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Abstract

We study the problem of computing general static-arbitragends for European basket options; that is, computing
bounds on the price of a basket option, given the only assampf absence of arbitrage, and information about prices
of other European basket options on the same underlyingsassel with the same maturity. In particular, we provide
a simple efficient way to compute this type of bounds by gplitarge finite non-linear programming formulation of
the problem. This is done via a suitable Dantzig-Wolfe deumsition that takes advantage of an integer programming
formulation of the corresponding subproblems. Our comartamethod equally applies to both upper and lower arbigrag
bounds, and provides a solution method for general instainéehe problem. This constitutes a substantial contridouti
to the related literature, in which upper and lower bound gems need to be treated differently, and which provides
efficient ways to solve particular static-arbitrage bourfds European basket options; namely, when the option prices
information used to compute the bounds is limited to varilid/or forward options, or when the number of underlying
assets is limited to two assets. Also, our computation ndedfiows the inclusion of real-world characteristics of mpt
prices into the arbitrage bounds problem, such as the pesef bid-ask spreads. We illustrate our results by computin
upper and lower arbitrage bounds on gasoline/heating oéogr spread options.

Key words: option pricing, robust optimization, Dantzig-Wolfe degoosition, semiparametric bounds, large scale
optimization.

1. Introduction prices numerically challenging, or when the scarcity of
data makes it difficult to make distributional assump-

) ) ) ) tions about the future assets returns. For example, the
Computing bounds for option prices under iNCOM- ot condition applies to the problem of pricing com-
plete market conditions or an incomplete knowledge of plex spread options (see, e.g., [2]) and index options.

the distribution of the price of the underlying assets is The |atter condition is typical in Actuarial Science ap-

a widely stl_Jdie_d_pricing t(_achnique, where in contrast plications and some real option problems.
to parametricpricing techniques, such as Monte Carlo

simulations or “Black-Scholes pricing,” strong assump- ~ Here, we consider a particular class of semipara-
tions about the underlying asset price distribution are metric bounds. Specifically, we study the problem of
not required. These type e€miparametribounds pro- ~ computing generastatic-arbitrage bounds for Euro-
vide a mechanism for checking consistency of prices, Pean basket options; that is, computing bounds on the
and to provide estimates for option prices in incomplete price of a basket option, given the only assumption of
market conditions, or regardless of any model specifics. absence of arbitrage, and information about prices of
Also, these bounds are useful when the number of un- other European basket options on the same underly-

derlying assets makes the computation of parametric ing assets and with the same maturity. The problem of
computing this type of static-arbitrage bounds has re-

Email: Javier Pefha [ffp@andrew.cmu.edu], Xavier Saynac ceived a fair amount of attention in recent years. Of
[079j1@unb.ca], Juan C. Vera [j.c.veralizcano@uvt.nllis.  particular relevance to our work are the articles by
F. Zuluaga [lzuluaga@unb.ca]. [1,3,4,6,7,11,9,10,15] and [18]. (Throughout the article
1 (Corresponding author) we will make more precise references to their work as
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we present our results.) Here, we provide a singffe Exl(w’ - X — Kj)*]=pj, j=1,...,r B
cientway to compute general static-arbitrage bounds for 7 a distribution inD.
European basket options by solvingazge finite non- e corresponding sharp upper static-arbitrage bound

linear p_rogramming formul_ation of the problem_._This IS can be formulated as follows:
done via a suitable Dantzig-Wolfe decomposition that
takes advantage of an integer programming formula-  sup E;[(w® - X — Kq) "]
tion of the corresponding subproblems. Our computa- T
tion method equally applies to both upper and lower
arbitrage bounds, and provides a solution method for
general instances of the problem. This constitutes a sub-
stantial contribution to the related literature, in which
upper and lower bound problems need to be treated dif-
ferently, and which provides efficient ways to solve par-
ticular static-arbitrage bounds for European basket op-
tions; namely, when the option prices information used
to compute the bounds is limited to vanilla and/or for-
ward options, or when the number of underlying assets
s limited t0 two assets. Also, our computation method lem. The corresponding payoffs of the basket options
allows the inclusion of real-world characteristics of op- ; + o no
tion prices into the arbitrage bounds problem, such as 2 - (w? -2 = KG)* o= max{0, 3,0 wiw — Kl
) ' j =0,1,...,r, where we are using the conventional
the presence of bid-ask spreads.

Th inder of th ticle | ized as foll dot () product of vectors, and lower-case € IR’
€ reminder of In€ article 1S organized as Toflows. represent an outcome of the random asset prices
In Section 2., we formally introduce the problem of . S
. : . at maturity X. Problem (1) (problem (2)) minimizes
computlng_general stat|9-arb|trage bounds for EurOpean(maximizes) the expected payoff of a target basket
?naslz(;’\;ggts'c;n?r’]?g?}éi‘_’l'.ivgahrov;lghreaﬂolzlesrgc(f[%nnge fo;— option — defined by weights, and strikeK, — over
hu how thi n i ! progra .f Ilt' -+ We all underlying asset price distributions)(with support
show now this hon-iinear programming formufation can - oo 7, C IR} that replicate the given basket option’s
be solved via a suitable Dantzig-Wolfe decomposition. _ . T - that is. the di d d
In Section 4., we discuss the solution of the related superpnceSpj’ J=1....r thatls, the discounted expecte
b- I." i tfolio strat In Section 5 payoffs of the given options match the observed prices.
'(I)Ir zgat;e&g:ae]!fl%f%rng;g jfrg Gr)gs)gl rtl'one; IOToaéhWt? Following [3], we implicitly assume that all the op-
n . v U utl PP Y tions have the same maturity, and that without loss of
computing upper and lower arbitrage bounds on gaso-

X X . . T enerality, the risk-free interest rate is zero; or equiva-
line/heating oil crack spread options. We finish in Sec- g y . . 9

. ) ) . . lently, we compare the prices in the forward market (at
tion 6., discussing some straight-forward extensions of

maturity). The static-arbitrage bound problems (2) and
the presented results, and future work. (1) are feasible if the given basket option’s prices are
arbitrage free (for further details on feasibility see [15,
2. Formulation of general static-arbitrage bound Proposition 1]).
problem The problem of computing sharp static-arbitrage
bounds has received a fair amount of attention in re-
Consider the problem of computing sharp lower and cent years. Typically, the problem is studied in the
upper static-arbitrage bounds on the price of a Europeancase when the support sBt= IR (non-negative asset
basket option, given information on the prices of other prices). In particular, [7, Section 4] derived a closed-
European basket options with the same maturity, with- form solution to the upper bound problem (2) in the
out making any assumptions other than the absence ofspecial case when the weights of the basket of interest
arbitrage. Finding the sharp lower static-arbitrage bound are non-negative (i.ew° IR":), and the given option
for the price of a basket option can be formulated as the prices are composed by forward and any number of
following optimization problem (see, e.g., [3]): vanilla options on each of the underlying assets (i.e.,
inf E,[(w’ X — Ko)¥] forj=1,... Ty w? has a single non-zero compone_nt
n equal to 1). This result was re-derived by [1, Section
stE.[1]=1 3]. The latter results in turn generalize the results of

stE [1]=1 (2)
E,,[(wj X — Kj)ﬂ =p;,j=1..,r
m a distribution inD.

In (1) and (2), the multivariate random variable
= (X1,...,X,) represents the prices at matu-
rity of the n underlying assets in the basket of in-
terest. The given vectors’ < IR", and constants
K; € IR, j = 0,1,...,r, respectively represent
the weights of the underlying assets and the strike
price of the basket options involved in the prob-
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[3, Proposition 4], and [11] who derive a closed-form eral very large) number of variables and constraints (for
solution to problem (2) in the special case when the recent examples of these finite formulations, see e.g.,
weights of the basket of interest are non-negative and [3,10,15]). In particular, when the support getis de-

the given option prices are composed of a forward and fined by the box constraints (3), it is simple to show
one vanilla options on each of the underlying assets. that problems (1) and (2) can be reformulated as finite
[9, Section 3] solve problem (2) for the special case non-linear programs by using the following remark.

in which the target option is a two-asset spread option Proposition 1 Let be an index set, ang; : i € I be
(i.e.,n = 2, and the weights defining target basket g partition of D. For any (piece-wise linear) function
option are of opposite signs), and the given option f . D — IR such thatf restricted toR; is linear for
prices are composed by forward and vanilla options on eachi € I, we have that

each of the underlying assets. Less general results have

been derived for the lower bound problem (1). In par- E_ [f(X)] = ZEﬁ [f/(X)|X € Ri]n(X € R;)

ticular, Laurence and Wang [11] provide closed-form el

solutions for problem (1) in the two-asset case given

forward prices of the assets and prices of one vanilla - Z FIEx (X]X € Ri)n(X € Ri).

call option for each asset. Hobson et al. [6] present a el
numerical procedure for the special case with only two If R; is convex and bounded then for eaclve have
assets, given information about prices for a continuum E,[X|X € R;] € R;.

of vanilla call options for each asset. A. d’Aspermont Remark 1 Proposition 1 implies that given a suitable
and L. El Ghaoui [3] give an efficient linear program-  partition of the support seP, one can, without loss of
ming formulation for the computation of the lower generality, assume that the underlying asset price dis-
static arbitrage bound for the special case when only tribution () in problems(1) and(2) is atomic, with one
one vanilla call per asset is known. Laurence and Wang atom located in each of the sets defining the partition
[10] solve problem (1) for the special case in whichthe of D, In other words, thanks to the piece-wise linearity
target option is two-asset spread option, and the given of the basket option payoffs, the probability distribution
option prices are composed by forward and vanilla op- in a region can be “concentrated” into a single point
tions on each of the underlying assets. Pena at al. [15]in the region.

generalize some of the latter results by giving tractable |, order to continue our discussion, let us introduce
linear programming formulations for problem (1) in 4 following notational conventions. Lef := {.J C

the special case of two assets and any number of given 0,1,...r}} be the set of all subsets of the index set
basket option prices (not necessarily vanilla options), {0,1,...,r} (wherer is the number of given basket

as well as for the special-asset case when only a option prices in problems (1) and (2)). Also, It be

forward and/or a vanilla call per assgt _is given. the (r + 1) x n matrix whosej-th row is the vector’

In what fqllows we show how to efficiently solve the forallj € {0,1,...,r}, K := (Ko, K1, ..., K,)T,and
general arb@rag_e bounds problems (1) and (2) whenthe , ._ (uo, u1, u,)T. Givenv € R™, andJ € 7,
support set is given bgox constraints: let v; € IR’ denote the vector formed by the entries

o v; with j € J. Likewise, for a matrix)/ with rows
D= [0, ua] x [0, ua] x -+ x [0, un, ) iridexed by{0,1,...,7} andJ € J, let M; denote
whereu; > 0,7 = 1,...,n are given bounds on the the matrix formed by the rows o#/ indexed by.J.

asset prices at maturity. That is, instead of the typical Finally, ForJ € 7, we shall writeJ¢ as a shorthand
choice in the related literature of considering that the for {0,1,...,7}\ J.
underlying asset prices at maturity can take any non- A suitable partition (recall Proposition 1) of the sup-
negative value, here we consider that the asset pricesport setD in (3) can be obtained by considering regions
at maturity have some given upper bound; that is, rul- of the possible asset price values at maturity (i.e, re-
ing out asset price distributions where prices are un- gions inD), in which each of the given basket options,
bounded. as well as the target option, are either always out-of-the-
Problems (1) and (2) are semi-infinite programs (in- money or always in-the-money in the region. Note that
finite dimensional variable with finite number of con- in such regions the payoff of all the options in the prob-
straints). However, it is well-known that these problems lem are linear: eithel if the option is out-of-the money,
can be reformulated using a finite (although in gen- or (v’ - z — Kj) if the option is in-the-money. Specifi-
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cally, we define the following partition fab in (3):

Ry={xecR" :Wjx >K; Wjax < Kje,
] <zx< u} , )

for all J € J. Note that in (4),J represents the set

of options that are in-the-money in regidly, and J*¢

This is done by designating the constraints (5a), (5b) as
the “hard” constraints that will define thmaster prob-
lem, and designating the constraints (5c), (5d) as the
“easy” constraints that will define theubproblems

In order to specifically define the master problem
and corresponding subproblems we proceed in typical
fashion. Namely, for eacl/ € J let {#7* : k =

represents the set of options that are out-of-the-moneyl1, ..., N} be the set of extreme points &, (recall
in region R;. Clearly, R is convex and bounded for that from (4),R; is a polytope). Then problem (5) can
all J € J. be written as
From now on, we will concentrate our discussion on N,
the solution method for the lower bound problem (1); . 0 : Ik J
which has been the more challenging problem in the lit- ™" Z (w ' (Z Arkd ) - KO) t
erature (as noted e.g., in [11,15]). The slight differences JEJ:OJEJ =t
in the solution method for the upper bound problem (2) st Z =1
will be addressed in Section 3.1.. Using Remark 1, to- Jes

Ny
gether with the partition (4), one can reformulate prob- Z w - Z Apd?® ) — K | t7 =p;
lem (1) as the following non-linear program: Jegged = '
j=1,...,r
N,
min Yy (w2’ — Ko)t’ k=1 JeJg
JeJg:0eJ k=1 7
sty /=1 (5a) Ak>0,t7>0 JeJ. "
7T ) Usingt”* := t/ X\, the problem above is equivalent
Z (w]-x‘I—Kj)tJ:pj ji=1...,r to:
JeJ:jed
(5b) ol 0 J,k J, k
v €R;,  JeJ (50) min Y0 Y7 (w @M~ ko)t
J JeJ:0eJ k=1
/>0, JeJ (5d)

Above, for all.J € 7, 27 andt’ respectively repre-

sent the position of the atom and the probability of the

atom in regionR ; of the partition ofD.

The main difficulty in solving (5) is the size of the
problem (the non-linearity could be tackled by defining
new variablesu”’ := z/t7); namely, the problem has

(r+1+4n)|J| = O((r +n)2") constraints, andn +

1)|J| = O(n2") variables. To deal with the size of the
problem we exploit the block structure of constraints
(5¢) and (5d) by solving the problem via a suitable

Ny
s.t. Z Zt“ =1

JeJ k=1 (7)

Ny
SN (Wi K =,
JET:GET k=1
j=1..r
thk>0, JeJ,k=1,...,N;.

With the “decomposed” formulation (7) of the lower
bound problem (5), we can now state the Dantzig-Wolfe
decomposition solution algorithm.

Given a subset of the extreme points Bj, for all

Dantzig-Wolfe decomposition that is discussed in the JeT:

next section.

3. Dantzig-Wolfe decomposition

In this section, we apply a Dantzig-Wolfe decompo-

Xi=Uje a7 k=1,...,M;} C
Uje A2 k=1,...,N;}

(where for some/, M ; could possibly be zero, in-

sition approach (see, e.g., [12, Section 3.9]) to solve the dicating that no extreme points from regi®y are in-

non-linear formulation of the lower bound problem (5).

cluded in the subset of extreme pointy, define the
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master problem

My

Z Z (wo gk _ Ko) Ik

JeJ:0eJ k=1

My
S

JeJ k=1

My
> St
JeJ:jedJ k=1
j=1,...,m7
thk>0JeJ,k=1,...,Nj.

min

S.t.
(Mx)

Kj) ¢ = p;

Givenr, p := (p1,...,pr) andJ € J define thesub-

problem
min
(@-w® = Ko)loes —7— > pi(z-w’ — K))
jeJ,7>0
st. z€ Ry

@7")
where the indicator functiofyc; is1if 0 € J, aanO
otherwise.

Note that both the master problefd/y), and the
subproblemgQ’,”) are linear programs for all € 7
. Therefore, to solve (7) we use the following Dantzig-
Wolfe (DW) algorithm, where:, > 0 is the user pro-
vided error tolerance, antl is a subset of the extreme
points of R, for all J € 7, such that My,) is feasi-
ble. (SuchX, can be found by running Bhase Iver-
sion of the DW algorithm, where the objective in the
master problem is to minimize the infeasibility in the
price replicating constraints.)

Dantzig-Wolfe algorithm

(1) SET X := A, and REPEAT= TRUE.
(2) WH LE REPEATDO

(2.1) SOLVE(My), LETT € IRbet he shadow
priceof thefirst equality cons-
traint of (My), and p € IR" be t he
shadow prices of the » price re-
plicating equality constraints
of (My).
LET Q7”* be the optinal val ue of
(Q7"). FIND J* € J such that J* =
argmin{Q7"" : J € J}.
I'F Q}’p* < —€tol

LET X := X U{argQ7'}.
ELSE

REPEAT = FALSE

(2.2)

(2.3)

69

(3) RETURNt he ¢)-optimal val ue My* of
(Mx)

As shown in detail in Section 4. (see equation (12)),
the DW algorithm above returns a value that is within
the user provided error toleraneg, of the optimal
value of (1). However, since the size gfis generally
exponential orr, it is prohibitively expensive to exe-
cute STEP (2.2) above by solving th&7| linear pro-
gramming subproblems. Instead, we use a mixed in-
teger programming formulation of the subproblems in
order to efficiently execut8TEP (2.2) of the DW algo-
rithm. Specifically, consider the following mixed inte-
ger program related to the subproble(dg,”), where
po == —1,and M}, M; >0, j =0,1,...,r are large
enough given constants.

min —T—Z;ZO pj(wl - 27 —y; K;)
st wr > Kj— Mj(1-y;) j=0,1,....r
wja:SKj—i—MJ’-yj j=0,1,....r

2 > x— M;(1—y;) ,
i€{l,...,n}j€{0,1,....r}:pjwl <0
ZJSij] .
ie{l,...,n},j€{0,1,....r}: pjw] >0
i=1,...,n,7=0,1,...,r
y; €{0,1} j=0,1,...,r

(P?)

Solving (P?) is equivalent to executin§TEP (2.2),
provided that

M; > max{u,...,un},
and
M’ > max Z wlu; — Kj,
ie€{l,..., n}:wg>0
> wy |u; — Kj| o,
ie{l,...,n}:w“z<0
for j = 0,1,...,r. Specifically, if:c*,y;,zf* is the

optimal solution of(P*) with objective valuePr*,
then in STEP (2.2) of the DW algorithm,J* = {j €
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{0,1,...,7} 1y = 1},andQ%”* = PP*, and inSTEP
(2.3) of the DW algorithmarg Q7 = x*. This follows
by noticing that the “big-M constraints” in{*) ensure for all_:z: eD
that for any.J € 7, if one replaceg;; = 1if j € J, peR", 7R
andy; =0if j & J, forj =0,1,...,7in (P?), then ’ ’ ©)
the resulting linear program is equivalent @’(").
Loosely speaking, solvingH?) is much more effi-
cient than solving@’;”) for all J € 7, because doing
the latter is equivalent to solving®?) by enumerating
all the possiblé) — 1 solutions in (°?). In practice, cur-
rent MIP solvers are typically able to solve MIP by enu-
merating only amallnumber of0 — 1 solutions (com-
pared to the total number of possiltle- 1 solutions).

st.T+ ij(wj cx— KT > (w -z — Kot
j=1

The dual problem (8) (problem (9)) has a natural in-
terpretation: it aims to find the most expensive (cheap-
est) portfolio of positions in cash) and positions in the
given basket optiong§ with payoff(w’/-S—K;)*, j =
1,...,r that sub-replicates (super-replicates) the pay-
off of the basket option of interest with payaff® -

S — Ko)T. Itis easy to see that weak duality holds be-
tween (1) and (8), and between (2) and (9). Furthermore,
thanks to the compactness of the support of the asset
3.1. Upper bound problem price distributionD considered here (see (3)), strong

Thus far, we have concentrated our discussion on theOluallty also holds between these problems.

lower bound arbitrage problem (1). This is because un- Proposition 2 Let D be as in(3). Then the optimal

like related results in the literature, our computation V&lues of(1) and(8), and of(2) and(9) coincide.

method applies similarly for the upper bound arbitrage Proof. Follows from general convex duality results (see,

problem (1). In fact, in order to solve the upper bound €-9-, [16,17]), as it is discussed in [19, Sec. 4, Proposi-

problem (2), one only needs to change the discussed sofion 4.2]. O

lution method for the lower bound arbitrage problem (1) e choice of labels for the variables in (8) and (9) is

as follows: - ) not accidental. In fact, it is easy to see that from the val-

e In(5), (7), (M), (@}") changemin — max ues ofr andp obtained at the end of the DW algorithm

e In STEP (2.2) changewrg min — arg max. discussed in Section 3., one can construct a feasible so-

e In STEP (2.3) of the Dantzig-Wolfe algorithm change | ion for the sub-replicating problem (8), whose ob-
< —€tol 2 €tol ) ) jective value is within the user provided error tolerance

e In fp,p) c"hangemlp Fr max, :;md in the first set " f the optimal value of (8). The same follows for
of “big-M" constraints for thez; variables, change e guper-replicating problem (9) with the correspond-
pjw; <0 — pjw; > 0,andinthe second set of 'big-  jng modified DW algorithm explained in Section 3.1..
M” constraints for thez] variables, changp;w; > To see that this is the case for the sub-replicating prob-
0 — pjw] <O0. lem (8), let7* andp™* be the values of the shadow prices

7 and p, of the master problem\{y-) obtained at the

end of the DW algorithm. From the stoping rule of the

algorithm STEP (2.3)) it follows that for allJ € 7,

and for allx € R

4. Super-replicating and sub-replicating portfolios

Problems (1) and (2) respectively have the following

associated duals (see, [8]): < ( 0 _ Kol *
—€tol S (- w” — Ko)llopeg — 77—

SUD T+ pip; > pilaw! - K)
P j=1 Jj€J,j>0
st.7+Y pi(w -w— Kt < (u x— Kot —€to1 < (7 - w® — Ko)t — 7" —
j=1 T )
forallz € D > paw! — K;)t (10)
peR", 7€, s
(8) n
and y . ‘
. T (T —etol)—i—ij(x-wJ —Kj)+
inf 7+ pip; =1

j=1 < (.I' cw? — K0)+
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that is, the paifT™ — €01, p*) is a feasible solution for
(8) with objective valugr* — _Etol) + Z;Zl Djp;- F_rom
this, and the fact thdt, p*) is the optimal solution of
the linear programming dual of\{x-) with objective
valuer™ +>77_, p;p;, it follows that:

T+ ijp; = M. > opt. value of (1)=
= . (12)

opt. value of (8> (7" — ego1) + ZPjP;a
J=1

whereM .. denotes the optimal value of{x~). From
(10), (11), it follows tha{7* — €1, p*) is a feasible so-
lution for (8), whose objective value is within the user
provided error tolerancg,, of the optimal value of (8).
From (11), it also follows that the DW algorithm re-
turns a valuel/;.. that is within the user provided error
tolerancez, of the optimal value of (1). Specifically:

0 < M%. — optimal value of (1)< €. (12)

A similar “eyo;-optimality” follows for the upper bound
problem when the modified DW algorithm of Sec-
tion 3.1. is used.

5. A simulated numerical experiment

We next present a simulated computational experi-
ment that illustrates some of our results. The objective
of the experiment s to highlight two of our main contri-
butions. First, that unlike current results in the literatu
our proposed method allows to efficiently compute up-
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1994 by the NYMEX with the intent of offering a new
risk management tool to oil refiners. These spreads are
computed on the daily futures prices of crude oil, heat-
ing oil, and unleaded gasoline.” In particular, we com-
pute upper and lower arbitrage bounds on the price of
a 3:2:1 crack spreadtall option with strikeK,, whose
payoff is given by (following [2, Section 2.3]):

pa:2:1(Ko) =
(2[UG)r + L[HO]r — [COlr — Ko) ",

where[UG|r, [HO]r, and[CO]r denote the prices
at maturity timeT' of a futures contract of unleaded
gasoline, heating oil, and crude oil, respectively. First,
we will compute upper and lower arbitrage bounds on
the price of3:2:1 crack spreactall options, when given
information about unleaded gasoline, heating oil, and
crude oil forward and call option prices. The payoffs of
these options are given by:

pro:0(K) = (UG]r — K)*
po:1:0(K) = ([HO]r — K)*
po:0:1(K) = ([COlr — K)T.

The forward option payoffs are obtained wh&n= 0.
Second, we will compute upper and lower arbitrage
bounds on the price &:2:1 crack spreadtall options,
when given information about unleaded gasoline, heat-
ing oil, and crude oil future and call option prices, as
well as information about the price oflal:0 gasoline
crack spreactall option with strike0 (i.e., a exchange
option), whose payoff is given by (following [2, Section

per arbitrage bounds for European basket options, whenZ2.3]):

given prices of other Europen basket options that are

not restricted to be forward, call, or put options. Second,
that our approach allows the computation of the corre-
sponding lower arbitrage bound. As will be seen from

our results, the possibility to use given prices that are not

restricted to be vanilla options; for example, exchange
options, can result in much tighter arbitrage bounds.
Related numerical results are presented in [3,7],

pr1o = ([UG]r — [COl7) T,

and information about the price of1a0:1 heating oil
crack spreadcall option with strike0 (i.e., a exchange
option), whose payoff is given by (following [2, Section
2.3)):

pro:1 = ([HOJr — [COlr) ™.

To set up the upper and lower bound problems, we sam-

where the authors provide extensive numerical exper- ple the given option price values, by assuming that the

iments comparing static-arbitrage pricing techniques

underlying commaodity prices distribution follows a cor-

and parametric pricing techniques (such as Monte Carlo related multivariate lognormal distribution (see, e.g., e

simulations) for basket options.

(15) in [3]). In particular we use a riskless interest rate

Here, we compute upper and lower arbitrage bounds » = 0; option maturity?” = 5 months; current com-

on the price of arack spreacption. Quoting [2, Sec-

modity prices in dollars per gallofUG], = 1.7809,

tion 2.3], “A crack spread is the simultaneous purchase [HO]r = 1.9544, and [CO]r = 1.7105; volatilities
or sale of crude against the sale or purchase of refinedoyc = 0.3532, ogo = 0.3364, cco = 0.3376; and

petroleum products... They were introduced in October

correlationspya,co = 0.86, pro,co = 0.88. These
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values are based on July 2009 estimates for Decem-

ber 2009 future energy commodity prices. Thus, using
Black-Scholes formula we obtain the given vanilla op-
tions prices shown in Table 1 that will be used to com-
pute the arbitrage bounds for tBe2:1 crack spreadall
options. The strike values are obtained by multiplying
the current commodity price by, 0.5,0.8,1.0,1.2, 1.5,
to obtain for each commodity a forward option, two
(2) out-of-money call options, one (1) at-the-money call
option, and two (2) in-the-money call options.
Similarly, using Magrabe’s formula (see [13]), we

obtain the given spread options prices shown in Table (satisfyingpi;sk > p‘;id) forj =1, ...,

2 that will be used to compute the arbitrage bounds for
the 3:2:1 crack spreactall options.
Finally, we set

UG = UHO = Uco = 3Inax{[UG]0, [HO](), [CO]()},

and we letKy range betweef0.4K(, 1.6 K], where
K¢ (2[UG]o + 5[HO)o — [CO]p) is the at-the-
money strike for the 3:2:1 crack spread call option.
With this data, we use the DW algorithm presented
in Section 3. to obtain the bounds in Figure 1. The
DW algorithm was implemented iIWATLAB, and uses
| LOG- CPLEX Cal | abl e Li brary with its default

settings to solve all the corresponding linear programs,

and integer programs; antdOMLAB to interface with
| LOG- CPLEX on al NTEL CORE 2 DUO, 3GB RAM

computer. The time necessary to compute any of the

bounds is under 3 seconds.
As it can be seen from Figure 1, for the 3:2:1 crack
spread call options, the ability to use given prices that

are not restricted to be vanilla options; such as spread

options, results in much tighter arbitrage bounds than
when only given vanilla option prices are used. Further-

more, the computation time of around 3 seconds shows

the efficiency of the DW algorithm. Note that the for-
mulation given in (5) for this 3:2:1 crack spread call op-
tion problem, where the number of underlying assets is
n = 3, the number of given option pricesris= 20, and

|7| = 204D would have(20 + 1 4 3)220+1D) ~ 50-
million constraints, an@3+1)2(29+1) ~ 8-million vari-
ables (recall the discussion at the end of Section 2.).

6. Concluding Remarks

In practice, among others due to the presence of trans-

Computing general static-arbitrage&¢®

by modifying the lower arbitrage bound problem (1) as
follows:

inf E [(w® X — Ko)T]

s.t. E 1] =
[(uﬂ Kt <p¥s j=1,.
Er[(w’ K;)*] >p 2l ,i=1,.
T a d|str|but|on inD,

(13)

.

wherepi* represents the ask (buying) price, gt
represents the bid (selling) price of the given options
r. It is not diffi-

cult to see that following for problem (13) a similar pro-
cedure to the one outlined in Section 2. and Section 3.,
one obtains a DW algorithm to efficiently solve the ar-
bitrage bound problem (13). Furthermore, the shadow
prices obtained at the end of the DW algorithm will pro-
vide the optimal solution to the sub-replicating problem
(dual) corresponding to (13); which is given by:

T+Z ask ask
T"'ijwj r— K )+

SC — K())
pbld

paSk, pPid R, 7€ IR,

b1d bld)

sup Pj

T,p,paSk bid

S.t. <

(14)

(w? forallz € D

p=p*
peIR"

where nowp®¥ (p"'9) indicates the amount of given
options in which to have long (short) positions on the
sub-replicating portfolio. Notice that it is not possibde t
know a priori whether a given option will have a short or
long position. This extension applies in similar fashion
to the corresponding upper arbitrage bound problem in
the presence of bid-ask spreads.

Using bid-ask prices in the computation of the up-
per/lower arbitrage bounds (and super/sub-replicating
strategies) gives a more practical value to the arbitrage
pricing approach. In particular, this resolves a major
limitation in previous approaches (see, e.g., [3,7]) that
used mid-market prices (e.g., the average of the bid and
ask prices) as the “nominal” option prices. Such approx-
imation systematically underestimates the actual buying
prices and overestimates the actual selling prices. It is
then not surprising that the market data used in [5, 12]
requires a fair amount of “cleaning” to rule out appar-
ent arbitrage opportunities created by these estimates

action costs, instead of option prices being uniquely de- (see [7, Section 6.2]). By contrast, the model herein that
fined, they display a so-called bid-ask spread. The pres-takes into account bid-ask spreads does not suffer from
ence of bid-ask spreads can be taken into considerationthis limitation.
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Table 1
Vanilla Options
Unleaded Gasoline Heating OIl Crude Oill

P1:0: o( ) = 1.7809 po;1;o(0) = 1.9544 P0:0: 1( ) =1.7112
P1:0:0(0.8904) = 0.9897 P0:1:0(0.9772) = 1.0733 P0:0:1(0.8556) = 0.9405
P1:0:0(1.4247) = 0.6887 po:1:0(1.5635) = 0.7325 Po-0:1(1.3690) = 0.6428
p1:0:0(1.7809) = 0.5469 po:1:0(1.9544) = 0.5730 po:0:1(1.7112) = 0.5034
P1:0:0(2.1371) = 0.4386 po:1:0(2.3453) = 0.4523 Po-0:1(2.0534) = 0.3978
P1:0:0(2.6713) = 0.3206 P0:1:0(2.9316) = 0.3229 Po:0:1(2.5668) = 0.2845

Table 2

Spread Options
Unleaded Gasoline—Crude Oi| Heating Oil-Crude Oil
p1:0:1 = 0.3198 po:1:1 = 0.4070

Fig. 1. Arbitrage bounds for 3:2:1 crack spread call optianith strikes betweerj0.05, 0.21]: ‘— x —" indicates the bounds
obtained when given the prices of the vanilla options in &ahl ‘—0—' indicates the bounds obtained when also additionally
given the prices of the spread options in Table 2.

Arbitrage bounds for 3:2:1 crack spread call options
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A basic implementation of the DW algorithm pre- [4] M. H. Davis and D. Hobson. The range of trading option
sented here can effectively compute general upper/lower  prices. Mathematical Financel7(1):1-14, 2007.
arbitrage bounds for European basket options in the [S] R. M. Freund.  Benders? decomposition methods
commodity, energy, and currency markets — where bas- for structured optimization, including stochastic
ket options are most commonly traded — , thanks to the optimization. Technical report, Massachusetts Institute
small number of assets involved in such basket options ~ ©f Technology, 2004. available at .

(typically less than ten assets). Currently, we are work- http://citeseerx. ist.psu. edu/ vi ewdoc/
) . S T . downl oad?doi =10. 1. 1. 117. 3003&r ep=

ing on developing and testing a more sophisticated im- r epl&t ype=pdf

plementation of the DW algorithm presented here, in 4

X D. Hobson, P. Laurence, and T. H. Wang. Static arbitrage
order to address the calculation of general upper/lower = ontimal sub-replicating strategies for basket options.

arbitrage bounds for index options where the number Insurance Mathematics and Economicd7:553-575,

of assets involved in the baskets are of orders of mag- 2005.

nitude larger than the basket options in the commod- [7] D. Hobson, P. M. Laurence, and T. H. Wang. Static—
ity, energy, and currency markets. In particular, we are arbitrage upper bounds for the prices of basket options.
working on the following enhancements for the basic Quant. Financ. 5(4):329-342, 2005.

implementation of the DW algorithm. First, notice that [8] S. Karlin and W. Studden.Tchebycheff Systems: with
at the beginning of the DW algorithm’s execution there Applications in Analysis and Statistics Pure and

Applied Mathematics Vol. XV, A Series of Texts and
Monographs. Interscience Publishers, John Wiley and
Sons, 1966.

[9] P. Laurence and T. H. Wang. Distribution-free
upper bounds for spread options and market-implied
antimonotonicity gapThe European Journal of Finance

is no need to solvel{) to optimality (i.e., finding a
feasible solution with desirable reduced cost is enough).
Second, it is not difficult to provide a warm-start fea-
sible solution to speed up the solution time @*].
Third, and more importantly, thanks to thiack-ladder

structure of P7) (i.e., no cons_/traint in /f?) contains 14(8):717-734, 2008.

variablesy; andy,, or z/ andz?, with j # j'), a Ben- [10] P. Laurence and T. H. Wang. Sharp distribution free
ders decomposition algorithm (see, e.g., [14, Sections lower bounds for spread options and the corresponding
[1.3.7 and 11.5.4]) can be used to solv&X). Specifi- optimal  subreplicating  portfolios. Insurance:
cally, in (P?) label thex variable as theomplicating Mathematics and Economic44:35-47, 2009.

variables, and the,y;, j = 1,...,r variables as the ~ [11] P. M. Laurence and T. H. Wang. Sharp upper and
non-complicatingariables to solvef?) via a Benders Io_wer bounds for basket optionApplied Mathematical
decomposition algorithm. Then, the Bendstgprob- Finance 12(3):253-282, 2005.

[12] D. G. Luenberger and Y. Ye.Linear and Nonlinear
Programming third edition. Springer, 2008.

[13] W. Magrabe. The value of an option to exchange one
asset for anothedournal of Finance3:177-186, 1978.

lem (obtained by fixing the values of the complicating
variablex in (P*)) can be decomposed intgoroblems
(i.e., as many as given basket option prices), each with a
single b_mary v_anable. S_lnce each Benders subprob_l_em[l4] G. L. Nemhauser and L. A. Wolsey. Integer and
has a single binary variable, a Benders decomposition combinatorial optimizationWiley, 1988.

algorithm similar to the one presented by [5, Section [15] J. Pefia, J. Vera, and L. Zuluaga. Static-arbitrage

4] can be used to sqlvﬂ), with a Bendersestricted . lower bounds on the prices of basket options via linear
masterproblem that is a linear program on the compli- programming. Quantitative Finance 10(8):819-827,
cating variabler. 2010.

[16] J. Renegar. A Mathematical View of Interior-Point
Methods for Convex OptimizatioiSIAM, 2001.

[17] T. Rockafellar. Convex Analysis Princeton University
Press, Princeton, 1970.

[18] J. C. Vera, J. Pefla, and L. F. Zuluaga. Static-
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[3] A. d’Aspremont and L. El Ghaoui. Static arbitrage optim zation-online.org/DB\_HTM./

bounds on basket option pricesMath. Program. A 2006/07/1429. htm . . ) )
106(3):467—489, 2006. [19] L. F. Zuluaga and J. Pefla. A conic programming

approach to generalized Tchebycheff inequalitath.
Received 12-12-2009; revised 20-8-2010; accepted 2418-20 Oper. Res.30(2):369-388, 2005.

References

[1] H. Albrecher, P. A. Mayer, and W. Schoutens. General
lower bounds for arithmetic Asian option pricéspplied
Mathematical Financel5(2):123-149, 2008.




