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SUMMARY
A combination of  deep seismic imag-
ing and drilling has demonstrated that
the ocean-continent transition (OCT)
of  present-day, magma-poor, rifted
continental margins is a zone of  hyper-
extension characterized by extreme
thinning of  the continental crust that
exhumed the lowermost crust and/or

serpentinized continental mantle onto
the seafloor. The OCT on present-day
margins is difficult to sample, and so
much of  our knowledge on the
detailed nature of  OCT sequences
comes from obducted, magma-poor
OCT ophiolites such as those pre-
served in the upper portions of  the
Alpine fold-and-thrust belt. Allochtho-
nous, lens-shaped bodies of  ultramafic
rock are common in many other
ancient orogenic belts, such as the
Caledonian – Appalachian orogen, yet
their origin and tectonic significance
remains uncertain. We summarize the
occurrences of  potential ancient OCTs
within this orogen, commencing with
Laurentian margin sequences where an
OCT has previously been inferred (the
Dalradian Supergroup of  Scotland and
Ireland and the Birchy Complex of
Newfoundland). We then speculate on
the origin of  isolated occurrences of
Alpine-type peridotite within Laurent-
ian margin sequences in Quebec – Ver-
mont and Virginia – North Carolina,
focusing on rift-related units of  Late
Neoproterozoic age (so as to eliminate
a Taconic ophiolite origin). A combina-
tion of  poor exposure and pervasive
Taconic deformation means that origin
and emplacement of  many ultramafic
bodies in the Appalachians will remain
uncertain. Nevertheless, the common
occurrence of  OCT-like rocks along
the whole length of  the Appalachian –
Caledonian margin of  Laurentia sug-
gests that the opening of  the Iapetus
Ocean may have been accompanied by
hyperextension and the formation of
magma-poor margins along many seg-
ments.

SOMMAIRE
Des travaux d’imagerie sismique et des
forages profonds ont montré que la
transition océan-continent (OCT) de
marges continentales de divergence
pauvre en magma exposée de nos
jours, correspond à une zone d’hyper-
étirement tectonique caractérisée par
un amincissement extrême de la croûte
continentale, qui a exhumé sur le fond
marin, jusqu’à la tranche la plus pro-
fonde de la croûte continentale, voire
du manteau continental serpentinisé.
Parce qu’on peut difficilement échantil-
lonner l’OCT sur les marges actuelles,
une grande partie de notre compréhen-
sion des détails de la nature de l’OCT
provient d’ophiolites pauvres en
magma d’une OCT obduite, comme
celles préservées dans les portions
supérieures de la bande plissée alpine.
Des masses lenticulaires de roches
ultramafiques allochtones sont com-
munes dans de nombreuses autres ban-
des orogéniques anciennes, comme
l’orogène Calédonienne-Appalaches,
mais leur origine et signification tec-
tonique reste incertaine.  Nous présen-
tons un sommaire des occurrences
d’OCT potentielles anciennes de cet
orogène, en commençant par des
séquences de la marge laurentienne, où
la présence d’OCT a déjà été déduites
(le Supergroupe Dalradien d’Écosse et
d'Irlande, et le complexe de Birchy de
Terre-Neuve).  Nous spéculons ensuite
sur l'origine de cas isolés de péridotite
de type alpin dans des séquences de
marge des Laurentides du Québec-Ver-
mont et de la Virginie-Caroline du
Nord, en nous concentrant sur les
unités de rift d'âge néoprotérozoïque
tardif  (pour éviter les ophiolites du
Taconique).  La conjonction d’affleure-
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ments de piètre qualité et de la défor-
mation taconique omniprésente, signi-
fie que l'origine et la mise en place de
nombreuses masses ultramafiques dans
les Appalaches demeureront incer-
taines.  Néanmoins, la présence
fréquente de roches de type OCT tout
le long de la marge Calédonnienne-
Appalaches de Laurentia suggère que
l'ouverture de l'océan Iapetus peut
avoir été accompagnée d’hyper-étire-
ment et de la formation de marges
pauvres en magma le long de nom-
breux segments.

INTRODUCTION
Our knowledge of  the ocean-continent
transition (OCT) of  magma-poor pas-
sive margins has increased significantly
since exhumed mantle rocks were first
dredged and then drilled during ODP
Leg 103 off  the Western Iberian mar-
gin (Boillot et al. 1980, 1987). A com-
bination of  modern high-quality geo-
physical data, deep sea drilling and
comparative studies of  analogue areas
onshore (e.g. Manatschal 2004; Péron-
Pinvidic and Manatschal 2009) has
shown that the OCT of  magma-poor
passive margins is a zone of  hyperex-
tension characterized by extreme thin-
ning of  parts of  the continental crust,
resulting in exhumation of  the lower-
most crust and/or serpentinized conti-
nental mantle onto the seafloor (e.g.
Iberian margin, Tucholke et al. 2007;
Sibuet and Tucholke 2013). Serpen-
tinization is facilitated by the move-
ment of  large volumes of  water from
the surface down into the mantle along
major extensional structures, the
largest of  which is typically a concave-
downwards lithosphere-scale master
detachment (e.g. Manatschal 2004;
Manatschal et al. 2007, 2011; Sutra and
Manatschal 2012). 

Rifted continental margins
have been divided into two types
depending on the amount of  rift-relat-
ed magmatism. A ‘volcanic’ or magma-
rich margin is characterized by sea-
ward-dipping reflectors typical of  sub-
aerial lava flows which mask the rift-
related extensional structures, whereas
a ‘non-volcanic’ or ‘magma-poor’ rifted
margin lacks these features (Louden
and Chian 1999; Dean et al. 2000).
Hyperextension has been viewed to be
a characteristic of  magma-poor mar-
gins. However it is now recognized that

the degree and nature of  magmatism
associated with hyperextension varies
(e.g. Müntener and Manatschal 2006)
and hyperextension is not exclusive to
magma-poor margins such as Iberia.
For example the northeast Atlantic
‘volcanic’ margin was affected by
hyperextension processes in the Late
Jurassic – Early Cretaceous (Osmund-
sen and Ebbing 2008; Lundin and
Doré 2011). 

Allochthonous, lens-shaped
bodies of  ultramafic rock are common
in many orogenic belts, particularly the
Alps. Along the western boundary of
the Austroalpine nappes in eastern
Switzerland, podiform ultramafic bod-
ies are found in close association with
dolerite dykes and radiolarian chert,
and have long been regarded to be
characteristic of  the deep ocean floor
(Steinmann 1905). This rock associa-
tion in the Alps, later referred to as the
‘Steinmann Trinity’, has traditionally
been regarded to represent Tethyan
oceanic mantle sequences that have
been imbricated within ophiolite com-
plexes. However, the discovery of  dis-
tal margin sequences directly overlying
subcontinental mantle in many places
in the Alps (see Manatschal and Mün-
tener 2009 for a historical review) sup-
ports the idea that at least some of  the
ophiolites in the Alps represent ancient
OCTs, similar to the Western Iberian
and Newfoundland margins. The
Alpine Tethyan OCT ophiolites typi-
cally contain only minor amounts of
mafic igneous rocks and are character-
ized by blocks of  ancient subcontinen-
tal mantle exhumed by top-down base-
ment detachment faults and overlain by
extensional allochthons, tectono-sedi-
mentary breccias and a post-rift sedi-
mentary sequence similar to that of  the
adjacent distal continental margin (e.g.
Manatschal 2004; Manatschal and
Müntener 2009). Similar OCT
sequences have been reported in the
Pyrenees (Lagabrielle and Bodinier
2008; Lagabrielle et al. 2010) but the
recognition of  OCT ophiolites in older
orogenic belts has received less atten-
tion. 

This study investigates occur-
rences of  Alpine-type ultramafic rocks
of  potential OCT affinity within the
Caledonian – Appalachian orogen.
Although it is a well-studied orogenic
belt with a strike length of  over 7500

km, OCT sequences have only recently
been recognized (e.g. the Laurentian
margin of  Scotland and Ireland, Chew
2001; Henderson et al. 2009; Baltic
margin of  Norway, Andersen et al.
2012; Laurentian margin of  New-
foundland, van Staal et al. 2013). Long
linear belts of  ultramafic rocks are
common within the Caledonian –
Appalachian orogen (e.g. the
Appalachian serpentinite belts of  Hess
1939, 1955) and the origin and tectonic
significance of  many of  these isolated
occurrences of  Alpine-type peridotite
remains uncertain.

CRITERIA FOR IDENTIFYING AN
OCEAN-CONTINENT TRANSITION
(OCT) IN THE GEOLOGICAL RECORD

The Field Relationships of OCT
Rocks
On present-day rifted margins, the
OCT is typically covered by a thick pile
of  sediments at abyssal depths; the
Iberia–Newfoundland conjugate rifted
margin (Fig. 1) is the only location
where a ‘complete’ OCT sequence has
been drill-intersected across a magma-
poor rift system. Little is therefore
known about the detailed nature of
OCT rock types on present-day rifted
margins, and the low resolution of
deep seismic imaging techniques means
that the structural and intrusive rela-
tionships of  the various OCT compo-
nents are difficult to ascertain (Man-
atschal and Müntener 2009). Hence,
much of  our knowledge about the
structural, magmatic, hydrothermal and
sedimentary record of  continental
breakup and early seafloor spreading
comes from obducted OCT ophiolites,
the best examples of  which occur in
the Alpine Tethyan domain such as the
Platta, Tasna and Chenaillet ophiolite
units (Manatschal and Müntener 2009).
The Platta and Tasna units (Fig. 2a) are
believed to represent the OCT of  the
former Adriatic and European/Bri-
ançonnais conjugate rifted margins,
whereas the Chenaillet unit (Fig. 2b)
has an affinity closer to that of  true
oceanic crust. All three units escaped
deep Alpine subduction and critically
preserve pre-Alpine contacts between
the exhumed basement and a volcano-
sedimentary cover sequence (Man-
atschal and Müntener 2009). 

The following synthesis of  the
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chief  characteristics of  the Alpine
Tethyan OCT units is summarized
from Manatschal and Müntener (2009)
unless otherwise stated. The most
prominent structural features observed
in these OCT ophiolite units are top-
down basement detachment faults that
are analogous to the extensional
detachments in metamorphic core
complexes. These detachment fault
systems cannot be used to uniquely
identify OCT ophiolites in the geologi-
cal record as they may resemble ocean-
ic detachment faults that develop on
the flanks of  slow-spreading ridges,
and those fault systems at slow-spread-
ing ridges may also exhume plutonic
lower crust and mantle rocks (e.g.
Cann et al. 1997; Reston and Ranero
2011).

The low-angle faults in OCT
ophiolites are characterized by a series
of  cataclasites and gouges, are often
‘impregnated’ by calcite near the top of
the basement (ophicalcite), and are
overlain by tectono-sedimentary brec-
cias that pass upwards into sedimenta-
ry breccias and post-rift sediments (Fig.
2a, b). Because these faults are low-
angle structures that no longer carry
their original hanging wall, they have
historically been interpreted as either
sedimentary or reactivated Alpine tec-
tonic contacts. These detachment
faults overprint earlier exhumation-
related mylonitic shear zones in peri-
dotites and gabbros in the footwall
rocks and are overprinted further
oceanwards by syn-magmatic high-

angle normal faults that are parallel to
basaltic dykes interpreted as feeder
channels to the overlying volcanic
rocks. 

Below the top-basement
detachment fault the most common
rock type is foliated, massive serpen-
tinized peridotite and/or gabbro. Ser-
pentinization in Alpine-type mantle
rocks is pervasive and commonly
almost complete, and seismic velocities
obtained from present-day OCT sug-
gest that serpentinization can be com-
plete as far down as 2 km (Chian et al.
1999). Olivine is rare, and clinopyrox-
ene and orthopyroxene are only occa-
sionally preserved. Passing upward
towards the detachment fault, fractures
and veins filled by chlorite and serpen-
tine minerals mark the transition to
serpentinite or gabbro cataclasites (Fig.
2a). The intensity of  the brittle defor-
mation increases even further up-sec-
tion into a fault core zone of  serpenti-
nite gouges (Fig. 2a). Clasts of  dolerite
within the fault zone suggest that
detachment faulting was accompanied
by magmatic activity. The hanging wall
above the top-basement detachment
fault is formed by extensional
allochthons of  tectono-sedimentary
breccias, post-rift sediments (Fig. 2a),
and further oceanwards (Fig. 2b) by
basalts. The extensional allochthons
comprise continent-derived blocks,
ranging in size from tens of  metres to
blocks kilometers in extent. The exten-
sional allochthons and tectono-sedi-
mentary breccias comprising both

mantle- and continent-derived clasts
help distinguish a magma-poor OCT
sequence from a mid-ocean ridge set-
ting, as the emplacement of  continent-
derived extensional allochthons is
unlikely in the latter. The breccias in
the Alpine OCT sequences are typically
tectonized at their base and pass
upwards into clast-supported, poorly
organized sedimentary breccias domi-
nated by clasts derived from the under-
lying footwall (cf., Robertson 2007).
Basalts (typically pillow breccias)
become more voluminous oceanwards
and locally cover exhumed mantle
rocks. The oldest sediments of  the
post-rift sequence are typically radiolar-
ian cherts that drape over the underly-
ing tectono-sedimentary breccias,
extensional allochthons, or basalts. 

The Alpine Tethyan OCT
ophiolites described by Manatschal and
Müntener (2009) and other workers
clearly do not conform to the classical
definition of  a Penrose-type ophiolite
(Penrose conference participants 1972),
such as the Semail ophiolite in Oman
(Nicolas et al. 1988), the Bay of
Islands Complex in Newfoundland
(Bird et al. 1971) and the Troodos
ophiolite in Cyprus (Gass 1968). The
Alpine Tethyan OCT ophiolites con-
tain only minor amounts of  mafic
igneous rocks (basaltic lavas, sheeted
dyke complexes and gabbros) and are
instead characterized by blocks of
ancient subcontinental mantle
exhumed by top-basement detachment
faults and overlain by extensional
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allochthons, tectono-sedimentary brec-
cias and a post-rift sedimentary
sequence similar to that of  the adjacent
distal continental margin.  To avoid
confusion when discussing the tectonic
setting of  allochthonous, lens-shaped
bodies of  ultramafic rock within the
Appalachian – Caledonian orogenic
belt, henceforth the term ‘Alpine-type’
is used when referring to potential
OCT ophiolites.  The term ‘Penrose-
type ophiolite’ is used to describe the

idealized ophiolite sequence complete
with a sheeted dike complex as a result
of  seafloor spreading (Penrose Confer-
ence Participants 1972).

The Geochemistry of Ocean-
Continent Transition Zone Rocks

Ultramafic Rocks
Studies of  xenoliths suites derived
from sub-continental lithospheric man-
tle show that it is dominated by peri-

dotite, consisting of  olivine, orthopy-
roxene, clinopyroxene, and an alumi-
nous phase, typically spinel at low pres-
sure and garnet at high pressure (Lee
et al. 2011). Continental peridotites
range in composition from fertile litho-
types (lherzolite with abundant
clinopyroxene and high Al2O3, CaO,
and Na2O contents) to highly melt-
depleted lithotypes (an olivine- and
orthopyroxene-rich residue of  harzbur-
gite with low Al2O3, CaO, and Na2O
and high MgO content; Boyd 1989).
Ancient cratons are underlain by a
thick keel of  highly depleted peridotite,
whereas the sub-continental lithospher-
ic mantle beneath Phanerozoic mobile
belts is thinner and only mildly deplet-
ed relative to the underlying asthenos-
phere (Griffin et al. 2009). The Al2O3
and Na2O content of  Phanerozoic,
Proterozoic, and Archean peridotites
are negatively correlated with MgO
because of  progressive melt extraction
and depletion of  clinopyroxene and
garnet with time (Lee et al. 2011).
However, many sub-continental lithos-
pheric mantle peridotites display geo-
chemical evidence of  refertilization (i.e.
being re-enriched in basaltic melt com-
ponents) and therefore continental
mantle is the product of  at least two
major processes: melt depletion fol-
lowed by refertilization or other major
metasomatic enrichment processes
such as Si enrichment (Lee et al. 2011). 

Sub-continental lithospheric
mantle exhumed at OCTs on present-
day passive margins is dominated by
moderate (50%) to highly (95–100%)
serpentinized peridotites (Kodolányi et
al. 2012). Serpentinized peridotite in
Deep Sea Drilling Project (DSDP) and
Ocean Drilling Project (ODP) drill
cores from the Iberia and Newfound-
land passive margins have higher
incompatible trace element contents
and relatively flat chondrite-normalized
rare-earth element (REE) and primitive
mantle-normalized trace element pat-
terns when compared to serpentinites
from mid-ocean ridge (Mid-Atlantic
Ridge and Hess Ridge) and fore-arc
(Mariana and Guatemala) tectonic set-
tings (Kodolányi et al. 2012). The high-
er incompatible trace element contents
are attributed to smaller degrees of
partial melting and/or strong refertil-
ization by metasomatizing melts prior
to serpentinization; hence, the sub-
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continental lithospheric protolith is
considered to have a less depleted
chemical composition compared to
other mantle settings (Kodolányi et al.
2012). However, Müntener and Man-
atschal (2006) document the presence
(on the Newfoundland passive margin,
ODP site 1277) of  highly depleted
harzburgite (up to 25% melting) that is
inferred to represent inherited Cale-
donian sub-arc mantle exhumed close
to the ocean floor during the rifting of
the North Atlantic, which attests to the
role that local inheritance may play in
the composition of  exhumed mantle at
OCTs.

Mafic Rocks
In addition to the occurrence of
exhumed, ancient subcontinental man-
tle, most OCTs are characterized by a
scarcity of  mafic plutonic rocks and
the absence of  sheeted dike complexes
(Manatschal and Müntener 2009). Syn-
rift magmatism at these magma-poor
OCTs is typically of  mid-ocean ridge
basalt (MORB) affinity. Basalt, dolerite
and gabbro recovered from the Iberian
and Newfoundland passive margins
typically have compositions spanning
normal- through transitional- to
enriched-MORB (e.g. Seifert et al.
1997; Müntener and Manatschal 2006).
The geochemical features of  basaltic
and gabbroic rocks in ancient OCTs in
the geological record, such as the
Jurassic External Liguride units (Mon-
taninia et al. 2008) or the Platta unit in
the Eastern Central Alps (Desmurs et
al. 2002), is typically of  a transitional-
to normal-MORB-type composition.

Identifying OCT Rocks in Polyphase-
Deformed Orogenic Belts 
The OCT rocks of  modern-day rifted
continental margins are usually found
at abyssal depths and are unlikely to be
encountered in the geological record
unless they are imbricated onto the
continental margin by later collisional
orogenesis. Although the western
Alpine Tethys OCT ophiolites (the
Platta, Tasna and Chenaillet units)
described by Manatschal and Müntener
(2009) are preserved within thrust
nappes, they were not overprinted by
pervasive Alpine deformation or meta-
morphism. Hence they preserve pre-
Alpine structures and basement –
cover relationships and their paleogeo-

graphic position relative to the former
rifted margin can also be established.
However, many of  the Alpine Tethys
OCT ophiolites (particularly those that
have undergone deep subduction) have
experienced pervasive Alpine deforma-
tion that at best hinders pre-Alpine
paleogeographic reconstructions and at
worst obscures the internal relation-
ships between the OCT rocks within
individual nappes. 

This situation is common in
many ancient orogenic belts, which
typically have experienced significantly
more internal strain than the upper
portions of  the Alpine fold-and-thrust
belt where the type Alpine OCT units
are preserved. Examples include inter-
nal segments of  the Laurentian margin
of  the Caledonian – Appalachian oro-
genic belt, which form the majority of
the case studies presented herein. The
outboard-positioned parts of  the Lau-
rentian margin typically have under-
gone amphibolite-facies metamor-
phism and polyphase deformation
related to collision with an intra-ocean-
ic arc terrane during the Early to Mid-
dle Ordovician Grampian – Taconic
orogeny. Potential OCT occurrences in
the polyphase-deformed Laurentian
margin are therefore commonly tecton-
ically juxtaposed against or overlain by
Penrose-type ophiolite sequences asso-
ciated with the colliding oceanic arc
terrane. Conclusively identifying an
OCT sequence in such tectonic set-
tings is therefore difficult, as serpenti-
nite mélanges incorporated within
ancient orogenic belts are commonly
interpreted as evidence for obduction
of  a Penrose-type ophiolite during col-
lisional orogeny. The possibility that
some of  the occurrences of  serpenti-
nite mélange and associated rocks
within the Caledonian – Appalachian
orogenic belt may have been produced
during an earlier phase of  crustal
hyperextension is now investigated.

EXAMPLES FROM THE 
CALEDONIAN – APPALACHIAN
OROGENIC BELT
In this contribution we summarize the
occurrences of  potential ancient OCTs
within the Caledonian – Appalachian
orogenic belt, starting with regions on
the rifted Laurentian margin where we
have worked and an OCT has been
inferred (e.g. the Dalradian Supergroup

of  Scotland and Ireland, Chew 2001;
Henderson et al. 2009; and the Birchy
Complex of  the Fleur de Lys Super-
group of  Newfoundland, van Staal et
al. 2013). We then speculate on the ori-
gin of  isolated occurrences of  ultra-
mafic rocks within the Laurentian mar-
gin of  the Appalachians in Quebec –
Vermont and Virginia – North Caroli-
na, before considering the occurrence
of  a geographically widespread
mélange of  variably altered lenses of
mantle peridotite separating the Lower
Allochthon and Middle Allochthons in
the Caledonides of  Southern Norway,
for which an OCT origin has also been
inferred (Andersen et al. 2012).

Laurentian Margin

Scotland and Ireland
The Dalradian Supergroup of  Scotland
and Ireland (Fig. 3) is a metasedimenta-
ry succession that was deposited on
the eastern margin of  Laurentia during
the late Neoproterozoic and Early
Cambrian. Existing constraints imply
that the base is younger than 800 Ma
and that the age ranges to at least 510
Ma (Smith et al. 1999; Tanner and
Sutherland 2007). It comprises a thick
sequence of  lithologically diverse
metasedimentary and mafic volcanic
rocks, along with three distinct
glacigenic units that are correlated with
widespread Neoproterozoic glaciations
(McCay et al. 2006). Lithostratigraphic
correlation is hampered by the almost
complete absence of  stratigraphically
useful fossils, complex polyphase
deformation and rapid lateral facies
changes. Despite these difficulties, a
coherent lithostratigraphy has been
established from western Ireland
through mainland Scotland to the Shet-
land Islands (Harris et al. 1994), com-
prising four groups – Grampian,
Appin, Argyll and Southern Highland.
The Dalradian Supergroup was
deformed during the Grampian Oroge-
ny (ca. 475 – 465 Ma), which was
caused by the collision of  the Laurent-
ian continental margin of  Scotland and
northwest Ireland with an oceanic arc
terrane. The boundary between the
deformed Laurentian margin and the
oceanic arc terrane to the southeast is
marked by the Highland Border – Fair
Head – Clew Bay line (Fig. 3), which is
equivalent to the Baie Verte – Bromp-
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ton line in the Canadian Appalachians.
Early Ordovician accretionary com-
plexes (the Highland Border Complex
in Scotland and the Clew Bay Complex
in western Ireland; Fig. 3) crop out
along this fault zone.

On the Scottish – Irish sector
of  the Laurentian margin, mafic vol-
canic activity in the Dalradian Super-
group occurred throughout deposition
of  the Argyll Group and the lower
part of  the Southern Highland Group,
reaching its greatest development in
the Easdale and Tayvallich subgroups
of  the Argyll Group (Fettes et al.
2011). Absolute age constraints on the
timing of  volcanic activity are poor,
with the only reliable geochronology
being the U–Pb zircon dates of  595 ±
4 Ma on a keratophyre intrusion (Halli-
day et al. 1989), and of  601 ± 4 Ma on
a felsic tuff  (Dempster et al. 2002)
from within the Tayvallich Volcanic

Formation of  the upper Argyll Group.
Easdale Subgroup volcanism has been
suggested to have occurred at around
~630 – 620 Ma (Fettes et al. 2011).

On southern Achill Island in
western Ireland, a stratigraphic horizon
with abundant serpentinite olistoliths
embedded in a graphitic pelite matrix
(Fig. 4a) is spatially associated with vol-
canic rocks of  the Easdale Subgroup
(Kennedy 1980; Chew 2001). In addi-
tion to the presence of  large serpenti-
nite olistoliths, small flakes of  fuchsite,
a bright-green chromian muscovite, are
found embedded within black graphitic
pelite throughout the sequence. The
contacts between the large serpentinite
blocks and the enclosing graphitic
pelites reveals that the pelites have
been injected into the serpentinite olis-
toliths, and small fragments of  serpen-
tinite are commonly found to be com-
pletely enclosed and injected by the

pelitic matrix (Fig. 4b). In addition,
small clasts of  (meta-) sedimentary
rocks that resemble the local country
rocks are found embedded in the
matrix. The serpentinite mélange is
soft-sedimentary in origin and is pre-
tectonic with respect to the regional
ductile fabrics (Fig. 4c, Kennedy 1980;
Chew 2001). Serpentinite bodies (indi-
cated by green stars on Fig. 3) are also
found within the upper Argyll Group
of  the north Connemara Dalradian.
Although originally assumed to repre-
sent serpentinized peridotite bodies
associated with the nearby ca. 475 Ma
Dawros – Currywongaun ultramafic
intrusive suite in north Connemara
(Friedrich et al. 1999), graphitic pelites
are locally observed to penetrate ser-
pentinite olistoliths up to 150 m long
(Chew 2001) on coastal sections. Ser-
pentinite olistoliths embedded in black
graphitic pelites along with fuchsite has
also been recorded in stream sections
in the isolated Lack Inlier in Northern
Ireland (Fig. 3; Chew 2001; McFarlane
et al. 2009).

In Scotland a remarkably per-
sistent horizon of  ultramafic material
has been identified at the base of  the
Ben Lui Schist of  the upper Argyll
Group (Graham and Bradbury 1981;
Hawson and Hall 1987). It extends for
over 20 km along strike from Tyndrum
northeast to Loch Tay/Glen Lyon in
Perthshire (extent denoted by the three
green stars on Fig. 3) and consists of
chromite, chromian magnetite and
fuchsite, along with concordant bands
of  small talcose pods (Fortey and
Smith 1987). Detrital fuchsite clasts up
to 1 cm in size have also been recorded
in turbiditic grit channels at the base of
the Ben Lui Schist 4 km south of
Killin at the western end of  Loch Tay
(Chew 2001; westernmost of  the three
green stars on Fig. 3). In addition,
irregularly spaced larger serpentinite
bodies occur along this horizon in
Perthshire and northeast Scotland
(Garson and Plant 1973; Hawson and
Hall 1987) and these are also regarded
as potential serpentinite olistoliths by
Chew (2001). The serpentinite olis-
toliths occur at a similar stratigraphic
level (Upper Easdale – Tayvallich Sub-
group) for over 500 km along strike in
the Dalradian of  Ireland and Scotland
and are associated with a change from
shallow- to deep-water sedimentary
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strata and the first major sequence of
rift-related basaltic volcanic rocks. This
evidence was interpreted by Chew
(2001) to suggest that the serpentinite
olistoliths represented protrusions of
serpentinized mantle onto the seafloor
that were generated in Easdale Sub-
group times during a phase of  major
crustal extension leading to the forma-
tion of  an OCT. 

A series of  poorly exposed
fault-bound slivers of  ophiolitic rocks
(termed the Highland Border Ophiolite
[HBO] in Scotland; Tanner and Suther-
land 2007) crop out within the High-
land Boundary – Fair Head – Clew Bay
fault zone in Scotland and western Ire-
land. These rocks have traditionally
been regarded as Late Cambrian –
Early Ordovician Penrose-type ophio-
lite complexes that were dismembered
following obduction during the early

stages of  the Grampian Orogeny. The
affinity of  this suite of  supposed Pen-
rose-type ophiolitic rocks has also been
called into question by Tanner (2007),
who suggests that they represent
exhumed serpentinized sub-continental
lithospheric mantle, similar to the
Alpine-type OCT ophiolites of  the
Liguria region in northern Italy. 

Field observations from the
HBO (Leslie 2009; Henderson et al.
2009) broadly support a model in
which the widespread occurrence of
sheared and fragmental ophicarbonate
and associated sedimentary rocks of
the HBO originated in a stretching
OCT setting, now preserved as a frag-
ment of  Alpine-type OCT ophiolite on
the southeastern margin of  the
Grampian orogenic belt. The discon-
tinuous horizon of  serpentinite bodies
in the Easdale Subgroup rocks of  the

Dalradian Supergroup of  Ireland and
Scotland (Fig. 3) described by Chew
(2001) are likely intimately associated
with the HBO, with both units repre-
senting small slices of  exhumed ser-
pentinized sub-continental mantle that
originally lay beneath an extending
Dalradian basin during the opening of
the Iapetus Ocean. However, not all
exposures of  mafic and ultramafic
rocks within the HBO represent
exhumed serpentinized sub-continental
lithospheric mantle. For example, the
geochronology and P-T work of  Chew
et al. (2010) demonstrates that the Bute
Amphibolite (Fig. 3) represents a frag-
ment of  a Grampian supra-subduction
zone ophiolite that was obducted at ca.
490 Ma. The fragmentary and challeng-
ing nature of  the geological record
within the Highland Boundary fault
zone means that the tectonic affinity of
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Figure 4. (A) The serpentinite mélange on south Achill, western Ireland. (B) Black graphitic pelites intruding the margins of  a
pale serpentinite clast on south Achill. (C) Photomicrograph of  a talcose graphitic pelite demonstrating the pre-tectonic nature
of  the ultramafic detritus.



many slivers of  mafic and ultramafic
rock within the HBO will remain
unknown.

Newfoundland
The Laurentian continental margin in
Newfoundland, also known as the
Humber Zone (Williams 1979) is divid-
ed into a weakly deformed and meta-

morphosed western external zone and
an eastern internal zone that has
undergone polyphase metamorphism
and deformation during the Taconic
(mid-Ordovician) and Salinic (Silurian)
orogenic events (Cawood et al. 1994;
Lin et al. 2013). It is separated from
the diverse package of  oceanic rocks
that formed within the Iapetus Ocean

proximal to Laurentia (the Notre
Dame Subzone of  the Dunnage zone,
Fig. 5 inset) by a narrow, but complex
zone of  long-lived shear zones and
faults termed the Baie Verte – Bromp-
ton line (Fig. 5). 

The Fleur de Lys Supergroup
on the western Baie Verte peninsula is
thought to represent the internal,
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polyphase-deformed and distal (i.e.
more oceanward) portion of  the Hum-
ber margin, based on lithological link-
ages (e.g. the presence of  marble and
marble breccia derived from the Hum-
ber platform) with the autochthonous,
external parts of  this margin (Bursnall
and de Wit 1975; Williams 1977; Hib-
bard 1983; Hibbard et al. 1995;
Cawood et al. 2001). The Fleur de Lys
Supergroup comprises several groups
of  dominantly clastic psammitic and
pelitic schist, some of  which may be
correlatives (Hibbard 1983; Hibbard et
al. 1995), and some units dominated by
mafic schist. It is thought to be Edi-
acaran to Early Ordovician in age and
may be correlative with the upper part
of  the Dalradian Supergroup
(Kennedy 1975). 

The two easternmost units
within the Fleur de Lys Supergroup,
the Rattling Brook Group and the
Birchy Complex (Fig. 5), both contain
slivers of  ultramafic rock. Isolated
blocks of  soapstone, carbonate-bearing
serpentinite and talc-tremolite-carbon-
ate-bearing ultramafic schists (possibly
suggesting a lherzolite protolith, van
Staal et al. 2013) are tectonically inter-
leaved within psammites and pelites in
the western part of  the Rattling Brook
Group. They are particularly promi-
nent within a narrow, discontinuous
shear zone (the D1 Bishie Cove slide of

Kennedy 1971) that is interpreted by
van Staal et al. (2013) as an early thrust
that emplaced the Rattling Brook
Group above correlative rocks of  the
Old House Cove Group to the west. 

The Birchy Complex (Hibbard
1983) lies east of  and structurally over-
lies the Rattling Brook Group (Fig. 5);
it comprises highly strained and meta-
morphosed, polyphase-folded mafic
schists (Fig. 6a) that are locally interlay-
ered with psammite, graphitic pelite,
calc-silicate, coticule, jasper and ultra-
mafic rocks. The Birchy Complex
forms a steeply dipping, thin structural
footwall (1 – ca. 2.5 km outcrop width)
to the ca. 490 Ma supra-subduction
zone ophiolites (Hibbard 1983; Dun-
ning and Krogh 1985; Cawood et al.
1996; Skulski et al. 2010) of  the Baie
Verte oceanic tract (Notre Dame sub-
zone) across the Baie Verte – Bromp-
ton line to the east (Fig. 5; van Staal et
al. 2007). The ultramafic rocks in the
Birchy Complex vary from brecciated
talc- and/or tremolite-bearing serpenti-
nite to listwanite and bright green
fuchsite-actinolite/tremolite schist.
They principally occur in highly
deformed graphite-bearing mica schist
as metre-to decimetre-scale lenses (Fig.
6b), in other metasedimentary rocks,
and also in metavolcanic rocks (Fig.
6c). The metasedimentary rocks locally
contain detrital chromite, suggesting

that they were in part derived from the
ultramafic rocks. They therefore closely
resemble the occurrences of  ultramafic
rocks within the Dalradian Supergroup
of  southern Achill Island, western Ire-
land (van Staal et al. 2013).

The protoliths of  the Birchy
Complex mafic schists include
metagabbro, lava, pyroclastic and/or
epiclastic rocks (Hibbard 1983). No
pillow structures have been identified,
but the mafic schists, in places, proba-
bly represent highly deformed and
metamorphosed submarine flows
and/or high-level sills. Hibbard (1983)
and van Staal et al. (2013) have deter-
mined that the mafic rocks of  the
Birchy Complex are tholeiitic in com-
position and have a strong affinity with
MORB. A gabbro from the Birchy
Complex has yielded a Late Ediacaran
U–Pb zircon ID–TIMS age of  558 ± 1
Ma (van Staal et al. 2013), while
LA–ICPMS U–Pb concordia zircon
ages from a gabbro and an intermedi-
ate tuffaceous schist have yielded ages
of  564 ± 7.5 Ma and 556 ± 4 Ma,
respectively (van Staal et al. 2013).
These ages overlap with the last phase
(565–550 Ma) of  rift-related magma-
tism observed along the Humber mar-
gin of  the northern Appalachians
(Cawood et al. 2001). 

The Birchy Complex has tradi-
tionally been considered to represent a
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Figure 6. (A) Isoclinal fold closures within interlayered mafic schist and psammitic wackes in the Birchy Complex, western
Newfoundland. Small podiform serpentinite clasts enclosed by B) graphitic pelite, and C) mafic schist, in the Birchy Complex.



tectonic mélange associated with the
initial stages of  the Early to Middle
Ordovician obduction of  the Penrose-
type ophiolites of  the Baie Verte
oceanic tract onto the Humber margin
(Bursnall 1975; Williams 1977; Hibbard
et al. 1995). This tectonic setting was
inferred based on its association of
interleaved ultramafic and sedimentary
rocks, its highly dismembered character
and its location immediately adjacent
to the Penrose-type ophiolites of  the
Baie Verte oceanic tract across the Baie
Verte – Brompton line (Fig. 5). van
Staal et al. (2013) infer that the age
relationships and characteristics of  the
Birchy Complex and adjacent Rattling
Brook Group suggest that the ultra-
mafic rocks represent slices of  conti-
nental lithospheric mantle exhumed
onto the seafloor with magmatic accre-
tion of  MORB-like mafic rocks. The
Rattling Brook block is regarded as a
major extensional allochthon that was
separated from the para-authochtho-
nous Humber margin along an exten-
sional detachment lubricated by
exhumed mantle, while the Birchy
Complex represents the remnants of
an OCT zone formed during hyperex-
tension of  the Humber margin prior to
establishment of  the Iapetus mid-
ocean ridge further outboard (van Staal
et al. 2013). 

Quebec – Vermont
Potential ancient OCT rocks associated
with hyper-extension of  the Laurentian
margin occur southwest of  Newfound-
land in the Northern Appalachians of
northern Vermont and southern Que-
bec (van Staal et al. 2013). These rocks
(the Vermont – Quebec serpentine belt
of  Doolan et al. 1982) have been con-
sidered to represent remnants of  tec-
tonically emplaced slivers of  Taconic
Penrose-type ophiolites (Stanley et al.
1984), although nowhere do they con-
stitute a typical Penrose-type ophiolite
stratigraphy.

In common with the Birchy
Complex rocks of  Newfoundland and
the isolated occurrences of  ultramafic
rocks along the Laurentian margin of
Scotland and Ireland, one of  the chief
difficulties in recognizing sequences
produced during hyper-extension is
distinguishing continental margin rocks
from those of  oceanic (including
supra-subduction zone) affinity. In

many cases this can be a circular argu-
ment, as the suture zone in the Canadi-
an Appalachians (the Baie Verte –
Brompton line) that separates conti-
nental margin rocks to the northwest
(Humber zone of  Williams 1979) from
the Penrose-type ophiolites, arc vol-
canic rocks, mélanges, and syn-oro-
genic deposits to the southeast (Dun-
nage zone of  Williams 1979) is defined
principally by the outcrop pattern of
the putative Penrose-type ophiolitic
rocks (e.g. Williams and St.-Julien
1982). The best evidence for ultramafic
rocks potentially associated with hyper-
extension of  the Laurentian margin
therefore would come from occur-
rences within unequivocal Iapetan rift-
related sequences of  the Humber zone.

In the internal Humber zone
of  the southern Quebec Appalachians
(Fig. 7), three metamorphosed litholog-
ic units (correlative with formal units
of  the external Humber zone) are rec-
ognized within a series of  anticlinoria
and structural windows: the Oak Hill,
Caldwell, and Rosaire groups (latest
Neoproterozoic to Early Ordovician;
St.-Julien and Hubert 1975). These
units were formerly referred to as the
Sutton Schists in the Sutton Mountains
anticlinorium and the Bennett Schists
in the Notre Dame Mountains anticli-
norium (Fig. 7). In the external Hum-
ber zone, the Oak Hill Group compris-
es mafic volcanic rocks overlain by
quartzites, dolostones, and phyllites,
and represents a rift-drift transition.
The Late Ediacaran (ca. 565 Ma) Cald-
well Group (Bédard and Stephenson
1999; Villeneuve and Bédard, personal
communication) is characterized by
quartzofeldspathic sandstone with sub-
ordinate mafic volcanic rocks, green
and red slates, and phyllites, whereas
the Rosaire Group consists of
quartzite, black slates, and phyllites
(Castonguay and Tremblay 2003).

Within the Rosaire and Cald-
well groups in the Notre Dame Moun-
tains anticlinorium, a series of  discon-
tinuous serpentinite slivers occurs
along a complex D1 – D2 shear zone
(Tremblay and Pinet 1994). This series
of  tectonized and brecciated serpen-
tinites is collectively termed the Pen-
nington Sheet (Fig. 7), which was sub-
sequently deformed by later D3 – D4
folds (Tremblay and Pinet 1994).
Although it was previously thought to

represent a sliver of  the Thetford
Mines ophiolitic complex (of  Penrose-
type affinity) that crops out in the
Dunnage zone immediately to the
southeast (Fig. 7), the correlation of
the Pennington Sheet with the Thet-
ford Mines ophiolitic complex is not
clearly established (Tremblay and Cas-
tonguay 1999) and is not supported by
the available geochronologial data. The
Pennington sheet has yielded a 40Ar –
39Ar metamorphic hornblende age of
491 ± 11 Ma (Whitehead et al. 1996),
whereas the Thetford Mines ophiolite
has yielded a U–Pb zircon crystalliza-
tion age of  479.2 ± 1.6 Ma (Tremblay
et al. 2011). The Pennington sheet age
correlates better with the ophiolitic
Belvidere Mountain complex in adja-
cent Vermont, which has yielded a
metamorphic hornblende 40Ar – 39Ar
plateau age of  505 ± 2 Ma (Laird et al.
1993), and is closely associated with
rift clastics and slope-rise deposits of
the Humber zone (Hazens Notch For-
mation, see below). van Staal et al.
(2013) suggested that the slivers of
mantle interleaved with strongly tec-
tonized metasedimentary rocks of  the
Pennington Sheet are better interpreted
as a segment of  the hyper-extended
Appalachian margin of  Laurentia. 

The Dunnage zone and part
of  the easternmost Humber zone of
southern Quebec continue south along
strike into northern Vermont (Fig. 8),
although in Vermont this belt has not
been formally subdivided into the
Humber (continental) and Dunnage
(oceanic) terranes as in southern Que-
bec. A sequence of  rift-related clastic
rocks of  Late Proterozoic to Early
Paleozoic age is preserved in a group
of  thrust sheets called the Green
Mountain slices, whereas oceanic and
supra-subduction zone rocks occur in
the Rowe, Moretown and Hawley slices
(Fig. 8), known collectively as the Rowe
– Hawley belt (Kim et al. 2003). The
Vermont Appalachians lack well-devel-
oped ophiolite sequences but slivers of
highly serpentinized peridotite occur in
the Green Mountain, Rowe, More-
town, and Hawley slices (Fig. 8) and
have been interpreted as Penrose-type
ophiolitic remnants (Doolan et al.
1982; Stanley et al. 1984). 

The peridotites within the
Moretown and Hawley slices (Fig. 8)
most likely represent tectonically
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emplaced slivers of  Penrose-type ophi-
olites  associated with the closure of
the Iapetus ocean (Coish and Gardner
2004). Detrital zircon data imply that
the host sedimentary rocks (the More-
town Formation of  presumed arc
affinity) must be Early Ordovician or
younger in age (Ryan-Davis et al.
2013). The peridotite mineral assem-
blage (serpentine, talc, small amounts
of  magnesite, tremolite and magnetite,
and local relict olivine, pyroxene and
chromite), high MgO, and low TiO2
and Al2O3 whole-rock compositions
suggest a dunite protolith, whereas the
compositions of  remnant olivine (high
Mg#) and chromite (high Cr#) indi-
cate that the peridotites formed as
highly-depleted mantle residues, proba-
bly in a forearc, supra-subduction zone
setting (Coish and Gardner 2004). 

The rocks of  the Green
Mountain and Prospect Rock slices
(Fig. 8) are composed of  albite-bearing
schists (e.g. the non-graphitic Fayston
Formation and the graphitic Hazens
Notch Formation) and rare greenstone
horizons (Thompson and Thompson
2003). The Hazens Notch and
Ottauquechee formations also contain
serpentinized ultramafic and talc – car-
bonate bodies. The Fayston, Hazens
Notch and Ottauquechee formations
are interpreted by Thompson and
Thompson (2003) and Kim et al.
(2003) to represent metamorphosed
rift clastics and slope-rise deposits
spanning the Late Neoproterozoic to
Cambrian Iapetan rift – drift transition,
and are likely correlatives of  the rift –
drift facies exposed within the Sutton
Mountains (Colpron et al. 1994) and

Notre Dame Mountains anticlinoria in
southern Quebec. The geochemistry of
the greenstones within the Green
Mountain Slice and the Sutton Moun-
tains anticlinorium suggests that they
formed during rifting (Coish et al.
1985; Colpron et al. 1994). The slivers
of  mantle interleaved with strongly tec-
tonized metasedimentary rocks in the
rift-related Laurentian margin
sequences of  southern Quebec (Sutton
Mountains anticlinorium; the Penning-
ton Sheet in the Notre Dame Moun-
tains anticlinorium) and northern Ver-
mont (e.g. Belvidere Mountain Com-
plex) may therefore represent
sequences formed during hyperexten-
sion of  the Laurentian margin.

Virginia – Carolina
The Blue Ridge province of  Virginia
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and North Carolina largely comprises a
crystalline basement massif  of  Meso-
proterozoic (1.2 – 1.0 Ga) age that is
flanked by Late Neoproterozoic to
Early Paleozoic cover. It contains the
largest region of  Mesoproterozoic
rocks within the Appalachian orogen
and is an assumed correlative of  the
Grenville province of  Canada (Rivers
1997) and the Adirondacks (McLelland
et al. 2010). The Late Neoproterozoic
to Early Paleozoic cover records the
transition from deep to shallow-water

deposition along the Laurentian margin
and is linked to two periods of  crustal
extension at 760 – 680 Ma and ca. 565
Ma (Southworth et al. 2009), with the
latter resulting in the opening of  the
Iapetus Ocean (Aleinikoff  et al. 1995).
The Late Neoproterozoic sequences
include the Lynchburg Group of  Vir-
ginia, which is broadly correlative with
the Mount Rogers Formation of  Vir-
ginia – North Carolina (felsic volcanic
rocks within this formation are dated
at ca. 760 Ma; Aleinikoff  et al. 1995),

the Ashe Formation in North Carolina,
and the Tallulah Falls, Sandy Springs
and New Georgia formations in Geor-
gia (e.g. Rankin et al. 1973; Hatcher
1987). 

Ever since Hess (1955) recog-
nized two parallel belts of  ultramafic
rocks in the Appalachians, the origin
and tectonic significance of  these ser-
pentinite belts has been the subject of
controversy. The westernmost serpenti-
nite belt of  Hess (1955) occurs west of
a zone of  intense deformation in the
eastern Blue Ridge Province (i.e. within
rocks of  Laurentian affinity), whereas
the other serpentinite belt occurs east
of  an axis of  intense deformation in
the Piedmont Province (i.e. part of  the
Iapetan realm; Hibbard et al. 2006). A
distinctive feature of  the Late Neopro-
terozoic cover of  the eastern Blue
Ridge Province relative to temporally
correlative cover sequences of  the
western part of  the province is the
abundance of  mafic and ultramafic
rocks (Misra and Conte 1991). 

Typically, Blue Ridge ultramaf-
ic rocks (and those of  the southern
Appalachians in general) occur as
abundant, small isolated pods of
metadunite and subordinate meta-
harzburgite surrounded by metasedi-
mentary rocks, enclosed within the
regional foliation, and having no evi-
dence of  intrusive contacts, contact
metamorphism or chilled margins
(Misra and Keller 1978; Raymond et al.
2003). The clastic metasedimentary
rocks surrounding these bodies com-
monly display a continuous, undisrupt-
ed stratigraphy (Wang and Glover
1997; Kasselas and Glover 1997). In
the literature, they have been described
as mélanges (e.g. Abbott and Raymond
1984) or Alpine-type ultramafic rocks,
and they contrast markedly with the
large, nearly complete Penrose-type
ophiolite sections of  the northern
Appalachians that formed in a supra-
subduction zone setting. They are pre-
tectonic with respect to the pervasive
Taconic deformation, and few primary
textural and structural features have
survived amphibolite to granulite-grade
regional metamorphism, although
compositional layering is locally pre-
served in some ultramafic rocks (Swan-
son et al. 2005). Most of  the larger
Blue Ridge ultramafic bodies are asso-
ciated with mafic rocks (e.g. the Buck
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Creek mafic – ultramafic suite; Peter-
son and Ryan 2009), but the smaller
bodies are not and this may in part be
a result of  deformation and disaggre-
gation during emplacement (Swanson
et al. 2005). It is possible that the ultra-
mafic rocks were emplaced into inter-
calated volcanic and sedimentary rocks
and are not genetically related (Rankin
et al. 1973). However, the proximity of
the mafic rocks to some of  the Blue
Ridge ultramafic bodies has been used
to infer a petrogenetic relationship
(Wang and Glover 1997).

A variety of  tectonic models
has been put forward to account for
the origin and emplacement of  ultra-
mafic bodies in the Blue Ridge and
elsewhere in the southern Appalachi-
ans. These models include tectonically
dismembered Penrose-type ophiolites
(e.g. Misra and Keller 1978; McElhaney
and McSween 1983; Hatcher et al.
1984; Raymond et al. 2003; Swanson et
al. 2005; Peterson and Ryan 2009),
fragments in tectonic mélange com-
plexes (e.g. Abbot and Raymond 1984;
Lacazette and Rast 1989), and a rift-
related intrusion origin (i.e. the ultra-
mafic rocks are consanguineous with
the mafic rocks and represent sill and
dike emplacement of  fractional crystal-
lization products from a picritic-
basaltic magma; Wang and Glover
1997). Reaching a definitive interpreta-
tion on the origin and emplacement of
ultramafic bodies in the southern
Appalachians is unlikely, as is suggested
by the large disparity in the existing
tectonic models, and by the intensity of
the overprinting Taconic deformation.
We feel that an OCT origin may
explain many of  the enigmatic features
of  the Blue Ridge serpentinite belt,
and in particular may be applicable to
some of  the occurrences of  ultramafic
rocks in the Late Neoproterozoic rift-
related sequence of  the Lynchburg
Group of  Virginia and the Ashe For-
mation in North Carolina.

Baltic Margin of Norway
The Caledonides of  Scandinavia and
East Greenland were formed by the
closure of  the Iapetus Ocean in the
Middle Silurian (ca. 430 Ma), and the
ensuing continent-continent collision
continued for 30 Ma into the Early
Devonian. The Scandinavian Cale-
donides are divided into an

Autochthon, Parautochthon, and
Lower, Middle, Upper and Uppermost
Allochthons (Sturt and Austrheim
1985). The Lower and Middle
Allochthons are believed to represent
shelf  and continental slope units
deposited on the Baltoscandian margin
(e.g. Roberts 2003). The Upper
Allochthon is interpreted as a series of
magmatic arc, oceanic and marginal
basin deposits from locations within
and peripheral to the Iapetus Ocean
(e.g. Pedersen et al. 1991), although
certain units within this assemblage
predate the opening of  Iapetus and are
likely exotic to Baltica (e.g. the Kalak
Nappe Complex in Finnmark; Kirk-
land et al. 2008). The Uppermost
Allochthon is considered to have Lau-
rentian affinities (e.g. Stephens and
Gee 1985).  

The basement-cover nappes of
the Lower and Middle Allochthons in
southern Scandinavia are commonly
interpreted to have originated from the
margin of  Baltica because their Pro-
terozoic history is similar to that of  the
autochthonous local basement (e.g.
Lundmark et al. 2007).  Andersen et al.
(2012) highlighted the presence of  a
mélange hosting solitary mantle peri-
dotites (Qvale and Stigh 1985) in
southern Norway (Fig. 9) that occurs
structurally above the Western Gneiss
Region and structurally below the large
crystalline Proterozoic nappe complex-
es of  the Middle Allochthon (the
Jotun, Upper Bergsdalen and Lindås
nappes; Fig. 9).  The mélange is found
at the same structural level along a dis-
tance of  more than ca. 400 km from
the Bergen Arcs northeastwards across
southern Norway, and comprises
numerous lenses of  variably altered
mantle peridotite and minor mafic
meta-igneous rocks (Andersen et al.
2012).  Until the study of  Andersen et
al. (2012), the mélange had either been
largely disregarded in regional tectono-
stratigraphic syntheses (e.g. Roberts
and Gee 1985) or was believed to rep-
resent a dismembered Penrose-type
ophiolite.  The mélange may have had
a much wider geographical distribution
(Andersen et al. 2012), as regional
mapping shows that a mélange with
abundant mantle peridotites of  detrital
origin continues into the Gula, Seve
and equivalent ‘suspect’ nappe com-
plexes in the central Scandinavian Cale-

donides (Stigh 1979).
In common with most of  the

other occurrences of  potential OCT
ophiolites within the Appalachian –
Caledonian orogen that are discussed
in this study, the mantle peridotite-
bearing mélange has undergone intense
polyphase Caledonian (Scandian)
deformation and metamorphism.
However, there is no evidence to sug-
gest an intrusive relationship between
the ultramafic rocks and the host sedi-
mentary rocks (Andersen et al. 2012).
Interpretation of  the unit is also ham-
pered by a lack of  firm age constraints
on the timing of  mélange formation,
as the associated gabbros and basalts
are undated and the sedimentary
matrix of  the mélange has no pre-
served fossils except those found in
the Middle Ordovician (Llanvirn; 470 –
464 Ma) monomict serpentinite con-
glomerate east of  Vågå (Bruton and
Harper 1981; Fig. 9). Andersen et al.
(2012) infer that the association of
solitary mantle peridotites, detrital
ultramafic rocks and siliciclastic- and
carbonate-rich sedimentary rocks (with
limited volumes of  associated gabbros
and basalts) implies formation in deep
basins formed by large-magnitude
extension rather than in a magma-
dominated spreading-ridge environ-
ment. 

The thin sheets of  highly
attenuated continental crystalline base-
ment and associated metasedimentary
rocks in the Middle Allochthon, struc-
turally overlying the mantle peridotite-
bearing mélange, are interpreted by
Andersen et al. (2012) as extensional
allochthons juxtaposed onto continen-
tal mantle lithosphere by large-magni-
tude extensional detachments similar to
those in present-day continental mar-
gins and in the Alps (e.g. Manatschal
2004). In such a model, the regional
mélange unit found between the Lower
and Middle Allochthons in the south-
western Scandinavian Caledonides
would therefore represent the vestiges
of  a hyperextended pre-Caledonian
continental margin of  Baltica, while
the Lindås, Upper Bergsdalen and
Jotun crystalline nappe complexes (Fig.
9) would represent ancient outboard
ribbon continents. The tectonic config-
uration of  the pre-Caledonian margin
of  Baltica in the model of  Andersen et
al. (2012) is significantly more compli-
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cated than that traditionally conceived.
In particular, the presence of  an OCT
domain (now represented by the man-
tle peridotite-bearing mélange below
the major crystalline continental
nappes) has been largely disregarded in
previous tectonic reconstructions.
Given that the width of  an OCT
domain (passing from highly attenuat-
ed extensional allochthons of  conti-
nental crust through transitional crust
into unambiguous oceanic crust) can
be upwards of  100 km (e.g. Péron-Pin-
vidic and Manatschal 2010), failing to

recognize the presence of  OCT
domains in orogenic belts can result in
significantly underestimated crustal
shortening estimates.

CONCLUSIONS

Recognition of OCT Sequences in
the Caledonian – Appalachian 
Orogenic Belt
Conclusively identifying OCT
sequences within the Caledonian –
Appalachian orogenic belt has proved
challenging and this problem is partic-
ularly acute for the polyphase-

deformed rocks originally formed near
or on the Laurentian margin. On the
Laurentian margin, potential OCT
sequences are commonly tectonically
juxtaposed against Penrose-type ophio-
lite sequences of  the colliding
Grampian – Taconic oceanic arc, and
the inferred OCT rocks (typically iso-
lated occurrences of  Alpine-type ultra-
mafic rocks) do not preserve the pre-
orogenic extensional structures and
basement – cover relationships as seen
in the type Alpine OCT units (Man-
atschal and Müntener 2009). It is prob-
ably no coincidence that the two best
documented occurrences of  OCT
sequences on the Laurentian margin
(the Dalradian Supergroup in western
Ireland; Chew 2001, and the Birchy
Complex of  the Fleur de Lys Super-
group of  Newfoundland; van Staal et
al. 2013) are superbly exposed. The
wave-polished Atlantic coastal out-
crops in both units enable the field
relationships of  the isolated serpenti-
nite occurrences to be established, and
it can be demonstrated that they are at
least in part detrital and embedded in a
matrix of  graphitic pelite. Both
sequences are associated with MORB-
like rift-related basaltic volcanic rocks
linked to the opening of  the Iapetus
Ocean, and hence clearly pre-date the
formation of  the Grampian – Taconic
oceanic arc. In summarizing the isolat-
ed occurrences of  ultramafic rocks
within the Laurentian margin of  the
Appalachians in Quebec – Vermont
and Virginia – North Carolina, we have
attempted to restrict the discussion to
sequences in which the host rocks are
associated with the break-up of  the
Laurentian continent leading to the
formation of  the Iapetus Ocean (i.e.
the matrix to the Alpine-type ultramaf-
ic rocks is Late Neoproterozoic in age).
However, because of  poor exposure
and the intensity of  the overprinting
Taconic deformation, the origin and
emplacement of  many ultramafic bod-
ies in the Appalachians will remain
uncertain. Nevertheless, the common
occurrence of  OCT-like rocks along
the whole length of  the Appalachian –
Caledonian margin of  Laurentia sug-
gests that the opening of  the Iapetus
Ocean may have been accompanied by
hyperextension and formation of
magma-poor margins along many seg-
ments.
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Implications of Hyper-Extended
Margins within the Caledonian –
Appalachian Orogen

Hyperextension During Break-up
van Staal et al. (2013) explored the
implications of  hyperextension along
segments of  the Laurentian margin
during the opening of  the Iapetus
Ocean, including the delaying of  the
onset of  thermal subsidence and the
formation of  ribbon-continents. The
last major magmatic pulse on the
Appalachian Humber margin took
place from 615 to 570 Ma and is
thought to be related to the opening of
the Iapetus Ocean (Kamo et al. 1989;
Cawood et al. 2001), consistent with
paleomagnetic evidence that eastern
Laurentia had separated from its conju-
gate margin(s) during the Late Edi-
acaran (McCausland et al. 2007). How-
ever, thermal subsidence analysis sug-
gests that the rift-drift event took place
during the late Early Cambrian, at least
30 – 40 my later, along the length of
the Appalachian margin (Bond et al.
1984; Williams and Hiscott 1987;
Cawood et al. 2001; Waldron and van
Staal 2001), which is supported by a
small, latest Ediacaran rift-related pulse
of  predominantly MORB magmatism
between 565 and 550 Ma along the
Appalachian Humber margin (Cawood
et al. 2001, Hodych and Cox 2007, van
Staal et al. 2013). To explain this appar-
ent paradox, Cawood et al. (2001) and
Waldron and van Staal (2001) invoked
a multistage rift history that involved
an initial separation of  Laurentia from
the west Gondwanan cratons at ca. 570
Ma, followed by rifting of  another
block or blocks from Laurentia (e.g.
the Dashwoods ribbon-continent) at
ca. 540 – 535 Ma into an already open
Iapetus Ocean, thus establishing the
main passive margin sequence in east-
ern Laurentia. van Staal et al. (2013)
speculate that rift-related thermal sub-
sidence (and the resultant transgres-
sion) at ca. 540 – 535 Ma may have
been significantly delayed by a number
of  factors, and hence the end of  rift-
related magmatism at ca. 550 Ma is the
best proxy for the final break-up and
the onset of  spreading in the Iapetus
Ocean along the northern Appalachian
margin of  Laurentia.  The factors that
were inferred to have inhibited thermal
subsidence include the insulating

effects of  a thick sedimentary blanket
on the Laurentian margin, anomalous
slow cooling and prolonged rift-margin
uplift and emplacement of  hot mantle
under the hyperextending crust along
this segment of  the Laurentian margin
(van Staal et al. 2013). Potential Dash-
woods equivalents occur in the South-
ern Appalachians (van Staal and Hatch-
er 2010) and in the Irish Caledonides,
which if  correct provides further sup-
port for extensive hyperextension dur-
ing opening of  the Iapetus Ocean. The
ribbon continents that were rifted from
the Irish sector of  the Laurentian mar-
gin (the Slishwood Division; Flow-
erdew and Daly 2005, and the Tyrone
Central Inlier; Chew et al. 2008; Fig. 3)
are discussed further below.

Hyperextension During Ocean 
Closure
The presence of  a collage of  ribbon
continents outboard of  the Laurentian
margin formed during hyperextension
has significant implications for the evo-
lution of  the Grampian – Taconic
orogeny during the closure of  the
Iapetus Ocean. These include the
preservation of  different structural and
metamorphic histories within the rib-
bon continents compared to each
other and particularly to autochtho-
nous rocks of  the adjacent margin (van
Staal et al. 2013). For example, the
Grampian – Taconic tract is character-
ized by several poorly understood
structural and metamorphic events that
took place between 515 and 455 Ma
(Laird et al. 1993; van Staal et al. 2007,
2009b; Chew et al. 2010; Castonguay et
al. 2010). A complex margin as
described above allows for incomplete
suturing and entrapment of  small
oceanic basins, similar to the present-
day Caspian and Black seas, between
part of  the autochthonous margin and
adjacent orogen. Such basins could
have closed later during the Appalachi-
an – Caledonian cycle, creating small
orogens that are younger than defor-
mation in their neighbouring rocks.
The prevalence of  Silurian Salinic
metamorphic ages along some seg-
ments of  the Humber margin (Lin et
al. 2013) may, in part, be due to such a
process.

Both the OCT sequences of
the Dalradian Supergroup in western
Ireland (Fig. 3) and Birchy Complex in

the Fleur de Lys Supergroup of  New-
foundland (Fig. 5) were subjected to
high-pressure (> 10 kbar) Grampian –
Taconic metamorphism (Chew et al.
2003; Willner et al. 2012) evidenced by
preservation of  Grampian – Taconic
40Ar – 39Ar white mica ages (Chew et al.
2003; van Staal et al. 2009a; Cas-
tonguay et al. 2010) in contrast to the
autochthonous Laurentian margin
rocks sitting further inboard which
yielded mainly Silurian or Devonian
ages (Hibbard 1983; Cawood et
al.1994; Lin et al. 2013). Both Chew et
al. (2003) and van Staal et al. (2013)
attributed the formation and preserva-
tion of  high pressure – low tempera-
ture metamorphic assemblages to sub-
duction of  the leading edge of  the
hyper-extended Laurentian margin
beneath the Grampian – Taconic arc
system before it returned along the
same subduction channel because of
its buoyancy. OCT rocks are able to
reach and preserve (ultra)high-pressure
conditions as they tend to follow dense
oceanic lithosphere deep into subduc-
tion zones prior to the arrival of  more
buoyant continental lithosphere that
resists subduction (e.g. Beltrando et al.
2010). van Staal et al. (2013) surmise
that this process could have translated
the Birchy Complex and spatially asso-
ciated rocks to a high structural level
during the Taconic orogeny (470 – 460
Ma). This may explain preservation of
evidence for pervasive Taconic
tectono-metamorphism in these rocks
compared to its apparent non-preser-
vation in other, more inboard parts
that have undergone a Salinic overprint
(Cawood et al. 1994 and van Staal et al.
2009a, b). 

In northwestern Ireland, two
high-grade basement paragneiss ter-
ranes, the Tyrone Central Inlier and the
Slishwood Division (Fig. 3), crop out
immediately to the southeast of  the
Laurentian margin. Their metamorphic
and magmatic evolution is substantially
different from that of  the lower-grade
Dalradian Supergroup rocks adjacent
to the northwest, and this led to specu-
lation that they represent exotic ter-
ranes (e.g. Max and Long 1985;
Sanders et al. 1987), but more recent
research (e.g. Daly et al. 2004; Chew et
al. 2008) suggests that both terranes
have a Laurentian affinity. The Tyrone
Central Inlier has experienced upper
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amphibolite-facies metamorphism dur-
ing the Grampian Orogeny whereas
the Slishwood Division has experi-
enced eclogite- and granulite-facies
metamorphism prior to suturing with
the Laurentian margin (Sanders et al.
1987; Flowerdew and Daly 2005). It is
believed that the Tyrone Central Inlier
and the Slishwood Division represent
crustal fragments that detached from
the Laurentian margin during the
opening of  the Iapetus Ocean (e.g.
Chew et al. 2008). Consequently, they
were able to evolve independently of
the autochthonous Laurentian margin
during the early stages of  the
Grampian Orogeny; the Tyrone Cen-
tral Inlier experienced high-grade meta-
morphism, possibly in the roots of  a
deforming Grampian arc, whereas the
Slishwood Division may have been
subducted beneath this same arc sys-
tem. Both units were finally juxtaposed
with the Laurentian margin during
regional southeast-directed Grampian
D3 thrusting (e.g. Alsop and Hutton
1993). 
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