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Objective – In the interest of helping libraries make evidence based decisions about
open-source software (OSS), the objective of this research is to establish whether tools
that automate the evaluation of OSS project communities could be used specifically on
scholarly communications OSS (SC-OSS) projects to provide actionable insights for
libraries to guide strategic decision making and corrective interventions.
Methods – Seven OSS project communities were selected for evaluation, chosen from
widely used scholarly communications software applications used in Canada for
repositories, journal hosting, and archives. While all aspects of OSS projects may be
evaluated at the project or network/ecosystem level, addressing the actors, software, or
orchestration (Linåker et al., 2022), community evaluation that looks at the interaction
patterns between project contributors is the practical focus of this research paper since
there are multiple human factors that librarians who may not be software developers
can impact. We identified a community analysis tool called csDetector (Almarimi et al.,
2021) from the software engineering literature. This tool was chosen based on two
main criteria: 1) ability to analyze data from GitHub repositories (the code sharing
platform used by all selected SC-OSS projects) and 2) capacity to automatically produce
results without manual intervention. Since some of the seven OSS projects were spread
across multiple GitHub repositories, a total of 11 datasets from GitHub, each containing
three months’ worth of data, were analyzed using csDetector.
Results – The results produced by csDetector are interesting though not without
limitations. The tool is complex and requires the user to have software development
skills to use it effectively. It lacked sufficient documentation, which made interpreting
the results challenging. The analysis from csDetector, which identifies community
smells (i.e., types of organizational and social dysfunction within software projects
[Tamburri et al, 2015, 2021a]), suggests that these SC-OSS project communities are
experiencing knowledge sharing difficulties, weak collaboration practices, or other
member interaction dysfunctions that can eventually permanently affect community
health. Having a software tool that can take metrics from GitHub and detect
community smells is a valuable way to illustrate problems in the project’s community
and point the way to remedying dysfunction.
Conclusion – While the OSS community analysis tool csDetector currently presents
several hurdles before it can be used, and results generated come with caveats, it can
be part of an approach to support evidence based decision-making pertaining to
SC-OSS in libraries. The information provided can be worth monitoring (especially
social network metrics such as centrality) and their results, particularly for community
smells, identify problems that may be addressed by non-developers. Awareness of
community smells in OSS can provide a deeper understanding of OSS sustainability as
it provides a language to identify suboptimal social dynamics.

https://creativecommons.org/licenses/by-nc-sa/4.0
https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://orcid.org/0000-0002-1067-7061
https://orcid.org/0000-0002-9743-5910
https://orcid.org/0000-0002-2963-7764
https://www.erudit.org/en/journals/eblip/
https://id.erudit.org/iderudit/1117511ar
https://doi.org/10.18438/eblip30630
https://www.erudit.org/en/journals/eblip/2025-v20-n1-eblip09982/
https://www.erudit.org/en/journals/eblip/


Evidence Based Library and Information Practice 2025, 20.1 

 

20 
 

   Evidence Based Library and Information Practice 
 

 

 

Research Article 
 

Identifying Socio-Technical Risks in Open-Source Software for Scholarly Communications: 

Tools, Metrics, and Opportunities for Libraries to Support Sustainable Development 

 

Pierre Lasou  

Scholarly Communications Librarian 

Library of Université Laval 

Québec City, Quebec, Canada 

Email: pierre.lasou@bibl.ulaval.ca 

 

Tomasz Neugebauer 

Digital Projects & Systems Development Librarian 

Concordia University Library 

Montreal, Quebec, Canada 

Email: tomasz.neugebauer@concordia.ca 

 

Pamela Carson  

Web Services Librarian 

Concordia University Library 

Montreal, Quebec, Canada 

Email: pamela.carson@concordia.ca 

 

Received: 18 Sept. 2024     Accepted: 15 Jan. 2025 

 

 

 2025 Lasou, Neugebauer, and Carson. This is an Open Access article distributed under the terms of the Creative 

Commons‐Attribution‐Noncommercial‐Share Alike License 4.0 International 

(http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits unrestricted use, distribution, and reproduction in 

any medium, provided the original work is properly attributed, not used for commercial purposes, and, if 

transformed, the resulting work is redistributed under the same or similar license to this one. 

 
Data Availability: Lasou, P., & Neugebauer, T. (2024a). Community patterns of scholarly communication open source 

software generated by YOSHI [dataset]. Borealis. https://doi.org/10.5683/SP3/4MEDXO 

Data Availability: Lasou, P., & Neugebauer, T. (2024b). Community smells detection on scholarly communication 

open source software using csDetector [dataset]. Borealis. https://doi.org/10.5683/SP3/34MYPI 

 
DOI: 10.18438/eblip30630 

 

 

mailto:pierre.lasou@bibl.ulaval.ca
mailto:tomasz.neugebauer@concordia.ca
mailto:pamela.carson@concordia.ca
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.5683/SP3/4MEDXO
https://doi.org/10.5683/SP3/34MYPI


Evidence Based Library and Information Practice 2025, 20.1 

 

21 
 

Abstract 

 

Objective – In the interest of helping libraries make evidence based decisions about open-source 

software (OSS), the objective of this research is to establish whether tools that automate the 

evaluation of OSS project communities could be used specifically on scholarly communications 

OSS (SC-OSS) projects to provide actionable insights for libraries to guide strategic decision 

making and corrective interventions. 

 

Methods – Seven OSS project communities were selected for evaluation, chosen from widely 

used scholarly communications software applications used in Canada for repositories, journal 

hosting, and archives. While all aspects of OSS projects may be evaluated at the project or 

network/ecosystem level, addressing the actors, software, or orchestration (Linåker et al., 2022), 

community evaluation that looks at the interaction patterns between project contributors is the 

practical focus of this research paper since there are multiple human factors that librarians who 

may not be software developers can impact. We identified a community analysis tool called 

csDetector (Almarimi et al., 2021) from the software engineering literature. This tool was chosen 

based on two main criteria: 1) ability to analyze data from GitHub repositories (the code sharing 

platform used by all selected SC-OSS projects) and 2) capacity to automatically produce results 

without manual intervention. Since some of the seven OSS projects were spread across multiple 

GitHub repositories, a total of 11 datasets from GitHub, each containing three months’ worth of 

data, were analyzed using csDetector. 

 

Results – The results produced by csDetector are interesting though not without limitations. The 

tool is complex and requires the user to have software development skills to use it effectively. It 

lacked sufficient documentation, which made interpreting the results challenging. The analysis 

from csDetector, which identifies community smells (i.e., types of organizational and social 

dysfunction within software projects [Tamburri et al, 2015, 2021a]), suggests that these SC-OSS 

project communities are experiencing knowledge sharing difficulties, weak collaboration 

practices, or other member interaction dysfunctions that can eventually permanently affect 

community health. Having a software tool that can take metrics from GitHub and detect 

community smells is a valuable way to illustrate problems in the project’s community and point 

the way to remedying dysfunction. 

 

Conclusion – While the OSS community analysis tool csDetector currently presents several 

hurdles before it can be used, and results generated come with caveats, it can be part of an 

approach to support evidence based decision-making pertaining to SC-OSS in libraries. The 

information provided can be worth monitoring (especially social network metrics such as 

centrality) and their results, particularly for community smells, identify problems that may be 

addressed by non-developers. Awareness of community smells in OSS can provide a deeper 

understanding of OSS sustainability as it provides a language to identify suboptimal social 

dynamics. 

 

 

Introduction 

 

As the open scholarship movement gains momentum (Martin, 2022) as governments commit to working 

in the open (Government of Canada, 2021) and government-funded research outputs are mandated to be 
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openly available (Nelson, 2022), it continues to be important for academic libraries to be evaluating, 

adopting, and investing in open infrastructure for scholarly communications (Bilder et al., 2020; Cousijn 

et al., 2021). Key components for open infrastructure include open repositories: digital libraries of 

scholarly outputs, which, for the most part, are built using open-source software (OSS). There has long 

been an affinity between libraries and OSS (Chudnov, 1999; Corrado, 2005, 2021, 2023; Engard, 2010; 

Lease Morgan, 2002; Rhyno, 2004; Singh, 2020; Skog, 2023; Thacker and Knutson, 2015). Although OSS 

has many benefits over commercial software such as added control, and the opportunity to impact 

development, it also comes with risks. Unfortunately, several OSS systems used in libraries have become 

obsolete (Breeding, 2017; Gray, 2023). Rosen and Grogg (2021) found that project sustainability was a 

factor considered over financial advantages or user benefits when making decisions about OSS. Engard 

(2010) and Baker (2020) noted the importance of paying attention to an OSS project’s community health 

and activity as it is linked to the project’s sustainability. Involvement in OSS enables libraries to shape 

software development, collaborate with others, and stay competitive with proprietary options (Colt, 2023; 

Singh, 2020; Thacker et al., 2014). 

 

The academic library community is advocating for OSS, emphasizing the need for financial and social 

contributions to sustain open-source digital infrastructure (Lewis, 2017; Martin, 2018; McIlwain, 2023; 

Skog, 2023). While some argue libraries do not contribute enough (Askey, 2008), research shows they do 

participate, although not universally (Thacker and Knutson, 2015). Thacker and Knutson (2015), in their 

survey completed by 77 ARL-member libraries, found that libraries contribute code/developer time, 

money, hosting, testing, and requirements to OSS projects used in libraries, mainly scholarly 

communications-related software like institutional repositories, digital preservation, and digital asset 

management software, and to a lesser extent to OSS not primarily used for scholarly communications 

(such as link resolvers, streaming media, and course reserves). OSS evaluation in academic libraries is still 

largely at the stage of comparing advertised features (Collister, 2023; Guimont et al., 2023; Open Society 

Institute, 2024; Thacker et al., 2014), which does not address how OSS differs from commercial software 

in that its users can affect its evolution by contributing resources, particularly to OSS communities.  

 

Baker (2020) rated journal management OSS using QualiPSo’s Open Maturity Model (OMM), which 

includes community evaluation questions about developer and user activity through a manual process. 

Colt (2023) explored automated methods for assessing library OSS, particularly communities, noting that, 

while GitHub provides access to some metrics, the Cauldron platform could be used to generate models 

from these metrics to indicate OSS project health and sustainability. While Baker (2020) and Colt (2023) 

introduced software engineering methods for evaluating OSS in libraries, this paper explores the software 

engineering literature for further tools and techniques, particularly focusing on evaluating OSS 

communities. The aim of this paper is to see if there is a way to easily identify opportunities for libraries 

to contribute to the health and growth of the open-source communities that build and maintain OSS 

critical for scholarly communications. 

 

Literature Review 

 

OSS Project Health and Sustainability 

 
As organizations increasingly rely on OSS for digital infrastructure, they must plan for risk management 

and resource allocation. Monitoring OSS project health can help assess sustainability and guide resource 

investment (Germonprez et al., 2018). Link and Germonprez (2018) discovered through engaged 

scholarship and interviews that there was no single defined process for assessing OSS project health 

given the number of health-related factors, and then-current processes could be “unstructured, vague, 
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subjective, and relying on intuition” (p. 3). The participants in their study struggled with interpreting 

meaning from metrics because context was so important for accurate interpretation. Goggins et al. (2021a) 

noted widespread “useful but haphazard assessments” (p. 106) for OSS as an impetus for creating 

standardized metrics in the Community Health Analytics in Open Source Software (CHAOSS) project. 

Techniques and metrics for assessing OSS project health are abundant. Linåker et al. (2022) proposed a 

framework with 107 health characteristics divided into three categories and 15 themes, distinguishing 

between project-level and network-level analyses. 

Quantitative Analysis of Trace Data 

 
OSS projects and project management from issue tracking to communications leave digital artifacts—

trace data—that are visible and analyzable on both the open web (e.g., on GitHub) or by members of the 

project’s community online. Trace ethnography, a methodology that examines documents and 

documentary traces, is suited to learning about distributed sociotechnical systems such as OSS 

communities (Geiger & Ribes, 2011). Trace data from repositories, issue trackers, and communication 

tools are usually what researchers analyze to ascertain OSS project health through network modelling or 

other statistical analysis techniques, including, more recently, machine learning. Although, some argue 

that trace data alone are insufficient (Geiger & Ribes, 2011; Germonprez et al., 2018; Goggins et al., 2021b; 

Link & Germonprez, 2018). Quantitative studies of OSS projects and communities which analyze trace 

data and networks are abundant in the software engineering literature (Almarimi et al., 2020, 2021, 2023; 

Aman et al., 2017; Çetin & Tüzün, 2022; Dey & Woods, 2022; Ferreira et al., 2019; McClean et al., 2021; 

Onoue et al., 2016; Oriol et al., 2023; Palomba & Tamburri, 2021; Raman et al., 2020; Tamburri et al., 2019c, 

2021a, 2023; van Meijel, 2021; Voria et al., 2022; Yang et al., 2023). 

Qualitative and Mixed Methods Research 

 
Some studies combined qualitative and quantitative methods together, particularly to validate findings. 

For example, Avelino et al. (2016) used an algorithm on GitHub data to estimate the “truck factor” (which 

measures knowledge concentration and resilience to developer turnover) for software projects then 

checked findings by surveying developers involved in the projects. Tamburri et al. (2013a) used 

grounded theory with a systematic literature review to define a set of OSS communities. Based on these 

community definitions, Tamburri et al. (2019c) created YOSHI, a tool used to quantitatively analyze 

GitHub trace data and map a project to a community pattern. As part of the foundation of the CHAOSS 

project, multiple research methods were used to understand OSS communities (CHAOSS, n.d.-a; 

Germonprez et al., 2018; Goggins et al., 2021b). The results of this extensive multi-year mixed-methods 

research informed the creation of metrics and models for CHAOSS (CHAOSS, n. d.-c). 

Importance of Community Analysis 

 

While OSS project health may be monitored by analyzing everything from source code quality and 

complexity to software popularity and project activity, there is an area of research about community 

health: an analysis of the community members’ communication and culture as well as the overall 

community structure, as an indicator of project sustainability. 

Nagappan et al., in their influential 2008 paper, found that statistical models predicting software’s 

proneness to failure were more accurate when these models included social and organizational metrics in 

addition to other technical software-oriented metrics. Bettenburg and Hassan (2010) also found that 

adding social data could increase the effectiveness of a software defect prediction model previously based 
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on only source code and process measures, showing that the traces of social interactions are valuable data 

for determining software health. 

OSS development, given its reliance on collaboration, is inherently a dynamic socio-technical 

phenomenon (Ducheneaut, 2005). Cataldo et al. (2008) stated that a software development project is a 

socio-technical system, requiring congruence between the social and technical aspects for success, and 

found that their models were more accurate when they included measures of congruence between the 

technical aspects and social aspects. Palomba et al. (2018) determined that community dynamics impact 

source code quality issues. Tamburri et al. (2021b), in a systematic literature review to determine a 

grounded theory of success and failure factors for software engineering projects, determined that people- 

and process-related factors impact project sustainability.  

Community Patterns 

 
The structure and the resulting communication patterns of a community developing software is reflected 

in the software itself (Conway, 1968; Kwan et al., 2012). Different community structures, or community 

patterns, are linked with different effects on the project’s health (Tamburri et al., 2023). Tamburri et al. 

(2013b) used a grounded theory approach to analyze software engineering research papers and found 13 

different organizational social structures and divided them into metatypes of community, network, 

group, and team. Tamburri et al. (2019c) then created a systematic approach to identify community 

attributes in GitHub project data and classify project communities automatically into community patterns 

(defined as “sets of known organisational and social structure types and characteristics with measurable 

core attributes” (p. 1369) with a software they created called YOSHI (which stands for “Yielding Open-

Source Health Information”). YOSHI, later updated by van Meijel (2021) who created YOSHI 2, examined 

six key characteristics: community structure, geodispersion, longevity, engagement, formality, and 

cohesion. 

Community Health Affects Software Quality 

 
There are two main lines of inquiry on OSS community health and its impact on software quality and 

sustainability. The first line of inquiry is about generating standard metrics and models about OSS 

projects and project ecosystems, including community health (Link & Germonprez, 2018; Goggins et al., 

2021b). The other line of inquiry uses social network analysis and diagnoses community smells (i.e., types 

of organizational and social dysfunction within software projects) (Tamburri et al., 2015, 2021a) leading to 

the creation of multiple tools that detect community smells such as CodeFace4Smells (Tamburri et al., 

2021a), Bus Factor Explorer (Klimov et al., 2023), Kaiaulu (Paradis et al., 2024; Paradis & Kazman, 2022), 

and ones that use machine learning such as csDetector (Almarimi et al., 2021) and CADOCS (Voria et al., 

2022).  

First Line of Inquiry: CHAOSS: Metrics and Models for Understanding Project (and Community) Health 

 
The CHAOSS project is a current attempt to produce standard metrics and models to indicate project and 

community health. Informed by findings from multi-year engaged field studies (Germonprez et al., 2018; 

Goggins et al., 2021b), there are 89 CHAOSS metrics used in 17 metrics models using data about the 

project, including community-related data. CHAOSS (n.d.-c) metrics and metrics models, when 

visualized in dashboard services built with either GrimoireLab (Gonzalez-Barahona et al., 2022) or Augur 

are meant to inform project community managers and OSS program managers in organizations (Goggins 

et al., 2021b). GrimoireLab can use data from more than 30 sources; Augur uses data only from GitHub or 
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GitLab repositories or organizations, but Augur can import thousands of datasets from GitHub or GitLab 

repositories or organizations. 

Colt (2023) analyzed DSpace SC-OSS using Cauldron (a dashboard for GrimoireLab) to generate 

CHAOSS Starter Project Health model metrics. However, not all metrics are available in Cauldron, and 

some would need to be measured qualitatively to complete a model. For example, the Community 

Welcomingness model contains 14 metrics, some of which can be gathered from trace data (e.g., whether 

there is a Code of Conduct in GitHub), but the Inclusive Leadership metric in this model requires 

qualitative research. In fact, qualitative data is required by multiple CHAOSS metrics (and models), 

increasing the time and work required. 

Second Line of Inquiry: Community Smells: Social Network Analysis and Dysfunction Diagnosis 

 
The second line of inquiry emerges from the concept of “social debt” in software engineering, defined as 

“the additional cost occurring when strained social and organisational interactions get in the way of 

smooth software development and operation” (Tamburri et al., 2015, p. 1). Given that OSS projects are 

socio-technical phenomena (Cataldo et al., 2008; Ducheneaut, 2005; Nagappan et al., 2008), the social, or 

community, health of OSS projects is a contributing factor to project sustainability. Tamburri et al. (2013a) 

posited that social debt within a software project is incurred by detrimental socio-technical decisions (e.g., 

decisions influencing both human and technical aspects). Social debt is important, though challenging, to 

identify and monitor but key to understanding project and community health.  

Tamburri et al. (2015) defined a set of nine community smells by using an exploratory case study 

combined with grounded theory. They defined community smells as “sets of organisational and social 

circumstances with implicit causal relations . . . if reiterated over time cause social debt, in the form of 

mistrust, delays, uninformed or miscommunicated architectural decision-making,” (p. 7). By providing a 

language for “hunches” about pervasive OSS project problems, Tamburri et al. (2015) provided a 

framework for naming the problems and mapped a set of mitigation strategies. Consequences of 

unaddressed community smells include employee turnover (Tamburri et al., 2015), bad software 

architecture decisions (Tamburri et al., 2019a), instability within the project’s community, and even 

project collapse (Tamburri et al., 2020). 

Tamburri et al. (2021a), in a mixed methods study, operationalized the detection of four community 

smells. They adapted an existing tool, CodeFace (Joblin et al., 2015), that identified communities and 

generated graphs of developer interactions and communications from GitHub and mailing list trace data. 

They created the network metrics and methods needed for detecting the community smells and made a 

new tool called CodeFace4Smells. Sixty OSS project communities were analyzed, with developers 

confirming the findings through surveys.  

Once a set of community smells was defined by Tamburri et al. (2015), other research projects attempted 

to create software tools to automate the identification of these community smells. According to Paradis et 

al. (2024), these tools have two main tasks: first, to create graph representations using the trace data, and 

second, to compute the community smell metrics from these graphs.  

Some projects address specific community challenges, such as the truck factor risk, which measures 

knowledge concentration and resilience to developer turnover (Avelino et al., 2016). This risk assessment 

is complicated due to the lack of standardized metrics (Ricca et al., 2011) and varying algorithm accuracy 

for determining truck factor and identifying key developers (Ferreira et al., 2019). Tools like those 

developed by Cosentino et al. (2015) and Klimov et al. (2023) help calculate and visualize the truck factor, 
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while Çetin and Tüzün (2022) created an algorithm to identify key developers and assess knowledge 

distribution, considering various developer activities beyond code commits. 

Palomba and Tamburri (2021) used the same set of 60 OSS project communities used by Tamburri et al. 

(2021a) but used a machine learning approach to predict community smells using metrics about socio-

technical congruence, communicability, and turnover. Almarimi et al. (2020, 2021, 2023) also used a 

machine learning approach, including sentiment analysis, and built a software tool called csDetector that 

detects a project’s community smells based on GitHub trace data. csDetector detects the most community 

smells of all the currently available tools. Community smells are explained in more detail in the Results 

section of this paper. 

Relationship Between Community Patterns and Community Smells 

 
De Stefano et al. (2020), in a preliminary study, used the YOSHI software to detect community patterns in 

25 OSS project communities, then used CodeFace4Smells to extract a list of community smells and finally 

used machine learning (specifically, associated rule mining) to detect which community patterns and 

smells co-occurred. van Meijel (2021), expanding on De Stefano et al.’s (2020) work, adapted the YOSHI 

software in an attempt to find relationships between community patterns and community smells. For 

example, both studies found that “formal group” community patterns were linked with the “bottleneck” 

(when a single member of the community is frequently involved in community interactions) and “lone 

wolf effect” (when there are defiant contributors who work in isolation from other contributors) 

community smells. However, the generalizability of these studies is limited. De Stefano et al. (2020) relied 

solely on the Apriori machine learning algorithm and did not survey community members to confirm the 

findings. van Meijel (2021) surveyed community members to confirm the results of the YOSHI 2 analysis, 

but respondents disagreed with the results.  

Aims 

 
In the interest of helping libraries make evidence based decisions about open-source software (OSS), the 

objective of this research is to establish whether tools that automate the evaluation of OSS project 

communities could be used specifically on scholarly communications OSS (SC-OSS) projects to provide 

actionable insights for libraries to guide strategic decision making and corrective interventions. 

Research Questions 

 
RQ1: Which tools are appropriate for evaluating SC-OSS? What conclusions about community type and 

organizational characteristics can be made about these SC-OSS communities using existing OSS 

evaluation tools? Are these communities affected by any community smells? These questions are 

answered in the Literature Review and Results sections. 

RQ2: The existing tools used in this study are producing results based on quantitative and qualitative 

criteria. What are the main assumptions, definitions, and dependencies used by these tools? These 

questions are answered in the Methodology and Results sections. 

RQ3: Can such tools be useful for libraries to make strategic decisions related to their participation in SC-

OSS communities? Answers will be provided in the Discussion section. 
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Methods 

 
SC-OSS provides a unique opportunity for software evaluation, given that OSS is the primary type of 

software used in scholarly communications (CARL Open Repositories Working Group, 2022) and data 

generated during the SC-OSS project’s lifespan are readily available. While multiple approaches and tools 

exist for assessing aspects of OSS projects, the aspects evaluated in this research paper are the community 

structure and community dysfunction (i.e., community smells). We initially identified two tools that can 

analyze OSS in the software engineering literature that were suitable for automated SC-OSS evaluation: 

YOSHI 2 for community types and csDetector for community smells. These two tools were used to 

generate and analyze datasets from 11 GitHub repositories representing three-month snapshots of 

community activity in seven SC-OSS projects. The results from YOSHI 2 did not provide any actionable 

insights, simply a characterization of the project’s community type based on its members' interactions 

(e.g., most projects were communities of practice, and some were informal communities). Knowing a 

project’s community type is a step toward gauging socio-technical congruence because it describes the 

project community’s structure and dynamics (i.e., the social aspect) but without analyzing the technical 

aspect (e.g., software modularity and complexity, among others). However, some of the congruence 

measures used by Cataldo et al. (2008), namely geographic dispersion and patterns in communication, 

overlap with measures used to identify community smells. Finally, YOSHI 2 and csDetector results are 

too different to be complementary and any attempts to link specific community types to community 

smells and confirm findings qualitatively have not been completed (De Stefano et al., 2020; van Meijel, 

2021). For this reason, YOSHI 2 data were not included in our results, but remain publicly available 

(Lasou & Neugebauer, 2024a). 

 

The rationale for setting a maximum of three months’ worth of data comes from Traag et al. (2013), as 

cited in Tamburri et al. (2019a), who determined that this timespan was a significant scale for effective 

analysis of community structures. 

 

SC-OSS Project Selection 

 
In libraries, OSS is used to support three main categories of scholarly communication services:  

1. institutional repositories and research data repositories, 

2. journal hosting, and 

3. archiving. 

This research paper focuses on SC-OSS used by academic libraries in Canada (see Table 1). The 

institutional repository software used in Canada is mainly DSpace (33%, n=31), EPrints (21%, n=19), and 

Islandora (18%, n=17) (CARL Open Repositories Working Group, 2022). Borealis (https://borealisdata.ca/), 

the Canadian research data repository, is based on Dataverse software. The most popular OSS used by 

Canadian academic libraries for journal hosting and publishing is Open Journal Systems (OJS) (Betz et al., 

2023). Finally, OSS for archiving is less commonly used, but Archivematica is the major software used in 

this category (Barnes et al., 2022).  

https://borealisdata.ca/
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Table 1 
SC-OSS Used by Academic Libraries in Canada and Selected for Evaluation 

Provider Software Service 

type 

GitHub repository link 

Artefactual Archivematica  Archiving https://GitHub.com/artefactual/archivematica  

University of 

Southampton 

EPrints 3.4 Repository https://GitHub.com/eprints/eprints3.4  

Islandora 

Foundation 

Islandora Repository https://GitHub.com/Islandora/islandora  

LYRASIS DSpace Repository https://GitHub.com/DSpace/DSpace 

LYRASIS DSpace-

Angular 

Repository https://GitHub.com/DSpace/dspace-angular 

LYRASIS DSpace 7 REST 

Contract 

Repository https://GitHub.com/DSpace/RestContract 

Samvera 

Community 

Hyku, the 

Hydra-in-a-Box 

Repository 

Application 

Repository https://GitHub.com/samvera/hyku  

Samvera 

Community 

Hyrax: A 

Digital 

Repository 

Framework 

Repository https://GitHub.com/samvera/hyrax  

Institute for 

Quantitative 

Social Science 

(IQSS) 

Dataverse Repository https://GitHub.com/IQSS/dataverse  

Public 

Knowledge 

Project (PKP) 

PKP 

Documentation 

Hub 

Journal 

hosting 

https://GitHub.com/pkp/pkp-docs  

Public 

Knowledge 

Project (PKP) 

PKP Web 

Application 

Library 

Journal 

hosting 

 https://GitHub.com/pkp/pkp-lib  

To analyze SC-OSS communities, the focus of this research paper was to use existing tools that 

automatically collect and process data from GitHub rather than use frameworks that would require 

manual or qualitative processing and analysis (Andrade & Saraiva, 2017; Linåker et al., 2022). While all 

aspects of OSS projects may be evaluated at the project or network level, addressing the actors, software, 

https://github.com/artefactual/archivematica
https://github.com/eprints/eprints3.4
https://github.com/Islandora/islandora
https://github.com/DSpace/DSpace
https://github.com/DSpace/dspace-angular
https://github.com/DSpace/RestContract
https://github.com/samvera/hyku
https://github.com/samvera/hyrax
https://github.com/IQSS/dataverse
https://github.com/pkp/pkp-docs
https://github.com/pkp/pkp-lib
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or orchestration (Linåker et al., 2022), community evaluation, looking at the interaction patterns between 

project contributors, is the focus of this research paper since there are multiple human factors that 

librarians who may not be software developers can impact. The identification of community smells (i.e., 

community dysfunction) was of particular interest since naming a problem is the first step in its 

remediation, and, according to Labianca and Brass (2006), “negative relationships may have greater 

power than positive relationships to explain workplace outcomes” (p. 596).  

Community Smell Detection 

In their systematic review on community smells, Caballero-Espinosa et al. (2023) documented 30 different 

smells. Of those 30, nine were found to be widespread (Tamburri et al., 2015).  

Several automated tools exist to identify community smells, and the number of community smells each 

tool can determine varies widely (see Table 2 below). For this research paper, csDetector was selected to 

do the community smell analysis since it detects the greatest number of community smells (up to 10). The 

developers of csDetector describe threats to the validity of the model that is used to detect community 

smells as well as the mitigation measures that they took (Almarimi et al., 2020). For example, the model 

training relies on a source of truth that is based on the authors’ manual identification of community 

smells in 74 projects, which is prone to a certain degree of error. To mitigate, the authors relied on 

established definitions and guidelines, excluding projects for which there was no total agreement by the 

three authors (Almarimi et al., 2020). The authors also validated the model using bootstrapping statistical 

methods (a technique that repeatedly resamples data) to assess, among other measures, accuracy, 

precision, and recall for each smell, averaging at 0.86, 0.87, and 0.82, respectively (Almarimi et al., 2021). 

Table 2 

Number of Community Smells Detected by Existing Automated Tools in the Software Engineering 

Research Literature 

Tool Community smells detected Source code Reference 

CodeFace4S

mells 

1. Organizational Silo  

2. Black Cloud Effect 

3. Lone Wolf Effect 

4. Bottleneck or Radio 

Silence 

https://github.com/maelstromdat/Co

deFace4Smells/  

(Tamburri et 

al., 2021a) 

TruckFactor 1. Truck Factor or Bus 

Factor 

https://GitHub.com/HelgeCPH/truckf

actor  

(Ferreira et al., 

2019) 

csDetector 1. Organizational Silo 

Effect  

2. Black-Cloud Effect  

3. Prima-Donnas Effect 

https://GitHub.com/Nuri22/csDetecto

r 

(Almarimi et 

al., 2021) 

https://github.com/maelstromdat/CodeFace4Smells/
https://github.com/maelstromdat/CodeFace4Smells/
https://github.com/HelgeCPH/truckfactor
https://github.com/HelgeCPH/truckfactor
https://github.com/Nuri22/csDetector
https://github.com/Nuri22/csDetector
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4. Sharing Villainy  

5. Organizational 

Skirmish 

6. Solution Defiance 

7. Radio Silence 

8. Truck Factor Smell 

9. Unhealthy Interaction 

10. Toxic 

Communication 

Kaiaulu 1. Organizational Silo 

2. Missing Link 

3. Radio Silence 

https://GitHub.com/sailuh/kaiaulu  (Paradis & 

Kazman, 2022) 

 

Results 

 
Our goal is to explain how csDetector works, as well as the results it provides about community smells, to 

determine whether csDetector could be used to provide insights about SC-OSS project community 

characteristics, not to single out any SC-OSS project or community in particular. 

csDetector 

 
The csDetector software was built by Almarimi et al. (2021). It detects 10 community smells (see Table 2). 

To detect smells, it uses an extended genetic programming-based ensemble classifier chain to process 

exclusively GitHub data (Almarimi et al., 2023). csDetector analyzes the content of users’ comments and 

can determine the tone (positive or negative). This process is called sentiment analysis and is conducted 

on issue comments, as well as commit and pull request comments. Results are anonymized as specified 

by Almarimi et al. (2023). 

Running the Software 

 
csDetector is open-source research prototype software written in Python, supported in a limited way by 

the development efforts of individual researchers (Nuri22, 2021). Other than an update to the licence and 

README file in 2024, the project’s last code commits date back to 2021. The csDetector README file 

suggests that one way to run the software is to use the precompiled standalone executable file for 

Windows. Unfortunately, this method returned a runtime error; however, by using the second method 

described in the README file (“by the command line”), we could successfully run the software.1 We 

followed the instructions for the installation of the requirements and executed the devNetwork Python 

script. We needed to modify the GitHub GraphQL API request settings in the Python code so that only 10 

pull requests and issues at a time were requested, as 100 (the default setting) was causing the API to fail. 

One of the parameters is a GitHub authorization token that can be generated from GitHub, giving access 

                                                 
1
 https://GitHub.com/Nuri22/csDetector/blob/c91b4848231f10838991c14e5daf5611474dc364/README.md#2-by-t 

he-command-line  

https://github.com/sailuh/kaiaulu
https://github.com/Nuri22/csDetector/blob/c91b4848231f10838991c14e5daf5611474dc364/README.md#2-by-the-command-line
https://github.com/Nuri22/csDetector/blob/c91b4848231f10838991c14e5daf5611474dc364/README.md#2-by-the-command-line
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to the API. csDetector also relies on ConvoKit2 for parsing texts and politeness strategies used in 

conversations. ConvoKit, in turn, requires spaCy and its “en_core_web_sm”.3 SentiStrength is used by 

csDetector for classifying positive and negative sentiments in short texts. We used the models (one for 

each smell) that are supplied by default. Users can switch out the models by replacing files in a “models” 

directory. 

We limited the data extraction from GitHub to a three-month period between May 3, 2023, and August 1, 

2023, to limit the complexity of the analysis so that csDetector can complete within a reasonable amount 

of computation time for each repository. Another modification that was sometimes necessary was the 

default branch, which was hard coded in csDetector to “master,” but in our case, many of the repositories 

were using “main.” 

The Samvera Hyku repository caused an issue in that, unexpectedly, it included a release with 

no authors/contributors (the GitHub API returns the value of “None”). The code needed to be modified 

so that this data would not break and interrupt the scripts with an error. 

The two PKP repositories (Documentation Hub and Web Application Library), as well as the DSpace 

REST Contract, although not using releases, were processed without error. csDetector skipped 11 release-

related metrics (such as NumberReleaseAuthors, NumberReleases, and ReleaseAuthorCount_count). 

As DSpace REST Contract, PKP Documentation Hub, and Samvera Hyku do not use tags, three tag 

metrics were skipped for those repositories (TagCommitCount_count, TagCommitCount_mean, and 

TagCommitCount_stdev). 

Community Smells  

 
For each OSS assessed, csDetector results consist of a set of 190 metrics (e.g., number of authors, 

community centrality, pull request, commits and issue count, release count) grouped in nine different 

metric dimensions from which smells are inferred:  

1. communication, 

2. community,  

3. developer contributions,  

4. formality,  

5. geographic dispersion,  

6. sentiment analysis,  

7. social network analysis,  

8. truck number, and  

9. community members.  

All the community smells and the respective repositories affected by them are shown in Figure 1. 

csDetector also produces four graphs: 1) pull requests, 2) issues and pull request centrality, 3) issue 

graph, and 4) commit centrality, and a CSV file containing all metrics used. The community smells are 

                                                 
2
 https://convokit.cornell.edu/documentation/install.html 

3 From http://sentistrength.wlv.ac.uk/jkpop/, but we note that this URL is inaccessible in 2024. 

https://convokit.cornell.edu/documentation/install.html
http://sentistrength.wlv.ac.uk/jkpop/
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only displayed directly on the command prompt windows. All results for metrics and graphs used for 

our studies have been publicly shared (Lasou & Neugebauer, 2024b). 

One smell did not affect any SC-OSS communities: Solution Defiance. Its absence suggests that 

community members' backgrounds and cultural levels are homogeneous, thus avoiding division or 

conflicting opinion (Tamburri et al., 2015). 

 

Figure 1 

Community smells in SC-OSS detected by csDetector using three months of GitHub activity data (May 3 

to August 1, 2023). Community smells are explained in more detail below. 

Two smells, Toxic Communication (TC) and Unhealthy Interaction (UI), strongly connected to the tone of 

the interactions between members affected some SC-OSS communities. They were detected by 

csDetector’s sentiment analysis. Toxic Communication (TC) was diagnosed in four of the 11 communities. 

In communities affected by TC, communications are charged with negativity and there are many 

conflictual exchanges among members that can lead to developer stress or burnout (Almarimi et al., 

2021). Only one community was affected by the Unhealthy Interaction (UI) smell (PKP Web Application 

Library). This smell occurs when communication exchanges between developers or community members 

are often very short, delayed, or spread over a long period of time (Raman et al., 2020). 
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Archivematica was the only community where the Organizational Silo Effect (OSE) smell was found. This 

smell signals communication problems and a high decoupling of tasks where members are isolated from 

one another and interaction among them seems limited. OSE can cause time waste, insignificant 

collaboration, and code duplication (Caballero-Espinosa et al., 2023). 

The Organizational Skirmish (OS) smell affected four repositories. Communities facing OS deal with 

miscommunication or misunderstanding between members due to different expertise levels or 

organizational changes that can lead to delays (Tamburri et al., 2015). 

Among the 10 smells, those affecting most SC-OSS communities were: Black-cloud Effect, (BCE), Prima-

donnas Effect (PDE), Sharing Villainy (SV), Radio Silence (RS), and Truck Factor Smell (TFS). 

Black-Cloud Effect (BCE) 

 
Black-cloud Effect (BCE) was detected in nine of the 11 SC-OSS projects. BCE is strongly influenced by 

metrics from the social network analysis, developer contributions, and communication dimensions. The 

BCE emerges from a situation where community members have few opportunities to meet and share 

their experiences and, at the same time, few members can help close the knowledge gap between 

members. The resulting effects are that messages need to be repeated many times or are interpreted in the 

wrong way, also described as a “‘black-cloud’ of confusing back-and-forth messages [that] were 

constantly obfuscating reality” (Tamburri et al., 2015, p. 9). 

Different strategies can be used to correct BCE smells. One of the most efficient solutions is to create an 

actively maintained and implemented communication plan to help structure communications between 

members (Catolino et al., 2020). 

Prima-Donnas Effect (PDE) 

 
The Prima-Donnas Effect (PDE) affected 10 of the 11 OSS communities. The most influential csDetector 

dimensions in PDE smells detection are social network analysis and sentiment analysis metrics. 

Communities affected by PDE will not readily welcome contributions or proposals from new members or 

other members. It is caused by inertia, both at the organizational level and code or software feature level, 

and may lead, for certain members, to non-inclusive behaviours such as condescension. PDE is also a sign 

of poor communication and collaboration practices among members (Caballero-Espinosa et al., 2023). 

Strategies to mitigate the PDE include community-based contingency planning, social wikis, and culture 

conveyor roles (Tamburri et al., 2015). 

Sharing Villainy (SV) 

 
Sharing Villainy (SV) was found in 10 of the 11 OSS communities. Like the BCE, it is caused by a lack of 

knowledge sharing opportunities (e.g., face-to-face meetings) causing the information shared among 

members to be outdated, unconfirmed, or wrong (Almarimi et al., 2023). 
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Mitigation strategies include the creation of a social wiki or ambassador roles to disseminate a 

homogeneous organizational culture (Tamburri et al., 2015). 

Radio Silence (RS) 

 
Radio Silence (RS) was detected in eight out of the 11 SC-OSS analyzed. csDetector’s social network 

analysis dimension is the most influential for detecting RS. RS, also known as the bottleneck smell, 

reflects a formal organizational problem: the community is insufficiently structured and relies upon 

highly formal procedures maintained or controlled by few individual community members. For example, 

one member may interpose in every formal interaction and object to any initiatives to introduce changes 

(Tamburri et al., 2021a). 

The most efficient strategies to resolve RS are to reinforce community cohesion by doing specific 

collective activities (e.g., brainstorming), practicing mentoring, and engaging with members to solve 

communication problems (Catolino et al., 2020). 

Truck Factor Smell (TFS) 

 
Eight out of the 11 SC-OSS analyzed were affected by the Truck Factor Smell (TFS). csDetector has a 

specific set of metrics to detect TFS based on issues, commits, and pull request interactions. TFS (also 

referred to as “bus factor”) is an indicator used to determine the resiliency of a project if it encounters 

developer turnover, specifically, the number of software developers who would need to be “hit by a bus” 

to cause the project to stall (Jabrayilzade et al., 2022, p. 98).  

TFS is a sign that knowledge critical to the project’s sustainability is concentrated among few members. If 

there is developer turnover, knowledge will be lost, and the project will be at risk.  

As part of its social network analysis, csDetector produces network graphs related to members’ activities 

on GitHub. Figure 2 shows the Pull Request (PR) centrality graph for the EPrints software. From all the 

graphs generated as part of our studies, EPrints exemplifies TFS in the most unambiguous way. Any 

interactions on PR during the three-month period analyzed are centralized on only one member.  
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Figure 2  

EPrints 3.4 csDetector pull request centrality graph visualization. The fact that all nodes connect to one 

central node demonstrates Truck Factor Smell (TFS). csDetector generates this data using GraphML File 

Format and a visualization of the graph in PDF. The above is the GraphML data from csDetector, 

visualized using Gephi - the Open Graph Viz Platform (Bastian, Heymann & Jacomy (2009).4 

 

Truck factor, however, is a controversial indicator. Having too many developers involved in a project is 

also risky. The more people involved, the more communication paths required, adding complexity to 

communication patterns and potentially introducing miscommunication and resulting code problems 

(Nagappan et al., 2008). Avelino et al. (2016) created an approach to analyze 133 popular projects in 

                                                 
4 https://github.com/gephi/gephi       

https://github.com/gephi/gephi


Evidence Based Library and Information Practice 2025, 20.1 

 

36 
 

GitHub to determine the truck factor for each, and later surveyed developers to confirm findings. 

Interestingly, they found that most systems had (in 2016) a truck factor of 1 (34%, n=45) or 2 (31%, n=42) 

including the very popular OSS projects, Clojure and Elasticsearch.  

Overall, SC-OSS communities, from the three-month analysis period, seemed to have two main problems. 

The first problem was limited knowledge sharing either due to a lack of effective communication (BCE) 

or knowledge hoarding among members (SV). The second problem was weak collaboration practices 

possibly due to overly detailed and overwhelmingly formal procedures (RS) leading to few opportunities 

for onboarding newcomers and limiting the generation of new ideas (PDE). 

Discussion 

 
While the results generated by csDetector are interesting, this tool has limitations in the context of 

evaluating SC-OSS for academic libraries. Software development skills are required to run csDetector. 

Documentation is sparse. While some documentation about metrics is provided in an article about the 

first release (Almarimi et al., 2020, table 10), more than 50 metrics described in the GitHub repository 

(Nuri22, 2021) cannot be matched easily with the 190 metrics generated in the results. No information 

exists on the correlation of metrics and smells, nor the thresholds used. 

Despite the challenges of using csDetector, this software can provide results worth monitoring, 

highlighting problems that are social in nature. The automated analysis of GitHub data and the use of 

metrics and machine learning models is also promising. The concept of community smells provides a 

useful vocabulary for defining OSS community dysfunctions and, therefore, solutions. For example, the 

Black Cloud Effect smell indicates weak user interaction and trouble with knowledge sharing and can be 

addressed by building a specific communication plan.  

The data used and processed by csDetector opens a completely new dimension of indicators or 

characteristics. From the metrics used by csDetector, Almarimi et al. (2023) have emphasized that some 

metrics are more influential than others to detect community smells. The most significant in this regard 

are the “standard deviation of the number of developers per time zone and per community, and the 

social network betweenness, closeness and density centrality and the ratio of issues with negative 

sentiments, anger words and polite comments in PR [pull request] and issue discussions” (p. 2). Much of 

the data processed by tools like csDetector is originating from code sharing platforms. Some data helps 

determine how organized the community is (e.g., is the repository using milestones? Tags to flag issues?). 

Activities that circle around three GitHub features (issues, commits, and pull requests) can give a sense of 

engagement of community members and be used as criteria to measure OSS activities and vitality. 

Many of the tools uncovered in our literature review, including csDetector, cannot be considered 

sustainable. In this regard, a project like CHAOSS (n. d.-a) looks much more promising. The community 

health indicators defined for this project were community based and the software used to produce the 

data, GrimoireLab, is open source (Gonzalez-Barahona et al., 2022). 

The CHAOSS project has focused on building indicators to measure OSS community health and 

sustainability (CHAOSS, n. d.-a; Goggins et al., 2021b). However, like csDetector, it relies heavily on 

metrics based on software sharing platforms like GitHub. CHAOSS also contains more qualitative metrics 

that are similar in their objectives to csDetector sentiment analysis. For example, the CHAOSS, 
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Psychological Safety, and Burnout models appear to align with two situations that widespread 

community smells, like Toxic Communication (TC), can cause within the communities we assessed. There 

is much overlap between CHAOSS metrics and csDetector, especially those focusing on community 

activities. However, CHAOSS also includes metrics beyond GitHub that are absent from csDetector: 

Documentation Accessibility, Discoverability and Usability. For all these reasons, CHAOSS seems to be 

more exhaustive for analyzing community health.  

Using the CHAOSS Starter Project Health Model on the SC-OSS DSpace, designed to quickly assess the 

health of an OSS community, Colt (2023) demonstrated that metrics can be useful for validating or 

challenging perceptions about a project and for helping decision-makers determine if a specific OSS 

needs support. 

With carefully selected and curated metrics, CHAOSS can generate lots of data. The real challenge is to 

determine the thresholds of each metric (e.g., how many days must an Issue Response Time be to be too 

much?) used to measure and determine specific OSS community health. 

Limitations 

 

The datasets and the methods used in our study have limitations. The repository selection was based on 

our experience as scholarly communication practitioners in Canada. There are others OSS used by 

libraries that would have been worth including, for example, for digital asset management: Omeka, or 

other journal publishing platforms such as Janeway.  However, our goal was not to focus on a specific 

community but to determine the specificity of the results generated by csDetector.  

 
Our assessment of OSS communities has been conducted over a brief period (three months). And we also 

voluntarily limited some configurations in part due to performance issues (i.e., limit the analysis to 100 

comments per issue and pull requests). A longer analysis or temporal analysis (activities on a longer run 

or at different moments in time), sometimes pointed out as relevant to really have a sense of communities 

(Cánovas Izquierdo & Cabot, 2022; McClean et al., 2021), was out of the scope of our study. 

The tools themselves have their own limitations. Only one specific GitHub branch can be processed. OSS 

can have multiple branches on which the community is active depending on software versions (i.e., OJS, 

EPrints). Moreover, only one GitHub repository at a time can be assessed, but a specific community can 

have multiple GitHub repositories (i.e., DSpace has three, two for developments DSpace and DSpace 

Angular and one for technical documentation for the REST API). This may prevent csDetector from 

providing a whole picture of a given community. In addition, the accuracy of tools such as csDetector are 

a function of the reliability of their natural language processing dependencies such as SentiStrength, 

ConvoKit, spaCy and its en_core_web model, in the specific context of GitHub data. Using these tools for 

analyzing issues and comments on GitHub can be effective, but there are specific considerations and 

potential limitations to keep in mind. GitHub comments and issues include domain-specific text and 

technical language, code snippets and domain jargon that might not be well represented in the training or 

lexical data of these tools. Although the authors of csDetector perform validation (accuracy, precision, 

recall, F1, AUC) of the training models used for smell detection resulting in relatively high average 

measures, the models ultimately rely on a source of truth that is based on the manual identification of 
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community smells, which is prone to a certain degree of error. To mitigate, the authors of csDetector 

relied on inter-indexer reliability and established definitions and guidelines. 

To predict community smells, csDetector relies only on GitHub data and do not use data from other 

platforms where non-programming activities occur (mailing lists, chat software like Slack or Mattermost, 

wikis). Cánovas Izquierdo and Cabot (2022) insist on the importance of non-programming activities in 

OSS communities, even suggesting that these activities could play a significant role for its sustainability. 

Based on GitHub data they define and analyze specific roles activities (developer, reviewer, merger, 

reporter, commenter, reactor). OSS community members tend to play multiple roles (Tatham, 2010). 

Community members intervene in various aspects of the OSS project they are involved in. The LYRASIS 

2021 Open Source Software Report also highlighted that libraries are more inclined to allocate staff time 

for non-technical tasks (governance meetings, community feedback, or user testing) (Rosen & Grogg, 

2021). 

The analysis is also limited to the single project and does not consider the software dependencies or the 

network around the project. For example, thousands of websites and other software systems used 

OpenSSL, the ubiquitous OSS used for cryptography and secure communication. When the Heartbleed 

security bug in OpenSSL was discovered, it had a huge impact on OSS project health worldwide. This 

risk would not have been discovered through a trace data analysis of a single project’s GitHub repository 

and the community smells affecting OpenSSL (mainly, and arguably, truck factor) would not have been 

identified. Goggins et al. (2021a) argue that both the project and its ecosystem need to be analyzed to 

generate a complete picture of project health.  

Linåker et al. (2022) concluded that it is important not to analyze an OSS project separate from its 

ecosystem and that a project’s software dependencies and links to other projects should be evaluated. 

Also, analyzing GitHub trace data, although faster than a qualitative study, has been criticized by 

Goggins et al. (2021b) who stated that ongoing engagement with OSS projects over time provides better 

health and sustainability indicators. Geiger and Ribes (2011) argue that to understand trace data, 

researchers must be immersed in the group and actively investigate “otherwise backgrounded actors, 

software, and data” in tandem (p. 6). 

Future Research 

 
We did not validate the tools we used or seek to confirm their results with the scholarly communication 

communities we assessed. To investigate further SC-OSS communities, it would be relevant to conduct a 

qualitative analysis on each community to determine if concepts of community smells or community 

types are known and how they may be used to ensure OSS sustainability. This secondary qualitative 

analysis would serve as an additional test of the validity of the csDetector smell detection models, and 

potentially an expansion of its training dataset that would include software repositories specific to the 

scholarly communications domain.  

A significant part of OSS communities' activities is not captured through GitHub and would need more 

research, especially to assess interactions occurring on communications tools such as mailing list and chat 

channels (i.e., Slack or Mattermost) and activities around documentation tools such as wikis. The 
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community governance structure and rules (Who makes decisions? How do participants make their 

voices heard?) is also a critical aspect to understand to provide a complete picture of OSS communities 

(De Noni et al., 2011). 

Conclusion 

 
The automated evaluation of OSS communities using trace data is a promising area of development, and 

existing tools can be used in the context of a research project. These tools could also be used in 

combination with other evaluation methods to inform decision making. 

The detection of community smells rather than community types seems more promising since it points 

out problems in the community and can help libraries make strategic decisions, whether it is to choose a 

specific OSS over another or to get involved in a community to try to address its problems (RQ3). 

Community smells can be identified with csDetector, which was able to detect five widely spread smells 

in the SC-OSS communities targeted in this paper. The community smells identified when we evaluated 

SC-OSS with csDetector suggest that there may be inefficient knowledge sharing and weak collaboration 

practices that may lead to few opportunities for onboarding newcomers, in turn limiting the generation of 

new ideas (RQ1). csDetector cannot be considered as ready-to-use software; it is more akin to an open-

source research prototype, with limited support. It has a major constraint given that it can analyze only 

one branch of a GitHub repository, resulting in only a partial analysis of a community’s activities if the 

OSS is on multiple branches (RQ2). In this regard, a project like CHAOSS may be more promising. Our 

paper shows that csDetector can be used as an experimental software by library staff to evaluate SC-OSS 

communities. We recommend that library staff continue to monitor developments in this area to assess 

OSS communities as the tools become easier to use. 

To assure long term development and flourishment of SC-OSS communities, libraries must participate in 

their communities, either by contributing code or through non-programming activities. Member 

participation, especially engagement, is vital to OSS communities' sustainability.  

Simple awareness of common types of social and organizational dysfunctions in SC-OSS can help us 

understand what conditions are needed for software sustainability. The concept of “community smells” 

can, at a very minimum, provide us with a vocabulary for diagnosing dysfunctional dynamics and point 

us toward remedies. Libraries, along with other cultural and scientific heritage institutions, have the It 

Takes a Village project (Arp & Forbes, 2018), a collection of best practices and tools for supporting the 

sustainability of OSS used in these sectors. While remedies to community smells are not explicitly 

covered in the It Takes a Village guidebook, it offers information on aspects such as how to increase the 

number of contributors, which may address “truck factor,” or the concentration of work among one or 

few people, under “Resources.” In the “Community Engagement” section, it provides help on 

formulating a communications and engagement strategy/plan, which may address community smells 

such as “black-cloud effect” and “radio silence.”  

Without strategic support from libraries and library staff, any open scholarly communication 

infrastructure will remain an ideal that may not be reached. OSS communities are dynamic ecosystems 

and interactions can change with the flow of people leaving or onboarding it. csDetector, and similar 
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tools, open a completely new dimension of OSS communities' characteristics to libraries. Interactions and 

communications problems, such as community smells, can lead to social debt, which in its turn will 

generate technical debt and, ultimately, jeopardize the sustainability of the project.  
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