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Abstract

One approach to finding a maximum stable set (MSS) in a gragb isy to reduce the size of the problem by
transforming the problem into an equivalent problem on alnaraph. This paper introduces several new reductions
for the MSS problem, extends several well-known reducttonthe maximum weight stable set (MWSS) problem,
demonstrates how reductions for the generalized stablprebtem can be used in conjunction with probing to produce
powerful new reductions for both the MSS and MWSS problents shows how hypergraphs can be used to expand
the capabilities of clique projections. The effectivenafsthese new reduction techniques are illustrated on the UG
benchmark graphs, planar graphs, and a set of challenging M®blems arising from Steiner Triple Systems.
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1. Introduction been used to study properties of stability critical graphs
and facets of the stable set polytope. They have been
used algorithmically in heuristics, polynomial time al-

A stable setis a set of nodes in a graph that are 4 )
gorithms for special classes of graphs, and exact algo-

mutually nonadjacent. The problems of finding a maxi- * N : -
mum stable set (MSS) or a maximum weight stable set rithms. For our purposes, it will be convenient to divide
(MWSS) in a graph are NP-complete problems that have exact algorithms into two types: thepreucal gnd practi-
received a great deal of attention in the literature [g]. C&- BOth types are based on recursive algorithms. The-

One approach to finding an MWSS s to try to reduce oretical exact algorithms focus on eliminating redun-
the size of the problem by transforming the problem dant branches, without using lower and upper bounds,

into an equivalent problem on a smaller graph. Most of With the goal of producing a good time bound for the
the known reductions fall into one of three categories. 2/90rithm (e.g., see [7,13,14,19,34,35,42,44,45]). Prac

Inclusion reductions are based on finding a set of nodes!ic@! @lgorithms tend to focus on using lower and up-
S such that there exists an MWSS that incluSe3hus per bounds, in addition to using the techniques used by

the problem reduces to finding an MWSS in the graph theoretical algorithms to eliminate redundant branches
obtained by deleting and its neighbors. Exclusion re-  (€-0-, see [2-6,10,12,16,24,25,27,29-33,40,46]). Baper

ductions are based on finding a set of notlesuch that that present theoretical exact algorithms do not usu-
there exists an MWSS that excludésn which case the ally include any computational results, while papers that
problem reduces to finding an MWSS in the graph ob- present practical exact algorithms do not usually include

tained by deleting/. Contraction reductions are based time bounds (since it is more difficult to compute tight
on finding a set of nodes such that either there is an time bounds for these algorithms). Both theoretical and

MWSS that contains' or there is an MWSS that con-  Practical exact algorithms have made extensive use of
tains the neighbors of. Thus the problem reduces to reductions. Details on how reductions have been used

finding an MWSS in a graph obtained by replaciig &€ Presented in Section 3. _ _
and its neighbors with a single node. Any binary integer program with two variables per
) inequality (BIP2VAR) can be written as
Reductions for the MSS and MWSS problems have

- (BIP2) =zy+ maxbx
Email: E. C. Sewell [esewell@siue.edu], S. H. Jacobson Ty < To YV (v,w) € A
[shj@illinois.edu], Hemanshu Kaul [kaul@math.iit.edul]. Ty 4+ 2y >1 V Ev,w eC
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Ty + 2y <1 V(v,w) €FE
z, € {0,1} VYwveV,

wherez is a constant term (initially zero) that will be

used later. This problem has been called the General-
ized Stable Set Problem (GSSP) because the MWSS

problem is a special case of it with = C = 0. A bi-
graph is a multigraph that may contain three types of
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by the original set of edges. To describe the closure, it
will be convenient to assign a plus or minus to the ends
of each edge. A plus will be assigned to the ends of
each edge irF/, a minus will be assigned to the ends
of each edge irC, and if (v, w) € A, then a plus will

be assigned to the end incidentdcand a minus will

be assigned to the end incidentdo This assignment
of plus and minus signs to an edge w) is obtained

edges: undirected, directed, and bidirected. With every py ysing the sign of, andz,, after the corresponding

BIP2VAR, there is an associated bigraphconsisting
of the set of node¥ = {1, ..., n} corresponding to the
n variables in BIP2 and the sets of edgés’, and E.
Let B = (V, A,C, E) denote the bigraph and,(B)
or a(V, A, C, E) denote the optimal value of BIP2. If
G = (V, E) is a graph, theny, (G) = o, (V, 0,0, E) is
the weight of an MWSS it

If a bigraphB contains two nodes andw such that
there is more than one type of edge betweeandw,

constraint has been written as a less than or equal to
inequality with all the variables on the left-hand side of
the inequality. Suppose that, v) and(v, w) are edges
such thafu, v) has a plus assigned to the end incident
to v and(v, w) has a minus assigned to the end incident
to v. Then adding the two corresponding inequalities
(written in less than or equal to form) shows that these
two edges imply a third edgéy, w), where the sign
assigned ta: will be the same as the sign assigned to

then at least one of the nodes can be eliminated. Fory, in the edge(u, v) and the sign assigned to will be

example, if(v, w) € Aand(v,w) € F,thenz, mustbe
zero in every feasible solution of BIP2, so hadean be
eliminated fromB; such reductions will be examined in

the same as the sign assignedutadn the edge(v, w).
Johnson and Padberg [20] prove that a bigraph is closed
if for every pair of edges, the edge implied by that pair

greater detail in Section 2. The purpose of this paper is (if any) is already inB. They also develop af)(n?)

to introduce new reductions for the stable set problem
(Section 3.), show how reductions for the GSSP can

algorithm to compute the closure of a bigraph.
It is relatively simple to detect variables that can be

be used to generalize reductions for the MSS problem gjiminated once the closure & has been computed.

to the MWSS problem (Section 3.), show how probing

The four basic configurations of edges that permit vari-

can be used together with GSSP reductions to achievegples to be eliminated are shown in Table 1.

greater reductions (Sectioh), and show how clique

projections can be extended to hypergraphs to obtain

reductions for the stable set problem (Section 5.).

Two problems closely related to the MWSS problem
are the maximum weight clique problem and the min-
imum weight node cover problem. A clique is a set of
mutually adjacent nodes, so finding an MWSS is di-
rectly equivalent to finding a maximum weight clique
in the complement of the graph. A node cover is a set
of nodesC' such that every edge i has at least one
endpoint inC. If C' is a minimum weight node cover,
thenV\C' is an MWSS, so the node cover problem and
the MWSS problem also are directly equivalent to each
other. Many of the references cited in this paper actually
address the maximum clique or minimum node cover
problem, but their results can be immediately translate
into results for the MWSS problem.

2. Reductions for Generalized Stable Set Problems

The closure of a bigraphB = (V, A,C, E) is the
bigraph obtained by adding every edge that is implied

Table 1

Configuration of Edges  Implication Reduction

1 (u,v) € A (u,v)€C zp,=1 Deletev from B.
Add b, 10 20.

2. (u,v) € A, (u,v) €E  2,=0 Deleteu from B.

3. (u,v), (v,u) € A Ty = To Deletev from B.
Add b, t0 by,.

4. (u,v) € C,(u,v) € E  xy+x, =1 Deletev from B.
Add b, to 20.

Subtractb,, from b,,.

Four Basic GSSP Reductions.

Note that the third reduction transforms an MSS prob-

d lem into an MWSS problem. Also the fourth reduction

can produce a negative valuelgf to avoid this, choose
the node with the smaller objective function coefficient
for elimination. If three edges are present between a pair
of nodes, then the reductions listed above can be com-
bined. If a pair of nodes has four edges between them,
then the problem is infeasible. Infeasibility should not
occur in our reductions, because we are always start-
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ing with a stable set problem on a graph= (V| E),
which always has a feasible solution. After all possible

reductions have been made, there will be at most one

edge between any pair of nodes.

For a closed, reduced bigraph, Sewell [39] has shown
that the GSSP is actually an MWSS problem in disguise
by showing that the constraints iA and C can be
ignored.

Theorem 1 SupposeB = (V,A,C,E) is a closed,
reduced bigraph,G = (V,E), andb > 0. Then
ap(V,A,C E) = ap(V, 0,0, F).

Now supposeA is a set of constraints of the form
r, < xz,, C is a set of constraints of the form, +
z, > 1, and E* is a set of constraints of the form
x, + x, < 1. Further suppose that there exists an
MWSS in G that satisfies all the constraints i C,
andE*. Let B = (V,A,C,E* U E). Thenoy(G)
ap(B) (the constraints forB contain the constraints
for G implies a,(G) > «ap(B); and G contains an
MWSS that satisfies the constraints Brimplies that
ap(G) < ap(B)). Next close and reduc® to ob-
tain B’ = (V' A’,C’, E’) with weighting?’' and let
G' = (V' E’"). Theorem 1 yieldsy, (B') = ay (G'),
so if any nodes iB were eliminated during the reduc-

E. C. Sewell et al.—Reductions for the Stable Set Problem

be used to denot&[V\{v}] andG — V' will denote
GIV\V']forV' C V.

3.1. Exclusion Reductions

Exclusion reductions are based on finding a set of
nodesU such that there exists an MWSS that excludes
U. Inthis case, the problem reduces to finding an MWSS
in the graph obtained by deletirig A nodew in graph
G dominatesa nodeu if (u,v) € E and N(v) C
{u} U N (u). For the MSS problem, if there is an MSS
that containsu, then there is also an MSS that con-
tainsv but notu. Hence there is an MSS that excludes
u, which means that, can be deleted from the graph.
This reduction has been used in several of the fastest-
known theoretical exact algorithms for the MSS prob-
lem [7,34,35,44]. This reduction can be generalized to
the MWSS problem as shown in the following propo-
sition.

Proposition 2 If a nodev dominates a node: in a
graphG = (V, E) and b, > by, thenay(G — u) =
ap(@G) (i.e., nodeu can be deleted fromy).

Proof. Let S be an MWSS. IfS containsu, then S
cannot contairny, so .S’ = (S\{u}) U {v} is a stable

tion procedure, then those same nodes can be eliminatedset with(S5’) > b(S), and hences’ is an MWSS that

from G to produce an equivalent MWSS problem on a
smaller graph. That is, reductions in the bigrdplead
directly to reductions in the grap&'. This technique
will be used to develop several new reductions in Sec-
tion 3.Methods of obtaining the additional sets of con-
straintsA, C, and E* via probing will be discussed in
Section 4.

3. Direct Reductions for the Stable Set Problem

In this section we review many of the reductions that

have been used for the MSS problem and note how they

excludesu. Thusay(G — u) = ap(G). =

Another exclusion reduction can be defined for a
closed, reduced bigrapB. If a nodeu is connected to
every other node i3 by either an edge inl or an edge
in E, then the weight of the heaviest stable set that con-
tainsu equalsb, + >_,.(, ,ye4 bv- In such a case, the
search for a heavier stable set can be restrictdgi-tay,
hence the bigraph can be reduced by excluding

3.2. Inclusion Reductions

Inclusion reductions are based on finding a set of

have been used in the literature. We also extend severalnodesS such that there exists an MWSS that includes
of these reductions to the weighted case and introduceS. Thus the problem reduces to finding an MWSS in

a number of new reductions. Throughout this section,
let G = (V, E) be a graph and > 0 be a nonnegative
weighting of the nodes afs.

A few definitions are necessary before proceeding.
Theneighborhood of node in G is defined asV(u) =
{v eV :(u,v) € E} and theneighborhood of a set of
nodesU is defined asV(U) = {ve V\U : Ju e U >
(u,v) € E}. N%(u) is defined to beV (N (u))\({u} U
N(u)). The degree of node is d(v) = |N(v)|. If
V' C V, thenb(V') = > .y b, and G[V’] denotes
the subgraph off induced byV’. Forv € V, G —v will

the graph obtained by deletir§jand its neighbors.

One type of inclusion reduction is based on simpli-
cial nodes. A node: in graphG is simplicial if N (u)
is a clique. For the MSS problem, it is easy to see that
if » is simplicial, then there must be an MSS that con-
tainsu. Reductions based on simplicial nodes have been
used in perfect elimination schemes for chordal graphs
(see [37] for a discussion of chordal graphs and further
references). Mannino and Sassano [24] report that sim-
plicial reductions were crucial in solving some of the
larger MSS problems in the DIMACS test set. Special
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cases of simplicial nodes, that have been used in severakral of the fastest-known theoretical exact algorithms

of the theoretical exact algorithms for the MSS prob-

for the MSS problem.

lem, are nodes that have degree zero, one, or two (as A third type of inclusion reduction is based on the

part of a triangle) [34,35,44]. The situation is slightly
more complicated for the MWSS problem, since there
may not be an MWSS that includes Nonetheless, a
reduction can be made, as given in the next proposition.
Proposition 3 Supposeu is a simplicial node in a
graph G = (V, E) with node weight$ > 0. Let

b{

and letG’ be the graph obtained by deleting all nodes
v 3, =0. Thenay (G') = ap(G) — by.

Proof. If v € N(u) andb, < b,, thenv can be deleted
by Proposition 2 since dominatesy. So we can now
assume, > b, Vv € N(u). Every MWSS must con-
tain exactly one node ofu} U N(u), so subtracting
b, from each node i{u} U N(u) decreases;(G) by
preciselyb,. =

Another type of inclusion reduction is based on the
surplus function. Fov’ C V, let T'(G, V') = {w €
V:3weV' > (v,w)e E}. Hencel (V') = N(V') if
and only if V' is a stable set. Lovasz and Plummer [23]
introduced asurplusfunctiono (G,V’) = [T (V')| —
|V’| which Sewell [38] generalized to the weighted case
asop(G, V') = b(T'(G,V")) — b(V'). WheneverG is
clear from the context, it will be suppressed from the
notation ofl" andoy,. Furthermore, the subscriptwill
be suppressed from, (V') if b, = 1 Yo € V. The
next theorem gives sufficient conditions, in terms of
the surplus function, under which a stable set will be
contained in every MWSS [18].

Theorem 4 (Hammer, Hansen, and Simeone)
Suppose > 0, o,(I) = min{o,(I’') : I’ is a stable
set inG}, and I has minimum cardinality among all
such minimizers (note thdtmay be empty). Thehis
contained in every MWSS.

By Theorem 4,G can be reduced by eliminating
and its neighbors. Let’ = G[V\(I U N(I))]. By the
definition of I, it can be shown that,(G’, S) > 0 for
every stable sef in G’. In [38] it was shown that if
there exists a stable sdtin G’ such thatr,(S) = 0,
then there exists an MWSS containifigConsequently,
G’ can be further reduced by eliminatir§yU N(.5).
The setd andS can be found in polynomial time - see
[11,18,28] for details. These reductions have played a
pivotal role in fixed-parameter algorithms for the vertex
cover problem [13,14], which in turn have yielded sev-

0 if v=uorb, <b, andv € N(u)
by — by if b, > b, andv € N(u)
by otherwise

following theorem [28].

Theorem 5 (Nemhauser and Trotter)If S is an
MWSS inG[S U N(S)], then S is contained in an
MWSS inG.

This reduction technique includes the simplicial re-
duction for the MSS problem (but not for the MWSS
problem) since ifu is simplicial, then it is an MSS in
{u}UN (u). This reduction also includes the surplus re-
ductions. The following proposition is needed to prove
this.

Proposition 6 SupposeG = (V, E) is a graph with
node weight$ > 0 and.S is a nonempty stable set such
thato, (S) < 0. If Sisnotan MWSS it [S U N (9)],
then there exists a subs§t of S such thato, (S') <
op (9).

Proof. Let I be an MWSS inG [SU N (5)]. By as-
sumption,S is notan MWSS irG, hence) (I) > b (S).
LetIg =INSandiy = 1IN N(S). Clearly, Iy # 0,
otherwise S would be an MWSS inG[SU N (5)].
If I C N(5), thenagy(S) = b(N(S)) —b(S) >
b(I) —b(S) > 0, which contradicts thatr, (S) < 0.
Hencels # 0. Then

o (Is) =b(N (Is)) — b(Is)

<b(N(S)\ In) —b(Is)
=b(N(S)) —b(In) —b(Is)
=b(N(5)) —b(InUls)
=b(N(S)) —b(I)
<B(N(S)) - b(S)

=0y (95)

The firstinequality holds becaud&(Zs) € N (S)\In.
The second inequality holds becausgl) > b(S).
Therefore,Is is a subset ofS such thato, (Is) <
Op (S) .

Let I be as defined in Theorem 4 atdbe as de-
fined immediately after Theorem 4. Proposition 6 im-
plies that/ is an MWSS inl U N(I) becausel is
defined to be the stable set with the smallest surplus.
Similarly, Proposition 6 implies that is an MWSS in
G'[SUN(S)] becauser, (G',S) = 0 and every sta-
ble set inG’ has nonegative surplus. Thus, Theorem 5
includes the surplus reductions. In general, it is diffi-
cult (i.e., NP-complete) to find a s8tthat is an MWSS
in G[SUN (5)], whereas all the other reductions dis-
cussed so far in this section can be found in polynomial
time.
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3.3. Contraction Reductions

Let the contraction of V/ C V be defined as the
graph obtained frondz by replacingV’ with a single
node that is connected to every nodeniiV”’). If it is

possible to predict how the contraction changes the op-

timal value of the MWSS problem, then the problem
of finding an MWSS inG can be reduced to finding an
MWSS in the contraction o¥’. The best-known con-
traction for the MSS problem works on nodes of degree
two. Supposel(u) = 2 and the two neighbors aof,
sayv andw, are not adjacent (if they are adjacent, then
u is simplicial). Suppose also tha&t is an MSS. IfS
contains exactly one af, w, then it can be transformed
into an MSS that includes. Thus, either there is an
MSS that containg or an MSS that containd/(u).
The contraction of node: is defined as the grapf’
obtained fromG by replacingu and N (u) with a sin-
gle node that is connected to every nodéVifi(u). It is
easy to see that(G’) = a(G) — 1. The contraction of

nodes of degree two has been used in many theoretical

exact algorithms (e.qg., [7,14,44]). This contraction has
also played a fundamental role in analyzing the struc-
ture of stability critical graphs and facets of the stable
set polytope (e.g., [21-23,38,41]). This contraction is a
special case of the struction operation defined in [1,15].

The contraction of a node of degree two can be gen-

eralized in two different ways. First, this type of con-

E. C. Sewell et al.—Reductions for the Stable Set Problem

and B = (V,0,C, E). First, closeB, which re-
sults in adding all possible edges betweeand
N(w). Next apply Reduction (4) from Table 1,
which deletes and reduces both the optimal value
andb,, by b,,.

First,G can be reduced in the same manner as de-
scribed in case (1), except nogeather than node
u is deletedbecausé,, < b,. Nodeu has degree
one in the resulting graph, so it is simplicial. Con-
sequently, Propositiof can be applied to delete
u and to reduce the weight efby b, — b,,.

In this casey is an MWSS in{fu}UN (u), so The-
orem 5 implies that: is contained in an MWSS.
Henceu and its neighbors can be deleted frém

)

®3)

]
Note that ifb, = b, = b, = 1, then the reduction
specified by Proposition 7(1) is precisely the same as

the contraction of node. The proof of Proposition 7(1)
demonstrates that contracting a node of degree two can
be viewed as a GSSP reduction.

The second way that the contraction of a node of
degree two can be generalized is to notice that) =
1 wheneveru is a node of degree two. We need the
following theorem to achieve this generalization.
Theorem 8 Supposé is a stable set such that(S) =
k for somek > 0 and 0,(S’) > k for all nonempty
subsetsS” C S. Then there exists an MW3Such that
eitherSCIorInsS =0.

traction can be extended to the weighted case, as longProof. If I NS = (), then there is nothing to prove, so
as the weight of the node of degree two is greater than let I be an MWSS such thdtn S # (). LetIs = INS

or equal to the weight of at least one of its neighbors.
Proposition 7 Supposeu is a node of degree two,
N(u) = {v,w} are the neighbors ofi, (v,w) ¢ E,
andb, < b,.

Q) If by, < by < by, thenay (G') = ap(G) — by,
whereG’ is the graph obtained fro& by deleting
u, connecting to every node iV (w), and letting
b =0b, excepth, = by, — by.

(2) Ifb, < b, < by +bw, thenab/(G’) = Oéb(G)—bu,
whereG’ is the graph obtained fror& by deleting
uwandw, connecting to every node iV (w), and
letting ¥’ = b, excepth,, = b, — (by, — by).

(3) fby+by < by, thenay(G') = ap(G)—b,,, where
G’ is the graph obtained frorty by deletingu, v,
andw.

Proof.

(1) Because,, > b,, then there exists an MWSS
such that eithef containsu or w. Hence the in-
equalityx,, + z,, > 1 can be added to BIP2 with-
out changing its optimal value. Lé = {(u,w)}

andIy = INN(S). Then

b(IN(SUN(S))) =b(Is) + b(Iy)
<b(N(Is)) — k+b(In)
<H(N(S)) -k
=b(S).

The first inequality holds becausg(ls) > k implies
b(N(Is)) — b(Is) > k. The second inequality holds
becausely C N(S) andIy N N(Is) = 0 (sincel
is a stable set). Therefor§,uU I\ Iy is an MWSS that
containsS. m

Theorem 8 yields another useful reduction. Recall
that the contraction oF’ C V is defined as the graph
obtained fromG by replacingV’ with a single node
that is connected to every node M(V”).
Corollary 9 SupposeS is a stable set such that
op(S) = k for somek > 0 and o,(S’) > k for all
nonempty subsets’ C S. Let G’ be the graph ob-
tained by contracting to a single node, say, and let
bs = b(S). Thenay(G') = ap(G).
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Proof. The proof begins by showing that,(G) >
ap(G'). Every MWSS inG’ can be transformed into a
stable set inG of equal weight. To see this, I&t be an
MWSSinG'.If s € I’, thenl = SUI'\{s} is a stable
setinG andb(I) = b(I'). If s ¢ I’, thenI’ is stable
in G. In either case]” has been transformed into a sta-
ble I in G with weightb (I), hencea,(G) > ap(G').
Conversely, lef be an MWSS irG. Theorem 8 implies
that it can be assumed that eith®eiIC 7T or 7N S = §.

If S C I, thenl’” = {s} UI\S is a stable set irz’
andb(I') =b(I). If INS =0, thenI is a stable set in
G'. In either case] has been transformed into a stable
set inG’ with weightd (I), hencea,(G) < ay(G’).
Thereforea, (G') = a(G). m

Theorem 8 is used now to prove a reduction that
generalizes the contraction of a node of degree two.
Theorem 10 SupposesS is a stable set such that
oy(S) = k, wherek = min,en(g) by, and o(S’) >
k for all nonempty subset$’ C S.

(1) If N(9) is stable, ther,(G') = ap(G) — b(S),
whereG’ is the graph obtained by contractirffjJ
N(S) to a single node, say, andbs = k.

(2) If N(S) is not stable, theny,(G') = ap(G) —
b(S), whereG' is the graph obtained by deleting
SUN(S).

Proof. We want to show that there exists an MW$S
such that eithelS C I or N(S) C I. According to
Theorem 8, there exists an MWSSsuch that either
SCTIorInsS =0.1fbIN(SUN(S)) < b(S),
thenI can be transformed into an MWSS that contains
S. Furthermore, the proof of Theorem 8 demonstrates
that if 7N S # 0, thenb(I N (SUN(S))) < b(S).
Thus, we can assume without loss of generality that
S C I'ifand only if (I N (S U N(S))) < b(S). But
op(S) = b(N(S)) — b(S) = k implies b(N(S)) =
b(S) + k. Sincek = min, e n(s) by, then the only way
thatb(I N (SUN(S))) > b(S) can occur is ifN(S) C

I. Therefore, eitheilS C I or N(S) C I. Clearly, if
N(S) is not stable, thed cannot containV(S), and
hence it must contaif. In this caseS is contained in

an MWSS, thus justifying the reduction in case (2). If
N(S) is stable, then the proof of case (1) is completed
in a manner similar to the proof of Corollary &

Forthe MSS problem, i is a stable set, then(S) =
|IN(S)|—|S]|,so Theorem 10 implies thatf is a stable
set such that(S) = 1 ando(S’) > 1 for all nonempty
subsetss” C S, then eitherSU N (.S) can be contracted
(if N(S) is stable) otSUN(.S) can be deleted (iV (S)
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it describe how reductions can be performed to ensure
that o(S) > 0 (i.e., o(S) > 1) for every nonempty
stable setS. This implies that the condition(S’) > 1

for all nonempty subset8’ of S is satisfied. Theorem

10 can then be used to perform reductions that ensure
o(S) > 1 (i.e., o(S) > 2) for every nonempty stable
setsS.

4. Probing

Probing is a method that attempts to find relationships
between binary variables by temporarily fixing one vari-
able to either zero or one. In this section we show how
to obtain stronger reductions for the MWSS problem by
combining probing techniques together with the reduc-
tions given in Section 3. and reductions for GSSP. The
basic idea is that we probe on a node, sapy trying
to put it in an MWSS or by trying to exclude it from
an MWSS. We then use the reductions from Section 3.
to derive additional binary constraints betweerand
other nodes in the graph. These additional binary con-
straints are added to BIP2, which can then be closed and
reduced to (possibly) yield stonger reductions for the
original graph. Throughout this section, t&t= (V, E)
be a graph anél > 0 be a nonnegative weighting of the
nodes ofG.

As a simple example, suppose,v) € E andu is
simplicial in G — v. Such a node will be calledearly-
simplicial. If v is not in any MSS, then every MSS must
be contained iy — v. But there exists an MSS i —v
that contains:, sinceu is simplicial inG — v. Thus, the
constraintz,, + x, > 1 can be added to BIP2 without
changing the optimal value. The corresponding bigraph
can be closed and reduced (using Reduction (4) from
Table 1, which deletes andwv (and any nodes adjacent
to bothu andv). Notice that these reductions cannot
be obtained directly from any of the reductions given
in Section 3.

The reductions given in Section 3 will be referred to
asdirect reductionsThe In-Probe algorithm is given in
Figure 1. The parameters of the algorithm are a closed,
reduced bigrapiB = (V, A, C, E) (together with its
integer programming representation BIP2), a Bebf
direct reductions for the MSS or MWSS problem, and
a nodeu on which to probe. The algorithm begins by
temporarily fixingz,, = 1, temporarily fixing any other
variables in BIP2 that must be zero whenewgis one,
and temporarily fixing any other variables that must be

is not stable). This generalizes the case of a node of one whenevet,, is one. The direct reductions iR are

degree two. Theorem 4 and the discussion following

then applied to the free variables (i.e., not temporarily
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fixed). If the direct reductions find a variahtg that can

be set to zero, then the inequality + x, < 1 can be
added to BIP2. Similarly, if the direct reductions find a
variablez, that can be set to one, then the inequality
x,, < x, can be added to BIP2. Finally, if any inequal-
ities have been added to BIP2, théhcan be closed
and reduced, possibly resulting in a reduction for the
original problem.

In-Probe(B, R, u)
/Il B=(V,A,C,E) is a closed reduced bigraph (BIP2
corresponds td)
/I R is a set of direct reduction techniques
NueV
T, =1
Ty, =0V > (u,v) € E
Ty, =1V >3 (u,v) € A
Let V’ be the set of nodes ifY that have not been
temporarily fixed to 0 or 1
Apply the reductions if? to the bigraph induced by’
Let V{ be the set of nodes fixed to 0 by the reduc-
tionsin R
Let V/ be the set of nodes fixed to 1 by the reduc-
tionsin R
For allv € Vj add(u,v) to E
For allv € V{ add(u,v) to A
Close and reduc® = (V, A,C, E)

Fig. 1. The In-Probe Algorithm.

Example 11 Consider a graph which contains the sub-
graph induced by{t} U N (¢) U N2(t) shown in Figure

2. If an in-probe is performed on nodethenu andw
will be in an MSS inG — t — N(t), because the sta-
ble set{u, w} satisfies the conditions of Theorem 10(2).
Hencey;, i = 1,...,5, will be excluded, which means
that (¢,y;) can be added td% for i = 1,...,5. After
these edges have been added, dominated by, sot
can be eliminated. Now an in-probe enimplies that

uw is in an MSS inG —t — v — N(v), because it is
simplicial. This in turn implies thatv can also be in-
cluded in the MSS it — ¢t — v — N(v), since it has
degree one. Hence the in-probe oradds(v,u) and
(v,w) to A. An in-probe oru adds(u,v) to A, and an
in-probe onw adds(w, v) to A. Reduction (3) from Ta-
ble 1 can be applied (after closing the bigraph), which
identifies nodes, v, andw, with weight three. The re-
sulting subgraph is shown in Figure 3. Theorem 10(2)
implies that there is an MSS that containg y,, y4, Or

ys is deleted, hencév, y1), (v,y4), and(v,ys) can be
added toC. When the resulting bigraph is closed and
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reduced, the only nodes from the subgraph that will re-
main arey, and ys, with all possible edges added be-
tween{y2} U {ys} and N(y1)U N(y4) U N(ys). The
weights of all the nodes will be one.

The Out-Probe algorithm, shown in Figure 4, is sim-
ilar to the In-Probe algorithm, except that the nedmn
which we probe has, temporarily fixed to zero.

Out-Probe(B, R, v)
/I B=(V,A,C,E) is a closed reduced bigraph (BIP2
corresponds td3)
/I R is a set of direct reduction techniques
HveV
T, =0
Ty =0Vu>d (u,v) € A
Ty =1YVu> (u,v) € C
Let V' be the set of nodes ifY that have not been
temporarily fixed to 0 or 1
Apply the reductions i to the bigraph induced by’
Let Vj be the set of nodes fixed to 0 by the reduc-
tions inR
Let V] be the set of nodes fixed to 1 by the reduc-
tionsin R
For allu € Vy add (u,v) to A
For allu € V{ add (u, v) to C
Close and reduc8& = (V, A,C, E)

Fig. 4. The Out-Probe Algorithm.

Example 12 Consider a graph which contains the sub-
graph induced byt } UN (t)UN?(t) shown in Figure 5.

If an out-probe is performed on nodgthenw, v, andw

will all be in an MSS inG — ¢, because they are simpli-
cial in G —t. Consequently(t, u), (¢,v), and(¢,w) can

all be added taC. When the bigraph is closed and re-
duced, the subgraph in Figure 5 will be replaced by the
subgraph in Figure 6, where now has weighb, = 2.

It is important to distinguish between direct reduc-
tions that directly set a variable to zero or one, such as
the first two reductions given in Table 1, and those that
do not directly set a variable to zero or one, such as the
last two reductions given in Table 1 and the contraction
reductions. Reductions of the latter type essentially de-
lay the decision about the value of a variable by using
a substitution of variables. For example, Reduction (3)
from Table 1 uses the substitution, = z, to delay
the decision regarding the value of. Similarly, the
contraction of a node of degree two, say nadwith
neighborsy andw, delays the decision about whether
u is in the MSS or bothy andw are in it. For purposes
of probing, reductions of both type may be used during
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Y1 y2 Y3 Y4 Ys

Fig. 2. Induced subgraph containing) N (t) U N2 (t).

v.by,=3

Vi y2 Y3 V4 Ys

Fig. 3. The subgraph from Figure 2 after performing in-pobe nodeg, v, v, andw.

Fig. 5. Subgraph induced bit} | N (t) U N?(2).

the probe, bul; andV{ must include only variables  stable set and its neighbors.
that have been fixed at zero or one. In particular, nodes
eliminated by the following reductions should not be in-
cluded inVj andVy: Proposition 3 regarding weighted
simplicial nodes, contraction of nodes of degree two for  Computational experiments for MSS problems were
the MSS problem, parts (1) and (2) of Proposition 7 re- executed on a 2.0 GHz, dual core, Intel T7200 proces-
garding contraction of weighted nodes of degree two, sor with 3.25 GB of memory. The algorithm was imple-
Corollary 9 regarding the contraction of a stable set, and mented in the C++ programming language. The code
part (1) of Theorem 10 regarding the contraction of a was not parallelized, so it only utilized one of the two

4.1. Computational Results
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v.b,=2

Fig. 6. Subgraph from Figure 5 after performing an out-prohenodet.

cores. The algorithm, called the Reduction-Probe Algo- RPA was able to fix some of the variables for the four
rithm (RPA), repeatedly searches for direct reductions mann graphs, whereas PrePro was unable to do so. Fur-
until it is no longer able to add any new edges or fix thermore, RPA was able to add some edges to nine other
any additional nodes. After the direct reductions, it per- graphs for which PrePro was unable to do so. In terms
forms an in-probe on each node and then performs anof execution times, RPA was run on a 2.0 GHz pro-
out-probe on each node. Probing is repeated until it is cessor while PrePro was run on a 2.8 GHz processor.
no longer able to add any new edges or fix any addi- RPA was faster than PrePro for all the graphs. For the
tional nodes. c-fat500 graphs, it was roughly two orders of magnitue
The power of probing reductions is illustrated on faster. In comparing the performance of RPA to Pre-
the DIMACS Benchmark graphs, which were collected Pro, it should be kept in mind that RPA was designed
for the Second DIMACS Implementation Challenge specifically for the MSS problem while PrePro was de-
on Clique, Graph Coloring, and Satisfiability RPA signed for the more general QUBO problem, which in-
was run on all the Dimacs Benchmark graphs; Table cludes the MSS problem as a special case. Therefore, it
2 presents the results for the graphs for which RPA is somewhat like comparing apples to oranges, and it is
was able to fix any variables or add any new edges. In not surprising that RPA is able to find more reductions
Table 2, Nodes is the number of nodes in the original and that it requires less CPU.
graph, Fixed is the number of variables fixed, New  Boros et al [9] also reported the results of applying
Edges is the number of new edges found, and CPU is PrePro to a series of planar graphs that were generated
the running time, in seconds. by the LEDA software package. Table 3 compares the
Table 2 compares RPA to PrePro, which is a prepro- performance of RPA to PrePro on these graphs. Each
cessing algorithm for unconstrained quadratic binary line in the table presents the average for 100 graphs.
optimization (QUBO) problems that was developed by Both algorithms were able to fix all the variables for all
Boros, Hammer, and Tavares [9]. They formulated the the graphs. RPA is roughly 20 to 40 times faster than
MSS problem as a QUBO and then applied PrePro to PrePro on these graphs.
the DIMACS Benchmark graphs. Table 2 presents the Table 3
results for the graphs for which PrePro was able to fix
any variables or add any new edges. For PrePro, the
number of New Ed_ges reported in Table_2 is the_num— Nodes | Fixed Edges CPU | Fixed CPU
ber of new edges in the graph after all fixed variables 1,000 | 1,000 | 10.63 | 0.0012| 1,000 | 0.05
have been removed, whereas New Edges for RPA equals 2.000 | 2,000| 29.60| 0.0069 | 2,000 | 0.16
all the new edges found for the original graph. There- 3,000 | 3,000| 47.77| 0.0085| 3,000 | 0.27
fore, these two columns are only directly comparable 4,000 | 4,000 | 108.30| 0.0220| 4,000 | 0.53
for graphs where no variables were fixed by PrePro.
Both RPA and PrePro were able to fix all the vari-

ables for the c-fat graphs and the hammingx-2 graphs.  The order in which the probing is performed can
_— make a difference in the number of variables that are
L ftp://dimacs.rutgers.edu/pub/challenge/graph/berackaiclique fixed and the number of edges that are added. The re-

RPA PrePro
New

LEDA planar graphs.
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Table 2
RPA PrePro
New* New*

Graph Nodes | Fixed Edges CPU | Fixed Edges CPU
c-fat200-1 200 200 21,433 0.20] 200 0 211
c-fat200-2 200] 200 23,134 0.14 200 0 17.4
c-fat200-5 200] 200 28,372 0.13] 200 0 3.7
c-fat500-1 500/ 500 129,208 2.171 500 0 677.0
c-fat500-2 500/ 500 133,888 2.14 500 0 3771
c-fat500-5 500 500 147,940 2.14 500 0 166.2
c-fat500-10 500( 500 171,376 2.04 500 0 89.5
hamming6-2 64 64 0 0.00 64 0 0.0
hamming8-2 256 256 0 0.00 256 0 0.0
hamming10-2 1,024 1,024 0 0.00| 1,024 0 0.1
hamming6-4 64 0 224 0.05 0 0 0.1
hamming8-4 256 0 0 1.38 0 0 8.9
hamming10-4 1,024 0 0 84.88 0 0 2654
manna9 45 14 192 0.01 - - -
manna27 378 76 3,460 1.55 - - -
manna45 1,035 184 15,319 16.88 - - -
manna8l 3,321| 583 87,828 285.4§ - - -
p-hat300-1 300 0 74 10.98 - - -
p-hat300-2 300 0 31 5.99 - - -
p-hat500-1 500 0 6 36.25 - - -
p_hat500-2 500 0 4  30.19 - - -
p-hat700-1 700 0 1 146.17 - - -
san2000.7.2 200 0 66 1.08 - - -
san4000.5.1 400 0 2,776 21.63 - - -
san1000 1,000 0 1,989 422.17 - - -

DIMACS Benchmark Problems. *New Edges for the RPA equatbalhew edges
found for the original graph. New Edges for PrePro equals thenber of new
edges in the graph after all fixed variables have been remao&edhsh indicates
that [9] did not present results because PrePro was unablixtany variables or
add any new edges.

sults presented above are based on performing the in- Table 4

probes before the out-probes. For the DIMACS Bench- | Graph Nodes Fixed New Edges CPU
mark graphs, the results were identical except for the | manna9 45 14 192 0.2
mann graphs. For the mann graphs, substantially more| manna27 378 121 6,084 1.53
variables were fixed by performing the out-probes be- | manna45 1,035 332 29,040 18.3D
fore the in-probes. As shown in Table 4, RPA was able | manna81 3,321 1,088 172,800 338.47

to reduce the number of nodes by approximately 33% RPA with out-probes before in-probes applied to Mann graphs
on these challenging problems. It should be noted that

these graphs cannot be reduced by any of the direct re- ) ) )
duction techniques given in Section 3. the problem could still be formulated as a binary inte-

ger program with two variables per inequality. In this
section we extend a reduction technique, called clique
5. Cligue Projections and Hypergraphs projection, in such a way that it creates constraints with
more than two variables per inequality, and illustrate
The reductions in the previous sections all trans- the power of this reduction technique on the Steiner
formed a stable set problem on a graph into another sta-Triples Systems graphs. Throughout this section, let
ble set problem on a smaller graph in such a way that G = (V, E) be a graph and > 0 be a nonnegative
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weighting of the nodes aofr. variables per inequality. The new constraints can be

A short review of clique projections is first presented. conveniently represented by edges in a hypergraph.
Lovasz and Plummer [23] introduced reducible cliques Given a set of node¥, a hyperedgeis a subset of
as part of a polynomial time algorithm to find an MSS V' and thehyperedge inequalitfor hyperedgeh is
in a claw-free graph. They defined a maximal cligide ~ >_,c;, zv < |k[ — 1. The definition of a stable set
contained inG to be reducibleif a(G[N(K)]) < 2, can be extended to a hypergraph= (V, Ey) as a
and reduced> by letting G’ be the graph obtained by  solution to the integer program:
deleting the nodes i and adding an edge (if not
already present) between every pair of nodesnd v
such thatkK' C N(u) U N(v). If K is reducible, then =~ BIP(H,b) qu <|h—-1 VYheEy
a(G") = a(G) — 1. De Simone and Sassano [43] used veh
an extension of this reduction, which was developed by x, € {0,1} YoveV.
Sassano [36], to create a polynomial-time algorithm to
find an MSS in a bull-free chair-free graph.

Mannino and Sassano [25] introduced edge projec-
tions as a specialization of Lovasz and Plummer’s [23]
reduction. Lete = (u,v) € E. DefineN,, = N(u) N
N(v), N, = N(u) — Ny, — {v}, andN, = N(v) —

N, — {u}. Theedge projection ok is the graph ob-
tained fromG by deleting{u} U{v} U N, and adding
edges to ensure that every node\ip is adjacent to ev-
ery node inN,. In the case that is a node of degree
two and is not simplicial, the edge projection©otre-
ates the same graph as contractin(as defined in the
first paragraph of Section 3.3.). They also developed an
upper bound for(G) based on edge projections, and
incorporated the upper bound into a branch and bound
algorithm to produce a fast, practical exact algorithm
for the MSS problem.

Mannino and Stefanutti [26] generalized edge projec-
tions to the weighted case as follows. leet (u,v) €
E andb. = min(b,, b,). Theweighted edge projection
of e is the graph obtained frod by subtracting,. from
bothb, andb,, deleting the nodes iv,,,, deletingu
if its new weight is zero, deleting if its new weight is
zero, and adding edges to ensure that every nodg,in
is adjacent to every node iN,. They created a heuris-
tic for the MWSS problem by embedding a sequence b { by — b ifve K

ap(H) = maxbz

If |h| = 2 for every hyperedgé € Ey, thenH is the
same as the ordinary graph= (V, Ey) and BIR H, b)
is the same as BIP2 with = C = {). If the incidence
vector of S C V' is a feasible solution of BIFH, b) ,
then S will be called a stable set off and will be
said to be a feasible solution of BIH,b). Given a
hypergraphd = (V, Ey), the ordinary graphG =
(V, E), whereE is all the hyperedges ih)y composed
of exactly two nodes, is defined to be thaderlying
graph of H. Throughout the remainder of this section,
let H = (V, Ey) be a hypergraph? = (V, E) be its
underlying graph £ could be empty), and > 0 be a
nonnegative weighting of the nodes Gf

Let K beacliqueinG, bx = min,cx b, and assume
bx > 0. A set of nodes” C V\K is astable cover
of K if C is a stable set iz and for eachu € K,
there existsh € Fy such thatu € h andh C C U
{u}. C is aminimal stable cover of{ if C is a stable
cover of K such thatC'\{v} is not a stable cover of
K for all v € C (examples of minimal stable covers
are provided in Example 14). Thmojection of K is
the hypergrapli{ i obtained fromH by adding all the
hyperedges corresponding to minimal stable covers of
K and lettingd’ be defined as

of edge projections in a tabu search.
Both the unweighted and weighted edge projections
are special cases of closing and reducing a bigraph. Theorem 13 Let K be a clique in the underlying graph

by otherwise.

From the graphG = (V, E) create a bigraptB = of the hypergraptf = (V, E) such thathx > 0. Let

(V,0,C,E), whereC' = {e} = {(u,v)} is the edge  Hy be the clique projection oK.

to be projected. Next close and redufeto obtain (1) Every feasible solution of BIP{x,b’) is con-

B' = (V' A',C’, E') with weightingd’ and letG’ = tained in a feasible solution of B[Pk, b") that

(V',E'). It is straightforward to show tha®’ is pre- includes a node irk.

cisely the same as the edge projectior of (2) If S is a feasible solution of BIF, b) such that
A reduction technique that generalizes reducible SN K # (, then S is a feasible solution of

cligues and edge projections is now presented. This BIP(Hgk,b').

technique creates constraints with more than two (3) ap(Hgk) < ap(H) — bi.
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If there exists an optimal solutio$i of BIP(H, b)
such thatS N K # 0, thenay (Hg) = ap(H) —
bk

Proof.

(1)

)

®3)

(4) From part (3), one needs only show that

Let S be a feasible solution of B[k, ') such

that S N K = (). For the sake of contradiction,
suppose that U {u} is not a feasible solution of
BIP(Hg,b') for eachu € K. Then every node in
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This definition of reducible differs from the one given
by Lovasz and Plummer [23], but it generalizes the
desired property of the clique from(G’) = a(G) — 1

to ap (Hi) = ap(H) — bg. Furthermore, any node
v that hasb!, = 0 can be deleted front/x because
every inequality in BIPHk,b') has only nonnegative
coefficients. Moreover, every hyperedge that contains
can be deleted froni{/ s, since the corresponding hy-

K is contained in a hyperedge whose hyperedge peredge inequality is redundant after has been set to
inequality is satisfied at equality by the incidence zero. The following example illustrates this approach.

vector of S. ThereforeS is a stable cover ofs.
Create a minimal stable covér of K from S by
removing nodes, one at a time, urgilis minimal.
But thenS does not satisfyp .z, < |C] — 1,
which contradicts thab' is a feasible solution of
BIP(Hg, V).

Let S be a feasible solution of BI®7,b) such
that S N K # (. Let u be the unique node in
SN K and letC be a minimal stable cover of
K in H. By definition, there existd € Fy such
thatu € h andh C C U {u}. S must satisfy
> venTv < |h| = 1, therefore at least one node
in h, saywv, is notinS. Butv € C becausér C
C U {u} (v # u because:, € S butv ¢ S). SoS
satisfies) .z, < |C| — 1. Thus S satisfies all
the constraints in BIFH k., b') .

Let S be an optimal solution of BIf{,b’) . By
(1), and the fact tha’ > 0, we can assume that
SN K # 0. Let u be the unique node i§ N K.
Then

oy (Hr) =b'(S) =" (S\{u}) + b,
<op(H) — by,

where the final inequality follows from the fact
that S also is a feasible solution of B(/, b) .

ap (Hg) > ap(H) — b Let S be an optimal so-
lution of BIP(H, b) such thatS N K # () and letu

be the unique node if N K. Part (2) implies that
S is a feasible solution of BIf x, ") . Therefore

ay (H) 2 V'(S) =b'(S\{u}) + b,
=b(S\{u}) + bu — bk
:b(S) - bK = Oéb(H) — bK.

Example 14 Consider the graph depicted in Figure 7.
It is straightforward to show that there exists an MSS
that intersectsk’y; = {1, 2,3}. ThusK; can be deleted
after it has been projected. L&f; be the projection
of K;. The projection creates the following hyperedge
inequalities:

Ty + w8 +x12 <2
T4+ 29+ w11 <2
T5 +x7 +x12 <2
T6 +x7 +x11 <2
T5 + T9 + w10 <2
Te + a8+ T10 < 2.

1)

Figure 8 displays the underlying graph &f; af-
ter nodes 1, 2, and 3 have been deleted. It can now be
shown that there exists an MSS ify that intersects
K> = {4,5,6}. ThusK, can be deleted by projecting it.
Let H, be the projection of(,. The minimal stable cov-
ers ofKy are{8,12},{9,11},{7,12},{7,11}, {9, 10},
and {8,10}. When nodes 4, 5, and 6 are deleted, the
hyperedge inequalities that were added wheénwas
projected are redundant and can be deleted. THugs
shown in Figure 9 after nodes 4, 5, and 6 have been
deleted, only contains ordinary edges, hence is an or-
dinary graph. In fact,H, is a clique, so no further re-
ductions are necessary to solve the MSS problem.

For the graph in Figure 7, it also is possible
to begin the reduction by projecting the clique
K] ={1,4,7,10}. There are no stable covers Af
so projectingK; is the same as deleting it. Ond¢{
has been projected, then the clighg¢ = {2,5,8,11}
can be projected. There are no stable coverd<éf
SO projecting it is the same as deleting it. The remain-
ing nodes,{3,6,9,12} form a clique, so no further

To explain how Theorem 13 can be used to reduce areductions are necessary to solve the MSS problem.
graph, suppos& is a clique in the underlying graph When a reducible cliqués is projected, it may be
and that there exists an optimal solutisof BIP(H, b) possible to eliminate nodes outside &f If nodev €
suchthatSNK # () (refer to such a clique asducible). V\K is adjacent to every node il in the underlying
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Fig. 8. The underlying graph off; after K = {1, 2,3} has been projected and deleted.

7 10
8 I
2 12

Fig. 9. H2: The graph afters; = {1,2,3} and K> = {4,5,6} have been projected and deleted.

graphG, thenw is a minimal stable cover ok. Hence Sassano [25] and Mannino and Stefanutti [26] in the
the inequalityz,, < 0 is placed in BIRHg, V'), which weighted case, are special cases of the clique projection
means that can be eliminated. This corresponds to defined here. Suppog€ is a maximal clique in a graph
deleting N,,, when performing an edge projection on G = (V, E) anda(G[N(K)]) < 2. K cannot have a

e = (u,v). Consequently, ik’ C K is also reducible,  minimal stable cover of size one becaugés maximal,
then at least as many nodes will be eliminated by pro- and it cannot have a minimal stable cover of size greater
jecting K’ as by projecting¥. than two because(G[N(K)]) < 2. Hence projecting

K will create an edge (if not already present) between

Reducible cli , as defined by Lové dPI .
educlb’e Clques, as defined by ~ovesz and - ummer every pair of nodes andv such that’ C N (u)UN (v).

[23] and edge projections, as defined by Mannino and
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Furthermore, since every node has weight one, every

node in K will have weight zero after the projection,
hence can be deleted. Therefore, projectitigesults

in the same graph as defined by Lovasz and Plummer.

Now lete = (u,v) € E and defineN,,, N,, and
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b(S") =b((S\N' (H,u)) U {u})
(S\N'(H,u)) + by,

(S) = b(S N N' (H,u)) + by
(

S) — Oéb(Hu) + by > b(S) = Oéb(H),

b
b
b
b

AV

N, the same as Mannino and Sassano. Projecting the

cligue K = e will eliminate the nodes inv,,,, because

each of these nodes are a minimal stable cover of size

so0 S’ is an optimal solution of BIPH, b) that in-
tersectsK. Therefore K is reducible.

one, as discussed above. Every other minimal stable m

cover is of the form{w, y}, wherew € N, andy €
N,. Hence the projection will add an edge between
every such pair of nodes. Furthermore, the weights of

The graph in Figure 8 has a cligdé = {1,4,7,10}
that does not have any stable covers. So Theorem 15(1)
implies thatK is reducible. All three triangles in the

the nodes are modified in precisely the same manner.qraph in Figure 5 satisfy the conditions of Theorem

Consequently, projectingl results in the same graph
as the edge projection ef as defined in [25,26].

In general it is a difficult problem to determine if a
cligue is reducible. (If deciding reducibility of an arbi-
trary clique can be done in polynomial time, then de-
ciding whether or not a nodeis contained in an MSS
can be done in polynomial time, which would yield a
polynomial time algorithm for the MSS problem.) The
following theorem gives two different sets of sufficient
conditions that can be used to determine if a given clique
is reducible.

Theorem 15 Let K be a clique in the underlying graph
G = (V, E) of hypergraphH = (V, Ey).

(1) If K does not have any stable coversii then
K is reducible.

(2) Suppose. € K, N’ (H, u)

{veV\K:3he Ey>{u,v} Ch}, and

H, is the hypergraph induced by’ (H,u). If

by, > ap(H,), then K is reducible.

Proof.

(1) Since K does not have any stable covers,
the only difference between B(F,b) and
BIP(H g, V') is the objective function, i.e., no con-
straints have been added to BFP,b) to obtain
BIP(Hg,V'). Therefore, ifS is an optimal solu-
tion of BIP(H,b), then S is a feasible solution
of BIP(Hg,b'). Thus, Theorem 13(1) implies
that S is contained in a feasible solutiofi’ of
BIP(Hg,b') that includes a node if. Clearly,
S’ also is a feasible solution of B{Px,b) and
b(S’) > b(S). Hence every optimal solution of
BIP(H,b) is contained in an optimal solution that
intersectsk. Therefore K is reducible.

LetS be an optimal solution of BIF, b) such that
SNK =0.ThesetS’ = (S\N' (H,u))U{u}is
also a feasible solution of B[P/, b) . Furthermore,

)

15(2), so they are all reducible.

A Steiner Triple Systenconsists of a setD
{1,2,...,n} and a collection of triples, which are sub-
sets ofD of size three, such that every pair of elements
in D is contained in exactly one triple. Fulkerson et al.
[17] created two computationally difficult set covering
problems arising from Steiner Triple Systems. Subse-
qguently, these problems were converted into equivalent
MSS problems, and several more problems of the same
type were generated. Four such problems were included
in the benchmark graphs for the Second DIMACS Im-
plementation Challenge on Clique, Graph Coloring,
and Satisfiability. These problems have indeed proven
to be difficult. To date, no exact stable set algorithm has
been able to directly solve the largest such problem,
mann81, although Mannino and Sassano [25] were
able to solve it indirectly.

The power of clique projections is illustrated on
these challenging problems. As shown in Table 5, the
cligue projections produce a large reduction in both the
number of nodes (variables) and edges (constraints).
These reductions were obtained by using Theorem
15(2) to project all the triangles, which correspond to
the Steiner triples, in the graph.
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Table 5
Number of Nodes Number of Edges
Graph Originally  After Projections | Originally  After Projections
manna9 45 9 72 12
manna27 378 27 702 117
manna45s 1,035 45 1,980 330
manna8l 3,321 81 6,480 1,080

Clique Projections Applied to MSS Problems Arising fromirfgteTriple Systems.
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