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Abstract

The need for adopting efficient designs in industrial experiments is well understood. Often situations arise where the
existing designs such as orthogonal arrays are not suitablefor designing required experiments. This paper deals with
one such situation where there was a need for designing an asymmetrical factorial experiment involving interactions.
Failing to get a satisfactory answer to this problem from theliterature, the authors have developed an ad hoc method of
constructing a design. It is transparent from the method of construction that the design provides efficient estimates for
all the required main effects and interactions. The later part of this paper deals with the issues of how this method is
extended to more general situations and how this ad hoc method is translated into a systematic approach. The method
consists of formulating the construction problem as certain integer programming problems. It is believed that this method
will be very useful in practical applications. The ideas areillustrated with a number of examples.
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1. Introduction

Fractional factorial experiments are widely used in
industrial and other applications. In many instances, or-
thogonal arrays (OAs) provide a good basis for design-
ing the experiments. Given the requirements in terms of
main effects and interactions to be estimated, one has
to first design the experiments, i.e., identify treatment
combinations (TCs) which can lead to estimation of pa-
rameters of interest. Since there are several choices of
designs, one is interested in using the most efficient de-
sign. Usually the efficiency of a design is measured in
terms of run length, i.e., the number of TCs, and disper-
sion matrix of the estimators of parameters of interest.

A factorial experiment is said to be asymmetrical
if there are at least two factors for which the num-
ber of levels considered for each of these factors is
not the same. Designing asymmetrical fractional facto-
rial experiments is relatively more difficult compared
to the other category. The problem becomes more com-
plex when the model involves interactions. Many re-
searchers suggested methods for orthogonal plans (see
Chakravarti [1956], Addleman [1962], Cheng [1989],

Email: G. S. R. Murthy [murthygsr@gmail.com], D. K.
Manna [dkmanna@hotmail.com].

Wang and Wu [1991,1992]). Orthogonal designs are ef-
ficient, but for a fixed run length such designs may not
exist. In such cases one has to sacrifice orthogonality
in favour of smaller run length. Anderson and Thomas
[1979] proposed to derive resolution IV designs by col-
lapsing the levels in foldover designs. Webb [1971] de-
veloped a number of catalogues for small incomplete
experiments where each factor is tried at either two lev-
els or three levels. Box and Draper [1971] studied the
optimality of designs using| XtX | criterion (see Sec-
tion 2). Mitchell [1974] proposed DETMAX algorithm
for the construction of efficient designs with respect to
| XtX | criterion. Wang and Wu [1992] introduced
the concept ofnear-orthogonalityand produced some
construction methods for the main-effect plans. They
also enlisted a number design layouts with varying run
lengths for2m3n factorial experiments.

This article stems from the investigations of a prob-
lem we have encountered in an industry (see next sec-
tion). It was required to conduct a2232 factorial experi-
ment in which certain interactions were to be estimated
along with the main effects. Thus, an efficient design
was to be constructed for the problem in question. Fail-
ing to get a satisfactory answer to this problem from the
literature, we hit upon an ad hoc method for construct-
ing an efficient design for this purpose. It is transpar-

c© 2013 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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ent from the method of construction, that certain main
effects/interactions can be estimated orthogonally. We,
then, developed a general methodology to convert our
ad hoc method into a systematic one.

An interesting aspect of our methodology is that we
formulate the problem as an Operations Research (OR)
problem. It is shown that constructing efficient designs,
under some restrictions, can be formulated as an inte-
ger programming problem (IPP) with either linear or
quadratic objective function.

The present article is confined purely to2m3n facto-
rial experiments where it is required to estimate all the
main-effects and some of the two-factor interactions.

In Section 2, we present the basic terminology and
notation, and the specific problem we have encountered
in the industry. In Section 3, our method of construc-
tion is described and is illustrated with some examples.
In Section 4, we present the application of OR formula-
tions in constructing the designs and illustrate the same
with examples.

2. Background

In this Section we recall the relevant terminology and
introduce the notation with the help of the following
problem which we encountered in an aluminium alloy
foundry.

2.1. Problem

In order to optimize the process parameters for reduc-
ing casting defects, it was planned to conduct an exper-
iment with the following factors and levels : (A) Bath
Temperature at 3 levels, (B) Phosphorous Content at 3
levels, (C) Charge Ratio at 2 levels, and (D) Filtering
Method at 2 levels. Besides the main effects, interac-
tionsAB andAC were to be considered in the model.
The problem was to construct an efficient design which
allows the estimation of the 4 main effects and the above
mentioned interactions.

The full-factorial experiment for the above problem
involves 36 TCs. Anyk of these 36 TCs will be referred
to as a fraction of sizek (k is called the run length). Say
that a fraction of sizek is regular if 36 is divisible byk.
Say that a column of a fraction ishomogeneousif all the
levels in that column appear with same frequency; and
say that a fraction is homogeneous if all the columns
in the fraction are homogeneous. Throughout this pa-
per, we confine our attention to regular homogeneous
fractions only.

Let yi denote the response due toith TC. It is as-
sumed thatyi’s, 1 ≤ i ≤ k, are uncorrelated, each with
varianceσ2. If A3B2C1D2 is theith TC, then under the
model assumptions, the expected value ofyi is given by

E(yi) = µ+ a3 + b2 + c1 + d2 +(ab)32 +(ac)31, (1)

whereµ is the general effect anda, b, c, d, (ab) and(ac)
denote respective factorial effects at their corresponding
levels. Using reparametrization of these factorial effects,
the above model can be remodeled as

E(y) = Xβ andD(y) = σ2I, (2)

wherey = (y1, y2, . . . , yk)
t is the response vector and

β is the vector whose elements correspond toµ, lin-
ear and quadratic components of the main effects and
interactions of factorial effects considered in the above
model; theith row of the design matrixX , Xi., cor-
responds to theith TC in the experiment and thejth
column ofX , X.j, corresponds toβj (the jth element
of β).

For the problem in question,β consists of 13 ele-
ments, namely, general effect (µ), linear/quadratic com-
ponents of main effects (AL, AQ, BL, BQ, C, D), and
the linear/quadratic components of interactions (ALBL,
ALBQ, AQBL, AQBQ, ALC, AQC). Further,X is a
k×13 matrix consisting of corresponding contrast vec-
tors (CVs) along with a vector of 1’s forµ .

In order that all the main effects and interactions (in-
cluding µ) be estimable, a necessary condition is that
X is of full column rank (see Rao [1974]). The least
square estimator ofβ is given by β̂ = (XtX)−1Xty

and the dispersion matrix of̂β, denoted by D(̂β), is
σ2(XtX)−1. For the purpose of this paper, we shall as-
sume, without loss of generality, thatσ2 = 1 through-
out.

For the given requirements of estimating the factorial
effects, there exist several choices of designs and one
is interested in choosing an optimal design. A number
of criteria (for optimality) have been developed (see
Raghavarao [1971]) to compare and construct designs.
We shall mention two such criteria here.
• Under the assumption that columns ofX are normal-

ized, | XtX | is a overall measure of efficiency (de-
noted asD-efficiency) of the design (see Rao [1974],
Wang and Wu [1992]). Since the| XtX | is always
less than or equal to product of the diagonal entries
of XtX , | XtX | attains its maximum when the
columns ofX are orthogonal. Furthermore, under or-
thogonality, the estimates ofβis attain the minimum
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variance. Therefore, theD-efficiency of the design is
given by

D-efficiency= 100× | XtX |
1

p /k,

wherep is the number of parameter to be estimated
andk is the run length (see Mitchell [1974]).

• Another measure of efficiency is given by

IF = p/

[

k

p
∑

i=1

wiV(β̂i)

]

, (3)

where k and p are as defined above (p = 13 in
our problem),wi’s are some associated weights and
V (β̂i) is the variance of̂βi which is theith diagonal
entry of (XtX)−1 (see Webb [1971]).
For any 3-level factorF , we shall use the notation

lFL
and lFQ

to denote CVs of the linear and quadratic
components of the main effect ofF . If G is another 3-
level factor, thenFLGL, FLGQ, FQGL, FQGQ are
the linear and quadratic components ofFG interaction.
Every component of a main effect or an interaction is
represented by a contrast vector. For any two CVsu
andv, we define thenonorthogonalitybetweenu andv
as| utv |.

3. Construction Method

In this section, we will describe our method of
constructing designs. It should be mentioned that this
method of construction produces only regular fractions
which are also homogeneous. In Subsections 3.1 and
3.2, we construct designs for our problem of Section
2.1. Subsection 3.3 provides an example to extend the
methodology to more general situations.

It is clear that in order to estimate the main effects and
interactions specified in our problem, we need at least 13
TCs. Any regular fraction of this2232 experiment must
contain2i3j TCs, 0 ≤ i, j ≤ 2. Since the minimum
number is 13, we go for the smallest regular fraction
with a run length not less than 13.

3.1. Construction in 18 runs

To construct a design in 18 runs, we first look at2132

full-factorial. This layout has 3 columns (see columns
(2), (3) and (4) of Table 1). Since it is a full-factorial
layout, all the main effects and interactions (ofA, B,
C) are estimable and are orthogonal. We now augment
these 3 columns with another 2-level column (column

underD) to get a design layout for the required experi-
ment. The main step of the method is that the new col-
umn is chosen so as to make the columns underD, B,
A a 2132 full-factorial experiment. The idea is to make
the estimates of main effects and interactions involving
factorsA, B andD uncorrelated.

Since columns underA,B andD form a full-factorial
experiment, estimates of main effects and interactions
of these factors will be uncorrelated. Above, we have
already noted that the estimates of main effects and
interactions of factorsA,B andC are also uncorrelated.

The above method yields a design layout for the re-
quired experiment. However, it will be afeasible design
provided it leads to estimability of all the required main
effects and interactions. For instance, one of the candi-
dates for the column underD is the column underC
itself. But this choice results in complete confounding
of the main effects ofC andD.

There are several choices for the column underD.
Following an ad hoc approach, this column is initially
constructed, by trial and error method, so that the re-
sulting design is a feasible one and that the correla-
tion between the estimates of main effects ofC andD
is a minimum. A general and systematic approach to
this problem is developed later. According to this ap-
proach, the column underD is constructed so that the
nonorthogonality between the main effects ofC andD
(i.e., | ltC lD |) is a minimum. While doing so, we also
try to keep the nonorthogonalities ofD with AC in-
teraction as low as possible. Clearly we have an opti-
mization problem at hand. We defer the details of this
methodology to Section 4. The design thus constructed
is given in Table 1.

Consider the design as constructed above in 18 runs.
The nonsingularity of the resultingXtX matrix indi-
cates that the general effectµ and all the main ef-
fects and interactions of our interest are estimable. The
dispersion matrix,(XtX)−1, is given in Table 2. The
D-efficiency and theIF -efficiency of this design are
115.70% and 98.11% respectively. It is evident from
(XtX)−1 and IF -efficiency, that our design is a rea-
sonably good one for the given requirements.

In fact, the above design isD-optimal among the reg-
ular homogeneous ones with 18 runs. The proof is given
in the Appendix. Furthermore, this design provides five
degrees of freedom for estimating error.

It must be noted that we first tried to construct a suit-
able design using the existing literature on the subject.
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Table 1

Construction of a Fraction with 18 Runs
2132 full-factorial Additional After rearranging

column rows and columns
TC. No. C A B D TC. No. D B A C

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 4 1 1 2 1
3 1 1 3 1 7 1 1 3 1
4 1 2 1 1 11 1 2 1 2
5 1 2 2 2 14 1 2 2 2
6 1 2 3 1 17 1 2 3 2
7 1 3 1 1 3 1 3 1 1
8 1 3 2 2 6 1 3 2 1
9 1 3 3 2 18 1 3 3 2

10 2 1 1 2 10 2 1 1 2
11 2 1 2 1 13 2 1 2 2
12 2 1 3 2 16 2 1 3 2
13 2 2 1 2 2 2 2 1 1
14 2 2 2 1 5 2 2 2 1
15 2 2 3 2 8 2 2 3 1
16 2 3 1 2 12 2 3 1 2
17 2 3 2 1 15 2 3 2 2
18 2 3 3 1 9 2 3 3 1

Table 2

Dispersion Matrix of Proposed Design in 18 runs ×10−2

Effect µ C D ALC AQC AL AQ BL BQ ALBL ALBQ AQBL AQBQ

µ 5.56
C 0.00 5.63
D 0.00 -0.69 6.25
ALC 0.00 0.23 -2.08 9.03
AQC 0.00 -0.08 0.69 -0.23 2.85
AL 0.00 0.00 0.00 0.00 0.00 8.33
AQ 0.00 0.00 0.00 0.00 0.00 0.00 2.78
BL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.33
BQ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.78
ALBL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.50
ALBQ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.17
AQBL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.17
AQBQ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.39

Consequently, following Anderson and Thomas [1979],
we constructed a resolution IV design (so as to estimate
the interactions). This required 19 treatment combina-
tions. The resulting layout and the corresponding dis-
persion matrix are given in Table 3(a) and Table 3(b)
respectively. TheD-efficiency andIF -efficiency of this
design are 103.89% and 80.88% respectively. Moreover,
this design is irregular and nonhomogeneous. Compare
the dispersion matrices (Table 2 and Table 3(b)). In the
latter design, many estimates are correlated.

3.2. Construction in 12 runs.

When there are restrictions on the run length, one of-
ten ignores certain higher order interactions so that the
run length is reduced. There could be other reasons to
ignore higher order interactions such as difficulty in giv-
ing practical interpretation to such interactions etc. For
example, Webb [1971] argued in favor of considering
only linear components of interaction involving 3-level
factors. Supposing we can sacrifice a highest order in-
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Table 3

(a): Resolution IV Design in 19 Runs
TC No. C D A B TC. No. C D A B

1 1 1 1 1 11 2 1 2 2
2 1 1 1 2 12 2 2 1 2
3 1 1 1 3 13 2 2 1 3
4 1 1 2 1 14 2 2 2 1
5 1 1 3 1 15 2 2 2 2
6 1 2 1 1 16 2 2 2 3
7 1 2 2 2 17 2 2 3 1
8 1 2 3 3 18 2 2 3 2
9 2 1 1 1 19 2 2 3 3
10 2 1 3 3

(b): Dispersion Matrix of the Design of Table 3(a) ×10−2

Effect µ C D ALC AQC AL AQ BL BQ ALBL ALBQ AQBL AQBQ

µ 7.67
C 1.51 6.76
D 1.51 -1.58 6.76
ALC -2.67 -0.46 -0.46 10.32
AQC -0.55 -0.46 -0.46 -0.39 3.18
AL -1.88 -1.39 -1.39 1.19 -0.40 9.74
AQ -0.48 -0.60 -0.60 -1.31 1.34 -0.50 4.02
BL -1.89 -1.54 -1.54 0.17 0.96 -0.24 1.56 9.87
BQ -0.82 -0.45 -0.45 1.50 -0.61 1.42 -1.26 -0.35 3.64
ALBL -0.48 0.08 0.08 -1.72 0.07 -0.20 -0.25 -0.03 -0.71 10.70
ALBQ 1.47 0.60 0.60 -0.97 0.02 -2.27 0.48 -0.79 -1.17 0.16 5.54
AQBL 1.48 0.75 0.75 0.05 -1.34 -0.62 -1.58 -2.57 0.60 -0.01 -0.11 6.01
AQBQ -1.30 -0.39 -0.39 0.75 -0.10 0.76 0.25 0.66 0.50 -0.36 -0.62 -0.51 1.58

teraction in our problem, we can ask the question: Is
there an efficient design in 12 runs?

Earlier it was observed that a minimum of 13 runs
is necessary to estimate all the components of main ef-
fects and interactions. We assume that the highest order
component of the interaction betweenA andB, viz.,
AQBQ, is absent. We proceed, as before, to construct
the design by first writing down the2231 (= 12) full-
factorial layout (see columns (2), (3) and (4) of Table 4).

We then augment these 3 columns with another 3 -
level column (underB) so that after rearranging the
rows, the columns underB, D andC (see 2nd part of
Table 4) form a2231 full-factorial layout. Here we ob-
tain the column underB by minimizing the nonorthog-
onality betweenA andB while maintaining the orthog-
onality ofB with C, D andCD. This, again, is an op-
timization problem and the methodology is described in
Section 4. The dispersion matrix of this design is given
in Table 5. TheD-efficiency andIF -efficiency of the
design are 84.92% and 54.55% respectively.

3.3. Construction of Design for 2333 with Interactions
in 24 runs.

Consider an experiment with three 3-level factors,A,
B,C and three 2-level factorsD,E andF . Suppose it is
required to estimate the interactions,AB,BC,AD,DE
andEF . The minimum run length is 22. We construct a
design in 24 runs. As before, we start with a2331 full-
factorial layout with the factorsA, D, E andF . Next,
we augment this layout with two more 3-level columns
for B andC in two steps. First we augment the layout
with the column forB so that the nonorthogonalities
of B with A, AB andAD are minimized and that the
columns ofB, D, E andF form a full-factorial layout.
From this, we get the layout for the factorsA, B, D, E
andF in 24 runs.

Finally, this layout is augmented with another 3-level
column forC so that the nonorthogonalities ofC with
A, B, AB, BC andAD are minimized and that the
columns ofC, D, E andF form a full-factorial layout.
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Table 4

Construction of a Fraction with 12 Runs
22.3 full-factorial Additional After rearranging

column rows and columns
TC. No. C D A B TC. No. B D C A

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 1 1 1 1 1 1 1 1 1
2 1 1 2 3 8 1 1 2 2
3 1 1 3 2 5 1 2 1 2
4 1 2 1 2 12 1 2 2 3
5 1 2 2 1 3 2 1 1 3
6 1 2 3 3 7 2 1 2 1

7 2 1 1 2 4 2 2 1 1
8 2 1 2 1 11 2 2 2 2
9 2 1 3 3 2 3 1 1 2
10 2 2 1 3 9 3 1 2 3
11 2 2 2 2 6 3 2 1 3
12 2 2 3 1 10 3 2 2 1

Table 5

Dispersion Matrix for the Design with 12 Runs
Effect µ AL AQ BL BQ ALBL ALBQ AQBL C ALC AQC D

µ 0.093
AL 0.000 0.139
AQ 0.000 0.000 0.046
BL 0.000 -0.014 0.014 0.222
BQ 0.000 0.014 0.005 0.000 0.074
ALBL 0.000 -0.042 0.014 -0.167 0.056 0.667
ALBQ 0.019 -0.014 -0.005 0.000 0.037 0.111 0.111
AQBL 0.019 -0.000 0.009 -0.056 -0.019 0.111 0.000 0.111
C 0.009 -0.014 0.005 -0.056 0.019 0.222 0.056 0.056 0.167
ALC 0.000 0.000 0.000 0.125 0.042 -0.125 0.042 -0.083 -0.042 0.250
AQC 0.000 0.000 0.000 0.042 -0.042 -0.125 -0.042 0.000 -0.042 0.000 0.083
D 0.009 -0.014 0.005 -0.056 0.019 0.222 0.056 0.056 0.083 -0.042 -0.042 0.167

4. OR Formulations

In Section 3, we have encountered the problem of
augmenting a given set of columns with 2- or 3-level
column so as to form a design layout. In this section,
we formulate this problem as an integer programming
problem (with linear or quadratic objective function).
We first describe the procedure and the formulation, and
then illustrate the same with some examples.

4.1. Augmenting with 2-level columns

Consider the problem of constructing the fourth col-
umn discussed in Subsection 3.1. It is required to con-
struct a 2-level column which along with columns ofA
andB forms a full-factorial design. In addition to this,
the resulting layout (with the columns) should provide

estimability of all the main effects and interactions of
interest.

The problem of choosing a 2-level column is equiva-
lent to finding a18× 1 CV x so that it is orthogonal to
lAL

, lAQ
, lBL

, lBQ
, lALBL

, lALBQ
, lAQBL

, lAQBQ
,

and its nonorthogonality withlC , lCAL
, lCAQ

is as
close to zero as possible. In fact, if the nonorthogonali-
ties (| xtlC |, | xtlALC |, | xtlAQC |) are equal to zero,
then the resulting design is an orthogonal design with
which we can estimate all the main effects and interac-
tions orthogonally. Therefore,we expect that minimiz-
ing the nonorthogonality, in some sense, should lead us
to estimability of the required main effects and interac-
tions.

Thus the problem of constructing the fourth column
(which in turn gives us a design) is an optimization
problem. Since we are interested in minimizing| xtlC |
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, | xtlALC | and| xtlAQC | we may tackle the problem
in several ways. We shall consider two types of objective
functions,f(x), here.

(i) Take f(x) = λ1 | xtlC | + λ2 | xtlALC |
+ λ3 | xtlAQC |, whereλis are some positive num-
bers (weights). Setting any of theλi’s to be a very
large positive number is equivalent to treating the
corresponding component as a constraint. For exam-
ple, if we setλ1 to be a large positive number, then
we are looking for a solution that satisfiesxtlC = 0.
This, in other words, means we are looking for a
design which can provide orthogonal estimates for
all the main effects while minimizing the nonorthog-
onality betweenD andAC.

(ii) Take f(x) = (xtlC)
2 + (xtlALC)

2 + (xtlAQC)
2.

In this case, the resulting problem is a convex
quadratic integer programming problem. Note that
f(x) = xtPP tx whereP = [lC , lALC , lAQC ].
The complete formulation of the problem with ob-

jective function as discussed in (i) is given below. We
use the standard notationa+, a−. That is, for any real
a, a+ = max(a, 0) anda− = max(−a, 0); and for any
vectorx, x+ andx− are defined by(x+)i = (xi)

+ and
(x−)i = (xi)

−. Further, we usee for the vector of 1’s.
The order ofe will be clear from the context.

Formulation (F1):

Minimize λ1u+ λ2v + λ3w
subject to

Mx+ −Mx− = 0,
etx+ = 9,
x+ + x− = e,
−u ≤ ltC(x

+ − x−) ≤ u
−v ≤ ltALC(x

+ − x−) ≤ v
−w ≤ ltAQC(x

+ − x−) ≤ w

u, v, w, x+

i and x−

i are nonnegative integers,
i = 1, 2, . . . , 18,
whereM = [lAL

, lAQ
, lBL

, lBQ
, lALBL

, lALBQ
, lAQBL

,
lAQBQ

]t, and λ1, λ2, λ3 are predetermined positive
numbers.

For any solutionu, v, w, x+, x− of the above prob-
lem, definex = x+ − x−. Thenx is the required CV
and the 2-level column is given by(e+ x+). The con-
straintsx+ + x− = e andetx+ = 9 force the vectorx
to be a CV.

It may be noted that by taking the objective func-
tion f(x) = (xtlC)

2 + (xtlALC)
2 + (xtlAQC)

2 in this
case, we actually find a design which optimizes theD-
efficiency. This is because| XtX |= α1 − α2f(x),

whereα1 andα2 are some positive constants.
We shall illustrate the above method with another

example where it is required to construct a design with
12 TCs in Subsection 4.2.

4.2. Example with a 2331 Experiment

A design is to be constructed with four factors
A,B,C andD with A at 3 levels, andB,C andD at
two levels each. Furthermore, the interactionAB and
BC are to be estimated. Here we have2331 factorial
experiment with 24 TCs in all. In order to estimate
the main effects and interactions of interest, we need a
minimum of 9 TCs. We shall construct a design with
12 TCs using our method. Table 6 presents a full-
factorial experiment forA,B andC. It also presents
the corresponding CVs for these factors.

In order to construct the required design, we need to
augment the layout of Table 6 with another 2-level col-
umn as follows: construct a 2-level column forD so that
the columns underA, B, D form a2231 full-factorial
experiment (by doing this we ensure thatAB interac-
tion can be estimated orthogonally) and the nonorthog-
onalities ofD with C andBC are minimized.

The mathematical formulation of this problem is
given by:

Minimize 100u+ v
subject to

Mx+ −Mx− = 0,
etx+ = 6,
x+ + x− = e,
−u ≤ xtlC ≤ u,
−v ≤ xtlBC ≤ v,

u, v, x+

i and x−

i are nonnegative integers,i =
1, 2, . . . , 12,
where

M = [lAL
, lAQ

, lB, lALB, lAQB, lC ]t.

The coefficient ofu in the objective function is chosen
to be 100 so that if there is a feasible solutionx (=
x+ − x−) with xtlC = 0, then such a solution will
emerge as an optimal solution, which in turn, leads to
estimability of all the main-effects orthogonally.

The above problem is solved using the LINGO pack-
age and the solution is given by

x = (−1, 1, 1, −1, 1, −1, −1, 1, 1, −1, −1, 1).

Hence the column forD is (1, 2, 2, 1, 2, 1, 1, 2, 2, 1,
1, 2)t. The dispersion matrix of the design is given in
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Table 6

Layout for A, B, C and the CVs
TC.No. A B C lAL

lAQ
lB lALB lAQB lC lBC

1 1 1 1 -1 1 -1 1 -1 -1 1
2 1 1 2 -1 1 -1 1 -1 1 -1
3 1 2 1 -1 1 1 -1 1 -1 -1
4 1 2 2 -1 1 1 -1 1 1 1
5 2 1 1 0 -2 -1 0 2 -1 1
6 2 1 2 0 -2 -1 0 2 1 -1
7 2 2 1 0 -2 1 0 -2 -1 -1
8 2 2 2 0 -2 1 0 -2 1 1
9 3 1 1 1 1 -1 -1 -1 -1 1
10 3 1 2 1 1 -1 -1 -1 1 -1
11 3 2 1 1 1 1 1 1 -1 -1
12 3 2 2 1 1 1 1 1 1 1

Table 7

Dispersion Matrix
Effect µ AL AQ B ALB AQB C BC D

µ 0.083
AL 0 0.125
AQ 0 0 0.042
B 0 0 0 0.083
ALB 0 0 0 0 0.125
AQB 0 0 0 0 0 0.042
C 0 0 0 0 0 0 0.083
BC 0 0 0 0 0 0 0 0.094
D 0 0 0 0 0 0 0 0.031 0.094

D-Efficiency = 105.22%
IF -Efficiency = 97.30%

Table 7. It can be seen from the dispersion matrix that
all the main effects can be estimated orthogonally.

4.3. Augmenting with 3-level columns

Consider the problem of constructing a 3-level col-
umn discussed in Subsection 3.2. Given the columns of
A, C andD, the problem is to construct a 3-level col-
umn forB so that its three levels appear with the same
frequency and the CVs ofB (linear and quadratic) are
orthogonal toC, D andCD. In addition, the column
should be chosen in such a way that it minimizes the
nonorthogonalities ofB with A, AB andAC.

Constructing a homogeneous column forB is equiv-
alent to constructing the linear (and hence quadratic)
CV with 0s, 1s and -1s so that they appear with the
same frequency. So for the problem in question, we
must construct a (linear) CVx with four 1s, four ze-
ros and four -1s satisfying the orthogonality constraints
with lC , lD and lCD. This meansx (= lBL

) and the
resulting quadratic component ofB (lBQ

) must be or-

thogonal tolC , lD andlCD. Observe that sincex is the
linear CV ofB (lBL

), the quadratic CV ofB is given by
lBQ

= 3(x++x−)−2e. Thus, in order that the columns
of B, C, D form a full-factorial design, we must have

M t[lBL
, lBQ

] = 0, whereM = [lC , lD, lC • lD].

Note that the• product betweenlC andlD is nothing but
lCD (for any two vectorsu andv of same order,u•v is
the vectorw whoseith coordinate iswi = uivi). Since
lBL

= x+ − x− andlBQ
= 3(x+ + x−)− 2e, we have

M t[x+ − x−, 3(x+ + x−)− 2e]

= [M t(x+ − x−), 3M t(x+ + x−)]

Hence, the constraints reduce to
[

M t −M t

M t M t

] [

x+

x−

]

= 0.

Next, consider the objective function. We wish to
choosex so that the nonorthogonalities ofB with A
(i.e., | ltAL

lBL
|, | ltAQ

lBL
|, | ltAL

lBQ
| etc.), the
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nonorthogonalities ofB with AB interaction (i.e.,|
ltBL

(lAL
•lBL

) |, | ltBQ
(lAL

•lBL
) |, | ltBL

(lAL
•lBQ

) |,
etc.) and the nonorthogonalities ofB with AC inter-
action (i.e.,| ltBL

(lAL
• lC) | etc.) are minimized. An

interesting observation is that all these nonorthogonali-
ties are linear functions ofx+ andx−. To see this, first
observe that for any vectorsp, q, u, andv (of same
order),
(i) pt(u • v) = ut(p • v),
(ii) (p+ q) • (u+ v) = p • q + q • u+ p • v + q • v.
So,

ltBL
(lAL

• lBL
) = ltAL

(lBL
• lBL

)
= ltAL

((x+ − x−) • (x+ − x−))
= ltAL

(x+ • x+ − x+ • x− − x− • x+

+x− • x−)
= ltAL

(x+ + x−)

and

ltBQ
(lAL

• lBL
) = ltAL

(lBQ
• lBL

)

= ltAL
((3(x+ + x−)− 2e)•

(x+ − x−))
= ltAL

(x+ − x−)
= ltAL

lBL
.

Similarly, we can show that other nonorthogonalities
are also linear functions ofx+ andx−.

For simplicity, we take the objective function as
| ltAL

lBL
| + | ltAQ

lBL
| + | ltAL

lBQ
|. The complete

formulation is given below.

Formulation (F2):

Minimize u+ v + w
subject to

[

M t −M t

M t M t

] [

x+

x−

]

= 0,

etx+ = 4,
etx− = 4,
x+ + x− ≤ e,
−u ≤ ltAL

lBL
≤ u,

−v ≤ ltAQ
lBL

≤ v,

−u ≤ ltAL
lBQ

≤ w,

u, v, w, x+

i , x−

i are nonnegative integers,i =
1, 2, . . . , 12.

The problem is solved using the LINGO package. The
resulting layout and the correspondingdispersion matrix
are given in Subsection 3.2. It must be mentioned that
when we include theAQBQ component in the objec-
tive function, the program execution terminates with the
conclusion that the problem is nonoptimal/infeasible.

4.4. Enlisting all solutions

Consider the problem of finding all columns (of 2 or
3-levels) those are orthogonal to a given set of columns.
It is possible to solve this problem iteratively using
the integer programming formulations. Wang and Wu
[1991,1992] constructed a number of orthogonal and
nearly orthogonal main effect plans for2m3n factorial
experiments. In Wang and Wu [1992], it is shown that
there are sixteen 2-level columns orthogonal to 3 given
columns (one 3-level and two 2-level) – all having the
same level in the first coordinate, and enlist all the 16
2-level columns (see Section 2, page 411 of Wang and
Wu [1992] for details).

We illustrate our methodology to enlist all columns
orthogonal to a given set of columns. Consider
problem F1 formulated in Subsection 4.1. Suppose
(x+, x−) is a feasible solution ofF1 (u, v, w
are not mentioned here as they are determined by
x+ and x−). Define α = {i : x+

i > 0} and
S = {(z+, z−) : (z+, z−) is a feasible solution toF1}.
Augment the constraints ofF1 with

∑

i∈α x+

i ≤ 8. Let
S⋆ = {(z+, z−) : (z+, z−) is a feasible solution to the
augmented problem}. Note thatS⋆ = S \{(x+, x−)}.
Thus by finding a feasible solution to the augmented
problem, we get a new feasible solution toF1. By re-
peating the above process (by adding a new constraint
in every iteration) we can generate all feasible solutions
to F1. Solving the Wang and Wu’s problem mentioned
in the previous paragraph (with the additional con-
straintx+

i = 1 to ensure that all columns have one in
the first row), we find that there are exactly sixteen
distinct solutions (columns) and in the 17th iteration,
the augmented problem becomes infeasible.

5. Summary

Factorial Experiments are extensively used in indus-
trial experimentation and other disciplines. The exper-
iments often use asymmetrical factorial experiments.
Constructing efficient designs for asymmetrical facto-
rial experiments is, in general, a complex problem. In
this article, we have considered2m3n factorial experi-
ments with interactions. We have presented a methodol-
ogy for construction of nearly orthogonal designs which
are regular and homogenous. By formulating the prob-
lem of construction as an integer programming prob-
lem, we have shown that the designs can be constructed
using OR packages. This has been demonstrated with
examples. We have remarked that by minimizing the
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nonorthogonality, we expect that the resulting design
will lead to estimability of the main effects and inter-
actions of interest. In this connection we conclude this
article with the following question : Is there a bound on
the nonorthogonal objective functions considered in the
formulations which will ensure nonsingularity ofXtX
(in other words, estimability of parameters of interest)?
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Appendix

A :D-optimality of the design with layout in Table 1

We consider the layout in the right panel of Table 1.
Letθ = (α, β), whereα = (D,C,ALC,AQC,AL, AQ)
andβ = (µ, BL, BQ, ALBL, ALBQ, AQBL, AQBQ)

with µ as the general effect. Thenθ is the vector of
general, main and interaction effects to be estimated. It
can be checked thatθ is estimable.

For convenience, we use the following notation in the
proof of our theorem below:
(1) For any two vectorsg andh (of same order), the

dot productf = g • h is a vectorf defined by
the coordinate-wise productfi = gihi; < g, h >
stands for the inner product betweeng andh.

(2) For simplicity and ease of understanding, we de-
note the columns of the design matrix by the cor-
responding factorial effects.

(3) For any vectorg, g+ is the vector whoseith coor-
dinate ismax(gi, 0); andg− is the vector whose
ith coordinate ismax(−gi, 0).

Theorem : The design matrix corresponding to Table 1
is D-optimal among all homogeneous designs with 18
runs for estimatingθ.

Proof : Let G = [X : Y ] be the design matrix for any
homogeneous design where columns ofX correspond
toα and those ofY correspond toβ. LetH = [X0 : Y0]
be the resulting design matrix of layout in Table 1. We
will show that

| HtH | = max
G

| GtG | .

If possible, assume that| GtG | > | HtH | for some
G.

Claim 1. It can be checked thatXt
0Y0 = 0 and hence

| HtH | = | Xt
0X0 | · | Y t

0 Y0 |. Furthermore,Y t
0 Y0 is

diagonal and

Xt
0X0 =

D C ALC AQC AL AQ

D
C

ALC
AQC
AL

AQ

















18 −2 −4 4 0 0
−2 18 0 0 0 0
−4 0 12 0 0 0
4 0 0 36 0 0
0 0 0 0 12 0
0 0 0 0 0 36

















= Σ0, (say).

Claim 2. | GtG | ≤ | XtX | · | Y tY | ≤ | XtX |
· | Y t

0 Y0 |. The last inequality follows from the fact that
the diagonal entries ofGtG are same as those ofHtH ,
sinceG is homogeneous.
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Let Σ = XtX = ((σij)). Also, let

σ25 =< AL, C > = x

and σ35 =< AL • C,AL > = < AL •AL, C >

=< A+

L •A−

L , C > = y.

Then,

σ26 =< AQ, C > = < 3(A+

L +A−

L )− 2e, C >

= 3y,

σ36 =< AQ, AL • C > = < AL, C > = x,

σ45 =< AQ • C,AL > = x,

σ46 =< AQ • C,AQ > = < AQ •AQ, C >

=< 4e− 3(A+

L +A−

L ), C >

=−3y.

Further,σ23 = < C,AL • C > = 0, σ24 = <
C,AQ •C > = 0, σ34 = < AL •C,AQ •C > = 0
andσ56 = < AL, AQ > = 0.

Let λ = σ12 = < D,C >, δ = σ13 = < D,AL •
C >, τ = σ14 = < D,AQ • C >, γ = σ15 = <
D,AL >, η = σ16 = < D,AQ >.

With the above notation and calculations, we can
write

Σ =

D C ALC AQC AL AQ

D
C

ALC
AQC
AL

AQ

















18 λ δ τ γ η
λ 18 0 0 x 3y
δ 0 12 0 y x
τ 0 0 36 x −3y
γ x y x 12 0
η 3y x − 3y 0 36

















Observation 1. Note that, with 18 runs,λ = < D,C >
is such that either| λ | = 2 or | λ | ≥ 6.

Next,

| Σ | ≤

∣

∣

∣

∣

18 λ
λ 18

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

12 0 y x
0 36 x −3y
y x 12 0
x −3y 0 36

∣

∣

∣

∣

∣

∣

∣

∣

If | λ | ≥ 6, then the right hand side of the above
inequality is less than or equal to| Σ0 |. Hence, as
| GtG | > | HtH |, | λ | = 2.
Claim 3. | λ | = 2, x = 0 andy = 0.

We have already shown that| λ | = 2. Now,

| Σ | ≤ 18 ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

18 0 0 x 3y
0 12 0 y x
0 0 36 x −3y
x y x 12 0
3y x −3y 0 36

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 18× 6
[

(

3x2 + 9y2 − 24× 36
)2

− 122 × 362
]

= ∆, say.

Let P = {i : ith coordinate ofAL = 0}. Then

y=< AL • C,AL >

=< A+

L +A−

L , C >

= 2r − 6,

wherer is the number of -1’s in{Ci : i ∈ P}.

Let Q = {i : ith coordinate ofAL = −1} and let
s be the number of -1’s in{Ci : i ∈ Q}. Thenx =
2r + 4s− 18.

Clearly, 0 ≤ r, s ≤ 6 and r + s ≤ 9. With these
restrictions, we can work out the values ofx andy, and
evaluate∆. It turns out that

∆< | Σ0 | for all (x, y) 6= (0, 0).

Since| Σ | > | Σ0 |, it follows thatx = y = 0.
Thus,

Σ=

















18 λ δ τ γ η
λ 18 0 0 0 0
δ 0 12 0 0 0
τ 0 0 36 0 0
γ 0 0 0 12 0
η 0 0 0 0 36

















whereλ is equal to−2 or 2.

Supposeλ = 2. Without loss of generality, we can
write the contrast vectors forD andC in four blocks
as shown in the Table A.1.

In the remaining part of the table, we have the fre-
quencies of elements in the contrast vector forAL cor-
responding to the blocks.

Using the above table, we compute the quantities :

δ = < C •D,AL > = 2(t− r),
τ = < C •D,AQ > = 2(t+ r)− 4s,
γ = < D,AL > = 2(t1 + t2 − r1 − r2),
η = < D,AQ > = 6(t1 + t2 + r1 + r2 − 6),
x = < C,AL > = 2(t1 − t2 − r1 + r2 − t+ r),
y = < AL • C,AL > = 6(t1 − t2 + r1 − r2 − t

−r + 6).

The restrictions on the frequencies are
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Table A.1

Contrast Vectors of C and D

Block D C Frequency

I

1 1
1 1
1 1
1 1
1 1























r1 = #− 1
s1 = # 0
t1 = # 1

II

−1 −1
−1 −1
−1 −1
−1 −1
−1 −1























r − r1 = #− 1
s− s1 = # 0
t− t1 = # 1

III

1 −1
1 −1
1 −1
1 −1















r2 = #− 1
s2 = # 0
t2 = # 1

IV

−1 1
−1 1
−1 1
−1 1















6− r − r2 = #− 1
6− s− s2 = # 0
6− t− t2 = # 1

0 ≤ r, s, t ≤ 6,
r + s+ t = 10,

0 ≤ r1 ≤ min{r, 5},
0 ≤ s1 ≤ min{s, 5},
0 ≤ t1 ≤ min{t, 5},
r1 + s1 + t1 = 5,

0 ≤ r2 ≤ min{6− r, 4},
0 ≤ s2 ≤ min{6− s, 4},
0 ≤ t2 ≤ min{6− t, 4},

r2 + s2 + t2 = 4.
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By settingx = 0 andy = 0, it has been checked by
enumeration, through a simple computer program, that
under the above restrictions,| Σ |≤| Σ0 | for every fea-
sible combination of(r, s, t, r1, s1, t1, r2, s2, t2) (there
are only 144 feasible combinations). This contradicts
our assumption about the existence ofG satisfying
|GtG| > |HtH |.

Similar arguments hold forλ = −2 also. This com-
pletes the proof.


