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Variants of the Shortest Path Problem

Lara Turner
Department of Mathematics, University of KaiserslautétnQ. Box 3049, 67653 Kaiserslautern, Germany.

Abstract

The shortest path problem in which tlie ¢)-paths P of a given digraphG = (V, E) are compared with respect to
the sum of their edge costs is one of the best known problemmsniinatorial optimization. The paper is concerned
with a number of variations of this problem having differafjective functions like bottleneck, balanced, minimum
deviation, algebraic sumk-sum andk-max objectives(ki, k2)-max, (k1, k2)-balanced and several types of trimmed-
mean objectives. We give a survey on existing algorithmsasgbse a general model for those problems not yet treated
in literature. The latter is based on the solution of res@uoonstrained shortest path problems with equality corstsa
which can be solved in pseudo-polynomial time if the giveplgris acyclic and the number of resources is fixed. In our
setting, however, these problems can be solved in stromyynpmial time. Combining this with known results loisum
and k-max optimization for general combinatorial problems, weain strongly polynomial algorithms for a variety of
path problems on acyclic and general digraphs.

Key words: Shortest path problem, universal objective function, uese constrained shortest path problem, strongly

polynomial-time algorithm.

1. Introduction

Shortest path problems (SPRs} classical problems
in combinatorial optimization with various applications
in theory and practice. Given a directed gragh=
(V, E') with node setl” of cardinalityn, edge set of
cardinalitym and costs:(e) € R for all edgese € F,
the single-source single-sink version of than shortest
path problem (sum SPRinds a path from sourceto
sink ¢ which minimizes the sum of the edge costs, i.e.

min
PePsy
ecP

c(e) 1)

whereP;; is the set of all elementarfs, t)-paths de-
fined as sequenceB = (s = ig,e1,i1,...,%p)—1,
epy,iypy = t) of nodesi, € V and edges
er = (ik—1,1x) € E with the property that no nodes

costs) and the label-correcting algorithm of Bellman
and Ford (for arbitrary costs) which have complexity
O(m + nlogn) and O(nm), respectively. These al-
gorithms can, for instance, be found in the books of
Ahuja et al. [1] and Schrijver [33]. For recent sur-
veys on shortest path algorithms we refer the reader to
Zwick [42] and Festa [8].

In this paper, we study several variants of the shortest
path problem with source and sinkt. These problems
have the same feasible set as the classical sum SPP, but
the sum objective is replaced by another criteria like
minimizing the largest edge cost (bottleneck SPP) or the
difference between the largest and smallest edge cost
(balanced SPP). Throughout the paper, we only focus
on objective functions which arise as special cases of
the more generalniversal shortest path problem (Univ-
SPP)introduced in [35]. In its sequential definition, this

(and thus no edges) are repeated. As usual, the lengthyroplem is solved as a sequencerof- 1 cardinality

[(P) denotes the number of edges in pathit is well-

known that sum SPP is NP-hard, but can be solved in
polynomial time if there are no negative dicycles (paths
with the same start- and endnode and negative costs) in

graphG. The currently best strongly polynomial-time

algorithms are the label-setting algorithm of Dijkstra
in its Fibonacci heap implementation (for non-negative

Email: Lara Turner [turner@mathematik.uni-kl.de].

constrained path problems, Univ-SPR(

l

I (P) = Z/\lic(i)(P)

i=1

min
PEP: I(P)=1

(2)

wherec(;)(P) is the it"-largest edge cost in patR,
A eR,i=1,...,1, are universal weight coefficients

andl € {1,...,n— 1}. Besides the shortest path prob-
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lem with sum objective for which we sef = 1 for all This problem which is also known asaximum ca-
i =1,...,1, the bottleneck and balanced shortest path pacity path problemcan be solved by modifying
problems can be formulated in this setting with= 1 the algorithms for sum SPP, see e.g. Pollack [27].
and ! = 0 else for bottleneck SPR! =1, A\l = —1 So, Dijkstra’s algorithm with Fibonacci heaps yields

and A\l = 0 else for balanced SPP with length# 1 a complexity of O(m + nlogn). Another strongly
and\} = 0 for balanced SPP with length= 1. Many polynomial-time algorithm for bottleneck SPP is ob-
other problems can be modelled as Univ-SPPs which tained by applying the binary search version of the
illustrates the potential of the universal approach. These standard threshold algorithm of Edmonds and Fulker-
problems are addressed in Sections 2. and 4. and in-son [6] which consists of solvinipg m many feasibil-

clude, among otherg;-sum andk-max, (k1, k2)-max ity problems. Using breadth-first search to determine in
and (k1, k2)-balanced as well as trimmed-mean short- O(n +m) time if there is a path from to ¢ using only
est path problems. edges with costs less than a given threshold (see e.g.

Krumke and Noltemeier [22]), it has a performance

The remainder of the paper is organized as follows. In of O(nlogm + mlogm) = O(nlogn 4+ mlogn).
Section 2. we review shortest path problems dealt with This holds because the number of edges in digraph
in literature. We consider special algorithms which have G = (V, E) is less tham?, i.e. O(logm) = O(logn).
been designed for path problems only and general al- Hu [18] developed an algorithm to find the subset
gorithms for arbitrary combinatorial optimization prob- of edges containing the bottleneck paths between all
lems which can be applied to path problems. New vari- pairs of nodes and Gabow and Tarjan [9] established
ants of shortest path problems on acyclic and generalan algorithm for the single-source single-sink case
digraphs are discussed in Section 4.. The idea to tacklederived from their algorithm for bottleneck directed
these problems is to fix one or several edges:4s spanning trees. The latter algorithm has a complexity
largest ork!"-smallest cost edges of the feasible paths of O(min{m + nlogn,mlog*n}) where logn :=
and to solve the resulting constrained path problem. min{i : log”n < 1} and lod”n is iteratively defined
This resource constrained shortest path problem (with as 10d”)n := n and log"*"n := loglog®™”n else.

sum objective and equality constraints) is analysed in Recently, bottleneck shortest path problems have been
Section 3. and we show that two pseudo-polynomial dy- addressed by Kaibel and Peinhardt [21].

namic programming algorithms which solve the prob-

lem on acyclic graphs with a fixed number of resources A rejated problem is thbalanced shortest path prob-

are strongly polynomial in our case. As a consequence, jem in which the difference between the largest and

the path problems of Section 4. are solvable in strongly smajlest edge cost is minimized:

polynomial time, too. A summary of our results will be

given in Section 5.. . (
min

PePst

max cle) — reréilrjl c(e)) : (4)

2. Shortest Path Problems in Literature ) )
We use the algorithm of Martello et al. [24] which has

Using appropriate weight coefficients, all path been developed for balanced combinatorial optimization
problems considered in this paper can be modelled asProblems. It is similar to the threshold algorithm of [6]
universal shortest path problems. Although the latter and solves a sequence of at mastfeasibility prob-
problem is in general NP-hard (it contains as special lems such that a balanced shortest path can be found in
case the classical sum SPP with cardinality constraints), O(nm +m?) time. Duin and Volgenant [4] suggested
polynomial-time algorithms for many objective func- & unified approach to tackle balanced and minimum de-

tions can be obtained by solving the unconstrained Viation problems simultaneously. For general combina-
version of the problem. torial problems where all feasible solutions have the

same cardinality minimum deviation problems were in-
This holds for the classical sum shortest path problem troduced by Gupta and Punnen [16]. Tinéimum de-
(see Section 1.) and tiettleneck shortest path problem  Viation shortest path problens defined as
which minimizes the largest of the edge costs in path

3) i } (maXC(e)—C(ei)) (5)

min maxc(e). PeP.. it \ccP
e

PePst eeP
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where all paths”? € P, have the same lengtiP).
Solving optimization instead of feasibility problems, the
algorithms of [16] and [4] applied to minimum devia-
tion SPP have a running time 6f(mT") whereT' is the
time needed to solve a sum SPP with modified (possi-
bly negative) costs. Using the algorithms of Dijkstra or

93

another more flexible one which accefts ¢)-paths

P of length less thark and assigns to them the sum
of their edge costs as objective value. In case that all
paths froms to ¢ have length at leagt, they have pro-
posed a strongly polynomial-time algorithm of com-
plexity O(n?m?) for the first version of-centrum SPP.

Bellman-Ford to compute these shortest paths (if there This algorithm is recursion-based and determings a

are no negative-cost cycles), this§m? + nm logn)

or O(nm?). Relaxing the assumption of fixed path
lengths, the problem can be formulated in terms of
Univ-SPP setting\} = I — 1 and A\l = —1 else for

[ # 1and\} = 0 for [ = 1. On acyclic directed graphs,
where the cardinality-constrained shortest path prob-
lem can be solved efficiently for all=1,...,n — 1,

it is thus solvable in strongly polynomial time.

The same time complexity is attained for problems
with combined min-max min-sum objective function.
Such “algebraic sum” problems with a bottleneck and
sum objective function (that are usually based on dif-
ferent cost functions) were considered by Minoux [25]
and Punnen [28]. The solution algorithms are similar to
those for balanced and minimum deviation problems.
If there is a single cost function for the bottleneck and
sum objective, the algebraic sum version of SPP, the
algebraic sum shortest path problem

(renealg( cle) + Z c(e))

ecP

i 6

Pnelgit ( )

and can be modelled as Univ-SPP with = 2 and
Al =1 else forl # 1 and\} =2 for [ = 1.

In literature, there exist algorithms for two other
types of shortest path problems, thesum SPP and the
k-max SPP, in which we minimize the sum of the
largest edge costs or thié"-largest edge cost, respec-
tively. These path problems will be studied in more
detalil since we will need them in Section 4. where new
variants of shortest path problems, not yet treated in
literature, will be discussed.

k-sum optimization problems have been investigated
in Gupta and Punnen [17] and Punnen and Aneja [29]
for general combinatorial optimization problems and in
Garfinkel et al. [12] for shortest path problems. In [12],
the authors introduced two versions of thesum SPP,
here calledk-centrum SPP, which are both shown to
be NP-hard: One version in which all pathse Py,
of lengthl(P) < k are assumed to be infeasible and

centrum shortest walk (i.e. a non-elementary or non-
simple path allowing repetition of nodes or edges) which
is reducible to &-centrum shortest path. If there are no
negative dicycles in grapi, the algorithm can be mod-
ified to solve the second version kfcentrum SPP, too.
Another approach to solve-sum SPP is to adapt the
algorithm of Punnen and Aneja [29] for general combi-
natorial problems wittk-sum objective. In this setting,
the cost coefficients are assumed to be non-negative and
the k-sum objective value is assumed to be the ordinary
sum if a solution has less th@nelements. Using this
definition, thek-sum shortest path probleis

min{k,l(P)}

>

i=1

(7)

PHGIgit @ (P)
wherel(P) is the length of pathtP andc; (P) denotes
its i*"-largest edge cost. As sudhsum SPP fits into the
framework of Univ-SPP choosing, = ... =\, =1
and\. =0 else ifl > kand\. =1foralli=1,...,1
if { < k. In the algorithm given by [29], the s@,; is
partitioned into sets

Pst(ci) = {P € Pt - C(k) (P) Ci} (8)

of those(s, t)-pathsP with costc; ask'"-largest edge
cost and the set

Pst(0) := {P € Py : I(P) < k}U
{P S Pst : C(k)(P) = 0} (9)

containing all(s, t)-pathsP with lengthi(P) < k and

the (s, t)-paths P with cost0 ask'-largest edge cost

(if ¢c(e) = 0 for some edge € FE). Sorting the values
¢iin{c(e) : e € E}YU{0} in increasing order, &-sum
shortest path can be found among the optimal paths in
Pst(ci). For eacHPg(c;), ¢; # 0, such an optimal path

is obtained by solving a sum SPP with edge costs

e, (e) == {

and an optimal path ifP,(0), - or a path inPg(¢;)
with smaller objective value than all paths7t; (0) -,

if cle) >¢;
if cle) < ¢

cle) — ¢

0 (10)
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is obtained by solving a sum SPP with cogts). Since Note that thek-max objective function is a universal
a k-sum shortest path with less tharedges can alter-  objective function if we seAl = 1 and\! = 0 else for
natively be computed by solving a resource constrained all [ > k. The k-min shortest path problem

shortest path problem (see Section 3.), the algorithm is

still correct on digraphs without negative-cost cycles. Plgglt cap)—k+1)(P) (16)
Using a different cost modification scheme

minimizes thek!"-smallest instead of th&!"-largest
i 1- :
co.(€) = {C(e) if c(e) >c (11) edge cost. If we define costs

ci if c(e) <¢
1 ifi<y
a similar algorithm was proposed in a preceding paper dj(e:) = {0 if i>j (17)
of Gupta and Punnen [17]. However, this is only valid
if all (s,t)-pathsP have the same lengtt{P). Both it can be solved in the same way /asnax SPP where
algorithms terminate irO(m? + mT') time which is problem (14) turns into a sum shortest path problem of
O(m? + nmlogn) or O(nm?) if the algorithms of maximization type. Since this longest path problem can
Dijkstra or Bellman-Ford are applied to solve the cor- only be solved in polynomial time on acyclic graphs,
responding sum SPPs of complexf}{(T). the same holds fok-min SPP which is universal if
M_py1 =l andXl =0 else for alll > k.
The k-max objective function which generalizes the
bottleneck objective function by minimizing thig"-
largest cost coefficient was considered in Gorski and
Ruzika [15]. They presented a bisection search algo-
rithm which is applicable to general combinatorial opti-
mization problems and solve the problem in (strongly)
polynomial time whenever a related sum problem with
binary cost coefficients can be solved in (strongly) poly-
nomial time. This holds true for shortest paths such that
the k-max shortest path problem

3. Resource Constrained Shortest Path Problems

For other types of shortest path problems than those
listed in Section 2., we give a general solution concept
which is based on resource constrained shortest paths.
The idea is to pick in each iteration an edge € £
as k'-largest ork*"-smallest cost edge and to solve
associated sum SPPs where the set of feasible paths is
restricted to those path3 € P,; with edgee;, askth-
largest ork!"-smallest cost edge, respectively. To this

pnel%it e (P) (12) end, we choose an approach which has been discussed
for so-called generalized balanced optimization prob-
can be solved inO(nlognlogm + mlogm) = lems [36] and specialize it to the case of shortest paths.
O(n(logn)* +mlogn) time provided that anys, ¢)- A related approach using concepts of multicriteria op-

pathP has lengtti(P) > k. Using bisection, itis tested  timization to handle different objective functions in the
in each iteration if there exists a path frono t whose  context of general combinatorial optimization problems
k'"-largest cost edge has costs smaller thian) fora  was independently suggested by Gorski [13,14].
given edgez; € E, j € {1,...,m}. Sorting the edges
by non-decreasing costs, i.e. We sort the edge® = {ey, ..., e, } of digraphG
by non-increasing costs such that
cler) < ... <clem), (13)
cler) > ... >clem)- (18)
this is done iteratively by solving a sum SPP
According to this order, we define edge costs
Pep. cep e o 1 ifi<ji
) dj, (ei) := {0 > (19)
with binary (and thus non-negative) costs defined as =k
or

0 ifi<j 0 ifi<j
d‘ i) = ) 15 dk i) = ) 20
={I T e A
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as in Gorski and Ruzika [15] which aeor 1 depending
on the index of edge; € E compared with that of
a previously chosen edgs, , jr € {1,...,m}. The
paths P € Py with edgee;, as k'"-largest orkt"-

smallest cost edge can be characterized as follows (see

Theorem 3 of [36]).
Theorem 1. For an edgee;, € E, ji € {1,...,m},
and a pathP € P, it holds:

(@) ej, is the k*"-largest cost edge i if and only if
ZeieP djk (61) =k-1and ZeieP dijrl(ei) =k
where the costg;, (e;) andd;, 1 (e;) are defined as
in (19).

(b) e;, is thek'"-smallest cost edge i if and only if
Yoeiepdi—1(ei) =kandy., cpdj (e) =k—1
where the costd;, _i(e;) andd;, (e;) are defined as
in (20).

The cost(e;, ) associated with edge;, is then said to
be thek!"-largest orkt"-smallest edge cost of pafh,
respectively.

Proof. It suffices to prove claim (a) since claim (b)
can be shown analogously. By definition of the costs
dj, (e;) and dj, +1(e;), the sumsy_ . d;, (e;) and

> e.ep di+1(ei) count the number of edges in path
P having an index which is strictly smaller thap or

Je + 1.

If> .. cpdj. (ei) < k—1,there are at modt—2 edges

in path P with index smaller thary,, and these edges
have costs greater or equal thdn;, ). Since pathP is
elementary, edge;, occurs at most once and cannot be

95
lem with equality constraintas
min Z c(e) (21a)
ecP
s.t. Zrk(e) =RY Vk=1,...,K (21b)
ecP
P e Py (21C)

wherer*(e) € Z; are the units of resourck con-
sumed along edge € E and RF € Z%* is the re-
quired total consumption of resouréeon pathP with
k=1,....K.

Problem (21) is a variation of theesourceor weight
constrained shortest path probldmwhich the equality
constraints (21b) are replaced by inequality constraints

Z rk(e) < RF

eckE

Vk=1,....K (21d)

which give an upper bound on the consumption of
resourcesk 1,...,K. The problem with con-
straints (21d) is widely studied. Early work concerned
with “route” problems of that type where nodes and
edges may be repeated can be found in Joksch [20]. If
there are no dicycles of negative cost, an optimal solu-
tion to such a walk problem will be an elementary path
and solves the corresponding path problem. Besides dy-
namic programming algorithms (see e.g. Lawler [23]),
other solution concepts for this problem (which is, in
general, strongly NP-hard and even weakly NP-hard on
acyclic digraphs with only one resource [11], [38]) in-
clude labeling algorithms, path ranking procedures and

its k'"-largest cost edge. The same reasoning appliesrelaxation methods. For a summary on available litera-

if ZeieP djk (61) >k — 1, ZeieP dijrl(ei) < kor
Y eiep djpt1(es) > k.

Conversely, i, cpdj,11(e;) = kand)y, cpd;, (e:)
=k — 1, path P has exactlyk — 1 edges with index
smaller thanj, and k edges with index smaller than
Jr + 1. Thus, edge;, is contained in pattP and has
kt"-largest cost. O

Observe that Theorem 1 is not correct for directed
walks in which edge:;, might be used repeatedly.

Shortest path problems with sum objective and con-

straints as given in Theorem 1 (a) and (b) can be inter-

ture, we refer to the monographs of Ziegelmann [41],
Dumitrescu [5], Zhu [39] and Garcia [10]. A com-
prehensive survey on the generalized problem with
resource windows defined for the nodes of graph

is given in Irnich and Desaulniers [19]. For directed
graphs with negative-cost cycles, tledementary re-
source constrained shortest path problem which
node and edge repetition are explicitly forbidden has
been considered in Beasley and Christofides [2], Du-
mitrescu [5], Feillet et al. [7] or Righini and Salani [31].
This problem is NP-hard in the strong sense [3].

In contrast, there is only few literature on the re-
source constrained shortest path problem with equality

preted as resource constrained shortest path problemgonstraints. Research started with a paper of Saigal [32]

with equality constraints.
Definition 1. For a directed grapty¥ with K resources
we define theesource constrained shortest path prob-

on the corresponding walk problem. The path problem
appeared as special case of the resource constrained
shortest path problem with lower and upper resource
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limits, see Ribeiro and Minoux [30] or Beasley and A topological order of the nodes in digragh can be
Christofides [2]. Since the Hamiltonian path problem obtained inO(n + m) (see e.g. Krumke and Nolte-
is obtained forK = 1 resource withRX =n — 1, itis meier [22]). The initialization steps can be done in
strongly NP-hard (compare Garey and Johnson [11]). O(T + mK) where T is the time to compute the
Recently, Zhu and Wilhelm [40] proposed a three stage shortest paths frons to all other nodes after delet-
approach to tackle the problem on acyclic graphs which ing those edges € E with 7*(¢) > 0 for some

is a subproblem in column generation. In this case, the resourcek, £ = 1,..., K. Since every edge € FE

resource constrained shortest path problem with equal-has to be considered only once, we ne@¢mnK)
ity constraints and a single resource can be proved to betime to determinec;(r!,...,7) and the predeces-

weakly NP-hard (compare Wang and Crowcroft [38]). sorspred(j;r!,...,r%) for all nodes;j € V. For all
In the following, we study a standard dynamic pro- »* € {0,...,R*}, k = 1,..., K, these values are

gramming approach to tackle this problem. obtained in a total ofO(mKR!--- RX) time. The

resource constrained shortest path frero ¢ is con-

For an acyclic digrapltz with sources and sinkt, structed in at most — 1 steps using backtracking

we sort the nodes in topological order such that j

for all (7, j) € E. For any node € V, we define An alternative algorithm in which no topological sort-

ing is needed uses the following recursion

ci(rt, ... rf) (22)
cé»(rl,...,rK) = min{cé_l(rl,...mK),
to be the cost of a sum shortest path frerto j with
resource consumptiort® € {0,..., Rk} for each re- min (1t =l K — ) C,,}}_
sourcek, k = 1,..., K. If the nodes are examined in  (ij)eb:rk <rt ' W K "
topological order, these values can be computed recur- (24)
sively as
1 K For resource consumptiort, ... %, it computes the
(..t = cost of a sum shortest path frosmto j which has no
min  {e;(r! — rilj, K- rfj—) +cij} (23) more than/ edges. Since any path consists of at most
() EB: i<t n — 1 edges, the cost of an optimal path fronto ¢
starting withc; (0, . .., 0) which is the cost of a short- IS ¢ '(R',..., R¥) wherec)(r',...,r") has been
est path from source to node;j with total resource initialized as
consumption equal t6 or infinity if a path with this ¢2(0,...,0):=0 (25)
property does not exist. The correctness of this first al- 54
gorithm follows from the principle of optimality. 02(7,1’ oY) = o (26)

Theorem 2. On acyclic digraphs, the dynamic pro- )
gramming algorithm solves the resource constrained /€. As in the proof of Theorem 2 we can show
shortest path problem with equality constraints in that this algorithm solves the resource con_strallned
O(T+mKR" - - RX) time whereT  is the time needed shortest path problem on acyclic graphs in time

to solve a one-to-all sum shortest path problem. O(TLQRI - RE 4 an_R1 -+~ R¥).In general graphs
recursion (24) usually finds a shortéstt)-walk which

Proof. The algorithm is correct since a cost-minimal cannot be reduced to an elementésyt)-path satisfy-

path froms to j with resource consumptiari, ..., % ing the resource constraints.

is the concatenation of a cost-minimal path freno

any predecessor nodeof nodej with resource con- If the number of resourcek’ is fixed, both dynamic
sumptionr! —rj,...,r* —rf and edge(i, j) € E programming algorithms have pseudo-polynomial time
with cost c;; and resource consumptiorj;, ..., 5. complexity depending on the size of the resource con-
The optimal cost is; (R, ..., R®) which is infinity sumptionR',..., R¥. If the resource constraints are
if there are no resource feasible paths frento t. as in Theorem 1 (a) or (b) there afé = 2 equality

The corresponding resource constrained shortest pathconstraints withR' = &k — 1 andR?> = kor R! =k

P* € Py can be found by backtracking along prede- andR? = k— 1, respectively, and the resulting resource

cessor labelgred(j;rt,...,r%) where we store node  constrained shortest path problem is even solvable in
1 in which the minimum of (23) is attained. strongly polynomial time. Note that problem (27) can
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be reduced to a resource constrained shortest path prob4.1. (kq, k2)-Max and (k1, k2)-Balanced SPP
lem with only one equality constraint if = 1.

Corollary 1. Using the first dynamic programming al- The(ky, k2)-maxandk, , k)-balanced shortest path
gorithm, problem problem are related path problems where the sum of the
k3t-largest and:}?-largest edge cost or the difference of
min Z c(e) (27a) _thek_ft_-la_rgest and:3?-smallest edge cqst, _respecti\_/ely,
g is minimized. The(ky, k2)-balanced objective function
has not been considered before.
st Z dj(e;) =k —1 (27b) Definition 2(a) If k1 < ko < I(P) for all pathsP €
e€P Pai, the (1, ks )-max SPHs defined as
D djera(es) =k (27c) ,
ccP Join (C(kn) (P) + iy (P)). (28)
PePy (27d)
(b) If k1 + ko <I(P) for all pathsP € Py, the (k1 k2)-
where d;, (e;) and dj, +1(e;) are as in(19) can be balanced SPRs defined as
solved inO(n?m) time on acyclic directed graphs. The .
same holds for constraints’, ., d;, —1(e;) = k and Pep., (et (P) = capy—k,41)(P))- (29)

ZQEP djk (61) =k-1 Wheredjk,l(ei) and djk (61)

are as in(20). These problems generalize thenax and balanced

SPP introduced in Section 1. and can be stated as Univ-

Proof. For some fixed: the constraints ensure thatedge 7' 7S setting\;, = _)\562 =1 anld A= Ol else for
e;, is the k™"-largest orkt"-smallest cost edge of the (K1, k2)-max SPP with > kz or Ay =1, A4y =
pathsP € P,;. Since any(s, t)-path has at most — 1 —1 and A} = 0 else for (k;, k»)-balanced SPP with
edges we have that € {1,...,n — 1} which implies ! = k1 + k2. They can be solved by a single solution
that R*, R < n. By Theorem 2 these resource con- approach using-max shortest paths.
strained shortest path problems are solvable in at mostTheorem 3. On acyclic directed graphs, th@:, k2)-
O(n?m) time if we apply the first version of the dy- max and (ky, k2) balanced SPP can be solved in
namic programming algorithm and the algorithms of O(n*m?logn) time by solving at most constrained
Dijkstra or Bellman-Ford to find the sum shortest paths k1-max SPPs.
1(‘)rom sources to all nodes with resource Consumgtion Proof. Let

Pst(€jy, ) = (30)

. P e Py : e isthekl?largest cost edge i
4. New Variants of Shortest Path Problems {P € Pu Cikz 2 g g }

or

In the following three subsections, we investigate Pales. ) = (31)
some new shortest path problems which are generaliza- = * 7*2
tions or extensions of the balancédsum andk-max {P € Py : ¢, is theky?-smallest cost edge i}
shortest path problems presented in Section 2.. Somepe the set of path® € P, with edgec;, € E as
of the objective functions have already been discussed kpd-largest orkz4-smallest cost edge. Foi eagh €
in the context of continuous and discrete location prob- {(koyooom} O ju, € (k1 +1,...,m — ko + 1} (note
lems (see e.g. Nickel and Puerto [26] or Velten [37]), 4t Pst’(e* ) = 2@ if index j;; is smaller tharks, or
but the solution approach for path problems is different. larger thajr;?n — ko 4+ 1) we solzve
We use the results of Section 3. and solve a sequence of
resource constrained shortest path problems of type (27) min ¢, )(P) (32)
with appropriately defined costs. For simplicity, we as- PEPst(e4y, )
sume that the path® € P, have “sufficient” length
[(P) such that the objective functions are well-defined
for all (s,t)-paths in graph’. Furthermore, we sup-
pose th_at the edgese E are already sorted by non- Z dj,, (e) =k — 1, Z dj,, +1(e)) = ko (33)
increasing costs. oicP oicP

which is a standar#;-max shortest path problem with
additional constraints
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or and

D dj, ale) =ka, Y dj, () =ha—1 (34)
e;€P e;€EP but the k7¥-smallest edge cost becomes larger if we
remove the dicycles in walld/, i.e.

Chs) (P) < C(ry) (W) (42)

depending on the definition @ (e;,, ). Applying the

algorithm of Gorski and Ruzika [15] (for edges sorted
by non-increasing costs) ka-max shortest patf;, € a1 (P) 2 Cam)—ran (W) (43)
Pst(ejy, ) can be computed by solvirigg m many re- This implies that
source constrained shortest path problems of type (27)
with binary edge costs. Paify; is obviously optimal IN(P) = () (P) + ¢y (P)
for the (ki1, ky)-max and (ki , k2 )-balanced SPP with < cryW) + ey (W) = (W) (44)
feasible setPy;(e;,, ) since the objective function val-
ues are and
IN(P) = ey (P) £ (e, ) (35)

IN(P) = ey (P) = c(py—ko 1) (P)

and
. < ) (W) = cuw)—ro 1) (W) = fA(W)
C(h)(ijz) S C(kl)(P) (36) (k1) (I(W)—ka+1) (45)
for all P € Py (e;,., ). An overall optimal solution can o
thus be found as 2 for the (ki, k2)-max and(kq, k2)-balanced objective
function f (). O
P* = argmin INPE ) (37) )
kg €{K2sym} /L1 1,y m—ka+1} iz Corollary 2. On general digraphs, &k, k2)-max or
_ _ (k1, k2)-balanced shortest path can be found in strongly
WherefA(R;k2) = oo if an (s, t)-path P with edgee;, , polynomial time.

asky?-largest orkj?-smallest cost edge does not exist. Proof. | | hs wh logical .
The running time follows since we solve at most roof. In general graphs where no topological sorting

constrained:; -max SPPs each of which has complexity exists we apply the second dynamic programming al-
O(n?mlogm) = O(n*mlogn) E gorithm to tackle the resource constrained shortest path

problems which are solved in each iteration of the con-
Using the following property of thék, , k2)-max and strainedk; -max shortest path problems (32). Therefore,
(k1, k2)-balanced objective function, the corresponding the optimal solutioni?’* which is found as in Theo-
path problems cannot only be solved on acyclic graphs, rem 3 might be a non-elementary (with repeated nodes)
but also on general graphs. To evaluate the objective or non-simple (with repeated edges) path frerto ¢.
function value of ar(s, t)-walk 1" we assume that the By Lemma 1, the corresponding, ¢)-path P* that is

edge costs in walkl” are counted with multiplicities. obtained by deleting the dicycles in walk* satisfies
Lemma 1. Foran(s, t)-walk ¥ and its associated path . .
P € P, obtained by eliminating all dicycles i it IAPT) < fA(WT) =
min P )<
holds that < ) - s lhmm Ik P S
A >~ JA * *
_ NP ) < a(P7) (46)
where f(-) is the (k1, k2)-max or (k1, k2)-balanced he
objective function. where the solutionsD;‘k2 of problems (32) might be
Proof. Let walks and edge;; is the kyd-largest orkh4-smallest
edge cost of patiP*. So P* is an optimal path for
cay(W) > ... > ey (W) (39) (k1, k2)-max or (ki , ko)-balanced SPP witfiy (P*) =
and Fr(W*). Using recursion (24) we ne&d(n*m logn +
n3m?logn) time for solvingm constrainedk;-max
cay(P) = ... = capy (P) 40)  gpps -

be the edge costs of walk” and pathP which have

been sorted in non-increasing order. It holds that A special case ofki, k2)-balanced SPP is the-

balanced shortest path problemhere the difference
o) (P) < iy (W) (41) between the largest arid”-smallest edge cost or the
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k'"-largest and smallest edge cost is as small as possi-, = ... = X, = \_, ., = ... = A} = 1 and
ble, i.e. A= 0 else for alll > k; + ko.
min <max cle) — C(l(P)—k+1)(P)) 47) Trimmed-mean objectives are known from location
PcPg; \ e€P theory, but we give the first algorithm for shortest
or path problems of this type. We use the ideas of Gupta
. ) and Punnen [17] and Punnen and Aneja [29] to solve
pep., <C(’“>(P) —2120(6))- (48) a sequence of “easier” sum optimization problems

These problems are solvable as described in Theorem 3W|th modified costs. As in the previous subsection,

or Corollary 2. An alternative approach which is valid Z?ﬁgﬁgﬁlegf Ssgtagc]itset(;rfelxn:g deeddge bS-largest or
for any combinatorial optimization problem solves a se- 9 ‘

guence of at most: maximization problems of-min
type wherec(e) < ¢; for all e € E or m minimiza- D
t?gpn problem(s)ofk—max type where:(¢) > ¢; for all Psi(ej,, ) and Pst(sfjkz) containing all(s, t)-paths P

e € E. The prescribed maximum or minimum edge W'tdh edgeejkl aski-largest cost_edge and eq%z as
coste; varies betweem(e: ), . .., c(em) and both, the kh*-smallest cost edge, respectively. In addition, we set

k-min andk-max problem, can be solved sequentially

For ji,, jx, € {1,...,m}, we define the sets

by problems PSt(ejkl ) ejkg) =
ngl d;, (e:) (49) {P€Pst: ey, is thek;'-largest cost edge i
P £t ande;, is theks?-smallest cost edge i}  (52)

with binary edge costsd;, (e;) as given in (20)

or (19). This approach has a worst case complexity of WherePs:(ej, , ¢j,) = 0 if the edgesz;, . ¢;,, € E

O(nm(logn)? + m?logn). cannot be thé;!-largest and:7¢-smallest cost edges of
a pathP € P,,. Furthermore, let us define edge costs
4.2. Trimmed-Mean SPP and Related Problems iy iy (€) 8BS
For a pathP € Py, the (ki, k2)-trimmed-mean ob- 0 if @ < g,
jective function ignores it$; largest andk; smallest Cir, n, (€)= eler) i jiy <i<jr, (53)

cost edges and adds the costs of the remaining edges
in P. Conversely, if the costs of thie, largest andk,
smallest edges are added and all other edge costs ar
ignored, this is called &, k- )-anti-trimmed-mean ob-
jective function.

c(ejkz) if ¢ Z jkz

Sor (K1, k2)-trimmed-mean SPP or

Definition 3. Letk; + ko < I(P) for all pathsP € Pg;. c(ei) = clejy, ) !f Z'. = j’ﬂ. .
We define Cjk17jk2 (81) =<0 if Tk <1< Jky
(@) the(ky, k2)-trimmed-mean SPBSs c(e;) if @ > ji,
(54)
. UP)—k> for (ky, ko)-anti-timmed-mean SPP.
Ao > cw(P) (50)  Lemma 2. Letej, , ¢y, € E. o .
i=k1+1 (a) For the (k1, ko)-trimmed-mean objective function
(b) and the(k,, ks )-anti-trimmed-mean SPRs (") it holds that
ey I(P) LY i,y (€0) = FA(P) + kacles,,)
min ZC(i) (P) + Z C(3) (P) . (51) «ep
PP i i=U(P)—ka+1 for P € Pgylejy, ), (55)
Both objective functions generalize thiesum ob- 2. Z Ciny ik (€1) = SA(P) + kac(eji, )
jective function (see Section 2.) and are “univer- cep
sal” by choosing\}, ,, = ... = X_, = 1 or for P € Palej, i, )- (56)
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(b) For the (kq, k2)-anti-trimmed-mean objective func-
tion f\(-) it holds that

LY i,y (60) = FA(P) = acley,,)

e, €P

.fOT P S Pst(ejkz)a (57)
2.3 iy iy () = FA(P) = kaclej,,)

eiEP
fOT P e PSt(ejkl 3 €ty ) (58)

Proof. We only prove the lemma for thék,,ks)-
trimmed-mean objective functiofy(-). Let P be a path
with edgee;, as kst-largest cost edge. We may as-
sume that the cost values of the edges in gativhich
contribute to the right hand side of inequality (55)

IA(P) + kac(ej,, ) (59)

are 0 for the k; largest cost edges(ejkz) for the ko
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Proof. Consider the(k;, k2 )-trimmed-mean SPP. For
each pair of edges;, ,e;, € E we solve a sum SPP
with costsc;, j,. (e;) where the set of feasible paths is
Pst(ejy, )- This is a resource constrained shortest path
problem of type (27) which is solvable {(n?m). By
Lemma 2 (a), the corresponding resource constrained
shortest patlP; . € Pst(ejkl) satisfies

12WJFR2

D

e;eP* .
Jkl h]k2

> Caring (€0) = [A(P) + kac(eyy,)

e, €P

Cin, iny (1)

I (P;};l ,jk2) + k20(6.7k2 ) <

< (64)

for all P € Psi(ej,, ,ej,, ). Subtractingkac(e;,,) we
get

MNP ) < I(P). (65)

An optimal solution to the(ky, k2)-trimmed-mean

smallest cost edges and unchanged otherwise. By def-shortest path problem is

inition of ¢;, ;.. (e:), the k; largest cost edges af
with indexi < ji, have costs;, ;. (ei) =0 as well.
The costs of the remaining edgesih however, are

Ciryin, (€1) = c(ei) = clejy,) (60)
if Jky <@ < Jg, OF
Ciry i, (€1) = (e, ) > c(e) (61)

if @ > ji, due to the non-increasing sorting of the edge
costs. It follows that

Cliky sdks (e:) > C(ejkg) (62)
for the k5 smallest cost edges of pathand
Cjuy ik, (€1) = c(e;) (63)

for the edges in between. This shows claim 1.
Claim 2 follows since the costs;, j,, (e;) are equal
to 0, c(ejy,, ) andc(e;) for the k; largest cost edges, the

ko smallest cost edges and all other edges of any path

P € Py(ejy, €5, )- Inequality (55) is thus satisfied at
equality. O

Theorem 4. On acyclic directed graphs, thg, k2 )-
trimmed-mean and(k,, k2)-anti-timmed-mean SPP
can be solved inO(n?m?) time by solving at most
m? resource constrained shortest path problems with
equality constraints.

P* = argmin

NP ).
jkl e{kl"'”m}ﬂjkg€{k1+1,-..,m7k2+1} Jkq ko

(66)

It can be determined in a total of at mad{n?m?)

time. O

If we assume that the (original) edge costs are non-
negative, thék, ko2 )-trimmed-mean shortest path prob-
lem can even be solved on general graphs. This is not
correct for its counterpart, thék;, ko)-anti-trimmed-
mean shortest path problem.

Corollary 3. In general digraphs witte(e) > 0 for all
e € E, the (k1, k2)-trimmed-mean SPP is solvable in
strongly polynomial time.

Proof. As indicated in the proof of Corollary 2 an op-
timal solutionW* found by recursion (24) might be
a walk. Reducing walkV* to its associated patk*
yields

I(P*) < L(W¥) (67)
and
¢@) (P") < ¢y (W7) (68)
foralli=1,...,l(P*). It follows that
1I(P*)—ks 1I(P*)—k2
Yo P Y W) (89)
i1=k1+1 i=k1+1
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and

1(P*) ks

> (P
i1=k1+1
U(P")—k2

Yo W)+

i=ki1+1
(W)

because all costs are non-negative. As in Corollary 2,
path P* is optimal and can be found i®(n*m? +
n3m?3) time. O

IxP")

L(W™)— ks

D

i=1(P*)—ka+1

IN

C(i) (W*)

(70)

The following problem which we denote é&;, k2)-
anti-trimmed-mean-balanced shortest path probéerd
in which we compute the difference between the
largest and:; smallest edge costs whetet ko < [(P)
for all pathsP € Pg;

ks 1(P)
min | > cop(P)= D epP)| (D)
\i=1 i=1(P)—ka+1

can be seen as combination of the balanced &ndk- )-
anti-timmed-mean SPP (we haw¢ = ... = A\, =

LA _j,01 =---=A =—land) = 0 else for all

I > ki + ko). But in contrast to the latter, it can be
solved by classical sum shortest path problems without
resource constraints.

Theorem 5. The(k;, k2)-anti-trimmed-mean-balanced
SPP can be solved in strongly polynomial time on gen-
eral directed graphs.

Proof. We define a sum SPP with non-negative costs
C(ei) - C(ejkl) if i < Jhy

0 if ik, <<k,
c(ejkz) - c(ei) if i > jkz

Ciiy iy (€1) 7=

(72)
for which an optimal patItijl g, € Pst CaN be found
in O(m + nlogn) time applying the label-setting al-
gorithm of Dijkstra. As in the proof of Theorem 4, we

can argue that

> iy iy (€0) = IA(P) = krcleg,,) + aclej,,)
e; cP

(73)

for all pathsP € P, since
Ciy, dn, (€1) = clei) — c(ej,) (74)
Cjky ik, (€1) = c(ej,,) — c(e) (75)
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and
Ciky skq (ei) >0 (76)

for the k; largest, thek, smallest and the remaining
cost edges. For the patifse Py (e;, ,ej,,) one has

> Gy ing () = IA(P) = krcleg,, ) + kac(ej,,)

e, EP
(77)
and thus

InN(P) = fA(P

;kl 2Jko )

(78)

such that an optimal solution fok , k2 )-anti-trimmed-
mean-balanced SPP is among the sum shortest paths
P;‘kl ey Since less tham? sum shortest path problems
have to be solved we get a complexity 6f(m?3 +
m?nlogn) time. O

An analogous result can be obtained for general com-
binatorial optimization problems if the corresponding
problem with sum objective is solvable in (strongly)
polynomial time.

4.3. Univ-SPP with Non-Negative Weight Coefficients
and Weight Coefficients in “Blocks”

The path problems considered so far are universal
shortest path problems whose weight coefficiehtare
in {0, +1}. In this section, we consider further variants
where the universal weight coefficients are arbitrary or
non-negative real numbers.

The results of Subsections 4.1. and 4.2. remain
valid if the weight coefficientst or —1 are mul-
tiplied by ai, a2 € RJ. Hence path problems
with AL = o, A}, as and Al 0 else or
A, = o1, Aj_j, 11 = —az and Xl = 0 else which
generalize theky, ko)-max or (kq, ko )-balanced SPP
can be solved in strongly polynomial time on acyclic
and general directed graphs. For the problems of Sub-
section 4.2. the corresponding generalizations are

I(P)—ks
min Z ace) (P) (79)
PePst ik 1
wherea € Rj and
ky UP)
Join | D are(P)E Y s (P)
o \i=1 i=l(P)—k2+1

(80)
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To solve them, it suffices to modify the edge costs
Cjx, i, (€i) defined in (53), (54) and (72).

Another class of universal objective functions to
which our model applies are objective functiofi-)
where the universal weight coefficient$ can be di-
vided into “blocks”. Assuming that any path € Py,
has length at least,, this means e.g. that

)\ll :...:)\21712040
M= =A  =a
Ny ==X = (81)
or
A :...:)\Lkpﬂzap
Al =... =) =
l—ko+2 e l—k1+1 1
/\f—k1+2: = A = Qo (82)

wherep e {1,....n—2}, 1<k <...<kp,<land
ap, a1,...,a, € R. On acyclic digraphs, such prob-
lems can be solved in strongly polynomial timepifs
fixed. For suitable:j, ,...,e; € E, we choose these

edges askj’-,... ki'-largest orki'-,... ki/-smallest
cost edges of patl® and solve resource constrained
shortest path problems withp constraints and costs
defined as

ape(e;) if i< gk,
arc(e;) if gr, <@ < i,

Clny sy (€1) 1= (83)
apele;) it i > gy,
or
ape(e;) if i < g,
S N e Wi
aocler) i i> i,

respectively. Special cases are e.g. the minimum devi-
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A = aelse orAl = —1 and Al = —a else. Finally

the problems in which we minimize the smallest or the
k smallest edge costs belong to this problem class and
can be modelled using-1 weight coefficients\) =

or\/ =...=A_, , =1and the remaining! = 0.

5. Conclusion

We have provided strongly polynomial-time algo-
rithms for a series of shortest path problems. In ad-
dition to the problems with sum, bottleneck rsum
objective for which specially-designed shortest path
algorithms exist, balanced, minimum deviation, alge-
braic sum and:-max shortest path problems could be
addressed by algorithms which had been developed for
general combinatorial optimization problems. To han-
dle other objective functions we have solved equality
constrained shortest path problems. Algorithms were
given for the following problems on acyclic digraphs:
(k1,ke)-max and (kq, k2)-balanced SPP,(k1, k2)-
trimmed-mean and k1, k2 )-anti-trimmed-mean SPP,
variants of these SPPs such/abalanced or(ky, k2)-
anti-trimmed-mean-balanced SPP, Univ-SPPs with
non-negative universal weight coefficients and Univ-
SPPs with universal weight coefficients in “blocks”.
The (k1,ke)-max and (ki, ks)-balanced SPP, the
(k1, k2)-trimmed-mean SPP (provided thak) > 0),
the k-balanced and(kq, k2)-anti-trimmed-mean-bal-
anced SPP and their generalizations discussed in Sec-
tion 4.3. were actually solvable on general digraphs.

Unlike the classical sum shortest path problem which
can also be solved as linear program (see e.g. Ahuja
et al. [1]), the path problems considered in this paper
and their generalization, the universal shortest path
problem, cannot be addressed by linear programming
since the additional sorting problem makes the objec-
tive function non-linear. IP formulations for Univ-SPP
are proposed and analysed in [35] and [34].

It is worth investigating the relationship of our ap-
proach and that of Gorski [13,14] and combining them
to improve the results in both papers. This will be done
in the forthcoming thesis of Turner [34].

The ideas of Section 4. can be used to tackle the cor-

ation and algebraic sum SPP (see Section 2.). Othersresponding shortest walk problems where an optimal
are the so-called cent-dian or anti-cent-dian objectives walk (with repeated nodes or edges) instead of an op-

which are well-known in location theory and for which
the universal weight coefficients are setfp= 1 and

timal elementary path is sought for. In the case where
edges may be repeated and there are no negative-cost
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cycles with total resource consumption equabtaan [91 H. N. Gabow and R. E. Tarjan. Algorithms for
edgee;, € E is guaranteed to be the'"-largest or two bottleneck optimization problems. Journal of
kth-smallest cost edge in wallk’ if we require that Algorithms 9(1988) 411-417.
[10] R. Garcia. Resource constrained shortest paths and
Z dj, (e;) <k—1, Z dj,+1(es) >k (85) extensionsPhD thesis, Georgia Institute of Technology,
e;,eW e;,eW 2009

[11] M. R. Garey and D. S. Johnson.Computers and
intractability: A guide to the theory of NP-completeness
W. H. Freeman and Company, 1979.
Z dj—1(ei) 2 k, Z dj(e:) <k —1, (86) [12] R. Garfinkel, E. Fernandez, and T. J. Lowe. The
eieW eieW centrum shortest path problerfiop, 14(2006) 279-292.

respectively, where the costd;, (e;), d;, 1(e;) or [13] J. Gorski,.2010. Pgrsonal F:orr?municat_iorj. .
dj,_1(e:), dj, (e;) are defined as in (19) or (20). The [14] J Qorgkl. MulFlpIe ob!ectllve optimization and
résulting resource constrained walk problems have implications for single objective optimization PhD

L thesis, University of Wuppertal, 2010.
lower and upper resource limits (see e.g. Beasley and . . o
- . . . [15] J. Gorski and S. Ruzika. Ork-max-optimization.
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