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Some Structural Propertiesof aL east Central Subtreeof aTree

Martti Hamina and Matti Peltola
Mathematics Division, Faculty of Technology, University@ulu, PB 4500, 90014 Oulu, Finland

Abstract

We consider the graph center problem in the joinsemilatli¢&’) of all subtrees of a tre@". A subtreeS of a treeT’
is a central subtree of" if S has the minimum eccentricity in the joinsemilattice. Thaprcenter of the joinsemilattice
is the set of all central subtrees. A central subtree with iisimum number of points is a least central subtree of a
tree T. Thus least central subtrees ®f are, in some sense, the best possible connected subsesicifii’ among all
connected substructures. We show that every tree is a uteégsé central subtree of some larger tree. Our main result
points out the importance of the cardinality of the nodes edrde two. Low cardinality guarantees uniqueness and
explicit construction for the least central subtree.

Key words: Joinsemilattice of subtrees, least central subtree, cefteee.

1. Introduction The graph center of the joinsemilattice is the set of all
central subtrees. A central subtree with the minimum

The middle part of a graph has important applications number of points is a least central subtree of a ffee

in transportation, facility planning and location prob- A more detailed discussion with appropriate references

lems. Much research has been devoted to define thatis given in our article [3].

middle part of a tree. The most common centrality con- A tree may have several least central subtrees. We

cepts are the center (points with minimum eccentricity), are able to prove uniqueness of the least central subtree

the centroid (points where maximum branchweight at- for certain tree classes e.g. for caterpillars and homeo-

tains minimum value) and the path center (path with morphically irreducible trees. Furthermore, we present

minimum eccentricity). Here we consider another cen- estimates for the size and—eccentricity of least cen-

trality concept, the subtree center of a tree. This con- tral subtrees.

cept does not restrict the structure of the middle part of  In the previous work [8] Nieminen and Peltola proved

a tree. It can be a point or a path or some other kind of that the leaves of the tree cannot be points of any least

subtree such that the subtree is the most central whencentral subtree. In addition they proved that the inter-

compared with all subtrees of the tree. section of any two least central subtrees is nonempty.
For every treeT” there is a joinsemilatticé (T") of Recently Hamina and Peltola [3] improved the latter re-
subtrees ofl’, where the mees$; A S, of subtreesS; sult by proving that any least central subtree contains

and S, equals the subtree induced by the intersection the center of the tree and at least one point of the cen-
of the point sets of; andS, whenever the intersection ~ troid of the tree. Thus any least central subtree divides
is nonempty. The joirS; v S, of subtreesS; and S, the tree into the middle part and the peripheral part. In

is the least subtree Gf containing the subtree$; and the case of multiple least central subtrees there exists
S,. Note that the empty graph is not a subtre&pfind a transition region between the middle part and the pe-

thus, in general, there is no least elemenk(fT’). The ripheral part.
distance in the joinsemilatticB(T) is the same as the There are many applications which can be expressed
distance in the undirected Hasse diagram gr@phof as a graph optimization problem of the type
L(T). AsubtreeS of atreeT  is a central subtree § has
the minimum eccentricity in the joinsemilattide(T'). W= Y w(e)=min!
e€E(T)
Email: Martti Hamina [martti.hamina@ee.oulu.fi], Matti Pel- (
tola [ matti.peltola@ee.oulu.fi]. whereT is a spanning tree of the graghandw(e) is

(© 2010 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All righreserved.
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the cost for edge. The understanding of the behaviour of the subtreeS; is er(S1) = max{dp(S1,S5) |
of the subtree center may be useful for the choice of S is a subtree of'}. Clearlye(S1) equals the eccen-
appropriate spanning trees. tricity of the subtreeS; in the joinsemilattice graph
G1. The subtreeS; is a central subtree of a treE

if it has the minimumL—eccentricity. Least central
subtreesC;, of a treeT are solutions of the discrete
optimization problem

2. Some results on least central subtrees

In this section we collect some basic results for least
central subtrees from articles [8] and [3]. Forany subtree ., (¢, ) = min max{d(S:,S) | S is a subtree of'}
S we denote by.S| the number of points in the subtree. SicT

Figure 1 shows the construction of the joinsemilattice subject to the additional constraint that among all sub-

and the distance in the Hasse diagram graph We trees satisfying the minimax criteria, only those subtrees
have drawn all subtrees of a tree with six points and the \hich are minimal in size, are selected. Thus least cen-

corresponding joinsemilattice of subtrees. The center 5| syhtrees of” are, in some sense, the best possible
(two peripheries), the centroid (lightgray shading) and ¢qnnected substructures Bfamong all connected sub-
the least central subtree (octagonal, gray shading) aregy,ctres. Note that the definition of least central sub-

marked in the joinsemilattice. o _ trees in terms of the given optimization problem can be
The graph center of the joinsemilattice graph is the jnerpreted as a property of the tree itself. The construc-
set of all central subtrees of the trée Our example  jon of the underlying undirected Hasse diagram graph

in Figure 1 is very simple. The joinsemilattice center g pased purely on the neigbourhood relation between
consists of one subtree. This subtree is the least Cemra'subtrees of a tree.

subtree too. In general, the structure of the joinsemilat-

tice gnd the joinsemilattice center is not that simple.  shows how to define the distandg (51, S2) by using
Itis well known that for all tree§” of size|T'| = he properties of the tre@. In particular, there is no

paths have the least number of subtrees and stars havgieeq to construct the joinsemilattice which is of much

the largest number of subtrees. Thga(n + 1) < higher cardinality than the underlying tree.

|G| < 277! +n — 1; see [11]. In the case of stars

almost all points of the graplir;, are points of the | eqma 1 Let (7, be the semilattice graph of all sub-

graph centeC’(G',). Only leavesy; and complements  ees of a treel”, and S; and S, be two subtrees dF.

of leavesT \ v; are excluded from the joinsemilattice Then the distance betweesh and S, in G, is

center. Even the star itself is a point of the joinsemilat-

tice center. Thus among all trees of siZg = n, the dr(S1,S2) = 2|1V Sa| — |S1] — |Sa]

cardinality of the underlying joinsemilattice graph cen-

ter varies considerably: < |C(Gr)| <277 ! —n+1. B { |S1] + |Sa| + 2(d7(S1,82) — 1), if S1 NSy =10

For all paths the repeated procedure of stripping away — |S1] + |Sa| — 2|1 N Sa, if 51N Sy 0.

leaves gives all central subtrees. Again the path itself is

included into the joinsemilattice center. Joinsemilattic Proof. The basic observation is that the existence of a

of paths show that the graph cen€{G,) need not be line (S1,.52) in G, implies thatS; is obtained fromS,

a connected subgraph of the joinsemilattice graph by adding/removing a point. Thug, (S; V S, .5;) =
Thus the graph center @f, (the set of central sub-  |S;V S2|—1S;|, i = 1, 2. Because of the median algebra

trees) is too large for effective treatment of our prob- property ofL(T"), a shortest patl; — S2 goes through

lem. Therefore we have adopted another optimization S; v S5. This implies thatdy, (S1, S2) = 2|51 V Sa| —

criterion. Among all subtrees lying in the joinsemilat- |S;| — |S2].

tice center, the best is the one with minimal size. Thatis  If S; NSy = () thendr(S1, S2) > 1 and the number

our least central subtree. For paths and stars this mod-of points on the geodesit; — S is dr (S, S2) — 1.

ification resolves the problem. In both cases the least Thus|S; V Sa| = |S1] + |S2| + dr(S1,S2) — 1.

central subtree is unique and coincides with the center If S; NSy # () thenS; A Sy exists and Sy V Sa| =

Moreover, the following lemma ([8], Lemma 1)

of the tree. |S1]+1S2| — |S1N.S2|. The proof follows by combining
LetS; andS; be subtrees of a tréB. Letd, (51, S2) these facts. O
denote the distance between subtrégsand S in Nieminen and Peltola proved the following theorem

the joinsemilattice graphGr. The L—eccentricity in the paper [8].
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Fig. 1. The set of all subtrees of a tree and the corresporjdingemilattice.

Theorem 1 If Cy, is any least central subtree of tree L—eccentricityey,(Ty) = |To| + 1.

T, then the subtre€’;, does not contain any endpoint Proof. We may assume th#fy| > 2. LetT be a tree
of T'. Furthermore, any two least central subtrees have obtained fromT} by inserting one leaf on every point

a nonempty intersection. of Tp. Thus|T'| = 2|Ty|. Since the least central subtree
We remark that Theorem 1 implies that the intersec- cannot contain leaves then every least central subtree of
tion of an arbitrary number of least central subtrees is T' is a subtree offj,. For every subtred’; of Tj such
nonempty. This is a consequence of the acyclicity of a that |Ts| < |Tp| — 2, we havee, (Ts) > d(Ts,T) =

tree. |T|—|Ts| > |T|—(|To|—2) = |To|+2. If Ty is a subtree
Recently Hamina and Peltola [3] improved the result Of Zo such thatT,| = |Ty| — 1, thenTs = Ty \ {v1},
given in Theorem 1. where the point; is a leaf of 7. Let u; be a leaf of a

Theorem 2 The center of a tree is a subtree of every €€7 such thatu, is a neighbour ob, andus ¢ To.
least central subtree. Any least central subtree of a tree Thendr (T, u1) = 2 and
T contains a point of the centroid. Any least central

. ) dr(Ts, =Ty + 1+ 2(dp(Ts,uq) — 1
subtree contains the center, at least one point of the £(Ts {m}) B |TS| + 31_ ;T( ; w) = 1)
centroid, and the path from center to centroid. =|Tsl +3 = [To| + 2.

The proof is given i_n our article [3]. We remark thgt Thus for every subtre@, of T, we havee(Ts) >
these two theorems give a good starting point for writing |7y |+2. Sincedy, (T,, T') = |Tp|, it suffices to prove that
a practical algorithm. An outline of the algorithm is 4, (13, §) < |T}| + 1 for every subtrees of ', S # T.
given in section 5. Two cases arise (iy N Ty = 0 and (i) S N T} # 0.

In the following Theorem we prove that every tf€e (i) SinceT \ Ty contains only leavess is a tree of one
is a unique least central subtree of some larger tree.  point, dr (Typ,S) =1 and
Theorem 3 For any treeT} there exists a tred” such
that Ty is a unique least central subtree @f with dr(To, S) = |To| +|S| + 2(dr(To,S) — 1) = |To| + 1.
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(i) Assume first that there exists a poiat € Ty \ S
(otherwiseS N Ty = Ty). SinceS N Ty # 0, we may
assume thatv; is a neighbour ofS. Let v; be a leaf
of T such thatv; is a neighbour ofw;. Let S; be a
subtree induced by and pointsw; andv;. Clearly
SiNTy = (SﬂTo) U {wl} #* ) and|51| = |S| + 2.
Furthermore,

dr(To, S1) = [S1] + |To| — 2[S1 N To| = |S]| + 2 + [To|

—2|SNTy| —2=dp(To,S).

By repeating the process a finite number of times we
obtain a sequence of subtre§sSi, So, ..., S, such
thatdy, (T, Si) = dr.(Tp, S),i = 1,...,n. The process
ends, since finally,, N Ty = Ty. In the cases, N Ty =
To, we have

dr(To, Sn) = [To| +[Sn| = 2|To N Su| = |Sn] = |To|

S |T'| — |To| = |To|.

The proof is complete.

3. Some useful tree classes

In this section we recall some special tree classes and
present useful general estimates for trees. The reader
may find the references concerning tree enumeration

[5], [?], [6], [9] and [10] interesting. Let,(T') be the
number of nodes of degrée In particularn, (T') is the
number of leaves df'. A caterpillar is a tree for which

Martti Hamina & Matti Peltola— Some Structural Propertiésaid.east Central Subtree of a Tree

known, estimates for trees. See [1] p. 106 for some
references. Note the importance of the cardinality of
nodes of degree 2. For the convenience of the reader we
give the proofs.

Lemma 2 For all trees |T”| |T| — ny(T) and
diam T — 1 < |T’| < n1(T) + na(T) — 2. Moreover,

the estimates

A+diam T < ny(T)+diam T < |T|+ 1,

IT|+1 < 2ny(T) + no(T) — 1,
diam T <ny(T) 4+ no(T) — 1,
2diam T < |T|+no(T),

are true.

Proof.Let P be any diametral path. Thdn contains
exactly two leaves antlP| = diam T+ 1 < |T| —
n1(T) + 2. This implies the claimm, (T') + diam T' <
|T| + 1. The general formula for the number of leaves
of atreeis

A
T)=2+> (k—2)nk(T)
k=3

Furthermore, there exists at least one node of maxi-
mum degree. Thus we obtain the lower bound

) =24 (A =2)na(T)

A
n(T)=2+Y (k—2)ny(T
k=3

>24+(A-2)=A.
The proof is complete for the first estimate. We have

the points that are not leaves induce a path. See [1], [6] for the size of the subtreg’ the following formulas

for more information. Lefl” be the subtree obtained by
removing all leaves df'. For caterpillars the tre€’ is a
path. Letdeg v be thedegree of the pointv and letA =
maxdegv be the maximum degree. It is well known

that the degree sum satlsflg degv = 2(|T| —1).

A tree is calledstarlike (cf spider) if exactly one
point of the tree has degree greater than two.Retle-
note the path on points. ByT}, «,....». we denote the
starlike tree which has a poing of degrees and which
has the property that the grafi, x,.... . \ {vo} is @
forest of pathsPy, , P, , - .., Px,. Thus|Ty, &y, k.| =
ki +ko+ ...+ ks + 1.

A tree T is aCayley tree of degree n if each non-
leaf point has a constant numbeiof branches. A tree
is called homeomorphically irreducible if there are
no points of degree 2. Every Cayley tree of degree
with n > 3 is homeomorphically irreducible. We say
that a tree imlmost homeomorphically irreducible if
there is exactly one point of degree 2. In the following
lemma we have collected some useful, probably well

A
T = na(T) + 3 nx(T),
k=3

T2 5 (k- 2)m(T).
k=3

T = [T] = m(T)

These imply the equality
A
na(T) + Z ni(T) = |T| -2 - ng(k —2)ni(T)

which ylelds by solving with respect {@"| the follow-
ing result

A

IT| =24 n2(T) + > (k— 1)np(T).
k=3

Here we get easily the lower bound

A
IT| >2+n2(T)+ > 2nk(T)
k= 3

=2+ ny(T )+2an( )

=2+ no(T) + 2(|T| —n1(T) — na(T))
=2+ 2|T| - 2”1(T) — TLQ(T)
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This gives|T| + 2 < 2ny(T) + no(T) proving the

second inequality. The first and second estimate imply proof for almost irreducible trees is similar.

n(T)+diam T < |T|+1<2n1(T)+n2(T) -1

which proves the third result. Finally, we obtain by using
third and first inequality

2diam T — no(T) < diam T +n1(T) — 1 < |T|

proving the last estimate. The bounds for the size of the

subtre€el” follow from the previous estimates. O

The following estimates define a method for describ-
ing the starlike property and caterpillar property of a
tree

0 <|T|—=n1(T) —n2(T) < ny(T) — 2,
0 <|T|—n(T) — diam T 4+ 1 4+ min(1, ny (T) — 2).

Starlike trees satisfyT'| — ny1(T") — n2(T) — 1 = 0.
Caterpillar trees (including paths) are extremal in the
sense thafT'| + 1 — ny(T) — diam T = 0.

We can give more specific results for trees with low
cardinality of nodes of degree two.
Lemma 3 Let T' be a homeomorphically irreducible
tree and letv € T”. Then|T’| < ny(T) — 2 and for
any branchB, at v we have|B, N T'| < |B, \ T"|.
Moreover, we have the estimates

n(T) > diam T + 1,
T
diam T < ‘—2‘

LetT be any almost homeomorphically irreducible tree.
Letz € T’ be the point of degree 2 and lete T”,

v # x. Then|T’| < ny(T) — 1 and for any branchB,

at v not containingz we have|B, NT'| < |B, \ T”|.
For branchesB, at v containingz we havg B, NT"| <
|B, \ T| + 1. Finally for the branches at we have
|B. NT'| < |B,\T'|

Proof. The estimates follow from the results of Lemma
2 by substitutinge2(T") = 0. In particular, we have for

any irreducible tree
T < na(T) = 2. (%)

Letv € T’ and letB, be any branch at. Clearly, the
subtreeB, is homeomorphically irreducible ané, | =
|B, NT'| 4+ |B, \ T'|. Furthermore we have

n1(By) = | By \ T'| + 1.

Denoting byB; the subtree of the brandB, obtained
by removing the leaves (aB,) we have by (*)

IB,NT'| —1=|B| <n(By)—2=|B,\T'| - 1.
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This yields the estimat¢B, N 7’| < |B, \ T’|. The
O
Theorem 4 For any caterpillar tree the least central
subtree is unique.

Proof. Assume to the contrary that there exists a
caterpillarT which contains two least central subtrees
Cr and (7, such thatCy, N C} # 0. MoreoverCy, U
(7 is a subpath of any diametral path &t Clearly
|CL \ ClLl = |CIL \ CLl and we haveiL(CL,C’L) =
2|CL \ Cp| = 2|Cy, \ CL| > 2. We consider first the
case|C} \ C| > 2 and prove the existence of a least
central subtre€? = (Cyp, \ {u}) U {v}.

Assume that for anye € Cr \ C}, and for any
v € C; \ Cf there exists a subtreg of 7" such that
dr(C7,S) > er(Cr). We may assume that € C, \

C; is a leaf of C, and sinceCy, N C; # 0, we may
assume thav is a neighbour ofCy. Now |C7|
|OL| = |O/L| and thUSdL(OZ,T) = dL(OL,T) <
er,(Cr) implying S # T. For a contradiction it suffices
to prove thatd.(Cp,S) > dp(CY,S) = er(CY) or
dr(Cr,S) > di(CY,S) = er(C}). Two cases arise,
either (1)SNCY =0or (2)SNCY} # 0.

Q) If SNCy =0, thend,(CY,S) = |CY| + |S| +
2(dr(CY7,S)—1). If uis ontheS — C/ geodesic, then
Cr, NS C {u} and sincex ¢ C}, andS N CY =0 we
haveS N C}, =0 anddr(C},S) > dr(CY,S). Then
dp(CL,,S)=|CL| + S|+ 2(dr(C7, S) — 1)

> |CY] + 5] + 2(dr (CY, ) ~ 1)
- dL(Cg7 S)a

which is a contradiction. Iz ¢ S andwu is not on
the C/ — S geodesic, thew N Cr, = 0, dr(Cr, S) >
dr(C?,S) and thus
dr(Cr,S)=|Cr| + 5]+ 2(dr(Cr, S) — 1)

> |+ 1S+ 2(dr(CL,S) — 1)
= dL(Cgv S)a

which is a contradiction.

(2) Assume thatS N C/ # 0. Thener(CY)
dr(C7,S) = |C}] + |S] — 2|CY N S|. Four subcases
arise.

(2.2) Ifu,v € S, then|CLNS| = |(CYNS)U{u})\
{v} =|CYNS|>0.Thus

dr(Cr,S) = |CL| +[S| =2|CL N S|
= [CLI + 15| = 2[CL N S| = dr(CE, ),

which is a contradiction.
(2.2)Ifu ¢ Sandv ¢ S, thenC,NS =C/NS #0
and
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dr(Cr,S) = |CL| +]S] =2|CL N S|
= [CLI + 15| =2[CL N S| = di(CE, ),

which is again a contradiction.

(2.3)If u ¢ S andv € S, then two cases arise. If
SN Cr = 0, then, sincev is a neighbour ofC, we
havedr(C,S) =1and
dr(Cr,S)=|CL| + |S|+ 2(dr(CL,S) - 1)

=[O +1S] > [CL| +1S| = 2|C N S|
=dr(C, S)

which is a contradiction. IENCy, # @ thenCpNS =
(CfnS)\{v}, |CLn S| =|C}NS|—1and thus
dr(Cr,S)=|Cr| + |S] = 2[CL N S|

=[CLI+[S]=2(ICL N S| - 1)
=|CY|+1|S] = 2|C7 N S| +2
=dp(C],S)+2,

which is a contradiction.

(2.4) Assume that € S andv ¢ S. If C;,. NS =10,
thendr(C7,S) > 1 and
dr(Cr, S) =|CL| + S|+ 2(dr(C, S) — 1)

> |CLI+ 18]
> |CLI+ IS = 2[CL N S| =d(CT. S),

which is a contradiction. Thus we may assume that

C; NS # 0. Note that|C/ N S| = |C, N S| — 1. Since
CrLuUCy isapathand. € S, we have(C,\C,)NS =
Cr, \ C7,. Now we obtain

dp(C7,S)=1C7| +|S| —2|C7, N S|
=|CLI+1S] = 2|CL N S| +2(|CL N S|
(G AR
=dr(CF,S)+2(CLnS|—|CLNS|—1)
=d(C,S) +2(|(CL\C)NS[-1)
=dr(CF,8) +2(IC \ CL| - 1).

This is a contradiction fofCy, \ C%| > 2. By (1)
and (2) we may assume th@j, andC’; differ only one
point. Letw andv’ be the only point ofC, \ C}, and
C1 \ Cr, respectively. Thug', UC, = CpU{v'} =
C}, U{u} andCr U (1 is a path with two leaves and
u’. Two cases arise (3),(Cr) = er(C) = |T|—|CL|
and (4)er(CL) = er(Cy) > [T'| - [CL|.

(3) Let eL(OL) = |T| — |OL| Since dL(OL U
C;,T)=|T|—|CruCt| = |T|—|CL|—1there exists
a subtreeS # T such thate, (Cr, U CY) = dr(Cp U
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C7,S). We may assume théat is the maximal of such
subtree i.e. for any subtre# such thats C 5/, 5" £ S
we haved;(Cr, U C1,S") < dr(Cr U Cf,S). Two
cases arise (3.1 N (Cr U C;) = 0 and (3.2)
SN(CLuch) #0.

(3.1) We consider first the case, whefés a leaf of
T such thad(Cr, UC%,S) = 1. Sinceu is not a leaf
of T' there exists a node on the diametral path df
such thatly (w, u) = 1andw ¢ C,UC% . Furthermore,
dL(CL U CIL, S) = dL(CL U Ci, {w})

Hence we may assume thétcontains at least one
point of a diametral path df. SinceSN(CLUC}) = 0,
and sinceC', U C7, is a subpath of a diametral path,
eitheru or «’ is on the geodesic from§ to C, U C%.
Assume thatly(u', S) = dr(CLUC,, S) (another case
is similar). Nowdr(Cyr, S) = dr(CrL,UC},S)+1and

dr(Cr,S)=|Cr| + 15| +2(dr(C,S) — 1)
=|CLUCL| =1+ 9]
+2(dT(CL U CZ,S) +1-— 1)
:eL(CL U CIL) +1> eL(CL),

which is a contradiction.

(3.2) If u,u’ € S, thenCLUC, C S, thusS =T,
which is a contradiction. Two subcases arisel& S
andu’ ¢ S (the casa/ € S andu ¢ S is similar) and
(b) u,u’ ¢ S.

@ If(Crulr)NS = {u}, thendr(C,S) =1
and we obtain a contradiction

d(CL, §) =|CL| + 18] + 2(dr(C, §) — 1)
=|CLUCL|+|S|—2/(CLuUCL)NS|+1
ZGL(CL U CIL) + 1.

ThusC; NS # (. Sinceu’ ¢ S andu € S, we have
|IC,NS|=|(CLuCL)NS|—1and

dr(Cr,S) = |C[ + S| =2|C, N S|
=|CLUCL|+|S|=2|(CLUCi)NS|+1
= eL(CL U CIL) +1,

a contradiction.

(b) Assumey, v’ ¢ S. SinceSN(CLUCY, ) # 0, there
exists a point” of C UC, such that” is a neighbour
of S andw” is on the geodesic fron$ to v'. Since
S is a maximal subtree such that (Cy U C,S) =
er,(Cr UCY), u” cannot have a point ¢ C, UC, as
a neighbour. Otherwise, we have

dL(CL U C/L,SU {u”,v})
=|CLUCL|+|S|+2-2((CLuCL)N S|+ 1)
=|CLUCL|+|S|=2|(CLUC;)NS|

= eL(CL UCIL)
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contradicting the maximality of. Then clearlyu” #
u’. Let S” be a branch ofi”” such that’ € S”. Clearly
SNS” =0and|SUS"| =|S|+|S"]. Sinceu ¢ S,
u ¢ S”, we havelS” \ (C, UCL)| = 15"\ C}| and
|S” N (CLUCT)| = 15" NC%|. Combining these facts,
we obtain

dr(CLuCy,SUS") —er(CLUCY)
—15” ~2l{c,ucy) n s

— S\ (€U = €Uy n S
I ANANYeA)

The property that” cannot contain a leaf as a neigh-
bour implies thatT" \ S” induces a subtree df and
T=(T\S")uUS” Then

e1(CL) — dy(C,, T\ 8")
= |T| = |C| = (ICLI+ T\ §"| = 2|C, N (T'\ 57)])
= [T| = 2|CL| = |T| +|5"[+2(|C7 NT|

—|CL 05"
AN ARAT Y
=d(CLuCL,SUS")—er(CLUCYT).

By the maximality ofS we haved,, (C,UC} , SUS")—
er,(Cr, U CL) < 0. Thus the identity above implies a
contradictioner, (C;) — dr(C7, T\ S") < 0.

(4) Assumeer,(Cr) > |T| — |CL|, thuser(CL) >
|T| — |CL| + 1. Then sincelCL, N CL| = |CL] — 1,
we haved, (C, N C,T)=|T|—|C.NCL|=|T| -
|CL|+1 and since”, N C is not a least central subtree
of T', there existsS # T such thater (Cr, N C}) =
dr(Cr N CL,8) > |T| — |CL| + 1. Two cases arise,
(4.1)SN(CLNCL) =0and (4.2)SN(CLNCY) # 0.

(4.1) Clearly we may assume that eitheior u’ is
on the geodesic fromd’, N C} to S. OtherwiseS is a
leaf of T and a neighbour of a point ¢f;, N C’, which
implies thatd.(Cr,S) > dr(Cr N CY,S). Assume

thatu' is on the geodesic (another case is analogous).

Then clearlyd(Cy, S) = dr(Cr, N CY, S) and since
Cr, NS =0, we have

dr(Cr,S)

=|Cr+ (5] +2(dr(C, S) — 1)
=|CLNCLI+1+]|S|+2(dr(CLNCE,S)—1)
=er(CNCL)+1,

a contradiction.

(4.2) If (CLNCy)NS # 0, then sinceS # T either
u oru is not a point ofS. We may assume that¢ S.
Then clearly|Cr, N S| = |(CL N CL) N S| and

dr(Cr,S) = |Cr| +|S] = 2|CL N S|
=|CLNCL+1+]|S|=2[(CL,NC;)N S|
= eL(CLﬂC’L)—i-l,

a contradiction. By subcases (3) and (4) the Theorem

follows. |
Recently, it turned out that the cardinality of nodes of

degree two has a connection to the uniqueness of least

central subtrees. In some cases we are able to prove that

the uniqueC, equalsT”, the subtree of" obtained by

removing all leaves of .

Theorem 5 For any homeomorphically irreducible tree

T the unique least central subtre€ds. For any almost

homeomorphically irreducible tre& the unique least

central subtree ig”. For any Cayley tree of degree

the unique least central subtre€d. In all cases above

the minimumZL—eccentricity iser, (T7) = |T| — |T’| =
Proof. Cayley trees are a subclass of homeomor-

phically irreducible trees. We prove first the result for

homeomorphically irreducible trees. We may assume

|T| > 4. SinceCy, cannot contain leaves, every least

central subtree is a subtree®f Letn,(T') be the num-

ber of leaves ofT'|. For every subtred’; of T” such

that|Ts| < |T’| — 1, we have

er(Ts) 2 dp(Ts,T) = |T| = |Ts| = |T| = (IT"] = 1)

Sinced (T",T) = |T| — |T'| = n1(T) it suffices to
prove thatdy, (7", S) < ni(T) for every subtreé of T,
S # T. Two cases arise (§NT" =0 (i) SNT’ # 0.

(i) SinceT \ T contains only leaves df’ we have
S is a tree of one point andr(7’,S) = 1. Then, by
Lemma 1 and Lemma 3

dp(T',S)=|T"| + |S| + 2(dr(T',S) — 1)
= |T/| +1< nl(T) —1.

@iy If SNT'=1T’, we have

(T, 8) =T"| + |S] = 2IT"N S| = |S] — [T"]
ST = 1T'| = ma(T).

Assume that there exists a poing 7"\ S. SinceSN
T’ # (), we may assume thatis a neighbour of5. We
can choose the point € S such thatw is a neighbour
of v. Let B, be any branch at not containingS. For
all trees|B, | = |B,NT'|+ | B, \ T"|. In particular, for
branches of homeomorphically irreducible trees rooted
atv we have B,NT’| < |B,\T"|. LetS, be a maximal
subtree ofB, such thatS,N7’| = |S, \ 7”|. We obtain
S, from the branctB, by omitting some leaves in order
to obtain the balance. Clearlyc S,,. LetS; = SUS,,.
Now |S1| = |S|+]S,|, S1NT" = (SNT")U(S,NT") #
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pand|S;NT'|=|SNT'|+|S,NT’|. Then

do(T",81) = |S1] +[T"] = 2|51 N T"|
=S+ |Su| + [T”]
—2(|SNT'|+1S,NT’|)
=d(T",8) + |S,| — 2|S, NT"|
=dp(T',S).

If SyNT" =T, then as beford,(T’,51) = |S1] —
|| < |T)—|T'] < ni(T). If SyNT’ # T’ then we
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1S,NT'| =|SNT'|+|S,NT'|. Then

dp(T',81) = |S| + |Su| + |T|
—2(1SNT'|+1S,NT’|)
=d(T",8) +|S,| — 2|S, N T"|
=dy(T",9).

If Sy NT" =T, then as beford,(T’,51) = |S1| —
IT'| < |T|—|T'] < ni(T). If SyNT" # T’ then we
repeat the process described above. Hence we obtain a

repeat the process described above. Hence we obtain &eduence of subtregs= S, C 51 € 5S> € ... € Sy

sequence of subtregs= Sy € S; C S, C...C S,
such thatdy, (7", S;+1) = dp(T’,S;) for each index
1 =0,...,n—1.Atfinal stageS,,NT’ = T'. Moreover,
dr(T',Sn) = |Sn| — |T'| <|T| — |T’"| < n1(T). Thus
Cp, = T' is the unique least central subtree.

Here we consider the case of almost homeomorphi-

cally irreducible trees. The ca$€| = 3 is clear (one
tree), there are no such trees wjffij = 4. Thus we
may assume thgfl’| > 5. Letz € T be the unique
point of degree 2. For every subtrég of 7”7 such that
|Ts| < |T'| — 1, we haveer(Ts) > ni(T) + 1. Since
dr(T",T) = |T|—1|T’| = n1(T) it suffices to prove that
dr(T',S) < ny(T) for every subtrees of T', S # T.
Two cases arise (¥ N7T" =0 (i) SNT" # 0.

(i) SinceT \ T contains only leaves df’ we have
S is a tree of one point andy (7", S) = 1. Then, by
Lemma 3d. (T, S) = |T"|+|S|+2(dr(T",5)—1) =
T +1 < n(T).

(i) If SNT' =T’ we haved., (T, S) = |T'|+|S|—
2N S| =|S| =T <|T| = 1T|=m(T). lf z €S
then the proof of homeomorphically irreducible tree is
applicable. Thus we may assume that 7'\ S. Let
v € T’ be aneighbourof and letw € S be a neighbour
of v. We consider the branchd$, not containing the

pointw. By Lemma 3 we have three cases for branches

atv.
(1) f v # x andz & B, then|B, NT’| < |B, \ T"|.
(2) If v # zandz € B, then|B,NT’| < |B,\T"|+1.
(3) If v = z thenB, = B, and|B,NT’| < |B,\T"|.

Case (1) is similar to the case of a homeomorphi-
cally irreducible tree. We may assume that either one

of the branched3, contains the pointt or v = =.

If v # x then we repeatedly process the branches at

v not containing the poink. These branches can be
treated by the method of homeomorphically irreducible
trees. LetS, be a maximal subtree aB, such that
IS, N T'| = |S,\T'|. Let S; = SUS,. Clearly
1S1] = |S]+|S,| andS;NT" = (SNT")U(S,NT") # 0,

such thatd. (77, S;+1) = dp(T",S;) for each index
i = 0,...,n — 1. Moreover the poinz € T’ is a
neighbour ofS,,. We can choose the point € S,, such
thatw is a neighbour ofc. We consider the branch,
not containing the pointw. By Lemma 3|B, N 7’| <
|B. \ T'|. Let S, be a maximal subtree aB, such
that |S, N 7’| = |S, \ T'|. At final stage the subtree
Spi1 = Sp U S, satisfiesS,, .1 NT" = T". Moreover,
di (T, Sui1) = |Snia| — [T’ < IT| = T’ < my(T).
ThusCp, = T" is the unique least central subtree.d

4. Bounds for L—eccentricity and size of Cp,

The following Theorem gives sharp estimates for
the L—eccentricity of least central subtrees. The upper
bound is attained by stars and paths. Moreover, there
exist certain caterpillars which attain the lower bound.
Theorem 6 We have the bounds for the eccentricity of
the least central subtree

(1) S(T|+1) < er(Cr) < T - 1,

(2) er(Cr) = ni(T),

(3) eL(CL) Z diam T

Proof. The upper bound follows from the elementary
property (see [8], Theorem &), (C.) < er(x) < |T|—

1, provided thatT is not a path with even number of
points. A direct calculation shows that (Cr) = |T| —

1 for paths with even number of points. We use the
estimates

er(Cr) >dp(Cp,T) =|T| - |CL|,
er(Cr) > dr(Cr,vr)
=1|CL| + 14+ 2(dr(CL,v) — 1),
for leavesy,

and obtain the lower bounde,(Cr) > |T| + 1 +
2(dr(Cr,v) — 1) > |T| + 1 by adding inequalities.
Estimate (2) is clear. For the proof of (3), tgtanduv, be
two different leaves on any diametral pathiafLetc; €
Cp, andce € Cy, such thatdy (Cr,v;) = dr(ci,v;),
i =1,2. Now GL(CL) > d/L(CL,’Ui), 1 =1,2 and we
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have andCy, is unique. This follows from, (T') = e, (T") >
Cr) > T) and Theorem 7 case (1) is in use.
2e1.(C1) > |Cp| + |v1] + 2[dr(Cr,v1) — 1] er(Cr) = m(T) @)

+[CL| + |va| + 2[dr(CL,v2) — 1] Note that Table 3 agrees with Remark 1. In the case
= 2|CL| + 2[dr(CL,v1) + dr(Cr,va) — 1] eL((_JL) =n(T) = 7_a|_| 72 tr_ees_ are such that, =
= 2|CL| + 2[dr(c1,v1) + dr(ca,v2) — 1] _T’, in all cases the joinsemilattice cente_r conS|sts_ of
just one subtree, there are no cases with nonunique
Thus least central subtree, ard-eccentricity iser,(Cr) =

dr(Cp,T) = |T| = [T"].

The numbers in Table 3 are interpreted as follows.
The middle number is the count for all trees. The up-
per left number is the count for trees with (Cr) >
dr(Cp,T). The lower left number is the count for trees
since|Cr| — dr(e1, c2) — 1 > 0 for the subtree’.. with Cp, = T. T_he upper rig.ht r_1umber is the count

Table 1 and Table 2 show that the lower bounds in for trees with unigue joinsemilattice center. The lower
Theorem 6 agree well with computational results. Bold- right number is the count for trees with nonu_nique least
face numbers represent the count of cases where thet€ntral subtree. Only nonzero values are printed.
least central subtree is not unique. In Theorem 8 we bound the size of any least central

Recently we obtained a result concerning least central Subtree. We are able to prove the Theorem under the
subtrees with minimal values @ —eccentricity. ltgives ~ @ssumption that;, (C,) < [T —[C|+ 1. Table 4 and
sufficient conditions for a least central subtree of a tree 1able 5illustrate the Theorem from the numerical point

to attain maximum size or maximum diameter. These ©Of View.

er(Cr) > |Cp| + dr(er,v1) + dr(ca,v2) — 1
= |CL| — dr(c1,c2) + dr(c1,v1)
+dr(ci,c2) +dr(ca,v2) — 1
= |CL| — dr(c1,c2) + diam T — 1 > diam T,

results are formulated in Theorem 7. Theorem 8 If ¢ (CL) = [T| - |Cr| or er(Cr) =
Theorem 7 LetC;, be a least central subtree of atree |7| — [C| + 1 then we have the following bounds for
T the size of any least central subtree
(1) If eL(CL) = ny(T) thenCy = T’ and Cy, is (1) 2[C| < T,
unique. (2) |C| < |T| =m(T) + 1,
(2) If ey, (Cr) = diam T thenCy, is a path. @) |CL| <|T| - diam T + 1.
(3) If2e,(CL) = |T|+1thendiam T = diam Cj, + Proof. We assume that,,(Cr) = |T| — [CL| + F,
92 with &k > 0. Thus

Proof. The proof of (1) is clear. For the proof of (2) IT| = |CL| + k> dp(Cr,v) = |Cp| + 1

we use the result +2(dr(Cp,v) — 1), for leavesy,

er(Cr) = |Cr| = dr(c1, ¢2) + diam T'— 1 > diam T Solving this with respect t¢C7 | gives
obtained in the proof of Theorem 6. H.(CL) =
. . 2 <|T|+k—-1-2(d 1) <|T|+k-1
diam T then we have by previous estimaf€’},| — ICel < IT1+ (dr(Crov)=1) < [T1+
dr(c1,¢2) —1=0.ThusCy is a path. and estimate (1) follows fok = 0 andk = 1. Our
In the case (3) the tree size is an odd number. We 555mption together with estimate (2) in Theorem 6
have for all trees gives
2er(Cr) > (IT| = |CL]) + (ICL| = dr(c1, 2) [T = 1CL| + k= na(T)
_+ diam T — 1) and estimate (2) follows by solving the inequality with
= {ﬂ ; 1 i 3?3““ g_ gT(S’ ?) ) respect taC'. The proof for estimate (3) is analogous.
= l1a1m — Zz—arl(c1,C2 0
2 [T]+1. Remark 2. The distributions in Table 4 and Table 5
If 2¢1.(C1,) = |T|+1 thendiam T—2—dxr(c1, c2) = 0. are in agreement with the estimate (1) given in Theorem
Thusdiam Cy, = diam T — 2. ’ O 8. Estimates (2) and (3) are sharp only for trees with

Remark 1. Note that case (1) in Theorem 7 im- even size. We conjecture that either(C) = |_T| .
plies the following claim. Ife,(T") = ny(T) then Cr| orer(Cr) = [T| —|C1| + 1. We are working in

er(Cr) = n1(T) and according to Theorem(7;, = 7" order to prove the conjecture. _
The results in all tables are computed by constructing

all free trees, finding the subtrees and constructing the
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Table 1
Diameter
er(Cr) |2 3 4 5 6 7 8 9 10 11 Sum
11| 1 1 2
10 5 1 1 5 12
9 20,1 9 2 1 13 22 67,1
8 161 58,14 9442 1014 53 32261
7 8 43 71 26 148
Sum| 1 5 452 11014 16742 1284 66 23 5 1| 55162

Distribution of 551 trees of size 12 with respect to diameted L —eccentricity.

Table 2
Diameter
er(Cr) | 2 3 4 5 6 7 8 9 10 11 12 Sum
12 | 1 1 2
11 5 1 1 5 12
10 251 10 2 1 12 28 781
9 231 7210 533 28,10 9025 76 34249
8 132 8924 275129 290124 128 795279
7 3 16 37 16 72
Sum| 1 5 644 18734 367132 334134 21925 88 29 5 1| 1301329
Distribution of 1301 trees of size 13 with respect to diamated L—eccentricity.
Table 3
Number of leaves
er(CL) | 2 3 4 5 6 7 8 9 10 11 12 Sum
121 11 12
11 5 1 1 55 512
10 4 26 10 1 2 11, 9424 24781
9 3 40,5 8314 1536 253 661, 7272 323421,
8 111 12688 29653, 222827 1341341 145795398
7 727272 727272
Sum | 1 127 78{7 21935 35073 7632557 13420211 72831 2425 55 41 [ 312130133
Distribution of trees of size 13 with respect to number of/é=aander (Cy).
Table 4
Diameter
ICel | 2 3 4 5 6 7 8 9 10 11 12 Sum
6 3 16 37 20 76
5 132 8924 275129 286124 129 792279
4 231 7210 533 2810 8925 76 32249
3 251 10 2 1 12 28 681
2 5 1 1 5 12
1)1 1 2
Sum| 1 5 644 18734 367132 334134 21925 88 29 5 1| 1301329

Distribution of 1301 trees of size 13 with respect to diameted C, —size.
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Table 5
Diameter
[Cel | 2 3 4 5 6 7 8 9 10 114 Sum
6 2 15 41 26 84
5 6 28 30 194 53 1364
4 161 5814 9442 82 1 22 27357
3 201 9 2 1 12 5 491
2 5 1 1 1 8
11 1
Sum| 1 5 452 11014 16742 1284 66 23 5 1| 55162

Distribution of 551 trees of size 12 with respect to diameted C;, —size.

joinsemilattice graph of subtrees. We have computed

complete distributions up to tree si#€| = 15 with
similar results. The problem of generating free trees of
n nodes was very efficiently solved by Li and Ruskey
in [7]. The implementation of their algorithm in C-
language is available via Combinatorial Object Server
(COS) web-page http://theory.cs.uvic.ca/.

5. An algorithmic approach

This section is directed to a reader with back-
ground from algorithmic/computational complex-
ity/optimization issues. Here we give a high level
algorithmic approach.

The joinsemilatticel.(T") contains a complete infor-
mation of the structure of a treéE. The nodes in the
corresponding grap&y,, of L(T') are all subtrees of the
given treeT Let S; and Sy be two different subtrees
of T. There exists a line fron$; to S, in graphGp,
if and only if S; is obtained fromS; either by adding
a neighbouring point or by removing a leaf 8. The
basic tree operations concerning any subfed 1" are
e The operation of adding t6' a neighbouring point

{v} of S: EXPAND (S,v) := S — SU{v}.

e The operation of removing from§' a leaf{u} of S:
SHRINK (S, u) := S — S\ {u}.

e The exchange operation (swapping) i.e. removing a
leaf of S and simultaneously adding a neighbour of
S\ {u}: SWAP (S,u,v) := 5 — (S\ {u})U{v}.

Let{v;,1=1,...,n(S)} be the set of different neigh-

bours of S. Let {u;,i = 1,...,n1(S)} be the set of

leafs of S. It is clear that the set
n(S)
:= (| EXPAND (S, v;))
=1
n1(S)

JCJ SHRINK (S, u;))

=1

N(S)

contains all neighbouring subtrees $fin the join-
semilattice. Furthermore

dr(S,EXPAND (S,v;)) = 1,
| EXPAND (S, v;)] = |S] + 1
forall i =1,...,n(S),
d (S, SHRINK (S, u;)) = 1,
| SHRINK (S, u;)| = |S| -1
forall i =1,...,n1(9).

The swapping operation produces subtrees with
distance dr, (S, SWAP (S, u;,v;)) 2 and size
| SWAP (S, u;,v5)| = |S|. Itis clear that for a given
subtreeS the repeated use of operati@WAP pro-
duces all subtrees of si28|. In other words the swap-
ping operation is closed among all subtrees of given
size.

Let U be a subtree of" with eccentricityer (U).
By general properties of the eccentricity sequence we
have for all neighbouring subtreds € N(U) that
eL(U) -1 < GL(V) < GL(U) + 1. Let P(C,CR)
denote the least path containing the center and the
point of centroid which is nearest to the center. There
exists a geodesic in the joinsemilattice that connects
P(C,CRr), a least central subtreg;,, and the subtree
T'. In extreme cases this geodesic may be reduced
to a point in the joinsemilattice. In general, there are
several geodesics even though the least central subtree
is unique. In the general case there may be many least
central subtrees. We have been analyzing subtree per-
turbations of typeEXPAND, SHRINK and SWAP
concerning least central subtrees. Unfortunately we
cannot say much when the subtree under perturbation
process is not a least central subtree.

In the following we give an outline of the algorithm
for constructing least central subtrees.
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LetT =< {v1,...,v,} >.
Compute degree sequenceiaf
Identify leaves off".
LCSup="T".
/* Every LCS is subtree of .
If no(T") = 0 then
/* Homeomorphically irreducible tree.
LCS = LCSup
EL(LCS) = |T| - |T"|
else ifny(T) = 1 then
/* Almost homeomorphically
LCS = LCSup
[* irreducible tree.
EL(LCS) = |T| - |T"|
else ifny(T) > 2 then
Compute eccentricityyr, (LC' Sup).
if E,(LCSup)=n41(T) then
/* See Remark 1 after Theorem 7.
LCS = LCSup
EL(LCS) = |T| - |T"]
else
Find centerC.
Find centroidCx.
Let LCSlow = P(C,CR).
* Every LCS containsP(C, Cr).
If LCSlow = LCSup then
/* The geodesic reduces to a point.

LCS = LCSup
EL(LCS) = EL(LCSUP)
else

ANALYZE all subtrees on the
geodesics betweehC'Slow and
LCSup by computing
L-eccentricities and finding
least subtrees in size with
minimum L—eccentricity.
end if
end if
end if

ture within the underlying tree hierarchy with least cost.

6. Some conclusions and examples

Our results give a new point of view into trees. There
are two tree classes: trees with unique least central sub-
trees and trees with several least central subtrees. Home-
omorphically irreducible trees are the smallest trees
which contain complete information of the tree branch-
ing structure. For this class of trees we have unique-
ness and explicit a priori construction of the least cen-
tral subtree. The unique least central subtree for any
homeomorphically irreducible tree is obtained by strip-
ping away leaves. One edge subdivision of any home-
omorphically irreducible tree preserves this property.
For the class of trees with exactly one node of degree
two the unique least central subtree can be constructed
by the same method. Swapping between different least
central subtrees is impossible because there is no room
for swapping. These results have several practical spe-
cial cases e.g. Cayley trees are homeomorphically irre-
ducible. A full binary tree with root node of degree two
is another practical example. Furthermore, caterpillars
are a tree class with unique least central subtrees. Again
swapping is forbidden but the reason is different; there
are no free leaves for swapping between least central
subtrees.

However, we believe that trees with multiple least
central subtrees are of practical interest as spanning
trees. Our results show that flexible spanning trees
should have a sufficient deviation away from a caterpil-
lar tree. On the other hand the tree branching should not
be too strong. The number of nodes of degree 2 must
be large enough in order to guarantee some deviation
away from the class of irreducible trees.

There are several subjects for further research. We
feel that the most important open problem is our con-
jecture concerning possible values bf-eccentricity.

We conjecture that eithe¢.,(CL) = |T| — |CL]| or
er,(Cr) =|T| —|CL| + 1. We claim that this property

Here we give a brief interpretation of least central is true for all joinsemilattices generated by subtrees of a
subtrees. Assume that we have a fixed tree structure (egtree. This property is needed f6lz.-size bounds given
organization hierarchy, image layout hierarchy). Ket in Theorem 8. Furthermore, we believe that this result
and S, be two subtrees within this hierarchical struc- would be helpful for a more detailed description of the
ture. We assume that there is a unit cost for operations ANALYZE-stage of our high level algorithm given in
EXPAND (S1,v) andSHRINK (.51, u). According to section 5.

Lemma 1, the cost of deformation from substructsire For some problems it might be useful to use the

to substructureS, is given by L—distanced, (S, S2). largest central subtree instead of the least central sub-
Thus least central subtrees are the smallest possible subtree. What can be said about the case when the least
structures that are deformable into any other substruc- central subtree and largest central subtree coincide? Is
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it possible to characterize trees with unique joinsemi-

lattice center?
Finally, we present some examples concerning our ><

results. There are trees such that the tree has a bicentroid
and the other point of the centroid is not a point of
the least central subtree. There are trees such that the
center, the centroid, the least central subtree and the
path center are different subtrees. For more information  These trees are obtained by subdividing the star
on center, centroid and path center see [1]. Examples 3graphs K, ,, with n leaves. We have in general
and 4 illustrate the swapping mechanism. |K1.,,| = n+ 1. We prefer the complete bipartite graph
Example 1. Let p be the point of degree 5 of the notation for stars. The tree size|iB,o.....
starlike caterpillar tree in Figure 2. The largest branch for , > 3. Least central subtree size 6] =n—1

atp is the path< {p, q, r, s, t} >. Then the center of the ander,(Cr) = dp(Cr,T) = n + 2. Center nodey is

Flg 4, Centrality of tl’eegjz’g,z, T272,2’2 andT2,272,2¢2.

treeTy 11,1418 C =<{q,r} >, the centroid i =< contained in all least central subtrees and leaves cannot
{p} >, the least central subtree s, =< {p,q,r} > be in least central subtrees. There 4ré,) = (3)
and the path center §p =<{p,q,7, s} >. least central subtrees, since this binomial coefficient is

the number of ways to seleat- 2 nodes fromm candi-
dates. For these trees we have alway&C'r,, C ) < 4.
Example 4. All subtrees obtained by swapping
between points of least central subtrees are not nec-
essarily least central subtrees. In the following ex-
ample |T| = 11, |C| = 4. The intersection and
union of least central subtrees ate {p,q} > and
< {p,q,r, s,t,u} > respectively. There are five least
central subtrees< {p,q,r,s} >, < {p,q, 1t} >,
< Ap,q,ru} >, < {p,q,s,t} >, < {p,q,s,u} >,
with L—eccentricity e, (C,) = 7. The subtree
< {p,q,t,u} > is not a least central subtree, since

eL(<{p1Q7tau} >) =8.

Fig. 2. Centrality for a caterpillar tre€1,1,1,1,4.

Example 2. The largest branch at of the starlike
caterpillar tree in Figure 3 is the path{p, q, r, s, t} >.
For the treel} 1.1 4 the center isC =< {q,r} >, the
centroid isCr =< {p, q} >, the least central subtree
is C;, =< {¢,r} > and the path center i€p =<
{p,q,r, s} >. Herep, the other point of the centroid is
not a point of the least central subtree.

Fig. 5. An example on forbidden swapping.

All graphs in this article are drawn by using the dot
Fig. 3. Centrality for a caterpillar tre®; 1,1,4. graph drawing system, [2].

Example 3. Subdivision trees of stars are ideal sym-
metric swappers. The smallest member of the family References
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|CL| = 4, e,(C) = 7 has 10 least central subtrees. [2] Gansher E., Koutsofios E. and North S., Drawing graphs
with dot, 2006. http://www.graphviz.org/Documentation
/dotguide.pdf.
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