Abstracts
Résumé
Le développement du raisonnement spatial renvoie aux représentations mentales et aux mouvements dans l’espace (Flynn, 2018). Cet article se distingue puisqu’il étudie le développement du raisonnement spatial d’enfants à la maternelle quatre ans à temps plein au Québec (N=174), notion qui reçoit rarement une attention explicite dans les programmes d’études. Les résultats révèlent que le niveau de développement du raisonnement spatial des enfants se situe à un score moyen de 98,27 et qu’ils évoluent entre le prétest et le posttest, ce qui permet de dégager des implications pour la formation initiale et continue ainsi que pour la recherche en enseignement.
Mots-clés :
- Raisonnement spatial,
- éveil aux mathématiques,
- éducation préscolaire,
- maternelle
Abstract
The development of spatial reasoning refers to mental representations and movements in space (Flynn, 2018). This article stands out for its description of the development of spatial reasoning full-time four-year-old kindergarten children in Quebec (N=174), a notion that rarely receives explicit attention in curricula. The results reveal that the level of development of spatial reasoning in children stands at an average score of 98.27 and that they evolve between the pretest and the posttest, which makes it possible to identify implications for initial and continuing training as well as for research in teaching.
Keywords:
- Spatial reasoning,
- early mathematics,
- kindergarten,
- preschool
Appendices
Bibliographie
- Abad, C. (2018). The Development of Early Spatial Thinking (Thèse de doctorat non publiée). Florida International University.
- Ansari, A. et Pianta, R. C. (2018). Effects of an early childhood educator coaching intervention on preschoolers: The role of classroom age composition. Early Childhood Research Quarterly,44, 101-113. https://doi.org/10.1016/j.ecresq.2018.03.001
- Ansari, A. et Purtell, K. M. (2017). Activity settings in full-day kindergarten classrooms and children’s early learning. Early Childhood Research Quarterly, 38, 23-32. https://doi.org/10.1016/j.ecresq.2016.09.003
- April, J., Lanaris, C. et Bigras, N. (2017). Conditions d’implantation de la maternelle quatre ans à temps plein en milieu défavorisé. Saint-Jérôme, Canada : Université du Québec en Outaouais.
- Bruce, C., Flynn, T., Moss, J. et Bruce, C. D. (2016). Early mathematics: challenges, possibilities, and new directions in the research. Mathematics for Young Children M4YC, (December), 61.
- Canivez, G. L., Watkins, M. W., Good, R., James, K. et James, T. (2017). Construct validity of the wechsler intelligence scale for children-fourth uk edition with a referred irish sample: wechsler and cattell-horn-carroll model comparisons with 15 subtests. British Journal of Educational Psychology. https://doi.org/10.1111/bjep.12155
- Case, R. et Sowder, J. T. (1990). The development of computational estimation: A Neo-Piagetien analysis. Cognition and Instruction, 7(2), 79-104. https://doi.org/10.1207/s1532690xci0702_1
- Cheng, Y. L. et Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2-11. https://doi.org/10.1080/15248372.2012.725186
- Clements, D. H., Fuson, K. C. et Sarama, J. (2017). The research-based balance in early childhood mathematics: A response to Common Core criticisms. Early Childhood Research Quarterly, 40, 150-162. https://doi.org/10.1016/j.ecresq.2017.03.005
- Clements, D. H. et Sarama, J. (2011). Early childhood teacher education: The case of geometry. Journal of Mathematics Teacher Education, 14(2), 133-148. https://doi.org/10.1007/s10857-011-9173-0
- Clements, D. H. et Sarama, J. (2013). Rethinking early mathematics: What is research based curriculum for young children? Dans L. English et J. Mulligan (dir.), Reconceptualizing Early Mathematics Learning : Advances in Mathematics Education, (p. 121-147). Dordrecht : Springer. https://doi.org/10.1007/978-94-007-6440-8_7
- Clements, D. H., Sarama, J. et Germeroth, C. (2016). Learning executive function and early mathematics: Directions of causal relations 2. Early Childhood Research Quarterly, 36, 79-90. https://doi.org/10.1016/j.ecresq.2015.12.009
- Clements, D. H., Wilson, D. C. et Sarama, J. (2004). Young children’s composition of geometric figures: A learning trajectory. Mathematical Thinking and Learning, 6(2), 163-184
- Clements, D. H., Sarama, J. et DiBiase, A. (2002). Preschool and kindergarten mathematics: A national conference. Teaching Children Mathematics, 8(9), 510-514.
- Clements, D. H. et Sarama, J. (2021). Learning and Teaching Early Math: The Learning Trajectories Approach (3rd edition). Routledge.
- Clifford, E. (2008). Visual-Spatial Processing and Mathematics Achievement: The Predictive Ability of the Visual-Spatial Measures of the Stanford-Binet Intelligence Scales, Fifth Edition and the Wechsler Intelligence Scale for Children-Fourth Edition (Thèse de doctorat non publiée). The University of South Dakota.
- Cohen, L., Manion, L. et Morrison, K. (2011). Research Methods in Education (7e éd.). New York : Routledge.
- Deshaies, I. et Boily, M. (2021). L’adaptation du modèle de la transposition didactique à l’éducation préscolaire : un éclairage nouveau sur le rôle de l’enseignante lors du jeu symbolique pour faire émerger l’utilisation des savoirs mathématiques chez les enfants. Didactique, 2(2), 63-92. https://doi.org/10.37571/2021.0205
- Deshaies, I., et Dansereau, K. (2020). Le soutien aux apprentissages en arithmétique au préscolaire, une recherche s’inspirant de la mise en place du modèle de la réponse à l’intervention (RAI). Revue de L’Association des Orthopédagogue du Québec, 10, 5-26.
- Dupuis Brouillette, M., Fournier Dubé, N., St-Jean, C., Rajotte, T. et Nolin, R. (sous presse). Pratiques d’enseignement et d’évaluation d’orthopédagogues en context d’éveil aux mathématiques à l’éducation préscolaire. Revue Internationale de l’ADOQ.
- Flynn, T. (2018). Mapping a Learning Trajectory and Student Outcomes in Unplugged Coding: a Mixed Methods Study on Young Children’s Mathematics and Spatial Reasoning (Thèse de doctorat). Trent University. Récupéré de http://digitalcollections.trentu.ca/objects/etd-615
- Ginsburg, H. P. et Ertle, B. (2008). Knowing the Mathematics in Early Childhood Mathematics. Dans O. Saracho et B. Spodek (dir.), Contemporary Perspectives on Mathematics in Early Childhood Education (p. 45-66). Charlotte : Information Age Publishing.
- Ginsburg, H. P. et Amit, M. (2008). What is teaching mathematics to young children? A theoretical perspective and case study. Journal of Applied Developmental Psychology, 29(4), 274-285. https://doi.org/10.1016/j.appdev.2008.04.008
- Gunderson, E. A. E., Ramirez, G., Beilock, S. L. et Levine, S. C. (2012). The relation between spatial skill and early number knowledge: the role of the linear number line. Developmental Psychology, 48(5), 1229-1241. https://doi.org/10.1037/a0027433
- Hegarty, M. et Waller, D. A. (2005). Individual Differences in Spatial Abilities. Dans P. Shah et A. Miyake (dir.), The Cambridge Handbook of Visuospatial Thinkin (p. 121-169). New York : Cambridge University Press.
- Institut de la statistique du Québec. (2018). Enquête québécoise sur le développement des enfants à la maternelle 2017. Récupéré de http://www.stat.gouv.qc.ca/statistiques/sante/enfants-ados/developpement-enfants-maternelle-2017.pdf
- Keith, T. Z., Fine, J. G., Taub, G. E., Reynolds, M. R. et Kranzler, J. H. (2006). Higher order, multisample, confirmatory factor analysis of the Wechsler Intelligence Scale for Children--Fourth Edition: What does it measure? School Psychology Review, 35(1), 108-127.
- Lewis Presser, A., Clements, M., Ginsburg, H. P. et Ertle, B. (2015). Big math for little kids: The effectiveness of a preschool and kindergarten mathematics curriculum. Early Education and Development, 26(3), 399-426. https://doi.org/10.1080/10409289.2015.994451
- Marmor, G. S. (1975). Development of kinetic images: When does the child first represent movement in mental images? Cognitive Psychology, 7(4), 548-559. https://doi.org/10.1016/0010-0285(75)90022-5
- Ministère de l’Éducation du Québec. (2021). Programme de formation de l’école québécoise - Éducation préscolaire - Programme-cycle de l’éducation préscolaire. Gouvernement du Québec.
- Ministère de l’Éducation en Ontario. (2014). Mettre l’accent sur le raisonnement spatial. Ontario :Gouvernement de l’Ontario.
- McGuire, P. (2010). Supporting High Quality Teacher-Child Interactions in Pre-k Mathematics (Thèse de doctorat non publiée). University of Virginie.
- National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. School Science and Mathematics, 47(8), 868-279.
- Newcombe, N. S. et Stieff, M. (2012). Six myths about spatial thinking. International Journal of Science Education, 34(6), 955-971. https://doi.org/10.1080/09500693.2011.588728
- Pagani, L. S., Jalbert, J. et Girard, A. (2006). Does preschool enrichment of precursors to arithmetic influence intuitive knowledge of number in low income children? Early Childhood Education Journal, 34(2), 133-146. https://doi.org/10.1007/s10643-005-0034-2
- Pappas, S., Ginsburg, H. P. et Jiang, M. (2003). SES differences in young children’s metacognition in the context of mathematical problem solving. Cognitive Development, 18(3), 431-450. https://doi.org/10.1016/S0885-2014(03)00043-1
- Piaget, J. et Inhelder, B. (1956). Childs Conception of Space. New York : W. W. Norton & Company.
- Sarama, J. et Clements, D. H. (2009). Building blocks and cognitive building blocks: Playing to know the world mathematically. American Journal of Play, 313-337.
- Sarama, J. et Clements, D. H. (2012). Mathematics for the Whole Child. Dans S. Suggate et E. Reese, Contemporay Debates in Childhood Education and Development (p. 71-80). Buffalo : University of Buffalo librairy. https://doi.org/10.4324/9780203115558
- Sauvy, J et Sauvy, S. (1972). Topologie et développement de l’intelligence de l’enfant. Casterman.
- Sinclair, N. et Bruce, C. D. (2015). New opportunities in geometry education at the primary school. ZDM, 47(3), 319-329. https://doi.org/10.1007/s11858-015-0693-4
- Starkey, P., Klein, A., Byrd, M., Lin, M., Schwartz, S., Sharken-Taboada, D.,Wakeley, A. (2000). Early education and development fostering parental support for children’s mathematical development: an intervention with head start families fostering parental support for children’s mathematical development: An intervention with head start families. Early Education and Development, 11(5), 659-680. https://doi.org/10.1207/s15566935eed1105_7
- Starkey, P., Klein, A. et Wakeley, A. (2004). Enhancing young children’s mathematical knowledge through a pre-kindergarten mathematics intervention. Early Childhood Research Quarterly, 19(1), 99-120. https://doi.org/10.1016/j.ecresq.2004.01.002
- St-Jean, C. (2020). La qualité des interactions enseignante-enfants et le développement du raisonnement spatial à la maternelle quatre ans temps plein en milieu défavorisé. Thèse. Montréal (Québec, Canada) Université du Québec à Montréal, Doctorat en éducation. https://archipel.uqam.ca/14301/
- St-Jean, C., April, A. et Bigras, N. (2017). Modèles de raisonnement spatial : une revue de littérature. Revue canadienne des jeunes chercheurs en éducation, 8(2), 56-65. https://journalhosting.ucalgary.ca/index.php/cjnse/article/view/30771
- St-Jean, C., April, J. et Dupuis-Brouillette, M. (2021). Soutenir les pratiques des enseignantes à l’éducation préscolaire par les approches éducatives intégrées. Formation et profession, 29(3), 1-1. http://dx.doi.org/10.18162/fp.2021.a234
- St-Jean, C., April, J., Bigras, N., Maïano, C. et Dupuis Brouillette, M. (accepté). Relations entre la qualité des interactions enseignante-enfants et le développement du raisonnement spatial des enfants de maternelle quatre ans temps plein en milieu défavorisé. Revue Canadienne de l’Éducation.
- St-Jean, C. Rajotte, T. et Dupuis Brouillette, M. (accepté). Rapport d’intervenants scolaires à l’éducation préscolaire au regard des mathématiques. GDM.
- Swanson, H. L. (2011). Working memory, attention, and mathematical problem solving: A longitudinal study of elementary school children. Journal of Educational Psychology, 103(4), 821-837. https://doi.org/10.1037/a0025114
- Thiel, O. et Perry, B. (2018). Innovative approaches in early childhood mathematics. European Early Childhood Education Research Journal, 26(4), 463-468.
- Toll, W. M. et Van Luit, J. (2014). The Developmental Relationship Between Language and Low Early Numeracy Skills Throughout Kindergarten: EBSCOhost. Exceptional Children, 81(1), 64-78.
- Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C. et Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352-402. https://doi.org/10.1037/a0028446
- Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K. et Newcombe, N. S. (2014). Finding the missing piece: Blocks puzzles, and shapes fuel school readiness. Trends in Neuroscience and Education, 3(1), 7-13. https://doi.org/10.1016/j.tine.2014.02.005
- Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K. et Newcombe, N. S. (2017). Discussion and implications: how early spatial skills predict later spatial and mathematical skills. Monographs of the Society for Research in Child Development, 82(1), 89-109. https://doi.org/10.1111/mono.12285
- Verdine, B. N., Irwin, C. M., Golinkoff, R. M. et Hirsh-Pasek, K. (2014). Contributions of executive function and spatial skills to preschool mathematics achievement. Journal of Experimental Child Psychology, 126, 37-51. https://doi.org/10.1016/j.jecp.2014.02.012
- Wechsler Preschool and Primary Scale of Intelligence, 3e édition. (2002). Canadian Manual. Toronto : Pearson.
- Zenniger, E. (2016). 2D and 3D Fabrication Devices: Can they Improve Spatial Reasoning Skills in Children? (Thèse de doctorat). University of North Texas. Récupéré de https://digital.library.unt.edu/ark:/67531/metadc862838/m2/1/high_res_d/ZIMMERMAN-DISSERTATION-2016.pdf
- Zosh, J. M., Verdine, B. N., Filipowicz, A., Golinkoff, R. M., Hirsh-Pasek, K. et Newcombe, N. S. (2015). Talking shape: Parental language with electronic versus traditional shape sorters. Mind, Brain, and Education, 9(3), 136-144. https://doi.org/10.1111/mbe.12082