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Abstract

The Generalized Traveling Salesman Problem (GTSP) is an extension of the well-known Traveling Salesman Problem
(TSP), where the node set is partitioned into clusters, and the objective is to find the shortest cycle visiting each cluster
exactly once. In this paper, we present a new hybrid Ant Colony System (ACS) algorithm for the symmetric GTSP.
The proposed algorithm is a modification of a simple ACS for the TSP improved by an efficient GTSP-specific local
search procedure. Our extensive computational experiments show that the use of the local search procedure dramatically
improves the performance of the ACS algorithm, making it oneof the most successful GTSP metaheuristics to date.
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1. Introduction

The Generalized Traveling Salesman Problem
(GTSP) is defined as follows. LetV = {1, 2, . . . , n}
be a set ofn nodes being partitioned intom non-empty
subsetsV = C1 ∪ C2 ∪ . . . ∪ Cm calledclusters. Let
C(v) = Ci if v ∈ Ci. We are given a costduv of trav-
elling between two nodesu andv for everyu, v ∈ V

such thatC(u) 6= C(v). Note that we consider only
the symmetric case, i.e.,duv = dvu for anyu, v ∈ V ,
C(u) 6= C(v). Let T be an ordered set of nodes of size
m such thatC(Ti) 6= C(Tj) for i 6= j ∈ {1, 2, . . . ,m}.
We call such a settour, and the weight of a tourT is

w(T ) = dTm,T1
+

m−1
∑

i=1

dTi,Ti+1
. (1)

The objective of the GTSP is to find a tourT that min-
imizesw(T ).

It is sometimes convenient to consider the GTSP as
a graph problem. LetG = (V,E) be a weighted undi-
rected graph such that(u, v) ∈ E for everyu, v ∈ V if
C(u) 6= C(v). The weight of an edge(u, v) is duv. The
objective is to find a cycle inG such that it visits ex-
actly one node inCi for i = 1, 2, . . . ,m and its weight
is minimized.

As a mixed integer program, the GTSP can be for-
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mulated as follows:

Minimize
∑

(u,v)∈E

duv · xuv

subject to
∑

(u,v)∈E

xuv =
∑

(u,v)∈E

xvu = yv for v ∈ V ,

∑

v∈Ci

yv = 1 for i = 1, 2, . . . ,m,

zu − zv + (m− 1)xuv ≤ m− 2 for (u, v) ∈ E,

u 6= 1, v 6= 1,

xuv ∈ {0, 1} for (u, v) ∈ E,

1 ≤ zv ≤ m− 1 for v ∈ V \ {1}.

The GTSP is an NP-hard problem. Indeed, if|Ci| = 1
for i = 1, 2, . . . ,m, the GTSP is reduced to the Travel-
ing Salesman Problem (TSP). Hence, the TSP is a spe-
cial case of the GTSP. Since the TSP is known to be
NP-hard, the GTSP is also NP-hard.

The GTSP has a lot of applications in warehouse or-
der picking with multiple stock locations, sequencing
computer files, postal routing, airport selection and rout-
ing for courier planes, and some others, see, e.g., [5]
and references therein.

Much attention was paid to the question of solving the
GTSP. Several researchers proposed transformations of
a GTSP instance into a TSP instance, see, e.g., [1].
At first glance, the idea of transforming a little-studied
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problem into a well-known one seems to be promis-
ing. However, this approach has a limited application.
Indeed, such a transformation produces TSP instances
where only the tours of some special structure corre-
spond to feasible GTSP tours. In particular, such tours
cannot include certain edges. This is achieved by as-
signing large weights to such edges making the TSP in-
stance unusual for the exact solvers. At the same time,
solving the obtained TSP with a heuristic that does not
guarantee any solution quality may produce a TSP tour
corresponding to an infeasible GTSP tour.

A more efficient approach to solve the GTSP exactly
is a branch-and-cut algorithm [5]. By using this algo-
rithm, Fischetti et al. solved several instances of size up
to 89 clusters; solving larger instances to optimality is
still too hard nowadays. Two approximation algorithms
for special cases of the GTSP were proposed in the lit-
erature; alas, the guaranteed solution quality of these
algorithms is rather low for the real-world applications,
see [2] and references therein.

In order to obtain good (but not necessarily exact) so-
lutions for larger GTSP instances, one should consider
the heuristic approach. Several construction heuristics,
discussed in [2,7,14], generally produce low quality so-
lutions. A range of local searches, providing significant
quality improvement over the construction heuristics,
are thoroughly discussed in [11]. An ejection chain al-
gorithm exploiting the idea of the TSP Lin-Kernighan
heuristic is successfully applied to the GTSP in [10].
Although such complicated algorithms are able to ap-
proach the optimal solution by only several percent in
less than a second for relatively large instances (the
largest instance included in the test bed in [10] has 1084
nodes and 217 clusters), higher quality solutions may
be required in practice. In order to achieve a very high
quality, one can use the metaheuristic approach. Among
the most powerful heuristics for the GTSP, there is a
number of memetic algorithms, see, e.g., [2,7,8,15,16].
Several other metaheuristic approaches were also ap-
plied to the GTSP in the literature, see, e.g., [13,17,18].

In this paper, we focus on a metaheuristic approach
called ant colony optimization (ACO). ACO was first
introduced by Dorigo et al. [3] to solve discrete opti-
mization problems and was inspired by the real ants
behaviour. Observe that, even without being able to see
the landscape, ants are capable of finding the short-
est paths between the food and the nest. This becomes
possible due to a special substance calledpheromone.
Roughly saying, an ant tends to use a path with the high-
est pheromone concentration. At the beginning, there

are no pheromone trails, and each ant walks randomly
until it finds food. Then it heads to the nest leaving
a pheromone trail as it walks. This pheromone trail
makes this path attractive to the other ants, and so they
also reach the food and walk to the nest leaving more
pheromone along the path.

An ant does not necessarily follow the pheromone
trail precisely. It may randomly select some slightly
different path. Now assume that there are several paths
between the food and the nest. The shorter is the path,
the more frequent will be the walks of the ants using
this path and, hence, the more pheromone it will get.
Since pheromone evaporates with time, longer paths
tend to get forgotten while shorter paths tend to become
popular. Thus, in the end, most of the ants will use the
shortest path. A more detailed description of the logic
staying behind the ACO algorithms can be found in [3]
and [4].

Since ants are capable of finding the shortest paths, it
is natural to model their behaviour to solve such prob-
lems as the TSP or the GTSP. Several metaheuristics
exploiting the idea of the ant colony, are proposed in
the literature. In this study, we focus on the Ant Colony
System (ACS) as it is described in [4].

There are two ACO implementations for the GTSP
presented in the literature. The first one is an ACS
heuristic by Pintea et al. [13]. It is an adaptation of
the TSP ACS, and its performance is comparable with
the most successful heuristics proposed by the time of
its publication. The second implementation by Yang et
al. [18] is a hybrid ACS heuristic featured with a simple
local search improvement procedure.

We propose a new hybrid implementation of the ACO
algorithm for the GTSP. The main framework of the
metaheuristic is a straightforward modification of the
‘classical’ TSP ACS implementation extended by an
efficient local search procedure. We show that such a
simple heuristic is capable of reaching near-optimal so-
lution for the GTSP instances of moderate to large sizes
in a very limited time.

The paper is organized as follows. In Section 2, we
briefly present the details of the ACS algorithm for the
TSP. In Section 3, we propose several modifications
needed to adapt the TSP algorithm for the GTSP. In
Section 4, we describe the local search improvement
algorithm used in the metaheuristic, and in Section 5,
we report and analyse the results of our computational
experiments. The outcomes of the research are summa-
rized in Section 6.
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2. Basic ACS algorithm

In this section, we briefly present the ‘classical’ ACS
algorithm as described in [4]. It is described for the TSP
defined by a node setV of size n and distancesduv
for every pairu 6= v ∈ V . If w(T ) is the weight of a
Hamiltonian cycleT (also called tour), the objective of
the problem is to findT that minimizesw(T ).

A hybrid ACS algorithm is a metaheuristic repeatedly
constructing solutions, improving them with the local
search procedure and updating the pheromone trails ac-
cordingly, see Algorithm 1.

Algorithm 1 A high-level scheme of the hybrid ACS
algorithm.

Initialize pheromone trails.
while termination condition is not metdo

Construct ants solutions.
Apply local pheromone update.
Improve the ants solutions with the local search

heuristic.
Save the best solution found so far.
Apply global pheromone update.

end while

Let K be the set of ants. The typical number of ants
|K| is 10. LetT k be an ordered set of nodes corre-
sponding to the path of the antk ∈ K andT k

i be the
ith node inT k. Note that if|T k| = n, the setT k can be
considered as a tour. LetTbest be the best tour known
so far. Initially, we setTbest← TNN, whereTNN is the
tour obtained with the Nearest Neighbor TSP heuristic,
see, e.g, [6] for description and discussion.

At the initialization phase, the ants are randomly dis-
tributed between the nodes:T k = {v}, wherev ∈ V is
selected randomly for eachk ∈ K. An initial amount
τ0 = |K|

w(TNN)
of pheromone is assignedτuv ← τ0 to

each arc(u, v) ∈ E. This amount has to prevent the
system from a quick convergence but also should not
make the convergence too slow.

On every iteration, each ant constructs a feasible TSP
tour, which takesn − 1 steps. LetAkt ⊂ V be the
set of nodes that the antk ∈ K can visit on thetth
step, t = 1, 2, . . . , n − 1. Since, in the TSP, an ant
can visit any node that it did not visit before,Akt =
V \{T k

1 , T
k
2 , . . . , T

k
t }. Letηuv be the so called visibility

calculated asηuv = 1
duv

. Let auv = τuv(ηuv)
β , where

β is an algorithm parameter, be the value defining how
much attractive is the arc(u, v) for an ant. With the
probability q0 (that is an algorithm parameter selected

in the range0 ≤ q0 ≤ 1), the antk, located in the node
u = T k

t , selects the nodev ∈ Akt that maximizesauv.
Otherwise it selects the nodev ∈ Akt randomly, where
the probability of choosingv is

pktv =
auv

∑

v∈Akt auv
. (2)

On every step of an antk ∈ K, a local pheromone
update is performed as follows:

τuv ← (1− ξ)τuv +
ξ

n · w(TNN)
, (3)

whereξ is an algorithm parameter selected in the range
0 ≤ ξ ≤ 1. This update reduces the probability of
visiting the arcuv by the other ants, i.e., increases the
chances of exploration of the other paths.

After n − 1 steps, eachT k for k ∈ K can be con-
sidered as a feasible TSP tour. Run the local search
improvement procedure for everyT k and update the
tourT k accordingly. The typical local search improve-
ment procedure used for the TSP isk-opt for k = 2
or k = 3. Now let k′ = argmink∈K w(T k) be the
ant that performed best amongK in this iteration. If
w(Tk′ ) < w(Tbest), update the best tourTbest found so
far with Tk′ .

Finally, perform the global pheromone update.
In global pheromone update, both evaporation and
pheromone deposit are applied only to the edges in
the best tourTbest found so far. Letρ be an algorithm
parameter calledevaporation rateand selected in the
range0 ≤ ρ ≤ 1. Then the global pheromone update is
applied as follows:

τuv ← (1− ρ)τuv +
ρ

w(Tbest)
for (u, v) ∈ Tbest. (4)

Before proceeding to the next iteration, reinitialize
T k with {v}, wherev ∈ V is selected randomly for
everyk ∈ K.

Various termination conditions can be used in an ACS
algorithm. The most typical approaches are to limit the
running time of the algorithm or to limit the number of
consequent iterations in which no improvement to the
original solution was found.

3. Algorithm modifications

In order to adapt the ACS algorithm for the GTSP,
we need to introduce several changes.
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(1) The Nearest Neighbor algorithm is redefined. Let
T v for v ∈ V be a GTSP tour obtained as follows.
Let A be a set of nodes. SetA ← V \ C(v). Set
T v ← {v}. On every stept = 1, 2, . . . ,m− 1, set
T v
t+1 ← u andA ← A \ C(u), whereu ∈ A is

selected to minimizew(T v
t , u). The outputTNN of

the Nearest Neighbor heuristic is the shortest tour
amongT v, v ∈ V .

(2) The number|K| of ants in the system is taken as an
algorithm parameter and is discussed in Section 5.

(3) Since a GTSP tour visits onlym nodes, the number
of steps needed for an ant to construct a feasible
tour ism− 1.

(4) The setAkt of the nodes available for the antk at
the stept is defined as

Akt = V \

t
⋃

i=1

C(T k
i ) .

LetT i
bestbe the best tour found on or before theith it-

eration. The termination criteria used in our implemen-
tation is as follows: terminate the algorithm ifj ≥ ∆
andT i

best= Tbest for i = j −∆+ 1, j −∆+ 2, . . . , j,
wherej is the index of the current iteration and∆ is an
algorithm parameter.

4. Local Search Improvement Heuristic

It was noticed that many metaheuristics such as ge-
netic algorithms or ant colony systems benefit from im-
proving every candidate solution with a local search im-
provement procedure, see [12] and references therein.
Observe that all the successful GTSP metaheuristics are,
in fact, hybrid. Thus, it is important to select an appro-
priate local search procedure in order to achieve a high
performance.

An extensive study of the GTSP local search algo-
rithms can be found in [11]. According to the classi-
fication provided there, all the local search neighbor-
hoods considered in the literature can be split into three
classes, namely ‘Cluster Optimization’ (CO), ’TSP-
inspired’ and ‘Fragment Optimization’. While the latter
one needs additional research in order to be applied
efficiently, neighborhoods of the other two classes are
widely and successfully used in the metaheuristics, see,
e.g., [7,8,15,16].

The CO neighborhood is the most noticeable neigh-
borhood in the CO class. Being of an exponential size,
it can be explored in the polynomial time. LetT =

(T1, T2, . . . , Tm) be the given tour. Then the CO neigh-
borhoodNCO(T ) is defined as

NCO(T ) =
{

(T ′
1, T

′
2, . . . , T

′
m) :

T ′
i ∈ C(Ti) for i = 1, 2, . . . ,m

}

. (5)

Note that the size of the CO neighborhood is

|NCO(T )| =
m
∏

i=1

|Ci| ∈ O(sm) ,

wheres = maxmi=1 |Ci| is the size of the largest cluster
in the problem instance. Next we will briefly explain the
CO algorithm finding the shortest tourT ′ ∈ NCO(T ).

Let T = (T1, T2, . . . , Tm) be the given tour. Create
a copyS of the clusterC(T1). Construct a multilayer
directed graphGCO(VCO, ECO) with the layersC(T1),
C(T2), . . . , C(Tm), S. For every pair of consecutive
layersL1 andL2, for every pair of verticesu ∈ L1 and
v ∈ L2, create an arc(u, v) of weight duv. Let Pv be
the shortest path fromv ∈ C(T1) to its copyv′ ∈ S.
Note thatPv corresponds to a tour visiting the clusters
in the same order asT does. Selectv ∈ C(T1) that
minimizes the weight ofPv. The corresponding cycle
is the shortest tourT ′ ∈ NCO(T ), and the procedure
terminates inO(ns2) time.

Several heuristic improvements of the above algo-
rithm were proposed [11]. In this research, we imple-
mented only the easiest and the most important one.
Note that the complexity of the algorithm linearly de-
pends on the size of the clusterC(T1). Since a tour can
be arbitrarily rotated, letC(T1) be the smallest cluster.
This modification reduces the time complexity of the
CO algorithm toO(nγs), whereγ = minmi=1 |Ci| is the
size of the smallest cluster.

Recall that the most typical neighborhoods used
for the TSP arek-opt. Several adaptation of the
TSP k-opt were proposed in [11], and the result-
ing neighborhoods were classified as ‘TSP-inspired’.
Since we aim at designing a fast and simple meta-
heuristic, we chose the ‘Basic’k-opt adaptation [11].
In short, let PGTSP be the original GTSP and let
T = (T1, T2, . . . , Tm) be the given tour defined in
PGTSP. LetGTSP(VTSP, ETSP) be the complete subgraph
of G, where VTSP = {T1, T2, . . . , Tm}. Construct a
TSPPTSP for the graphGTSP. Note that the tourT de-
fined forPGTSP is a feasible tour of the same weight in
PTSP, and any feasible tour inPTSP is a feasible tour of
the same weight inPGTSP. Improve the tourT with the
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TSPk-opt algorithm. The obtained tour is the result of
the ‘Basic’ adaptation of thek-opt local search.

It was shown that a combination of neighborhoods of
different classes is often superior to the component local
searches [9]. Thus, we use a local search that combines
the neighborhoods of the CO and the ’TSP-inspired’
classes. In particular, the improvement procedure used
in our algorithm proceeds as follows. First, the given
tour is improved with the ‘Basic’ adaptation of the 3-opt
local search. Then, the CO algorithm is applied to it. No
further optimization is performed so that the resulting
solution is not guaranteed to be a local minimum with
regards to the 3-opt neighborhood.

This local search procedure was obtained empirically
after extensive computational experiments with differ-
ent local search neighborhoods and strategies.

5. Computational Experiments

As a part of our research, we conducted extensive
computational experiments to find the best parameter
values and to measure the algorithm’s performance. Our
testbed includes a number of instances produced from
the standard TSP benchmark instances by applying a
simple clustering procedure proposed in [5]. Such an ap-
proach was used by many researchers, see, e.g., [2,7,11].
We selected the same set of instances as in [2] and [15].
Our ACS algorithm and the local search procedures are
implemented in C# and the computational platform is
based on 2.93 GHz Intel Core 2 Due CPU.

We used the following values of the algorithm pa-
rameters:β = 3, ρ = 0.4, ξ = 0.03, q0 = 0, ∆ = 300
and|K| = 10. Among all the combinations ofβ, ρ, ξ,
q0, ∆ and|K| that we tried, this one provided the best,
on average, experimental results. However, we noticed
that slight variations of these values do not significantly
change the behaviour of the metaheuristic.

The extension of the local search procedure with the
CO algorithm is the most significant modification im-
plemented in our ACS. Thus, we start from studying
the impact of the CO algorithm on the performance of
the ACS. In our first series of experiments, we show
the importance of this modification. In what follows,
HACS refers to our hybrid ACS metaheuristic with the
composite local search procedure as described above,
and HACS0 refers to the simplified version of the meta-
heuristic that uses only the 3-opt algorithm as the local
search procedure.

The HACS and the HACS0 algorithms are compared
in Table 1. The columns of the table are as follows:
(1) ‘Instance’ is the name of the the GTSP test in-

stance. It consists of three parts, namely the num-
ber of clustersm, the type of the instance (derived
from the original TSP instance) and the number of
verticesn.

(2) ‘Best’ is the objective of the best solution known
so far for the given problem instance. For the in-
stances of sizem ≤ 89 the optimal solutions are
known, see [5]. For the other instances the values
are taken from [7].

(3) ‘Error’ is the relative solution errore, in percent,
calculated as follows:

e =
w(T )− w(Tbest)

w(Tbest)
· 100% ,

whereT is the solution to be evaluated andTbest

is the best solution known so far.
(4) ‘Time’ is the running time of the algorithm.
(5) ‘Optimal’ is the number of runs, in percent, in

which the best known so far solution was obtained.
The best result in a row is underlined. Since the ACO
algorithms are non-deterministic, in order to get some
statistically significant results we repeat every experi-
ment 10 times. Hence, every result reported in Table 1
is an average over the 10 runs.

It is easy to see that the full version of the HACS
clearly dominates the simplified one. This shows the
importance of selecting the optimal nodes within clus-
ters and also proves the efficiency of the approach used
in our local search improvement procedure. It is worth
noting that a more common adaptation of a TSP local
search for the GTSP is to hybridize the ‘TSP-inspired’
and ‘Cluster Optimization’ neighborhoods [11,14].
However, our experiments prove that applying two lo-
cal searches of different classes one after another may
be a more effective strategy.

In order to evaluate the efficiency of the HACS, we
compare its performance to the performance of several
other metaheuristics, see Table 2. In particular, we com-
pare the HACS to three other metaheuristics, namely the
memetic algorithm SG by Silberholz and Golden [15],
a memetic algorithm BAF by Bontoux et el. [2] and an
ACO algorithm PPC by Pintea et el. [13].

The running times of SG and BAF reported in Ta-
ble 2 are normalized to compensate the difference in
the experimental platforms. The SG algorithm was im-
plemented in Java and tested on a machine with 3 GHz
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Table 1

Error, % Time, sec Optimal, %

Instance Best HACS HACS0 HACS HACS0 HACS HACS0

40d198 10557 0.00 0.69 2.74 7.45 100 0
40kroa200 13406 0.00 0.62 2.43 6.57 90 10
40krob200 13111 0.00 1.22 2.55 5.05 90 0
45ts225 68340 0.01 0.73 2.71 5.87 40 10
46pr226 64007 0.00 0.06 2.29 4.69 100 20
53gil262 1013 0.41 1.99 5.57 9.38 60 0
53pr264 29549 0.00 0.83 3.83 12.89 100 0
60pr299 22615 0.03 0.58 5.98 11.98 60 0
64lin318 20765 0.00 2.37 4.87 15.95 100 10
80rd400 6361 0.62 3.90 9.95 32.05 20 0
84fl417 9651 0.00 0.11 7.22 31.35 100 0
88pr439 60099 0.00 0.87 10.06 40.24 100 0
89pcb442 21657 0.09 2.25 13.41 38.51 30 0
99d493 20023 0.51 2.04 22.68 53.91 0 0
107att532 13464 0.15 1.04 17.82 58.95 20 0
107si535 13502 0.02 1.02 19.99 67.60 60 0
113pa561 1038 0.13 2.94 19.26 54.71 10 0
115rat575 2388 1.52 4.13 26.79 74.04 10 0
131p654 27428 0.00 0.11 18.57 90.30 100 0
132d657 22498 0.21 2.90 37.43 138.85 0 0
145u724 17272 1.57 4.14 48.80 137.71 0 0
157rat783 3262 1.37 4.99 47.41 181.94 0 0
201pr1002 114311 0.28 2.46 123.38 364.24 10 0
207si1032 22306 0.37 4.44 177.00 305.92 0 0
212u1060 106007 0.66 2.38 103.89 371.33 0 0
217vm1084 130704 0.66 2.46 95.35 409.04 20 0

Average 0.33 1.97 32.00 97.33 47 2

Comparison of the HACS algorithm with its simplified versionHACS0.

Intel Pentium 4 CPU which we estimate to be approx-
imately 1.5 times slower than our platform. The BAF
algorithm was implemented in C++ and tested on a ma-
chine with 2 GHz Intel Pentium 4 CPU which we es-
timate to be similar to our platform (note that the C++
implementations are often considered to be twice faster
than the Java or C# implementations [7]). The running
time of PPC for each of the instances is 10 minutes
as this was the termination criteria chosen in [13] (the
computational platform is not reported in [13]).

For all the SG, BAF and PPC algorithms, the reported
values are the averages among 5 runs; the results of
HACS are the averages among 10 runs.

Since the results of the PPC algorithm are reported
for only a subset of the instances in our testbed, we
provide two averages in every column of Table 2. The
first average (denoted as ‘all’) is the average over all
the instances in our testbed, i.e.,40 ≤ m ≤ 217. The

second average (denoted asm ≤ 89) is the average over
the testbed chosen in [13], i.e.,40 ≤ m ≤ 89.

In fact, we also compared our HACS to the ACO al-
gorithm YSML by Yang et el. [18] and a memetic al-
gorithm GK by Gutin and Karapetyan [7], though those
results are excluded from Table 2.

The results reported in [18] are obtained for the in-
stances of size10 ≤ m ≤ 40 (the testbed was gener-
ated from the TSP instances by using the same cluster-
ing procedure). It was noticed that these instances are
relatively easy to solve to optimality even with a lo-
cal search procedure, see [10]. Our ACS also solves all
these instance to optimality and takes at most 1 sec for
each run. The running time of YSML is not reported
in [18], but the solutions obtained in [18] are often not
optimal. We conclude that our algorithm outperforms
YSML.
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Table 2

Error, % Normalized time, sec

Instance HACS SG BAF PPC HACS SG BAF

40d198 0.00 0.00 0.00 0.01 2.74 1.09 10.15
40kroa200 0.00 0.00 0.00 0.01 2.43 1.11 10.41
40krob200 0.00 0.05 0.00 0.00 2.55 1.09 10.81
45ts225 0.01 0.14 0.04 0.03 2.71 1.14 31.45
46pr226 0.00 0.00 0.00 0.03 2.29 1.03 8.25
53gil262 0.41 0.45 0.14 0.22 5.57 2.43 24.34
53pr264 0.00 0.00 0.00 0.00 3.83 1.57 18.27
60pr299 0.03 0.05 0.00 0.24 5.98 3.06 21.25
64lin318 0.00 0.00 0.00 0.12 4.87 5.39 26.33
80rd400 0.62 0.58 0.42 0.87 9.95 9.72 32.21
84fl417 0.00 0.04 0.00 0.57 7.22 5.43 31.63
88pr439 0.00 0.00 0.00 0.78 10.06 12.71 42.55
89pcb442 0.09 0.01 0.19 0.69 13.41 15.62 62.53
99d493 0.51 0.47 0.44 — 22.68 23.81 166.10
107att532 0.15 0.35 0.05 — 17.82 21.13 137.54
107si535 0.02 0.08 0.07 — 19.99 17.57 90.98
113pa561 0.13 1.50 0.42 — 19.26 14.05 149.43
115rat575 1.52 1.12 1.16 — 26.79 32.32 157.01
131p654 0.00 0.29 0.01 — 18.57 21.78 144.95
132d657 0.21 0.45 0.30 — 37.43 88.16 259.11
145u724 1.57 0.57 1.02 — 48.80 107.88 218.66
157rat783 1.37 1.17 1.10 — 47.41 101.43 391.79
201pr1002 0.28 0.24 0.27 — 123.38 309.57 513.48
207si1032 0.37 0.37 0.11 — 177.00 161.58 616.28
212u1060 0.66 2.25 1.31 — 103.89 396.43 762.86
217vm1084 0.66 0.90 0.64 — 95.35 374.69 583.44

Average (all) 0.33 0.43 0.30 — 32.00 66.61 173.92
Average (m ≤ 89) 0.09 0.10 0.06 0.27 5.66 4.72 25.40

Comparison of the HACS algorithm with the other GTSP metaheuristics.

The GK memetic algorithm [7] is the state-of-the-art
algorithm that, until now, was not outperformed by any
other metaheuristic. It is a sophisticated heuristic with
a well-tuned local search improvement procedure and
innovative genetic operators. Although GK dominates
the HACS with respect to both the solution quality and
the running time, it does not affect the outcomes of
our research. Indeed, we aim at showing that a simple
modification of the ‘classical’ ACO algorithm can yield
an efficient solver for a hard combinatorial optimization
problem. Also note that HACS and GK belong to the
different classes of metaheuristics.

Table 2 shows that our HACS algorithm is similar to
SG and BAF and significantly outperforms PPC with
regards to the solution quality. Although, on average,
BAF performs slightly better than HACS, there is no
clear domination since for some instances the HACS

produces better solutions than BAF does. Similarly, SG
is dominated by neither HACS nor BAF. With regards
to the running time, HACS is the fastest heuristic for
the large instances while SG usually takes less time for
the instances of sizem ≤ 84. The BAF algorithm is the
slowest one in every experiment and, on average, it is
5 times slower than HACS.

Note that the above comparison of the running times
is rather inaccurate since the considered algorithms were
tested on different platforms, and only a rough normal-
ization of the running times was performed. Still, cer-
tain outcomes can be made. In particular, the SG algo-
rithm performs very well for the small instances while it
is outperformed by HACS for larger instances with re-
gards to both the solution quality and the running time.
BAF, on average, produces better solutions then either
HACS or SG do but this is achieved at the cost of signif-
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icantly larger running times. Finally, HACS is superior
to the other ACO algorithms, namely PPC and YSML,
though the comparison was only possible for a limited
number of test instances.

6. Conclusions

An efficient ACO heuristic for the GTSP is proposed
in this paper. It is obtained from a ‘classical’ TSP ACS
algorithm by several straightforward modifications and
hybridisation with a simple local search procedure. It
was shown that, among other reasons, the success of
our HACS is due to the effective combination of two
local search heuristics of different classes. Extensive
computational experiments were conducted in order to
prove that HACS performs as well as the most success-
ful memetic algorithms proposed for the GTSP with
the exception of the state-of-the-art sophisticated meta-
heuristic. It was also shown that HACS outperforms two
other ACO GTSP algorithms proposed in the literature.
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