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Abstract

In this paper, we consider the problem of incorporating a wide set of real-world trading constraints to the mean-
variance portfolio framework. Instead of using the mean-variance model directly, we use the equivalent Mean-Absolute
Deviation (MAD) linear programming formulation. The addition of the trading constraints transforms the MAD model
to a mixed-integer linear programming problem. We solve both the mean-variance and MAD models with the various
trading constraints using a commercial solver and find that MAD model is substantially more tractable. In addition, a
heuristic is developed for the extended MAD model to providesolutions for larger problem instances.

Key words: Efficiency frontier, heuristic, decomposition, cardinality constraint. Abbreviations: Quadratic Mixed Integer
Programming (QMIP); Mean-Variance Optimization (MVO); Mean-Absolute Deviation (MAD).

1. Introduction

In 1952 Harry M. Markowitz designed a portfolio
selection model that revolutionized finance and lead to
numerous future developments in financial theory. The
model in its purest conception omits a number of real-
world portfolio characteristics/restrictions such as port-
folio size, trading constraints, and buy-in thresholds. In
its basic form the Mean-Variance Optimization (MVO)
model is a quadratic program (QP), which becomes
very challenging to solve if real-world characteristics
are included since the addition of these features will
involve adding discrete variables. Researchers have ad-
dressed practical and computational issues involved in
the addition of these types of constraints. Changet al.
(2000) consider a cardinality constrained MVO model
and characterize efficient frontiers with this constraint.
Genetic algorithms are developed to compute solutions.
Crama and Schyns (2003) add buying, selling, trading,
portfolio size, and floor and ceiling constraints to the
MVO model, which results in a quadratic mixed-integer
program (QMIP). The QMIP is solved using simulated
annealing (SA), where an approximate to the efficient
frontier is produced when all constraints are included

Email: Roy H. Kwon [rkwon@mie.utoronto.ca], Stephen J.
Stoyan [stoyan@usc.edu].

in the model versus only having one or two. Jobstet
al. (2001) investigate MVO models where portfolio
size, buy-in thresholds, and roundlot constraints are
considered separately. The resulting NP-hard QMIP is
solved using two different heuristics, of which they
demonstrate that even the addition of one discrete
choice portfolio constraint requires a heuristic to pro-
duce solutions. Changet al. (2000) propose heuristics
for cardinality constrained MVO models. In addition,
[1,10,11] investigate Markowitz QP models while con-
sidering transaction costs. Most approaches for solving
MVO with real-world trading constraints involve the
construction of heuristics to obtain feasible solutions.
The principle complication is the addition of discrete
choice constraints to a non-linear (quadratic) optimiza-
tion problem.

Konno and Yamazaki (1991) show that under mul-
tivariate normal security return distributions the MVO
model has an equivalent linear form in a linear pro-
gramming model they define as the Mean-Absolute
Deviation (MAD). The MAD model incorporates a
(mean) absolute deviation measure (L1 risk measure)
as risk as opposed to portfolio variance as in the MVO
framework. In practice, returns may not be exactly nor-
mal and so the MAD model will give an approximation

c© 2011 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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to the MVO model. MAD may be further justified in
that the MVO framework assumes that returns are nor-
mal as well. More importantly, if the L1 risk measure
is sufficient for a measure of risk in a risk and return
framework then the MAD model can be used without
connection to MVO. In this paper, we investigate the
addition of a comprehensive set of practical portfolio
constraints to the MAD model and use a commercial
solver CPLEX to compute optimal solutions as well as
develop a heuristic to compute feasible solutions for
larger instances. We develop portfolio selection mod-
els based on the constraints outlined in [4] and [6].
Hence, we add constraints on portfolio size, buying,
selling, trading, and floor and ceiling bounds to the
MAD model and compare the performance with MVO
designs in the publications mentioned above. Mansini
and Speranza (2005) consider a mean semi-deviation
model that is equal to one-half of the MAD model,
where transaction costs and roundlots are included
in the design. The model is partitioned into subprob-
lems and a heuristic is used to obtain solutions. The
model is an extension of [8], where they investigate a
similar mixed-integer program (MIP) with fixed costs
and transaction lots. The approach in Mansini and
Speranza is significant in that a linear model of risk
and return was employed as the basis to which some
discrete choice constraints were added, thereby avoid-
ing the complexities associated with adding discrete
choice constructs in a non-linear (quadratic) optimiza-
tion framework. We follow in a similar manner, but the
model we propose involves a larger array of practical
constraints and we find that computational results are
comparable to what is shown in [12] despite the pres-
ence of a larger set of constraints/variables in the model
we consider. In addition, we use the MAD model as the
basis to add discrete choice constraints as the connec-
tion to the MVO model is important for practitioners
in the investment community due to its prevalence in
practice. We also develop a heuristic inspired by those
developed in Jobstet al. (2001) for (non-linear) MVO
models with cardinality constraints to compute feasible
solutions for instances outside the scope and scale of
what has been reported in the literature. The heuristic
generates solutions in reasonable time that are similar
to solutions on the efficient frontier of the associated
MVO model without the discrete choice constraints,
which indicates the effectiveness of the heuristic. In
summary, we find that a linear model of risk and return
(MAD) is a much more tractable framework in which
to express a wide range of discrete choice constraints

compared to the non-linear MVO framework.

The paper is organized as follows: in Section 2. com-
parisons between the MAD and the MVO model are
made both with and without the various set of discrete
choice constraints including instances that contain all of
the constraint types discussed above. In Section 3., we
present a heuristic that generates feasible solutions for
the MAD model with cardinality constraints and high-
light the results of the heuristic on more challenging
instances of the MAD model. In the last section, con-
cluding remarks and directions for future research are
given.

2. Model and Comparisons

In this section we consider MAD models with var-
ious subsets of discrete choice constraints added, in-
cluding model instances with all of the constraint types
mentioned in the introduction. The efficient frontiers are
generated and compared. All instances in this section
are solved to optimality using CPLEX MIP solver 9.1.
Where appropriate, we compare running times reported
for similar MVO models from the literature.

2.1. MVO and MAD models

We begin by defining the basic MVO problem in [13].
The MVO portfolio selection problem is the following:

min

n∑

i

n∑

j

xi Qij xj (1)

s.t.
n∑

i

µixi ≥ R (2)

n∑

i

xi = 1 (3)

xi ≥ 0 ∀ i = 1, ..., n (4)

wherexi is the decision variable for the amount (pro-
portion of wealth) invested in securityi = 1, ..., n, µi

is the mean return of securityi, n is the total num-
ber of securities,R is the expected portfolio return, and
Qij = cov(ri, rj) = (1/T )

∑T

t (rit − ri)(rjt − rj) is
the covariance matrix for the return rateri of securityi
over a total ofT time-stages. If the rates of return (ri)
have a multivariate normal distribution, then Konno and
Yamazaki show that (1)–(4) is equivalent to the follow-
ing MAD model:
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min

T∑

t=1

yt + zt (5)

s.t. yt − zt =

n∑

i=1

(rit − µi)xi ∀ t = 1, ..., T (6)

n∑

i=1

µixi ≥ R (7)

n∑

i=1

xi = 1 (8)

yt ≥ 0, zt ≥ 0 ∀ t = 1, ..., T (9)

where constraint (6) andyt andzt allow for the linear
transformation. As mentioned, under practical situa-
tions the distribution ofri may not be multivariate
normally distributed. This can lead to sources of error
when comparing MAD and MVO portfolio values;
however, there are also imperfections of the MVO
model under practical situations. We will discuss these
issues below and show that the MAD model has greater
advantages with respect to practical modeling issues
and computational tractability.

2.2. MVO and MAD Cardinality models

As the general MVO model shown in (1)–(4) can
often produce very dense portfolios i.e. investments in
only a few securities or produce investments in many
securities but with impractically small weights, various
attempts to maintain diversification or reduce the port-
folio size has been considered. A cardinality constraint
or names-to-hold constraint that limits or enforces the
number of security investments helps portfolio man-
agers with handling the complexities of portfolio man-
agement. In [6], a cardinality constraint (as embodied
in constraints (16) and (17) below) is added to (1)–(4)
to get an MVO cardinality model. Crama and Schyns
(2003) take the cardinality model further by adding buy-
ing, selling, and trading constraints. Below we have an
MVO model that includes cardinality, buying, selling,
and trading constraints. The problem is as follows:

min

n∑

i

n∑

j

xiQijxj (10)

s.t.
n∑

i

µixi = R (11)

n∑

i

xi = 1 (12)

max(xi − x0

i , 0) ≤ Bi ∀ i = 1, ..., n (13)

max(x0

i − xi, 0) ≤ Si ∀ i = 1, ..., n (14)

xi = x0

i or xi ≥ (x0

i +Bi)gi or (15)

xi ≤ (x0

i − Si)gi ∀ i = 1, ..., n
n∑

i

gi = G (16)

ligi ≤ xi ≤ uigi ∀ i = 1, ..., n (17)

gi ∈ B ∀ i = 1, ..., n (18)

where gi is a binary variable that is equal to one if
xi > 0, and zero otherwise. Also,G is the number of
different securities to be held in the portfolio, andli/ui

are lower/upper investment constraints (also referred
to as floor/ceiling constraints), respectively. Finally,x0

i

is the weight of securityi in the initial portfolio,Bi

andSi denote the maximum purchase/sale of security
i, andBi andSi denote the minimum purchase/sale of
securityi, respectively. In Section 2.3. we present the
results of the MVO cardinality model, which refers to
solving equations (10)–(12) and (16)–(18). The cardi-
nality model is later taken further in Section 2.4. by
adding buying, selling, and trading constraints, similar
to what is done in [4]. In the MVO model of (10)–(18),
constraint (13) bounds the number of securities that
may be purchased, constraint (14) bounds the number
of securities that may be sold, constraint (15) bounds
the number of transactions, constraint (16) limits port-
folio size, and constraint (17) bounds the buy-in min-
imum/maximum amount invested in any security. As
we will present in Section 2.4., each of the additional
constraints are important elements for portfolio man-
agers, however, their inclusion pose solvability issues.

By adding the same constraint to (5)–(9) the MAD
Linear Program (LP) becomes:

min

T∑

t=1

yt + zt (19)

s.t. yt − zt =

n∑

i=1

(rit − µi)xi ∀ t = 1, ..., T (20)

n∑

i=1

µixi ≥ R (21)
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n∑

i=1

xi = 1 (22)

max(xi − x0

i , 0) ≤ Bi ∀ i = 1, ..., n (23)

max(x0

i − xi, 0) ≤ Si ∀ i = 1, ..., n (24)

xi = x0

i or xi ≥ (x0

i +Bi)gi or (25)

xi ≤ (x0

i − Si)gi ∀ i = 1, ..., n
n∑

i=1

gi = G (26)

ligi ≤ xi ≤ uigi ∀ i = 1, ..., n (27)

yt ≥ 0, zt ≥ 0 ∀ t = 1, ..., T (28)

gi ∈ B ∀ i = 1, ..., n, (29)

where (23), (24), and (25) refer to buying, selling,
and trading constraints, respectively. Also, (19)–(22)
and (26)–(29) refers to the MAD cardinality model.

2.3. MVO and MAD Cardinality Results

Following the same data procedures in [6], we
randomly selected 30 stocks from the S&P TSX 60
Composite Index for 60 monthly returns (June 2002
to May 2007). In Figure 1 we present the MAD and
MVO efficiency frontier over this data set for problem
(5)–(9) and (1)–(4), respectively. In Figure 1 the MAD
efficient frontier is captured by dots, and the MVO ef-
ficient frontier is represented by stars. As one can see,
the efficient frontiers are almost identical. The MAD
efficient frontier has a slightly steeper slope and greater
standard deviation as the expected return increases in
comparison to the MVO results. They-axes expected
return values are kept consistent for all illustrations in
this document, which were set to range from3%−14%
and increased by 0.2% intervals. Another interesting
property in Figure 1 is that both of the portfolio val-
ues become closer as the expected return decreases.
The solution time (CPU time) was faster for the MAD
model, however, more significate CPU time differences
between the two models come into effect when cardi-
nality constraints are added; shown in equations (16)
and (26). In addition, commercial quadratic optimiza-
tion solvers such as CPLEX require that the hessian
is positive definite, which may pose a problem for the
MVO model when using real data.

For the MVO cardinality model, Jobstet al. (2001)
report that a heuristic is necessary to obtain a solution,
which is what we find when trying to implement (10)–
(18) using the TSX data set mentioned above. On the

other hand, the MAD cardinality model in (19)–(29)
was solved to optimality using CPLEX 9.1, where fol-
lowing [6] we setG = 4. The efficiency frontier for
solving equations (19)–(22) and (26)–(29) is shown in
Figure 2. The MAD cardinality model has similarities
to the frontier illustrated in Figure 1, but the steep
downward slope from 0–0.1 units resemble the MVO
model of Figure 1. The subtle discontinuities in the ef-
ficient frontier of Figure 2 are due to the addition of the
cardinality constraint, which were first observed in the
MVO cardinality model of [2] and later shown in [4,6].
When using the integer restart heuristic in [6] on the
same size problem, they report that it takes a CPU time
of 57.55s (seconds) and when using their simple reop-
timization heuristic it takes 10.00s. Without addressing
the quality of the portfolios generated by the heuristics,
the MAD cardinality model is solved to optimality us-
ing CPLEX directly (no heuristic necessary) with an
average CPU time of 0.08s. Table 2 illustrates the dra-
matic differences in solvability between the MVO with
cardinality constraints and MAD with constraints. The
MAD models can be solved to optimality up to size
instances for which the MVO model with cardinality
constraints could not. We use a generous linear extrapo-
lation of solution time for the MVO model as indicated
by the∼ for instances that could not be solved, even
so, the MAD model is several orders of magnitude
faster. Next, we pushed the MAD cardinality model to
its computational limits by dramatically increasing the
number of securities and time-stages (monthly returns).
In order to account for over 120 time-stages and keep
the covariance matrixQ dense, we found that a max-
imum of 853 TSX securities could be used over that
time period. Figure 3 presents the efficiency frontier
when 100 time-stages are used with the portfolio size
G = 35. In Figure 4, 120 time-stages are used with
G = 75; both results involved 853 securities. Note that
an algorithm was not necessary for the results shown
in Figures 3 or 4. It took CPLEX an average of 0.67s
to compute the values for the 100 time-stage results
and 1.05s to compute the values for the 120 time-stage
results. Figure 5 is a plot of Figures 2–4 imposed on
each other. The efficient frontiers depicted in Figure
5 follow a general path, where the differences lie in
the total number of securities considered, number of
securities used in the portfolio, and time stages. In
comparison to the graphs of Figures 1 and 2, the slopes
are similar, however the standard deviation is lower
for higher expected return values, which is primarily
due to the larger data set that is used for these results.
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Fig. 1. Comparison of the efficient frontier for the MAD and MVO model.
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Fig. 2. Efficiency frontier for the MAD cardinality model with G = 4.
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Fig. 3. Efficiency frontier for the MAD Cardinality model with G = 35 using 100 time-stages and 853 securities.
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Fig. 4. Efficiency frontier for the MAD Cardinality model with G = 75 using 120 time-stages and 853 securities.
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Table 1

Problem Size MVO CPU time (s) MAD CPU time (s) % Speed up
30 10.00 0.08 99.22
100 44.93 0.28 99.37
300 ∼ 144.73 0.36 99.75
500 ∼ 244.53 0.48 99.80
853 ∼ 370.78 0.67 99.82

CPU speed up difference between the MAD and MVO model.
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E
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d 
R

et
ur

n

Efficiency Frontier for the MAD Cardinality model using various time stages

  60 time stages, G=4
100 time stages, G=35
120 time stages, G=75

Fig. 5. Efficiency frontier for the MAD Cardinality model comparing Figures 2–4.

As in Figure 2, Figures 3 and 4 resemble more of the
quadratic functions in the MVO of Figure 1. Hence,
the MAD model under cardinality constraints produce
efficiency frontiers closer to Markowitz MVO models
than when the constraints are not included. In order to
decrease the size of the portfolio (i.e.G value) further
than what is presented in Figures 3 and 4 an algorithm
is necessary, which we discuss in the next section.

2.4. Additional Modeling Results

We consider several MAD models each with the
cardinality constraint and exactly one of the constraints
from (23)–(25). As mentioned in Section 2.2., each of
the additional constraints are important elements for
portfolio managers and just as in [6], a heuristic is nec-
essary to solve the QMIP presented in (10)–(18). Crama

and Schyns (2003) provide a few techniques that may
be used to solve the large model, but most of the results
they present involve solving a constraint subset of (10)–
(18). To solve the large QMIP a Simulated Annealing
(SA) algorithm is implemented, however, they only
provide a brief discussion on the results of the MVO
efficient frontier when all constraints are considered.
Adding the same constraints to the MAD model gives
the constraint subset in (23)–(27), to which we also
compare the model when all constraints are considered
(21)–(29). Figures 6–9 show the efficient frontiers of
these MAD models. We then consider the MAD model
with all of the constraint types added including cardi-
nality and the resulting efficient frontier is shown in
Figure 9. To keep the graphs similar to what is shown
earlier in Figures 1 and 2 and [6], we use 60 securities
over 60 time periods (June 2002 to May 2007) from
the TSX 60 Composite Index and setG = 15. Crama
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Fig. 6. Efficiency frontier for the MAD model with trading constraints.
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Fig. 7. Efficiency frontier for the MAD model with buying constraints.
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Fig. 8. Efficiency frontier for the MAD model with selling constraints.
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Fig. 9. Efficiency frontier for the MAD model with all constraints, (19)–(29).
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Fig. 10. Efficiency frontier for the MAD model with Figures 6–9 imposed on each other and the MAD model in Figure 1.

and Schyns (2003) have results with 3 – 151 securities,
and for lack of space we chose a security data set that
lies between this range and can be compared to [6].
Figure 6 is an illustration of the efficient frontier when
the trading constraint (25) is included. As one may
observe, the standard deviation has increased slightly
in comparison to Figure 2, where only the cardinality
constraint is used. In Figure 7, the buying constraint
(23) was imposed on the model. Similar to Figure 6,
constraining the amount of buying produces portfolio
risk (standard deviation) issues as the expected return
increases. Adding the selling constraint (24) produces
the efficiency frontier shown in Figure 8. This portfolio
has a comparable efficient frontier to Figure 7, which
one would expect since it is performs a similar task.
Finally, Figure 9 provides the efficient frontier when
the MAD model was solved including all of the con-
straints presented in (19)–(29). Figure 9 is the product
of running the constraints in Figures 6–8 collectively,
and Figure 10 is an illustration of the plots imposed
on each other. With respect to the MVO presented in
Crama and Schyns (2003), the model that considered
all constraints posed the greatest challenge to solvabil-
ity and produced the worst efficiency frontier in their
experimental results section. The full MAD model
(19)–(29) was solved without any heuristic, where as a
heuristic is necessary for the MVO model of [4]. The

average solution time was 0.14s, Crama and Schyns
(2003) do not provide solution times for their complete
model. However, they do provide solutions times for
their constraint subproblem runs using their SA algo-
rithm, which is dependent on the number of moves
defined and the number of securities used; nevertheless,
the CPU time ranged from 0.15s – 7h (hours) and 58m
(minutes).

From the results and comparisons above, we find that
the various MAD models considered are much more
tractable in terms of solving for the optimal solution
than its quadratic counterpart (MVO). The MAD re-
sults are solved in seconds without using any heuris-
tic, whereas the same can not be said about the QMIPs
in [4,6]. The cardinality and additional portfolio con-
straints used in both papers do not pose the same com-
putational difficulties when applied to the MAD model,
even when variable counts are increased. In addition,
the MAD model does not require a positive definite hes-
sian matrix, which may be necessary depending on the
solver being used. The portfolio size constraint is one
of the most important characteristics, as [4,6] illustrate;
however, it is also one of the most difficult to satisfy. In
the next section we push the MAD variable count past
the computational limits shown in Figures 3 and 4 with
the introduction of a model specific algorithm.
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3. MAD Implementation

In the previous section, it was shown that the MAD
models with discrete choice constraints to be much
more computationally tractable than the equivalent
MVO versions with respect to computing optimal solu-
tions. As shown in Figures 3 and 4, however, the MAD
model is challenging to solve in a number of instances.
In particular, instances with lowerG values and with
more variables were more challenging to solve. In or-
der to lower the value ofG and/or increase the number
of decision variables a heuristic is necessary. In [6],
two types of heuristics are designed and investigated,
namely an integer restart and re-optimization heuris-
tic. The integer restart heuristic is based on using a
previous integer solution and relaxing the expected
return constraint to obtain portfolio results. The other
heuristic presented in [6], namely the re-optimization
heuristic, is described as follows. First, the MVO model
without the cardinality constraint and buy-in lower
bound is solved. Then, only theG securities with the
largest weights are used to solve the full MVO car-
dinality model with the buy-in lower bound. For the
re-optimization heuristic, optimality issues are even
greater than in the integer restart since a large amount
of information is disregarded before solving the model
the second time. Nevertheless, of the two heuristics
proposed by Jobstet al. (2001) the re-optimization
heuristic seems to be the most promising with respect to
CPU time, and produces a complete efficiency frontier.

For the MAD cardinality problem, we design a
heuristic that first solves a sub-problem of (19)–(22)
and (26)–(29), and then uses an algorithm to enforce
the cardinality constraint. The basics of the algorithm
are as follows: first, (i) solve the MAD model without
cardinality or buy-in lower bound constraints. Next,
(ii) add the cardinality constraint and a relaxation toG
for anyxi > 0 in (i); and minimize the relaxation in an
iterative procedure. Then, (iii) if the cardinality num-
ber is still not satisfied but reduced in comparison to
step (i), add the lower bound constraint and solve; oth-
erwise impose the cardinality constraint usingxi > 0
in (ii) and an iteration to reduce the basis to the de-
sired size. Finally, (iv) solve the MAD model with the
buy-in lower bound thereby satisfying all constraints.
In each of the steps (i)–(iv) mentioned above, a sub-
problem of (19)–(22) and (26)–(29) is solved until the
last step where all constraints are considered. The first
subproblem for the algorithm to solve is shown below

MAD–LP:

min
T∑

t=1

yt + zt (30)

s.t.yt − zt =

n∑

i=1

(rit − µi)xi ∀ t = 1, ..., T (31)

n∑

i=1

µixi ≥ R (32)

n∑

i=1

xi = 1 (33)

0 ≤ xi ≤ ui ∀ i = 1, ..., n (34)

yt ≥ 0, zt ≥ 0 ∀ t = 1, ..., T (35)

where there cardinality constraint and buy-in lower
bound is removed. The second subproblem takes the
optimal basis from MAD–LP and solves the same
problem with a relaxation or penalty variableξ added
to the cardinality constraint and penalty parameterς
in the objective. If the optimal basis, anyx⋆

i > 0, has
been reduced in the solution to (30)–(35), we letxi be
the subset∀ x⋆

i > 0 in (30)–(35) fori = 1, ..., n and
solve the following problem

MAD–CP:

min

T∑

t=1

yt + zt + ς ξ (36)

s.t.yt − zt =

n∑

i=1

(rit − µi)xi ∀ t = 1, ..., T (37)

n∑

i=1

µixi ≥ R (38)

n∑

i=1

xi = 1 (39)

n∑

i=1

gi = G+ ξ (40)

0 ≤ xi ≤ ui ∀ i = 1, ..., n (41)

yt ≥ 0, zt ≥ 0 ∀ t = 1, ..., T (42)

gi ∈ B ∀ i = 1, ..., n. (43)

If ξ = 0 then the cardinality constraint is met and we
are satisfied, otherwise we increase the value ofς in
an iterative procedure such that the algorithm tries to
forceξ = 0. If the cardinality constraint is not met, but
the number is reduced in comparison to MAD–LP, then
using the basis in (36)–(43) we solve
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MAD–LC:

min (30) (44)

s.t. (31)− (33), (35) (45)

ligi ≤ xi ≤ uigi ∀ i = 1, ..., n (46)

in anticipation of further reducing the cardinality num-
ber. If the cardinality number is reduced we repeat the
last two steps - solving MAD–CP then MAD–LC; oth-
erwise we enforce the cardinality constraint by solving
MAD–LP using the current basis and removing the low-
est weightxi. After the cardinality number is met, then
the solution to

MAD–LB:

min (30) (47)

s.t. (31)− (33), (35) (48)

li ≤ xi ≤ ui ∀ i = 1, ..., n (49)

ensures all constraints in the MAD Cardinality model
((19)–(22) and (26)–(29)) are met. The pseudocode for
the proposed heuristic is as follows:

Algorithm 1: The MAD Cardinality Algorithm.

1. Initialize:
Set model parametersR, G, µi, li, ui ∀ i = 1, ..., n
and computational parametersς = 0, h = 0, τ > 0,
∆ > 0, H > 0.

2. LP solution:
Solve MAD–LP (30)–(35)

(i) if
∑

gi ≤ G ⇒ solve MAD–LB for x⋆
i > 0

⇒ Terminate.

(ii) otherwise, setς = τ , Ĝ =
∑

gi and
x̂ ⊆ {x⋆ : x⋆

i > 0 ∀ i = 1, ..., n}, go to 3.
3. Cardinality and Penalty:”

Solve MAD–CP (36)–(43) usinĝx from 2 (ii)
(i) if ξ = 0 ⇒ solve MAD–LB forx⋆

i > 0
⇒ Terminate.

(ii) else if
∑

gi ≤ Ĝ andh < H , setG =
∑

gi
andx ⊆ {x : xi > 0 ∀ i = 1, ..., n},
go to 4.

(iii) else if h < H , setτ = τ +∆ andh = h+ 1,
go to 3.

(iv) otherwise, setG =
∑

gi and
x ⊆ {x : xi > 0 ∀ i = 1, ..., n}, go to 4.

4. Re-solve:”
(i) if G < Ĝ, solve MAD–LC (44)–(46) usingx

from 3 (ii) or (iv)
(a) if

∑
gi ≤ G ⇒ Terminate.

(b) else if
∑

gi < G, setĜ =
∑

gi and

x̂ ⊆ {x⋆ : x⋆
i > 0 ∀ i = 1, ..., n},

go to 3.
(c) otherwise,go to 5.

(ii) otherwise,go to 5.
5. Impose Cardinality:”

Solve MAD–LP (30)–(35) usingx from 3
(ii) or (iv)

(i) set x̃ = {x−min(xi, ∀ i = 1, ..., n)} and
G̃ =

∑
gi

(a) if G̃ ≤ G, go to 5 (ii).
(b) otherwise,go to 5 usingx̃ from 5 (i)

(ii) solve MAD–LB (47)–(49) using̃x ⇒
Terminate.

In the algorithm above,τ is the initial value of the
penalty parameter when the iterative penalty adjustment
procedure is initiated and∆ is the amountτ is increased
every time a step is repeated.H defines the number of
times the algorithm will undergo the penalty adjustment
procedure, or try to push the cardinality penalty variable
ξ to be equal to zero, whereh is the counter. In step 2,
the algorithm solves MAD–LP and keeps the optimal
basis to be the starting point for step 3, where the cardi-
nality constraint, penalty variables, and penalty param-
eters are added. Given the cardinality number is not sat-
isfied, the iterative penalty procedure tries to force the
cardinality constraint to be met by making the penalty
variable (which relaxes this constraint) very expensive.
This is achieved by increasing the valueς in the objec-
tive function. After repeating thisH times, ifξ 6= 0 and
the cardinality number is reduced in comparison to step
2, then step 4 requires that the current optimal basis is
re–solved using MAD–LC, where the lower bound is
imposed. If MAD–LC further reduces the cardinality
number then the steps are repeated. Otherwise, in the
worst case scenario, step 5 imposes the cardinality con-
straint by solving MAD–LP using the current basis and
subtracting the minimumxi investment weight from the
portfolio until equations (19)–(22) and (26)–(29) are
satisfied. An overview of the algorithm is shown in Fig-
ure 11. Step 4 was added to the implementation because
under some test runs the basis was reduced using the
lower bound buy-in constraint (46), and this problem
solved in milliseconds; which further justified its inclu-
sion. In step 5, MAD–LB is solved last since the lower
bound constraintli may cause more than one portfolio
weightxi to have the prescribed lower bound value; as
was the case with our test runs. In such a case, deciding
which basic variable to remove from the set of lower
bounds becomes a problem. Solving MAD–LP gives
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Fig. 11. MAD Cardinality algorithm overview.

one (or possibly a few) minimumxi weights, which is
(are) less than or equal to the corresponding basis val-
ues in MAD–LB. Thus, after each iterative solution of
MAD–LP, one variable in the optimal basis can be re-
moved untiln ≤ G. This argument is shown in lemma
1, of which the proof is trivial.
Lemma 1 Given the following problems have a unique

solution:

min c⊤x min c⊤x

Ax ≥ b (P ) and Ax ≥ b (P )

x ≥ 0 x ≥ l

if l > 0, then the values of the optimal basis satisfy
x⋆ ≤ x⋆.

The algorithm in Figure 11 tries to satisfy the MAD
cardinality model in (19)–(29) without sacrificing op-
timality. Each subproblem aims to reduce the size of
the basis until the cardinality constraint is met. In the
worst case, the algorithm enforces the cardinality con-
straint by iteratively removing the smallest weight in
the basis. This is performed in step 5, where removing
one weight at a time (or a few, given there is equivalent
optimal basis values) the algorithm terminates when
the cardinality number is reached. If the values ofli
and/orG are small, this step can be sped up; otherwise,
it may give no improvement with respect to CPU time
and not be necessary. In such a case, step 5 is replaced
with the following two steps:
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Algorithm 2: The MAD Cardinality Algorithm under
theFast Step.

5. Impose CardinalityLarge Step:
Solve MAD–LC (44)–(46) usingx from 4
(i)(c) or (ii) (via 3 (ii) or (iv))

(i) set x̃ = {x− (xi = li ∪ xi = 0,

∀ i = 1, ..., n)} andG̃i =
∑

gi
(a) if G̃i = G ⇒ solve MAD–LB for

x⋆
i > 0 ⇒ Terminate.

(b) else ifG̃i = G̃i−1 or G̃i = G,
go to 6.

(c) else ifG̃ > G, go to 5 usingx̃ from
5 (i).

(d) otherwise,go to 6.
6. Impose CardinalitySmall Step:

Solve MAD–LP (30)–(35) using
{x̃+ (xi = li ∪ xi = 0, ∀ i = 1, ..., n)} from 5 (i)

(i) set x̆ = {x−min(xi, ∀ i = 1, ..., n)}

andĞ =
∑

gi
(a) if, Ğ ≤ G, go to 6 (ii).
(b) otherwise,go to 6 usingx̆ from 6 (i)

(ii) solve MAD–LB (47)–(49) usinğx ⇒
Terminate.

TheLarge Stepremoves all the lower bound weights
as long as this set of weights does not make the cardinal-
ity number less thanG. If so, theSmall Steptakes over
and removes one weight at a time until the cardinality
number is reached. Hence, ifli and/orG are fairly small,
then this speeds up step 5 (Impose Cardinality)
of the initial algorithm. Otherwise, largeli values will
take too many weightsxi away and/or largeG values
will only need to remove a small number of weights,
makingLarge Step5 above ineffective. In Table 4, we
provide the results with respect to CPU time when us-
ing the initial heuristic (or normal step) and the fast
step. From Table 4, the average CPU solution time was
6.94s and 12.47s for the fast and normal step algo-
rithm, respectively. In [6], a maximum of 225 securities
were solved using 60 time-stages, which took a time of
18345.56 and 280.92 using their integer restart and re-
optimization heuristic, respectively. Figure 12 depicts
the efficiency frontier using 120 time-stages and 853
securities. In the previous section, MAD Cardinality
solved the problem to optimality usingk = 75 securi-
ties. Using the proposed heuristic we have reduced this
number tok = 60 and the results are remarkably simi-
lar to Figure 4 with respect to the shape of the efficiency

frontier and the standard deviation values. Another in-
teresting result from the computational runs is that if
one solves MAD–LP and then takes the lowest values
out to meet the cardinality constraint, as done in the re-
optimization heuristic of [6], then the optimal basis (x⋆

i )
is not the same as our proposed method. This is because
the heuristic in Jobstet al. (2001) heavily reduces the
size of the basis in one step, whereas we iteratively re-
duce the problem size in an attempt to minimize such
occurrences. In any case, from the results of Figure 4
and Table 4, we have constructed a heuristic that satis-
fies the cardinality constraint, has fast CPU time, and
performs well with in that the efficient frontier is close
to the efficient frontier of the unconstrained problem.

4. Conclusion

We have considered a linear model MAD as the basis
for which various discrete choice constraints relevant to
practice is added. Previous considerations have looked
at adding such constraints to the MVO framework, but
the resulting models are generally very difficult to solve
optimally and find feasible solutions for. The main find-
ing is that the linear model approach is substantially
more computationally tractable. A commercial solver
was able to solve to optimality in reasonable CPU time
instances whose corresponding MVO models needed a
heuristic to find a feasible solution. In particular, we
show that the MAD model can incorporate the same
portfolio constraints considered in [4,6] without the
use of a model specific algorithm. In fact, the graphs
of 2–9 produce better efficient frontiers (lower risk
for a given return goal), are solved in less time, and
can handle problems with more variables than what is
shown in [4,6].

Although the MAD model does not require an algo-
rithm to solve the types of instances seen in the litera-
ture for corresponding MVO instances, we constructed
a heuristic inspired by the designs in Jobstet al. (2001)
to solve much larger and challenging instances of the
basic MAD with cardinality constraint model e.g. over
65 times larger. From Table 4, the algorithm proved to
solve the large set of portfolio decisions in under 2/3
of a minute. The algorithm uses a decomposition strat-
egy that involves solving a sequence of subproblems
to generate optimal solutions that minimize instances
where decision variables are negated. The algorithm
performance results with respect to the efficient fron-
tier are very good for lower portfolio return values, es-
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Table 3

Number of Securities Cardinality Solution Time (s):
Index / Time-Stages Number Fast Step Normal Step
S&P TSX 853/100 25 8.45 8.45

853/120 56 3.37 4.31
58 4.02 13.52
59 9.48 12.27
59 3.55 13.69
60 13.39 23.14

5.00 8.06
6.36 17.05
5.42 6.61
4.44 5.97
6.03 8.89
4.16 14.00
5.50 6.20
4.31 6.80

853/138 70 20.59 38.03

CPU time for the initial heuristic (normal step) and fast step.
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Fig. 12. Efficiency frontier for the MAD Cardinality model using 120 time-stages and 853 securities, whereG = 60.
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Fig. 13. Efficiency frontier comparison of the results presented in Figure 4 (G = 75) of Section 2. and the MAD Card Algorithm
shown in Figure 12 (G = 60).

pecially when considering the number of variables and
constraints used in the problem. In fact, only for high
expected return values does the graph in Figure 12 be-
come somewhat distorted, which is most probably due
to the cardinality constraint and not the algorithm; as
this characteristic is also prevalent in the graph of Fig-
ure 4 where no algorithm was used.

Future research can involve adding further constraints
and considerations in the MAD portfolio design, as well
as exploring different types of algorithmic approaches.
As shown in [14], there exists a number of portfolio
goals, risk measures, and managing characteristics such
as transaction costs, that can be added to the model.
Another area of interest consists of exploring differ-
ent types of algorithmic approaches, i.e. the simulated
annealing method used in [4]. There exists a number
of heuristics that have been applied to various MIP
problems. The combination of an exact algorithmic ap-
proaches and additional heuristics may improve CPU
time and improve the quality of solutions.
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