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Some Structural Properties of a Least Central Subtree of a Tree

Martti Hamina and Matti Peltola

Mathematics Division, Faculty of Technology, University of Oulu, PB 4500, 90014 Oulu, Finland

Abstract

We consider the graph center problem in the joinsemilatticeL(T ) of all subtrees of a treeT . A subtreeS of a treeT
is a central subtree ofT if S has the minimum eccentricity in the joinsemilattice. The graph center of the joinsemilattice
is the set of all central subtrees. A central subtree with theminimum number of points is a least central subtree of a
tree T . Thus least central subtrees ofT are, in some sense, the best possible connected substructures ofT among all
connected substructures. We show that every tree is a uniqueleast central subtree of some larger tree. Our main result
points out the importance of the cardinality of the nodes of degree two. Low cardinality guarantees uniqueness and
explicit construction for the least central subtree.

Key words: Joinsemilattice of subtrees, least central subtree, center of tree.

1. Introduction

The middle part of a graph has important applications
in transportation, facility planning and location prob-
lems. Much research has been devoted to define that
middle part of a tree. The most common centrality con-
cepts are the center (points with minimum eccentricity),
the centroid (points where maximum branchweight at-
tains minimum value) and the path center (path with
minimum eccentricity). Here we consider another cen-
trality concept, the subtree center of a tree. This con-
cept does not restrict the structure of the middle part of
a tree. It can be a point or a path or some other kind of
subtree such that the subtree is the most central when
compared with all subtrees of the tree.

For every treeT there is a joinsemilatticeL(T ) of
subtrees ofT , where the meetS1 ∧ S2 of subtreesS1

andS2 equals the subtree induced by the intersection
of the point sets ofS1 andS2 whenever the intersection
is nonempty. The joinS1 ∨ S2 of subtreesS1 andS2

is the least subtree ofT containing the subtreesS1 and
S2. Note that the empty graph is not a subtree ofT , and
thus, in general, there is no least element inL(T ). The
distance in the joinsemilatticeL(T ) is the same as the
distance in the undirected Hasse diagram graphGL of
L(T ). A subtreeS of a treeT is a central subtree ifS has
the minimum eccentricity in the joinsemilatticeL(T ).

Email: Martti Hamina [martti.hamina@ee.oulu.fi], Matti Pel-
tola [ matti.peltola@ee.oulu.fi].

The graph center of the joinsemilattice is the set of all
central subtrees. A central subtree with the minimum
number of points is a least central subtree of a treeT .
A more detailed discussion with appropriate references
is given in our article [3].

A tree may have several least central subtrees. We
are able to prove uniqueness of the least central subtree
for certain tree classes e.g. for caterpillars and homeo-
morphically irreducible trees. Furthermore, we present
estimates for the size andL−eccentricity of least cen-
tral subtrees.

In the previous work [8] Nieminen and Peltola proved
that the leaves of the tree cannot be points of any least
central subtree. In addition they proved that the inter-
section of any two least central subtrees is nonempty.
Recently Hamina and Peltola [3] improved the latter re-
sult by proving that any least central subtree contains
the center of the tree and at least one point of the cen-
troid of the tree. Thus any least central subtree divides
the tree into the middle part and the peripheral part. In
the case of multiple least central subtrees there exists
a transition region between the middle part and the pe-
ripheral part.

There are many applications which can be expressed
as a graph optimization problem of the type

W =
∑

e∈E(T )

w(e) = min !

whereT is a spanning tree of the graphG andw(e) is

c© 2010 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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the cost for edgee. The understanding of the behaviour
of the subtree center may be useful for the choice of
appropriate spanning trees.

2. Some results on least central subtrees

In this section we collect some basic results for least
central subtrees from articles [8] and [3]. For any subtree
S we denote by|S| the number of points in the subtree.
Figure 1 shows the construction of the joinsemilattice
and the distance in the Hasse diagram graphGL. We
have drawn all subtrees of a tree with six points and the
corresponding joinsemilattice of subtrees. The center
(two peripheries), the centroid (lightgray shading) and
the least central subtree (octagonal, gray shading) are
marked in the joinsemilattice.

The graph center of the joinsemilattice graph is the
set of all central subtrees of the treeT . Our example
in Figure 1 is very simple. The joinsemilattice center
consists of one subtree. This subtree is the least central
subtree too. In general, the structure of the joinsemilat-
tice and the joinsemilattice center is not that simple.

It is well known that for all treesT of size |T | = n
paths have the least number of subtrees and stars have
the largest number of subtrees. Thus1

2n(n + 1) ≤
|GL| ≤ 2n−1 + n − 1; see [11]. In the case of stars
almost all points of the graphGL are points of the
graph centerC(GL). Only leavesvi and complements
of leavesT \ vi are excluded from the joinsemilattice
center. Even the star itself is a point of the joinsemilat-
tice center. Thus among all trees of size|T | = n, the
cardinality of the underlying joinsemilattice graph cen-
ter varies considerably:1 ≤ |C(GL)| ≤ 2n−1 − n+ 1.
For all paths the repeated procedure of stripping away
leaves gives all central subtrees. Again the path itself is
included into the joinsemilattice center. Joinsemilattices
of paths show that the graph centerC(GL) need not be
a connected subgraph of the joinsemilattice graphGL.

Thus the graph center ofGL (the set of central sub-
trees) is too large for effective treatment of our prob-
lem. Therefore we have adopted another optimization
criterion. Among all subtrees lying in the joinsemilat-
tice center, the best is the one with minimal size. That is
our least central subtree. For paths and stars this mod-
ification resolves the problem. In both cases the least
central subtree is unique and coincides with the center
of the tree.

LetS1 andS2 be subtrees of a treeT . LetdL(S1, S2)
denote the distance between subtreesS1 and S2 in
the joinsemilattice graphGL. The L−eccentricity

of the subtreeS1 is eL(S1) = max{dL(S1, S) |
S is a subtree ofT }. ClearlyeL(S1) equals the eccen-
tricity of the subtreeS1 in the joinsemilattice graph
GL. The subtreeS1 is a central subtree of a treeT
if it has the minimumL−eccentricity. Least central
subtreesCL of a treeT are solutions of the discrete
optimization problem

eL(CL) = min
S1⊂T

max{dL(S1, S) | S is a subtree ofT }

subject to the additional constraint that among all sub-
trees satisfying the minimax criteria, only those subtrees
which are minimal in size, are selected. Thus least cen-
tral subtrees ofT are, in some sense, the best possible
connected substructures ofT among all connected sub-
structures. Note that the definition of least central sub-
trees in terms of the given optimization problem can be
interpreted as a property of the tree itself. The construc-
tion of the underlying undirected Hasse diagram graph
is based purely on the neigbourhood relation between
subtrees of a tree.

Moreover, the following lemma ([8], Lemma 1)
shows how to define the distancedL(S1, S2) by using
the properties of the treeT . In particular, there is no
need to construct the joinsemilattice which is of much
higher cardinality than the underlying tree.

Lemma 1 Let GL be the semilattice graph of all sub-
trees of a treeT , andS1 andS2 be two subtrees ofT .
Then the distance betweenS1 andS2 in GL is

dL(S1, S2) = 2|S1 ∨ S2| − |S1| − |S2|

=

{

|S1|+ |S2|+ 2(dT (S1, S2)− 1), if S1 ∩ S2 = ∅
|S1|+ |S2| − 2|S1 ∩ S2|, if S1 ∩ S2 6= ∅.

Proof.The basic observation is that the existence of a
line (S1, S2) in GL implies thatS1 is obtained fromS2

by adding/removing a point. ThusdL(S1 ∨ S2, Si) =
|S1∨S2|−|Si|, i = 1, 2. Because of the median algebra
property ofL(T ), a shortest pathS1−S2 goes through
S1 ∨ S2. This implies thatdL(S1, S2) = 2|S1 ∨ S2| −
|S1| − |S2|.

If S1 ∩ S2 = ∅ thendT (S1, S2) ≥ 1 and the number
of points on the geodesicS1 − S2 is dT (S1, S2) − 1.
Thus|S1 ∨ S2| = |S1|+ |S2|+ dT (S1, S2)− 1.

If S1 ∩ S2 6= ∅ thenS1 ∧ S2 exists and|S1 ∨ S2| =
|S1|+ |S2|−|S1∩S2|. The proof follows by combining
these facts. 2

Nieminen and Peltola proved the following theorem
in the paper [8].
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Fig. 1. The set of all subtrees of a tree and the correspondingjoinsemilattice.

Theorem 1 If CL is any least central subtree of tree
T , then the subtreeCL does not contain any endpoint
of T . Furthermore, any two least central subtrees have
a nonempty intersection.
We remark that Theorem 1 implies that the intersec-
tion of an arbitrary number of least central subtrees is
nonempty. This is a consequence of the acyclicity of a
tree.

Recently Hamina and Peltola [3] improved the result
given in Theorem 1.
Theorem 2 The center of a tree is a subtree of every
least central subtree. Any least central subtree of a tree
T contains a point of the centroid. Any least central
subtree contains the center, at least one point of the
centroid, and the path from center to centroid.

The proof is given in our article [3]. We remark that
these two theorems give a good starting point for writing
a practical algorithm. An outline of the algorithm is
given in section 5.

In the following Theorem we prove that every treeT
is a unique least central subtree of some larger tree.
Theorem 3 For any treeT0 there exists a treeT such
that T0 is a unique least central subtree ofT with

L−eccentricityeL(T0) = |T0|+ 1.
Proof.We may assume that|T0| ≥ 2. Let T be a tree

obtained fromT0 by inserting one leaf on every point
of T0. Thus|T | = 2|T0|. Since the least central subtree
cannot contain leaves then every least central subtree of
T is a subtree ofT0. For every subtreeTs of T0 such
that |Ts| ≤ |T0| − 2, we haveeL(Ts) ≥ dL(Ts, T ) =
|T |−|Ts| ≥ |T |−(|T0|−2) = |T0|+2. If Ts is a subtree
of T0 such that|Ts| = |T0| − 1, thenTs = T0 \ {v1},
where the pointv1 is a leaf ofT0. Let u1 be a leaf of a
treeT such thatu1 is a neighbour ofv1 andu1 /∈ T0.
ThendT (Ts, u1) = 2 and

dL(Ts, {u1}) = |Ts|+ 1 + 2(dT (Ts, u1)− 1)

= |Ts|+ 3 = |T0|+ 2.

Thus for every subtreeTs of T0 we haveeL(Ts) ≥
|T0|+2. SincedL(T0, T ) = |T0|, it suffices to prove that
dL(T0, S) ≤ |T0|+1 for every subtreeS of T , S 6= T .
Two cases arise (i)S ∩ T0 = ∅ and (ii) S ∩ T0 6= ∅.
(i) SinceT \T0 contains only leaves,S is a tree of one
point,dT (T0, S) = 1 and

dL(T0, S) = |T0|+ |S|+2(dT (T0, S)− 1) = |T0|+1.
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(ii) Assume first that there exists a pointw1 ∈ T0 \ S
(otherwiseS ∩ T0 = T0). SinceS ∩ T0 6= ∅, we may
assume thatw1 is a neighbour ofS. Let v1 be a leaf
of T such thatv1 is a neighbour ofw1. Let S1 be a
subtree induced byS and pointsw1 and v1. Clearly
S1 ∩ T0 = (S ∩ T0) ∪ {w1} 6= ∅ and |S1| = |S| + 2.
Furthermore,

dL(T0, S1) = |S1|+ |T0| − 2|S1 ∩ T0| = |S|+ 2 + |T0|

−2|S ∩ T0| − 2 = dL(T0, S).

By repeating the process a finite number of times we
obtain a sequence of subtreesS, S1, S2, . . . , Sn such
thatdL(T0, Si) = dL(T0, S), i = 1, . . . , n. The process
ends, since finallySn∩T0 = T0. In the caseSn∩T0 =
T0, we have

dL(T0, Sn) = |T0|+ |Sn| − 2|T0 ∩ Sn| = |Sn| − |T0|

≤ |T | − |T0| = |T0|.

The proof is complete. 2

3. Some useful tree classes

In this section we recall some special tree classes and
present useful general estimates for trees. The reader
may find the references concerning tree enumeration
[5], [?], [6], [9] and [10] interesting. Letnk(T ) be the
number of nodes of degreek. In particularn1(T ) is the
number of leaves ofT . A caterpillar is a tree for which
the points that are not leaves induce a path. See [1], [6]
for more information. LetT ′ be the subtree obtained by
removing all leaves ofT . For caterpillars the treeT ′ is a
path. Letdeg v be thedegree of the pointv and let∆ =
max
v∈T

deg v be the maximum degree. It is well known

that the degree sum satisfies
∑

v∈T

deg v = 2(|T | − 1).

A tree is calledstarlike (c.f. spider) if exactly one
point of the tree has degree greater than two. LetPn de-
note the path onn points. ByTk1,k2,...,ks

we denote the
starlike tree which has a pointv0 of degrees and which
has the property that the graphTk1,k2,...,ks

\ {v0} is a
forest of pathsPk1

, Pk2
, . . . , Pks

. Thus|Tk1,k2,...,ks
| =

k1 + k2 + . . .+ ks + 1.
A treeT is a Cayley tree of degree n if each non-

leaf point has a constant numbern of branches. A tree
is called homeomorphically irreducible if there are
no points of degree 2. Every Cayley tree of degreen,
with n ≥ 3 is homeomorphically irreducible. We say
that a tree isalmost homeomorphically irreducible if
there is exactly one point of degree 2. In the following
lemma we have collected some useful, probably well

known, estimates for trees. See [1] p. 106 for some
references. Note the importance of the cardinality of
nodes of degree 2. For the convenience of the reader we
give the proofs.
Lemma 2 For all trees |T ′| = |T | − n1(T ) and
diam T − 1 ≤ |T ′| ≤ n1(T ) + n2(T ) − 2. Moreover,
the estimates

∆+ diam T ≤ n1(T ) + diam T ≤ |T |+ 1,
|T |+ 1 ≤ 2n1(T ) + n2(T )− 1,
diam T ≤ n1(T ) + n2(T )− 1,
2 diam T ≤ |T |+ n2(T ),

are true.
Proof.Let P be any diametral path. ThenP contains

exactly two leaves and|P | = diam T + 1 ≤ |T | −
n1(T ) + 2. This implies the claimn1(T ) + diam T ≤
|T |+ 1. The general formula for the number of leaves
of a tree is

n1(T ) = 2 +

∆
∑

k=3

(k − 2)nk(T ).

Furthermore, there exists at least one node of maxi-
mum degree. Thus we obtain the lower bound

n1(T ) = 2 +

∆
∑

k=3

(k − 2)nk(T ) ≥ 2 + (∆− 2)n∆(T )

≥ 2 + (∆− 2) = ∆.

The proof is complete for the first estimate. We have
for the size of the subtreeT ′ the following formulas

|T ′| = n2(T ) +
∆
∑

k=3

nk(T ),

|T ′| = |T | − n1(T ) = |T | − 2−
∆
∑

k=3

(k − 2)nk(T ).

These imply the equality

n2(T ) +
∆
∑

k=3

nk(T ) = |T | − 2−
∆
∑

k=3

(k − 2)nk(T )

which yields by solving with respect to|T | the follow-
ing result

|T | = 2 + n2(T ) +
∆
∑

k=3

(k − 1)nk(T ).

Here we get easily the lower bound

|T | ≥ 2 + n2(T ) +
∆
∑

k=3

2nk(T )

= 2 + n2(T ) + 2
∆
∑

k=3

nk(T )

= 2 + n2(T ) + 2(|T | − n1(T )− n2(T ))
= 2 + 2|T | − 2n1(T )− n2(T ).
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This gives |T | + 2 ≤ 2n1(T ) + n2(T ) proving the
second inequality. The first and second estimate imply

n1(T ) + diam T ≤ |T |+ 1 ≤ 2n1(T ) + n2(T )− 1

which proves the third result. Finally, we obtain by using
third and first inequality

2 diam T − n2(T ) ≤ diam T + n1(T )− 1 ≤ |T |

proving the last estimate. The bounds for the size of the
subtreeT ′ follow from the previous estimates. 2

The following estimates define a method for describ-
ing the starlike property and caterpillar property of a
tree

0 ≤ |T | − n1(T )− n2(T ) ≤ n1(T )− 2,
0 ≤ |T | − n1(T )− diam T + 1+ min(1, n1(T )− 2).

Starlike trees satisfy|T | − n1(T ) − n2(T ) − 1 = 0.
Caterpillar trees (including paths) are extremal in the
sense that|T |+ 1− n1(T )− diam T = 0.

We can give more specific results for trees with low
cardinality of nodes of degree two.
Lemma 3 Let T be a homeomorphically irreducible
tree and letv ∈ T ′. Then|T ′| ≤ n1(T ) − 2 and for
any branchBv at v we have|Bv ∩ T ′| ≤ |Bv \ T ′|.
Moreover, we have the estimates

n1(T ) ≥ diam T + 1,

n1(T ) ≥ |T |
2 + 1,

diam T ≤ |T |
2 .

LetT be any almost homeomorphically irreducible tree.
Let x ∈ T ′ be the point of degree 2 and letv ∈ T ′,
v 6= x. Then|T ′| ≤ n1(T )− 1 and for any branchBv

at v not containingx we have|Bv ∩ T ′| ≤ |Bv \ T ′|.
For branchesBv at v containingx we have|Bv∩T ′| ≤
|Bv \ T ′| + 1. Finally for the branches atx we have
|Bx ∩ T ′| ≤ |Bx \ T ′|.
Proof.The estimates follow from the results of Lemma
2 by substitutingn2(T ) = 0. In particular, we have for
any irreducible tree

|T ′| ≤ n1(T )− 2. (∗)

Let v ∈ T ′ and letBv be any branch atv. Clearly, the
subtreeBv is homeomorphically irreducible and|Bv| =
|Bv ∩ T ′|+ |Bv \ T ′|. Furthermore we have

n1(Bv) = |Bv \ T
′|+ 1.

Denoting byB′
v the subtree of the branchBv obtained

by removing the leaves (ofBv) we have by (*)

|Bv ∩ T ′| − 1 = |B′
v| ≤ n1(Bv)− 2 = |Bv \ T

′| − 1.

This yields the estimate|Bv ∩ T ′| ≤ |Bv \ T ′|. The
proof for almost irreducible trees is similar. 2

Theorem 4 For any caterpillar tree the least central
subtree is unique.

Proof. Assume to the contrary that there exists a
caterpillarT which contains two least central subtrees
CL andC′

L such thatCL ∩ C′
L 6= ∅. MoreoverCL ∪

C′
L is a subpath of any diametral path ofT . Clearly

|CL \ C′
L| = |C′

L \ CL| and we havedL(CL, C
′
L) =

2|CL \ C′
L| = 2|C′

L \ CL| ≥ 2. We consider first the
case|C′

L \ CL| ≥ 2 and prove the existence of a least
central subtreeC′′

L = (CL \ {u}) ∪ {v}.
Assume that for anyu ∈ CL \ C′

L and for any
v ∈ C′

L \ CL there exists a subtreeS of T such that
dL(C

′′
L, S) > eL(CL). We may assume thatu ∈ CL \

C′
L is a leaf ofCL and sinceCL ∩ C′

L 6= ∅, we may
assume thatv is a neighbour ofCL. Now |C′′

L| =
|CL| = |C′

L| and thusdL(C′′
L, T ) = dL(CL, T ) ≤

eL(CL) implyingS 6= T . For a contradiction it suffices
to prove thatdL(CL, S) ≥ dL(C

′′
L, S) = eL(C

′′
L) or

dL(C
′
L, S) ≥ dL(C

′′
L, S) = eL(C

′′
L). Two cases arise,

either (1)S ∩ C′′
L = ∅ or (2)S ∩C′′

L 6= ∅.
(1) If S ∩ C′′

L = ∅, thendL(C′′
L, S) = |C′′

L| + |S| +
2(dT (C

′′
L, S)− 1). If u is on theS−C′′

L geodesic, then
CL ∩ S ⊆ {u} and sinceu /∈ C′

L, andS ∩ C′′
L = ∅ we

haveS ∩ C′
L = ∅ anddT (C′

L, S) ≥ dT (C
′′
L, S). Then

dL(C
′
L, S) = |C′

L|+ |S|+ 2(dT (C
′
L, S)− 1)

≥ |C′′
L|+ |S|+ 2(dT (C

′′
L, S)− 1)

= dL(C
′′
L, S),

which is a contradiction. Ifu /∈ S andu is not on
theC′′

L − S geodesic, thenS ∩ CL = ∅, dT (CL, S) ≥
dT (C

′′
L, S) and thus

dL(CL, S) = |CL|+ |S|+ 2(dT (CL, S)− 1)

≥ |C′′
L|+ |S|+ 2(dT (C

′′
L, S)− 1)

= dL(C
′′
L, S),

which is a contradiction.
(2) Assume thatS ∩ C′′

L 6= ∅. Then eL(C
′′
L) =

dL(C
′′
L, S) = |C′′

L| + |S| − 2|C′′
L ∩ S|. Four subcases

arise.
(2.1) If u, v ∈ S, then|CL∩S| = |((C′′

L∩S)∪{u})\
{v}| = |C′′

L ∩ S| > 0. Thus

dL(CL, S) = |CL|+ |S| − 2|CL ∩ S|
= |C′′

L|+ |S| − 2|C′′
L ∩ S| = dL(C

′′
L, S),

which is a contradiction.
(2.2) If u /∈ S andv /∈ S, thenCL∩S = C′′

L∩S 6= ∅
and
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dL(CL, S) = |CL|+ |S| − 2|CL ∩ S|
= |C′′

L|+ |S| − 2|C′′
L ∩ S| = dL(C

′′
L, S),

which is again a contradiction.
(2.3) If u /∈ S and v ∈ S, then two cases arise. If

S ∩ CL = ∅, then, sincev is a neighbour ofCL, we
havedT (CL, S) = 1 and

dL(CL, S) = |CL|+ |S|+ 2(dT (CL, S)− 1)

= |C′′
L|+ |S| ≥ |C′′

L|+ |S| − 2|C′′
L ∩ S|

= dL(C
′′
L, S)

which is a contradiction. IfS∩CL 6= ∅ thenCL∩S =
(C′′

L ∩ S) \ {v}, |CL ∩ S| = |C′′
L ∩ S| − 1 and thus

dL(CL, S) = |CL|+ |S| − 2|CL ∩ S|

= |C′′
L|+ |S| − 2(|C′′

L ∩ S| − 1)

= |C′′
L|+ |S| − 2|C′′

L ∩ S|+ 2

= dL(C
′′
L, S) + 2,

which is a contradiction.
(2.4) Assume thatu ∈ S andv /∈ S. If C′

L ∩ S = ∅,
thendT (C′

L, S) ≥ 1 and

dL(C
′
L, S) = |C′

L|+ |S|+ 2(dT (C
′
L, S)− 1)

≥ |C′′
L|+ |S|

≥ |C′′
L|+ |S| − 2|C′′

L ∩ S| = dL(C
′′
L, S),

which is a contradiction. Thus we may assume that
C′

L ∩ S 6= ∅. Note that|C′′
L ∩S| = |CL ∩S| − 1. Since

CL∪C′
L is a path andu ∈ S, we have(CL \C

′
L)∩S =

CL \ C′
L. Now we obtain

dL(C
′
L, S) = |C′

L|+ |S| − 2|C′
L ∩ S|

= |C′′
L|+ |S| − 2|C′′

L ∩ S|+ 2(|C′′
L ∩ S|

−|C′
L ∩ S|)

= dL(C
′′
L, S) + 2(|CL ∩ S| − |C′

L ∩ S| − 1)

= dL(C
′′
L, S) + 2(|(CL \ C′

L) ∩ S| − 1)

= dL(C
′′
L, S) + 2(|CL \C′

L| − 1).

This is a contradiction for|CL \ C′
L| ≥ 2. By (1)

and (2) we may assume thatCL andC′
L differ only one

point. Letu andu′ be the only point ofCL \ C′
L and

C′
L \ CL respectively. ThusCL ∪ C′

L = CL ∪ {u′} =
C′

L ∪{u} andCL ∪C′
L is a path with two leavesu and

u′. Two cases arise (3)eL(CL) = eL(C
′
L) = |T |−|CL|

and (4)eL(CL) = eL(C
′
L) > |T | − |CL|.

(3) Let eL(CL) = |T | − |CL|. Since dL(CL ∪
C′

L, T ) = |T |−|CL∪C′
L| = |T |−|CL|−1 there exists

a subtreeS 6= T such thateL(CL ∪ C′
L) = dL(CL ∪

C′
L, S). We may assume thatS is the maximal of such

subtree i.e. for any subtreeS′ such thatS ⊆ S′, S′ 6= S
we havedL(CL ∪ C′

L, S
′) < dL(CL ∪ C′

L, S). Two
cases arise (3.1)S ∩ (CL ∪ C′

L) = ∅ and (3.2)
S ∩ (CL ∪ C′

L) 6= ∅.
(3.1) We consider first the case, whereS is a leaf of

T such thatdT (CL ∪C′
L, S) = 1. Sinceu is not a leaf

of T there exists a nodew on the diametral path ofT
such thatdT (w, u) = 1 andw /∈ CL∪C′

L. Furthermore,
dL(CL ∪ C′

L, S) = dL(CL ∪ C′
L, {w}).

Hence we may assume thatS contains at least one
point of a diametral path ofT . SinceS∩(CL∪C′

L) = ∅,
and sinceCL ∪ C′

L is a subpath of a diametral path,
eitheru or u′ is on the geodesic fromS to CL ∪ C′

L.
Assume thatdT (u′, S) = dT (CL∪C′

L, S) (another case
is similar). NowdT (CL, S) = dT (CL∪C′

L, S)+1 and

dL(CL, S) = |CL|+ |S|+ 2(dT (CL, S)− 1)

= |CL ∪ C′
L| − 1 + |S|

+2(dT (CL ∪C′
L, S) + 1− 1)

= eL(CL ∪ C′
L) + 1 > eL(CL),

which is a contradiction.
(3.2) If u, u′ ∈ S, thenCL ∪ C′

L ⊆ S, thusS = T ,
which is a contradiction. Two subcases arise (a)u ∈ S
andu′ /∈ S (the caseu′ ∈ S andu /∈ S is similar) and
(b) u, u′ /∈ S.

(a) If (CL ∪ C′
L) ∩ S = {u}, thendT (C′

L, S) = 1
and we obtain a contradiction

dL(C
′
L, S) = |C′

L|+ |S|+ 2(dT (C
′
L, S)− 1)

= |C′
L ∪ CL|+ |S| − 2|(C′

L ∪ CL) ∩ S|+ 1

= eL(CL ∪ C′
L) + 1.

ThusC′
L ∩S 6= ∅. Sinceu′ /∈ S andu ∈ S, we have

|C′
L ∩ S| = |(CL ∪C′

L) ∩ S| − 1 and

dL(C
′
L, S) = |C′

L|+ |S| − 2|C′
L ∩ S|

= |CL ∪ C′
L|+ |S| − 2|(CL ∪ C′

L) ∩ S|+ 1
= eL(CL ∪ C′

L) + 1,

a contradiction.
(b) Assumeu, u′ /∈ S. SinceS∩(CL∪C

′
L) 6= ∅, there

exists a pointu′′ of CL∪C′
L such thatu′′ is a neighbour

of S and u′′ is on the geodesic fromS to u′. Since
S is a maximal subtree such thatdL(CL ∪ C′

L, S) =
eL(CL ∪C′

L), u
′′ cannot have a pointv /∈ CL ∪C′

L as
a neighbour. Otherwise, we have

dL(CL ∪ C′
L, S ∪ {u′′, v})

= |CL ∪ C′
L|+ |S|+ 2− 2(|(CL ∪ C′

L) ∩ S|+ 1)
= |CL ∪ C′

L|+ |S| − 2|(CL ∪ C′
L) ∩ S|

= eL(CL ∪ C′
L)
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contradicting the maximality ofS. Then clearlyu′′ 6=
u′. LetS′′ be a branch ofu′′ such thatu′ ∈ S′′. Clearly
S ∩ S′′ = ∅ and |S ∪ S′′| = |S| + |S′′|. Sinceu /∈ S,
u /∈ S′′, we have|S′′ \ (CL ∪ C′

L)| = |S′′ \ C′
L| and

|S′′ ∩ (CL ∪C′
L)| = |S′′ ∩C′

L|. Combining these facts,
we obtain

dL(CL ∪C′
L, S ∪ S′′)− eL(CL ∪ C′

L)
= |S′′| − 2|(CL ∪C′

L) ∩ S′′|
= |S′′ \ (CL ∪ C′

L)| − |(CL ∪ C′
L) ∩ S′′|

= |S′′ \ C′
L| − |S′′ ∩ C′

L|.

The property thatu′′ cannot contain a leaf as a neigh-
bour implies thatT \ S′′ induces a subtree ofT and
T = (T \ S′′) ∪ S′′. Then

eL(C
′
L)− dL(C

′
L, T \ S′′)

= |T | − |C′
L| − (|C′

L|+ |T \ S′′| − 2|C′
L ∩ (T \ S′′)|)

= |T | − 2|C′
L| − |T |+ |S′′|+ 2(|C′

L ∩ T |
−|C′

L ∩ S′′|)
= |S′′ \ C′

L| − |C′
L ∩ S′′|

= dL(CL ∪ C′
L, S ∪ S′′)− eL(CL ∪C′

L).

By the maximality ofS we havedL(CL∪C′
L, S∪S

′′)−
eL(CL ∪ C′

L) < 0. Thus the identity above implies a
contradictioneL(C′

L)− dL(C
′
L, T \ S′′) < 0.

(4) AssumeeL(CL) > |T | − |CL|, thuseL(CL) ≥
|T | − |CL| + 1. Then since|CL ∩ C′

L| = |CL| − 1,
we havedL(CL ∩ C′

L, T ) = |T | − |CL ∩ C′
L| = |T | −

|CL|+1 and sinceCL∩C′
L is not a least central subtree

of T , there existsS 6= T such thateL(CL ∩ C′
L) =

dL(CL ∩ C′
L, S) > |T | − |CL| + 1. Two cases arise,

(4.1)S ∩ (CL ∩C′
L) = ∅ and (4.2)S∩ (CL ∩C′

L) 6= ∅.
(4.1) Clearly we may assume that eitheru or u′ is

on the geodesic fromCL ∩ C′
L to S. OtherwiseS is a

leaf ofT and a neighbour of a point ofCL∩C′
L, which

implies thatdL(CL, S) > dL(CL ∩ C′
L, S). Assume

thatu′ is on the geodesic (another case is analogous).
Then clearlydT (CL, S) = dT (CL ∩ C′

L, S) and since
CL ∩ S = ∅, we have

dL(CL, S)
= |CL|+ |S|+ 2(dT (CL, S)− 1)
= |CL ∩ C′

L|+ 1 + |S|+ 2(dT (CL ∩ C′
L, S)− 1)

= eL(CL ∩C′
L) + 1,

a contradiction.
(4.2) If (CL ∩C′

L)∩S 6= ∅, then sinceS 6= T either
u or u′ is not a point ofS. We may assume thatu /∈ S.
Then clearly|CL ∩ S| = |(CL ∩C′

L) ∩ S| and

dL(CL, S) = |CL|+ |S| − 2|CL ∩ S|
= |CL ∩ C′

L|+ 1 + |S| − 2|(CL ∩ C′
L) ∩ S|

= eL(CL ∩ C′
L) + 1,

a contradiction. By subcases (3) and (4) the Theorem
follows. 2

Recently, it turned out that the cardinality of nodes of
degree two has a connection to the uniqueness of least
central subtrees. In some cases we are able to prove that
the uniqueCL equalsT ′, the subtree ofT obtained by
removing all leaves ofT .
Theorem 5 For any homeomorphically irreducible tree
T the unique least central subtree isT ′. For any almost
homeomorphically irreducible treeT the unique least
central subtree isT ′. For any Cayley tree of degreen
the unique least central subtree isT ′. In all cases above
the minimumL−eccentricity iseL(T ′) = |T | − |T ′| =
n1(T ).

Proof. Cayley trees are a subclass of homeomor-
phically irreducible trees. We prove first the result for
homeomorphically irreducible trees. We may assume
|T | ≥ 4. SinceCL cannot contain leaves, every least
central subtree is a subtree ofT ′. Letn1(T ) be the num-
ber of leaves of|T |. For every subtreeTs of T ′ such
that |Ts| ≤ |T ′| − 1, we have

eL(Ts) ≥ dL(Ts, T ) = |T | − |Ts| ≥ |T | − (|T ′| − 1)
= |T | − |T |+ n1(T ) + 1 = n1(T ) + 1.

SincedL(T ′, T ) = |T | − |T ′| = n1(T ) it suffices to
prove thatdL(T ′, S) ≤ n1(T ) for every subtreeS of T ,
S 6= T . Two cases arise (i)S ∩ T ′ = ∅ (ii) S ∩ T ′ 6= ∅.

(i) SinceT \ T ′ contains only leaves ofT we have
S is a tree of one point anddT (T ′, S) = 1. Then, by
Lemma 1 and Lemma 3

dL(T
′, S) = |T ′|+ |S|+ 2(dT (T

′, S)− 1)

= |T ′|+ 1 ≤ n1(T )− 1.

(ii) If S ∩ T ′ = T ′, we have

dL(T
′, S) = |T ′|+ |S| − 2|T ′ ∩ S| = |S| − |T ′|

≤ |T | − |T ′| = n1(T ).

Assume that there exists a pointv ∈ T ′\S. SinceS∩
T ′ 6= ∅, we may assume thatv is a neighbour ofS. We
can choose the pointw ∈ S such thatw is a neighbour
of v. Let Bv be any branch atv not containingS. For
all trees|Bv| = |Bv ∩T ′|+ |Bv \T ′|. In particular, for
branches of homeomorphically irreducible trees rooted
atv we have|Bv∩T ′| ≤ |Bv \T ′|. Let S̃v be a maximal
subtree ofBv such that|S̃v∩T ′| = |S̃v \T

′|. We obtain
S̃v from the branchBv by omitting some leaves in order
to obtain the balance. Clearlyv ∈ S̃v. LetS1 = S∪ S̃v.
Now |S1| = |S|+|S̃v|,S1∩T ′ = (S∩T ′)∪(S̃v∩T ′) 6=
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∅ and|S1 ∩ T ′| = |S ∩ T ′|+ |S̃v ∩ T ′|. Then

dL(T
′, S1) = |S1|+ |T ′| − 2|S1 ∩ T ′|

= |S|+ |S̃v|+ |T ′|

−2(|S ∩ T ′|+ |S̃v ∩ T ′|)
= dL(T

′, S) + |S̃v| − 2|S̃v ∩ T ′|
= dL(T

′, S).

If S1 ∩ T ′ = T ′, then as beforedL(T ′, S1) = |S1| −
|T ′| ≤ |T | − |T ′| ≤ n1(T ). If S1 ∩ T ′ 6= T ′ then we
repeat the process described above. Hence we obtain a
sequence of subtreesS = S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ Sn

such thatdL(T ′, Si+1) = dL(T
′, Si) for each index

i = 0, . . . , n−1. At final stageSn∩T ′ = T ′. Moreover,
dL(T

′, Sn) = |Sn| − |T ′| ≤ |T | − |T ′| ≤ n1(T ). Thus
CL = T ′ is the unique least central subtree.

Here we consider the case of almost homeomorphi-
cally irreducible trees. The case|T | = 3 is clear (one
tree), there are no such trees with|T | = 4. Thus we
may assume that|T | ≥ 5. Let x ∈ T ′ be the unique
point of degree 2. For every subtreeTs of T ′ such that
|Ts| ≤ |T ′| − 1, we haveeL(Ts) ≥ n1(T ) + 1. Since
dL(T

′, T ) = |T |−|T ′| = n1(T ) it suffices to prove that
dL(T

′, S) ≤ n1(T ) for every subtreeS of T , S 6= T .
Two cases arise (i)S ∩ T ′ = ∅ (ii) S ∩ T ′ 6= ∅.

(i) SinceT \ T ′ contains only leaves ofT we have
S is a tree of one point anddT (T ′, S) = 1. Then, by
Lemma 3dL(T ′, S) = |T ′|+ |S|+2(dT (T

′, S)−1) =
|T ′|+ 1 ≤ n1(T ).

(ii) If S∩T ′ = T ′, we havedL(T ′, S) = |T ′|+ |S|−
2|T ′ ∩ S| = |S| − |T ′| ≤ |T | − |T ′| = n1(T ). If x ∈ S
then the proof of homeomorphically irreducible tree is
applicable. Thus we may assume thatx ∈ T ′ \ S. Let
v ∈ T ′ be a neighbour ofS and letw ∈ S be a neighbour
of v. We consider the branchesBv not containing the
pointw. By Lemma 3 we have three cases for branches
at v.

(1) If v 6= x andx 6∈ Bv then|Bv ∩ T ′| ≤ |Bv \ T ′|.
(2) If v 6= x andx ∈ Bv then|Bv∩T ′| ≤ |Bv\T ′|+1.
(3) If v = x thenBv = Bx and|Bv∩T ′| ≤ |Bv \T ′|.
Case (1) is similar to the case of a homeomorphi-

cally irreducible tree. We may assume that either one
of the branchesBv contains the pointx or v = x.
If v 6= x then we repeatedly process the branches at
v not containing the pointx. These branches can be
treated by the method of homeomorphically irreducible
trees. LetS̃v be a maximal subtree ofBv such that
|S̃v ∩ T ′| = |S̃v \ T ′|. Let S1 = S ∪ S̃v. Clearly
|S1| = |S|+|S̃v| andS1∩T ′ = (S∩T ′)∪(S̃v∩T ′) 6= ∅,

|S1 ∩ T ′| = |S ∩ T ′|+ |S̃v ∩ T ′|. Then

dL(T
′, S1) = |S|+ |S̃v|+ |T ′|

−2(|S ∩ T ′|+ |S̃v ∩ T ′|)
= dL(T

′, S) + |S̃v| − 2|S̃v ∩ T ′|
= dL(T

′, S).

If S1 ∩ T ′ = T ′, then as beforedL(T ′, S1) = |S1| −
|T ′| ≤ |T | − |T ′| ≤ n1(T ). If S1 ∩ T ′ 6= T ′ then we
repeat the process described above. Hence we obtain a
sequence of subtreesS = S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ Sn

such thatdL(T ′, Si+1) = dL(T
′, Si) for each index

i = 0, . . . , n − 1. Moreover the pointx ∈ T ′ is a
neighbour ofSn. We can choose the pointw ∈ Sn such
thatw is a neighbour ofx. We consider the branchBx

not containing the pointw. By Lemma 3|Bx ∩ T ′| ≤
|Bx \ T ′|. Let S̃x be a maximal subtree ofBx such
that |S̃x ∩ T ′| = |S̃x \ T ′|. At final stage the subtree
Sn+1 = Sn ∪ S̃x satisfiesSn+1 ∩ T ′ = T ′. Moreover,
dL(T

′, Sn+1) = |Sn+1| − |T ′| ≤ |T | − |T ′| ≤ n1(T ).
ThusCL = T ′ is the unique least central subtree.2

4. Bounds for L−eccentricity and size of CL

The following Theorem gives sharp estimates for
theL−eccentricity of least central subtrees. The upper
bound is attained by stars and paths. Moreover, there
exist certain caterpillars which attain the lower bound.
Theorem 6 We have the bounds for the eccentricity of
the least central subtree
(1) 1

2 (|T |+ 1) ≤ eL(CL) ≤ |T | − 1,
(2) eL(CL) ≥ n1(T ),
(3) eL(CL) ≥ diam T .

Proof. The upper bound follows from the elementary
property (see [8], Theorem 5)eL(CL) ≤ eL(x) ≤ |T |−
1, provided thatT is not a path with even number of
points. A direct calculation shows thateL(CL) = |T |−
1 for paths with even number of points. We use the
estimates

eL(CL) ≥ dL(CL, T ) = |T | − |CL|,
eL(CL) ≥ dL(CL, vl)

= |CL|+ 1 + 2(dT (CL, vl)− 1),
for leavesvl

and obtain the lower bound2 eL(CL) ≥ |T | + 1 +
2(dT (CL, vl) − 1) ≥ |T | + 1 by adding inequalities.
Estimate (2) is clear. For the proof of (3), letv1 andv2 be
two different leaves on any diametral path ofT . Letc1 ∈
CL and c2 ∈ CL such thatdT (CL, vi) = dT (ci, vi),
i = 1, 2. Now eL(CL) ≥ dL(CL, vi), i = 1, 2 and we
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have

2eL(CL) ≥ |CL|+ |v1|+ 2[dT (CL, v1)− 1]
+|CL|+ |v2|+ 2[dT (CL, v2)− 1]

= 2|CL|+ 2[dT (CL, v1) + dT (CL, v2)− 1]
= 2|CL|+ 2[dT (c1, v1) + dT (c2, v2)− 1].

Thus

eL(CL) ≥ |CL|+ dT (c1, v1) + dT (c2, v2)− 1
= |CL| − dT (c1, c2) + dT (c1, v1)
+dT (c1, c2) + dT (c2, v2)− 1

= |CL| − dT (c1, c2) + diam T − 1 ≥ diam T,

since|CL| − dT (c1, c2)− 1 ≥ 0 for the subtreeCL.
Table 1 and Table 2 show that the lower bounds in

Theorem 6 agree well with computational results. Bold-
face numbers represent the count of cases where the
least central subtree is not unique.

Recently we obtained a result concerning least central
subtrees with minimal values ofL−eccentricity. It gives
sufficient conditions for a least central subtree of a tree
to attain maximum size or maximum diameter. These
results are formulated in Theorem 7.
Theorem 7 LetCL be a least central subtree of a tree
T .
(1) If eL(CL) = n1(T ) then CL = T ′ and CL is

unique.
(2) If eL(CL) = diam T thenCL is a path.
(3) If 2eL(CL) = |T |+1 thendiam T = diam CL+

2.
Proof. The proof of (1) is clear. For the proof of (2)

we use the result

eL(CL) ≥ |CL| − dT (c1, c2) + diam T − 1 ≥ diam T

obtained in the proof of Theorem 6. IfeL(CL) =
diam T then we have by previous estimate|CL| −
dT (c1, c2)− 1 = 0. ThusCL is a path.

In the case (3) the tree size is an odd number. We
have for all trees

2eL(CL) ≥ (|T | − |CL|) + (|CL| − dT (c1, c2)
+ diam T − 1)

= |T | − 1 + diam T − dT (c1, c2)
= |T |+ 1 + diam T − 2− dT (c1, c2)
≥ |T |+ 1.

If 2eL(CL) = |T |+1 thendiam T−2−dT (c1, c2) = 0.
Thusdiam CL = diam T − 2. 2

Remark 1. Note that case (1) in Theorem 7 im-
plies the following claim. IfeL(T ′) = n1(T ) then
eL(CL) = n1(T ) and according to Theorem 7CL = T ′

andCL is unique. This follows fromn1(T ) = eL(T
′) ≥

eL(CL) ≥ n1(T ) and Theorem 7 case (1) is in use.

Note that Table 3 agrees with Remark 1. In the case
eL(CL) = n1(T ) = 7 all 72 trees are such thatCL =
T ′, in all cases the joinsemilattice center consists of
just one subtree, there are no cases with nonunique
least central subtree, andL−eccentricity iseL(CL) =
dL(CL, T ) = |T | − |T ′|.

The numbers in Table 3 are interpreted as follows.
The middle number is the count for all trees. The up-
per left number is the count for trees witheL(CL) >
dL(CL, T ). The lower left number is the count for trees
with CL = T ′. The upper right number is the count
for trees with unique joinsemilattice center. The lower
right number is the count for trees with nonunique least
central subtree. Only nonzero values are printed.

In Theorem 8 we bound the size of any least central
subtree. We are able to prove the Theorem under the
assumption thateL(CL) ≤ |T |− |CL|+1. Table 4 and
Table 5 illustrate the Theorem from the numerical point
of view.
Theorem 8 If eL(CL) = |T | − |CL| or eL(CL) =
|T | − |CL| + 1 then we have the following bounds for
the size of any least central subtree
(1) 2|CL| ≤ |T |,
(2) |CL| ≤ |T | − n1(T ) + 1,
(3) |CL| ≤ |T | − diam T + 1.
Proof. We assume thateL(CL) = |T | − |CL| + k,

with k ≥ 0. Thus

|T | − |CL|+ k ≥ dL(CL, vl) = |CL|+ 1

+2(dT (CL, vl)− 1), for leavesvl

Solving this with respect to|CL| gives

2|CL| ≤ |T |+k−1−2(dT (CL, vl)−1) ≤ |T |+k−1

and estimate (1) follows fork = 0 and k = 1. Our
assumption together with estimate (2) in Theorem 6
gives

|T | − |CL|+ k ≥ n1(T )

and estimate (2) follows by solving the inequality with
respect toCL. The proof for estimate (3) is analogous.
2

Remark 2. The distributions in Table 4 and Table 5
are in agreement with the estimate (1) given in Theorem
8. Estimates (2) and (3) are sharp only for trees with
even size. We conjecture that eithereL(CL) = |T | −
|CL| or eL(CL) = |T | − |CL| + 1. We are working in
order to prove the conjecture.

The results in all tables are computed by constructing
all free trees, finding the subtrees and constructing the
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Table 1

Diameter
eL(CL) 2 3 4 5 6 7 8 9 10 11 Sum

11 1 1 2
10 5 1 1 5 12
9 20,1 9 2 1 13 22 67,1
8 16,1 58,14 94,42 101,4 53 322,61
7 8 43 71 26 148

Sum 1 5 45,2 110,14 167,42 128,4 66 23 5 1 551,62

Distribution of 551 trees of size 12 with respect to diameterandL−eccentricity.

Table 2

Diameter
eL(CL) 2 3 4 5 6 7 8 9 10 11 12 Sum

12 1 1 2
11 5 1 1 5 12
10 25,1 10 2 1 12 28 78,1
9 23,1 72,10 53,3 28,10 90,25 76 342,49
8 13,2 89,24 275,129 290,124 128 795,279
7 3 16 37 16 72

Sum 1 5 64,4 187,34 367,132 334,134 219,25 88 29 5 1 1301,329

Distribution of 1301 trees of size 13 with respect to diameter and L−eccentricity.

Table 3

Number of leaves
eL(CL) 2 3 4 5 6 7 8 9 10 11 12 Sum

12 1 11 12
11 5 1 1 55 512
10 4 26 10 1 2 111 2424 24781
9 33 4015 8314

1536 2513 6611 7272
1

72342
4

49

8 1111 1268145 29655170
4

4228
57

64 134134
1 4

138795
205

279

7 7272
72

7272
72

Sum 1 123 781115 2198159
135055176

4

76325
130

67 134202
1

11 72831 2425 55 11
5

3121301
281

329

Distribution of trees of size 13 with respect to number of leaves andeL(CL).

Table 4

Diameter
|CL| 2 3 4 5 6 7 8 9 10 11 12 Sum

6 3 16 37 20 76
5 13,2 89,24 275,129 286,124 129 792,279
4 23,1 72,10 53,3 28,10 89,25 76 322,49
3 25,1 10 2 1 12 28 68,1
2 5 1 1 5 12
1 1 1 2

Sum 1 5 64,4 187,34 367,132 334,134 219,25 88 29 5 1 1301,329

Distribution of 1301 trees of size 13 with respect to diameter and CL−size.
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Table 5

Diameter
|CL| 2 3 4 5 6 7 8 9 10 11 Sum

6 2 15 41 26 84
5 6 28 30 19,4 53 136,4
4 16,1 58,14 94,42 82 1 22 273,57
3 20,1 9 2 1 12 5 49,1
2 5 1 1 1 8
1 1 1

Sum 1 5 45,2 110,14 167,42 128,4 66 23 5 1 551,62

Distribution of 551 trees of size 12 with respect to diameterandCL−size.

joinsemilattice graph of subtrees. We have computed
complete distributions up to tree size|T | = 15 with
similar results. The problem of generating free trees of
n nodes was very efficiently solved by Li and Ruskey
in [7]. The implementation of their algorithm in C-
language is available via Combinatorial Object Server
(COS) web-page http://theory.cs.uvic.ca/.

5. An algorithmic approach

This section is directed to a reader with back-
ground from algorithmic/computational complex-
ity/optimization issues. Here we give a high level
algorithmic approach.

The joinsemilatticeL(T ) contains a complete infor-
mation of the structure of a treeT . The nodes in the
corresponding graphGL of L(T ) are all subtrees of the
given treeT Let S1 andS2 be two different subtrees
of T . There exists a line fromS1 to S2 in graphGL

if and only if S1 is obtained fromS2 either by adding
a neighbouring point or by removing a leaf ofS2. The
basic tree operations concerning any subtreeS of T are
• The operation of adding toS a neighbouring point
{v} of S: EXPAND(S, v) := S 7→ S ∪ {v}.

• The operation of removing fromS a leaf{u} of S:
SHRINK (S, u) := S 7→ S \ {u}.

• The exchange operation (swapping) i.e. removing a
leaf of S and simultaneously adding a neighbour of
S \ {u} : SWAP (S, u, v) := S 7→ (S \ {u}) ∪ {v}.

Let {vi, 1 = 1, . . . , n(S)} be the set of different neigh-
bours ofS. Let {ui, i = 1, . . . , n1(S)} be the set of
leafs ofS. It is clear that the set

N(S) : = (

n(S)
⋃

i=1

EXPAND(S, vi))

⋃

(

n1(S)
⋃

i=1

SHRINK (S, ui))

contains all neighbouring subtrees ofS in the join-
semilattice. Furthermore

dL(S,EXPAND(S, vi)) = 1,
|EXPAND(S, vi)| = |S|+ 1
for all i = 1, . . . , n(S),
dL(S, SHRINK (S, ui)) = 1,
| SHRINK (S, ui)| = |S| − 1
for all i = 1, . . . , n1(S).

The swapping operation produces subtrees with
distance dL(S, SWAP (S, ui, vj)) = 2 and size
| SWAP (S, ui, vj)| = |S|. It is clear that for a given
subtreeS the repeated use of operationSWAP pro-
duces all subtrees of size|S|. In other words the swap-
ping operation is closed among all subtrees of given
size.

Let U be a subtree ofT with eccentricityeL(U).
By general properties of the eccentricity sequence we
have for all neighbouring subtreesV ∈ N(U) that
eL(U) − 1 ≤ eL(V ) ≤ eL(U) + 1. Let P (C,CR)
denote the least path containing the center and the
point of centroid which is nearest to the center. There
exists a geodesic in the joinsemilattice that connects
P (C,CR), a least central subtreeCL, and the subtree
T ′. In extreme cases this geodesic may be reduced
to a point in the joinsemilattice. In general, there are
several geodesics even though the least central subtree
is unique. In the general case there may be many least
central subtrees. We have been analyzing subtree per-
turbations of typeEXPAND , SHRINK andSWAP
concerning least central subtrees. Unfortunately we
cannot say much when the subtree under perturbation
process is not a least central subtree.

In the following we give an outline of the algorithm
for constructing least central subtrees.
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Let T =< {v1, . . . , vn} >.
Compute degree sequence ofT .
Identify leaves ofT .
LCSup = T ′.
/* Every LCS is subtree ofT ′.
If n2(T ) = 0 then
/* Homeomorphically irreducible tree.
LCS = LCSup
EL(LCS) = |T | − |T ′|

else ifn2(T ) = 1 then
/* Almost homeomorphically
LCS = LCSup

/* irreducible tree.
EL(LCS) = |T | − |T ′|

else ifn2(T ) ≥ 2 then
Compute eccentricityEL(LCSup).
if EL(LCSup) = n1(T ) then

/* See Remark 1 after Theorem 7.
LCS = LCSup
EL(LCS) = |T | − |T ′|

else
Find centerC.
Find centroidCR.
Let LCSlow = P (C,CR).

/* Every LCS containsP (C,CR).
If LCSlow = LCSup then

/* The geodesic reduces to a point.
LCS = LCSup
EL(LCS) = EL(LCSup)

else
ANALYZE all subtrees on the
geodesics betweenLCSlow and
LCSup by computing
L-eccentricities and finding
least subtrees in size with
minimumL−eccentricity.

end if
end if

end if

Here we give a brief interpretation of least central
subtrees. Assume that we have a fixed tree structure (eg.
organization hierarchy, image layout hierarchy). LetS1

andS2 be two subtrees within this hierarchical struc-
ture. We assume that there is a unit cost for operations
EXPAND(S1, v) andSHRINK (S1, u). According to
Lemma 1, the cost of deformation from substructureS1

to substructureS2 is given byL−distancedL(S1, S2).
Thus least central subtrees are the smallest possible sub-
structures that are deformable into any other substruc-

ture within the underlying tree hierarchy with least cost.

6. Some conclusions and examples

Our results give a new point of view into trees. There
are two tree classes: trees with unique least central sub-
trees and trees with several least central subtrees. Home-
omorphically irreducible trees are the smallest trees
which contain complete information of the tree branch-
ing structure. For this class of trees we have unique-
ness and explicit a priori construction of the least cen-
tral subtree. The unique least central subtree for any
homeomorphically irreducible tree is obtained by strip-
ping away leaves. One edge subdivision of any home-
omorphically irreducible tree preserves this property.
For the class of trees with exactly one node of degree
two the unique least central subtree can be constructed
by the same method. Swapping between different least
central subtrees is impossible because there is no room
for swapping. These results have several practical spe-
cial cases e.g. Cayley trees are homeomorphically irre-
ducible. A full binary tree with root node of degree two
is another practical example. Furthermore, caterpillars
are a tree class with unique least central subtrees. Again
swapping is forbidden but the reason is different; there
are no free leaves for swapping between least central
subtrees.

However, we believe that trees with multiple least
central subtrees are of practical interest as spanning
trees. Our results show that flexible spanning trees
should have a sufficient deviation away from a caterpil-
lar tree. On the other hand the tree branching should not
be too strong. The number of nodes of degree 2 must
be large enough in order to guarantee some deviation
away from the class of irreducible trees.

There are several subjects for further research. We
feel that the most important open problem is our con-
jecture concerning possible values ofL−eccentricity.
We conjecture that eithereL(CL) = |T | − |CL| or
eL(CL) = |T | − |CL|+ 1. We claim that this property
is true for all joinsemilattices generated by subtrees of a
tree. This property is needed forCL-size bounds given
in Theorem 8. Furthermore, we believe that this result
would be helpful for a more detailed description of the
ANALYZE-stage of our high level algorithm given in
section 5.

For some problems it might be useful to use the
largest central subtree instead of the least central sub-
tree. What can be said about the case when the least
central subtree and largest central subtree coincide? Is
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it possible to characterize trees with unique joinsemi-
lattice center?

Finally, we present some examples concerning our
results. There are trees such that the tree has a bicentroid
and the other point of the centroid is not a point of
the least central subtree. There are trees such that the
center, the centroid, the least central subtree and the
path center are different subtrees. For more information
on center, centroid and path center see [1]. Examples 3
and 4 illustrate the swapping mechanism.

Example 1. Let p be the point of degree 5 of the
starlike caterpillar tree in Figure 2. The largest branch
atp is the path<{p, q, r, s, t} >. Then the center of the
treeT1,1,1,1,4 is C =<{q, r}>, the centroid isCR =<
{p}>, the least central subtree isCL =< {p, q, r}>
and the path center isCP =<{p, q, r, s}>.

p

3

4

5

6

q

r

s

t

Fig. 2. Centrality for a caterpillar treeT1,1,1,1,4.

Example 2. The largest branch atp of the starlike
caterpillar tree in Figure 3 is the path<{p, q, r, s, t} >.
For the treeT1,1,1,4 the center isC =< {q, r} >, the
centroid isCR =< {p, q} >, the least central subtree
is CL =< {q, r} > and the path center isCP =<
{p, q, r, s}>. Herep, the other point of the centroid is
not a point of the least central subtree.

p

3

4 5

q

r

s

t

Fig. 3. Centrality for a caterpillar treeT1,1,1,4.

Example 3. Subdivision trees of stars are ideal sym-
metric swappers. The smallest member of the family
has 3 least central subtrees of size two. The second tree
with |T2,2,2,2| = 9, |CL| = 3, eL(CL) = 6 has 6 least
central subtrees. The third tree with|T2,2,2,2,2| = 11,
|CL| = 4, eL(CL) = 7 has 10 least central subtrees.

Fig. 4. Centrality of treesT2,2,2, T2,2,2,2 andT2,2,2,2,2.

These trees are obtained by subdividing the star
graphs K1,n with n leaves. We have in general
|K1,n| = n+1. We prefer the complete bipartite graph
notation for stars. The tree size is|T2,2,...,2| = 2n+ 1
for n ≥ 3. Least central subtree size is|CL| = n − 1
andeL(CL) = dL(CL, T ) = n+ 2. Center nodev0 is
contained in all least central subtrees and leaves cannot
be in least central subtrees. There are

(

n

n−2

)

=
(

n

2

)

least central subtrees, since this binomial coefficient is
the number of ways to selectn−2 nodes fromn candi-
dates. For these trees we have alwaysdL(CL, C

′
L) ≤ 4.

Example 4. All subtrees obtained by swapping
between points of least central subtrees are not nec-
essarily least central subtrees. In the following ex-
ample |T | = 11, |CL| = 4. The intersection and
union of least central subtrees are< {p, q} > and
< {p, q, r, s, t, u} > respectively. There are five least
central subtrees< {p, q, r, s} >, < {p, q, r, t} >,
< {p, q, r, u} >, < {p, q, s, t} >, < {p, q, s, u} >,
with L−eccentricity eL(CL) = 7. The subtree
< {p, q, t, u} > is not a least central subtree, since
eL(<{p, q, t, u}>) = 8.

p

q

r s

t

u

7

8

9

10

11

Fig. 5. An example on forbidden swapping.

All graphs in this article are drawn by using the dot
graph drawing system, [2].
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