cohorts according to highest degree attained, 
academic preparation, and average ability in the course. Specifically, background in 
introductory physics and first semester calculus were used for academic preparation. 

We have found one group that has a significantly higher normalized gain than all the 
rest. It is those 176 students who answered the two questions (12 and 13) on the pre and 
posttests that required a symbolic answer. Although their gains on those two questions 
were both less than 0.3, their gains on the other five non-force questions were 
sufficiently high that, for the seven questions, they had a normalized gain of 0.41 (+/-
0.03), as shown in Figure 3. The group has members from all previously mentioned 
cohorts in it, and is not distinguished by any obvious demographics. 

 

 

Figure 3. The negative slope of the red line, constrained to go through the point (7,0), 
indicates the normalized gain that best fits the 176 students who answered five non- 
force-related and two symbolic items on both pre and posttests. The mean pretest and 
gain scores, with standard errors, are also shown for various cohorts. 
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Figures 1-3, showing the normalized gain of the students in 8.MReV, display the pretest 
score and learning gains of the various cohorts just listed. Whether we look at gains on 
force-related concepts, non-force-related concepts, or examine the subset of each cohort 
that attempted the questions requiring the use of the symbolic answer interface in edX, 
we see no cohorts lying significantly below or above the normalized gain lines that fits 
all students in that sample. This certainly should allay concerns that less well prepared 
students cannot learn in MOOCs. In fact, the actual score improvement (gain) is higher 
for students with lower scores on the pretest (see Figures 1-3). 

Pre- and Posttest Analysis with IRT 

The pre- and posttest items occurred twice in the course, but the calibration process (to 
find their difficulty and discrimination) assumed they occur only once. For calibration 
we only used the responses to the posttest items, not the pretest, because the knowledge 
of the students at pretest would reflect details of the obviously highly variable previous 
instruction of our students. The resulting IRT discrimination and difficulty estimates 
were then used to calculate initial ability estimates for the students based on the pretest 
items. 

Unlike the normalized gain procedures, because IRT can compare students who have 
taken different sets of items, we did not have to exclude as many students for the 
comparison, as we did with the normalized gain analysis. However, to obtain a 
reasonable estimate of a student’s IRT score on the pretest and posttest, we only 
included the 578 students who had responded to at least seven pre- and eight posttest 
items. The gain in IRT score from the pretest to the posttest was 0.41 (standard error = 
0.03) and independent of the average ability of the students, as seen in Figure 4.  

 

Figure 4. The IRT-based pre- to posttest gain for students grouped by their overall 
ability (skill) in the course. 
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Comparing MOOC and On-Campus Class Using Online 
Homework 

Students in 8.MReV answer more homework questions each week than on the pre- or 
posttest. These responses therefore permit us to find the weekly IRT abilities of the 
students with reasonable statistical error. These give us an ability to quantify the 
improvement (or worsening) of the ability of students and cohorts over the semester. 
Ideally this will lead to insights about the learning habits and resource usage of students 
who improve relative to those who do not. This also allows us to measure the on-campus 
students in 8.011 (spring of 2013) on the scale of the 8.MReV MOOC students by using 
the online homework done by both groups. Of the 403 items, in the 8.MReV MOOC, 253 
items had previously been given to the on-campus 8.011 students via the edX platform.  
The details of homework administration for both groups was highly similar: Both 
groups were allowed multiple attempts, both used the same platform, and both were 
done in an open-book, open Internet environment. Before we compare the overall 
ability and the week-by-week evolution of the abilities of the students in various cohorts 
of 8.MReV, including the 8.011 students as an additional cohort, we briefly describe the 
8.011 course. 

Description of On-Campus Course: 8.011 

The on-campus course, 8.011, is the spring version of Introductory Newtonian 
Mechanics at MIT. This course, together with the subsequent Electricity and Magnetism 
course, is required of all MIT graduates, and most take it in their first semester. 
Students who earn less than a C in the fall Mechanics course are required to retake the 
course before moving on to Electricity and Magnetism; these students make up about 
80% of the population of 8.011. In spring 2013, there were 47 students in 8.011, the first 
time the online segment of the course was run on the edX platform rather than on LON-
CAPA. Of these 47 students, 35 attempted more than half of the online problems. Data 
from these 35 students were used in this study. 

The course is designed primarily to help students review their understanding of the 
various topics in mechanics, but especially to help them organize this knowledge under 
five core models, which subsequently enables them to decide which core models apply 
to a particular problem. The pedagogy used is modeling applied to problem solving 
(Pawl et al., 2009). The first nine weeks of the course review the core topics and 
concepts in mechanics, and the subsequent six weeks involve topics with problems that 
require using several physics laws at once.  

Comparative Abilities and Weekly Evolution of Cohorts 

Figure 5 shows the distribution of student abilities on the items common between the 
two courses. The top-performing cohort, physics teachers, is highlighted. The teachers 
scored about half of a standard deviation above average, with a very few in the low-
ability tail. The on-campus 8.011 students’ ability averaged about 1.0 standard deviation 

http://creativecommons.org/licenses/by/4.0/


     
Learning in an Introductory Physics MOOC: All Cohorts Learn Equally, Including an On-Campus Class 

Colvin, Champaign, Liu, Zhou, Fredericks, and Pritchard 
 

Vol 15 | No 4             Creative Commons Attribution 4.0 International License Sept./14 
  
      275 

below the average in 8.MReV. In retrospect, this may not be surprising as the average 
8.MReV student is far better educated, older, and is not juggling three or four other MIT 
courses. 

 

Figure 5. The distribution of abilities in 8.MReV overall, the teacher cohort in 8.MReV 
(yellow), and the on-campus 8.011 students (red). 

 

Table 1 compares the relative abilities of various cohorts of students in 8.MReV with 
each other and with the on-campus students. We include cohorts based on their levels of 
education and status as 8.011 on-campus students or physics teachers. The relative 
improvement is the difference in a student’s beginning and ending ability in the class as 
defined by a line of best to the student’s weekly ability based on homework and quiz 
items. The relative improvement of a cohort is the average of the individual 
improvements. 
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Table 1 

Average Ability of Various Cohorts 

  Average ability in 8.MReV  

Cohort % of 
8.MReV Mean Standard 

deviation 
Standard 

error 
Relative 

improvement (SE) 
PhD 8 0.67 0.93 .10 0.16 (0.06) 

Masters 19 0.26 0.91 .06 -0.06 (0.05) 

College 29 -0.08 0.99 .06 -0.11 (0.04) 

High school 11 -0.20 0.93 .07 -0.11 (0.06) 
Less than 
HS 6 -0.05 0.84 .10 -0.21 (0.10) 

No response 23 0.02 1.04 .07 0.01 (0.07) 
Physics 
teachers 17 0.39 0.97 .07 0.00 (0.05) 

8.011 
students 3 -1.05 0.50 .08 - 

Note. Degree listed is highest degree attained. For example, “High School” refers to 
students who have obtained a high school diploma and may be enrolled in college. 

 

The most salient feature of Table 1 is that the magnitude of the relative improvement, or 
change in relative ability, is small for all cohorts. A change of 0.2 would be less than the 
change from a B to a B+, for example. There is a small positive correlation between 
relative improvement and increased educational attainment. This might reflect that 
obtaining more education either develops or selects for greater learning skills. On the 
other hand, students with more education may, on average, have forgotten more of the 
physics they learned at a younger age so that they were able to relearn the material 
faster than younger students were able to learn it. 

The graph in Figure 6 shows the weekly IRT abilities of several cohorts of 8.MReV 
students compared with the 8.011 on-campus students. Each set of weekly abilities was 
forced to have a mean of 0 and a standard deviation of 1. Therefore, maintaining the 
same ability across the course is not an indication of “not learning,” but rather of not 
changing your ability relative to the class average. None of the cohorts shown in Figure 
6 had a statistically significant relative improvement over the course. In particular, 
there was no evidence that cohorts with low initial ability learned less than the other 
cohorts. 
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Figure 6. Weekly performance of various cohorts in 8.MReV compared with on-campus 
students in 8.011. Note: MIT-like Math Background refers to students with at least one-
semester of calculus. 

 

Comparison of On-Campus and MOOC Relative Ability 

First, we address the question of whether the on-campus students measurably benefit 
from this environment. On-campus students, unlike the MOOC participants, benefitted 
from the following: four hours of instruction in which staff interacted with small groups 
of students (a flipped classroom) each week, staff office hours, helpful fellow students, 
available physics tutors, and the MIT library. Although the online students had lively 
discussions on many of the discussion boards that followed each eText page and 
problem and were required to do about 30% more problems (including more problems 
in the online tests than the on-campus students did in their weekly in-class tests), we 
still thought it likely that the on-campus students would show an increase in week-by-
week ability relative to the online students. Clearly, this is not the case. The fact that 
most of the on-campus students had started the fall semester mechanics course (8.01) in 
2012, but dropped out or completed it with a failing grade may have given them extra 
training on the material in the first several units. Note also that the on-campus course 
extended four weeks beyond the end of the material covered in 8.MReV and included 
topics like the harmonic oscillator, planetary orbits, a review of important procedures, 
and a general review of all material. But the bottom line remains: In spite of the extra 
instruction that the on-campus students had, Figure 6 shows no evidence of positive, 
weekly relative improvement of our on-campus students compared with our online 
students. 
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Summary and Conclusions 

We have studied conceptual learning in a MOOC by analyzing the results of pre- and 
posttesting in two ways: normalized gain and item response theory (IRT). Both methods 
show unequivocal evidence of learning. The amount of learning, normalized gain, 0.31 
+/- 0.02, was higher than in any of the 14 traditional (i.e., lecture-based) courses 
studied by Hake 1998, but was in the lowest decile of courses whose classes included 
“interactive engagement” activities.  

The diversity and large sample size of the MOOC enabled us to separate the learning of 
various cohorts. We divided the sample into cohorts based on educational level, amount 
of preparation in mathematics,  in physics, and by whether they were teachers. None of 
our nine cohorts had normalized gain that differed significantly from 0.31. This applied 
to questions involving both force and motion (the most frequently measured concepts in 
other studies) and all other topics taken together. 

An advantage of comparisons of cohorts within our MOOC is that concerns about the 
MOOCs selecting only highly motivated students, or about the special nature of pre- and 
posttesting in our online environment, apply equally to all of the students in the MOOC. 
Thus, comparisons of various cohorts within the same MOOC give reasonably definitive 
results. 

In addition, we have compared the weekly IRT abilities of students in a reformed on-
campus course incorporating a flipped classroom relative to those of the 8.MReV class 
and several cohorts of its students. There is certainly no evidence that the on-campus 
students’ four hours of intimate contact with teaching staff increased their relative 
ability over the term. 

Now that we can measure the learning in our MOOC, we are in a position to study what 
correlates with it. Indeed we have made a preliminary investigation (Champaign et al., 
2014) finding significant positive correlations with time spent on several different 
resources, but with little differentiation between them. A second factor that might affect 
learning is study patterns; for example, we found dramatically different patterns of 
resource use when students did homework versus exams (Seaton, Bergner, Chuang, 
Mitros, & Pritchard, 2014). This raises the question of whether students following these 
(or other) patterns will show more or less learning. 

Another interesting area for future research is comparisons with other introductory 
physics MOOCs that have done pre-post testing to measure conceptual learning. 
Preliminary results from the Georgia Institute of Technology MOOC, which emphasizes 
students analyzing videos, show significantly less gain than we find here (G. Schatz, 
personal communication, June 19, 2014), whereas a video-based MOOC at the 
University of Colorado, which emphasizes conceptual learning, has significantly more 
gain than we see here, at least on force and motion (M. Dubson, personal 
communication, June 20, 2014). Given the different demographics of those registering, 
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the different objectives of each course, and the significantly smaller percentage of 
certificate earners in these other MOOCs, direct comparisons will be challenging. 

In the future we can sharpen the results of pre- and posttesting by administering the 
same questions to on-campus students and those in the MOOC, constrained by the 
concern that too much pretesting in the MOOC may make some students withdraw 
because they feel like guinea-pigs. 

It is also important to note the many gross differences between 8.MReV and on-campus 
education. Our self-selected online students are interested in learning, considerably 
older, and generally have many more years of college education than the on-campus 
freshmen with whom they have been compared. The on-campus students are taking a 
required course that most have failed to pass in a previous attempt. Moreover, there are 
more dropouts in the online course (but over 50% of students making a serious attempt 
at the second weekly test received certificates) and these dropouts may well be students 
learning less than those who remained. The pre- and posttest analysis is further blurred 
by the fact that the MOOC students could consult resources before answering, and, in 
fact, did consult within course resources significantly more during the posttest than in 
the pretest. 

In summary, our MOOC produced significant and roughly equal learning for all of the 
cohorts differentiated along several axes that strongly influence their overall ability: 

• students with high school or less education versus those with advanced college 
degrees; 

• students lacking good preparation in math and physics – both obviously 
important for success in this course – versus those with good preparation; and 

• students who display low ability versus high ability on the pretest. 

In addition, we find a small improvement, relative to the overall class, for cohorts with a 
more formal education. 
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Appendix 

Table 2 

Pre- and Posttest Problems 

  % Correct Normalized 
gain 

Attempts 
 Problem summary Pre Post allowed 
1 identify correct free body diagram, forces labeled 94 93 -0.13 4 
2 identify correct free body diagram, forces not 

labeled 
50 55 0.10 4 

3 identify forces in free body diagram 63 68 0.15 4 
4 answer sense-making: block on ramp attached to 

massive pulley 
57 84 0.63 2 

5 inelastic collision, find the error in given 
solution 

46 56 0.19 1 

6 explain answer to question above 62 74 0.33 2 
7 pendulum swings down, collides inelastically. 

decomposition 
75 67 -0.30 1 

8 justify answer to question above 63 64 0.03 2 
9 find force of rope pulling elevator at constant 

speed 
76 85 0.40 2 

10 direction of acceleration for block at bottom of 
circular ramp 

44 68 0.43 3 

11 direction of acceleration after block leaves ramp 84 91 0.43 3 
12 find maximum elongation of mass on vertical 

spring after sudden release 
58 65 0.16 3 

13 heat generated after above mass comes to rest 55 61 0.13 3 
14 find scale reading for mass in elevator given 

elevator's change in velocity over time interval 
NA 63 NA 2 

15 find maximum speed of cylinder on turntable, 
given m, mu, r 

NA 81 NA 2 

16 find maximum stretch of spring given initial 
position and velocity of given mass 

48 68 0.38 10 

17 moving mass approaches fixed mass with 
mutual attraction; find position where they 
collide given time of collision (use dynamics of 
center of mass) 

27 44 0.23 10 

Note. Percent correct based only on those students who attempted the problem. 

 

The first 11 questions on the pre- and posttests are all multiple choice questions, 
generally involving conceptual issues rather than computations. These may be 
considered as conceptual tests, like the pioneering Force Concept Inventory (FCI) (Hake 
et al., 1992). The physics education research community has long compared the 
effectiveness of different pedagogies by the normalized gain on concept tests, that is, the 
fractional reduction in the number of incorrect responses to the questions on the 
posttest relative to the number of incorrect responses on the pretest.  
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