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Abstract

Asset-Backed Securitization (ABS) is a well-stated financial mechanism which allows an institution (either a commercial
bank or a firm) to get funds through the conversion of assets into capital market products called notes or asset-backed
securities. In this paper, we analyze the combinatorial problem faced by the financial institution which has to optimally
select the set of assets to be converted into notes. We assumethat assets follow an amortization rule characterized by
constant periodic principal installments (Italian amortization). The particular shape of the assets outstanding principal
is exploited both in the mathematical formulation of the problem and in its solution. In particular, we study a model
formulation for the special case where assets selection occurs at two dates during the securitization process. We introduce
two heuristic approaches based on Lagrangian relaxation and analyze their worst-case behavior compared to the optimal
solution value. The performance of the algorithms is testedon a large set of problem instances generated according to two
real-world scenarios provided by a leasing company. The proposed approximation algorithms turn out to yield solutions
of high quality within very short computation time. The comparison to the solution approach applied by practitioners
yields an average improvement of roughly 10% of the objective function value.
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1. Introduction

Asset-Backed Securitization (ABS) is a device of
structured financing where an institution, typically a
commercial bank, pools assets with identifiable cash
flows over time, transfers the same to investors usu-
ally with the support of further financial entities, and
thereby achieves the purpose of financing. Specifically,
the cash flows of the assets are identified, consolidated
and separated from the originating institution, and then
broken into marketable instruments of fixed denomina-
tion (notesor asset-backed securities) to be offered to
investors. To ensure marketability, the instruments must
have general acceptability, i.e. they are either rated by
credit rating agencies or they are secured by charge over
substantial assets. Further, to ensure liquidity, the in-
struments are generally made in homogenous lots.

An ABS process usually involves several financial
institutions. The institution that securitizes its assetsis
called theOriginator. Through an ABS process, the

Email: Renata Mansini [rmansini@ing.unibs.it], Ulrich Pfer-
schy [pferschy@uni-graz.at].

Originator isolates some of its assets (typically, lease
or mortgage assets) from the rest of its business and it
hives them off in exchange for a long term loan (main
outstanding principal) to a financial institution called
Special Purpose Vehicle(SPV). The SPV acts as a hous-
ing device, i.e. it houses the assets transferred by the
Originator in a legal outfit and issues the notes related
to them. This financial institution is created with the
pure and special aim of issuing notes and its life is des-
tined to end when the purpose is attained. Finally, the
notes are purchased by institutional investors (usually
commercial banks) which sell them tofinal investors.
Issued notes yield an interest payable on periodic bases
and are divided into tranches characterized by differ-
ent maturity dates. The reimbursement to the holders of
a tranche of notes corresponds to a reimbursement in-
stallment of the main outstanding principal. Hence, the
outline of the outstanding principal of the loan has as
many installments (steps) as the number of tranches of
notes with different maturity issued on the market. Fur-
ther, issued securities are related to the specific assets
and to their cash flows: the final investors receive peri-
odic in-flows (interests on their investments) which are

c© 2009 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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directly related to the periodic installments paid by the
holders of the assets to the Originator.

The securitization technique arises in all those prac-
tical contexts where receivables form a large part of the
total assets of an institution. Besides, to be packaged
as a security, the ideal receivable is one which is re-
payable over or after a certain period of time, and there
is contractual certainty as to its payment. Hence, its
application has been principally directed towards hous-
ing/mortgage and leasing/hire-purchase companies (in
the USA as well as in Europe the market for securities
based on mortgage and leasing receivables forms a sub-
stantial part of total securitization markets), car rental
companies, credit cards companies, etc. More recently,
companies from fields such as electricity, telecommu-
nication, aviation and insurance have joined as users of
securitization. For a detailed description of the whole
ABS process, the role of financial entities involved and
for an analysis of the reasons which make it a profitable
financial tool we refer to [7] and to the monographs
cited therein.

In the past, ABS has been analyzed qualitatively from
a financial perspective. Only in the last decade some
papers dealing with ABS in terms of mathematical for-
mulations have appeared. In [4] and [5] pre-payment
models and a mean-absolute deviation portfolio opti-
mization for mortgage-backed securities are presented.
In [8] and then in [9] the Originator’s problem of opti-
mally selecting the assets to be converted into notes is
studied for the first time. The problem was motivated by
the real case of a leasing company where the outstand-
ing principal of the assets follows French amortization
rule, i.e. it is characterized by constant general (princi-
pal plus interests) installments. The authors make the
assumption that assets can be selected at a unique date:
the resulting problem is modelled as a multidimensional
knapsack problem which is hardly tractable by exact al-
gorithms but is typically solved by constructive heuris-
tics or metaheuristics (see e.g. [2]). They also show that
in the special case where all lease assets share the same
financial characteristics (amortization rule, internal in-
terest rate and term), all but one constraint turn out to
be redundant and the model reduces to a classical, rela-
tively easy to handle, 0-1 Knapsack Problem (see [6]).
In these works the authors do not take into account the
possibility of a different rule for the amortization of as-
sets and do not analyze the case of selecting assets at
different dates which frequently occurs in practice.

In the present paper we innovate with respect to the
previous literature by using the Italian amortization as

rule for assets and main outstanding principal amortiza-
tion. We motivate our study with the practical need of
finding alternative and possibly more effective formula-
tions for the problem of selecting assets in an ABS pro-
cess. Moreover, the particular shape of the outstanding
principal based on constant principal installments (Ital-
ian amortization rule) allows to introduce a more realis-
tic model where assets can be selected in more than one
date during the ABS duration, provided that the whole
set of assets is available at the initial date of the process.
In particular, we further extend the analysis started in
[7] by investigating the scenario in which exactly two
points are available for selection of assets: the closing
date and one more point in time. In [7] the authors an-
alyze the problem of optimally selecting assets at mul-
tiple dates by comparing Italian with French amortiza-
tion and propose four approximation algorithms based
on LP-relaxation and on the implicit knapsack structure
of the problem. Their extensive computational analysis
has put in evidence that the selection of assets at the
closing date of the ABS process is of critical impor-
tance while the successive dates provide a much lower
contribution to the objective function. This has moti-
vated the analysis of the special case studied in this
paper. Our problem objective is, as in [9] and [7], to
minimize at each time the difference between the sum
of the outstanding principals of the selected assets and
the outstanding principal of the main loan. Such a gap
has a precise financial meaning as described in [7].

The contribution of this paper is twofold. From a
combinatorial optimization point of view, we introduce
a new model for the problem of optimally selecting as-
sets to be converted into notes. The special structure
of the proposed model is then exploited to set forth
Lagrangian upper bounds and solution algorithms. Fi-
nally, the worst-case performance of the proposed pro-
cedures is analyzed and compared to their average per-
formance on random instances based on real case sce-
narios. From a financial point of view, the paper pro-
vides useful insights for financial institutions involved
with asset-backed securitization processes. Moreover,
the proposed two-period model helps the Originator in
better formalizing the problem and its objective func-
tion, whereas Lagrangian heuristics can be used as prac-
tical tools extremely competitive and easy to implement.
The effectiveness of these algorithms is underlined by
a direct comparison with the heuristic approach used
by practitioners to solve ABS problems and the best
heuristic algorithm proposed in [7]. In the former case,
the results of this comparison are impressive: Indeed,
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our heuristics improve the objective function value, i.e.
the sum of the outstanding principals of the selected as-
sets, by roughly 10% in average and never less than by
5%, which may result in huge savings for the company
involved in the ABS process.

The paper is organized as follows: Section 2. de-
scribes the combinatorial problem faced by an Origina-
tor when optimally selecting the portfolio of assets to
be converted into notes and introduces the two-period
model where assets can be selected at the closing date
of the ABS process and at another successive specified
date. In Section 3. Lagrangian relaxation is applied to
the proposed model providing two upper bounds used
as starting points to construct feasible solutions. La-
grangian heuristic procedures are described in Section 4.
where worst-case performance ratios are also provided.
Extensive computational results on test problems ran-
domly generated according to two real-world scenar-
ios where receivables are leasing assets are presented
in Section 5.. In the same section, we compare the La-
grangian heuristics behavior with a greedy approach
typically used in practice to solve the problem and with
the best heuristic (i.e. ABS-Knap) proposed in [7]. Fi-
nally, concluding remarks and future developments are
given in Section 6..

2. The two-period portfolio selection problem

The Originator’s main problem is that to select a set
of assets in such a way that the sum of their outstand-
ing principals never exceeds, at any point in time, the
outstanding principal of the loan received by the SPV.
Actually, in order to maximize its gain the Originator
has to select assets to minimize the gap between the
main outstanding principal and the outstanding princi-
pal of the selected assets over all points in time. Figure
1 shows an example of main outstanding principal and
its area partially covered by the sum of the outstanding
principals of two assets handed-over at the closing date
(time t0). The gap between the two profiles measures a
loss of profit due to missing more profitable investments
with higher yields.

In the following we introduce a model formulation
for the case in which only two dates for asset selection
are considered. The first one is the closing datet0 (the
starting date of the main loan) while the second one is a
successive datet before main loan deadline. Thus, any
asseti may be selected either at the closing date (time
t0) or at a single specified later timet. We will refer
to these two dates assettlement dateswhile the assets

t0=0 t1 t2
t3

C0

C2

C1

Fig. 1. The problem of asset selection in an ABS process.

given out by the Originator at such dates will be collec-
tively referred to asportfolio of assets. We assume that
all assets are made available at the initial date of the se-
curitization and that, although such model can be used
for any type of amortization rule chosen by the Orig-
inator, we analyze the case of Italian amortization ex-
ploiting the convenient features this amortization vari-
ant provides.

Let us consider a discretized time horizon0, 1, 2, . . .
where the time unit is the periodicity of the reimburse-
ment of the assets which is assumed to be the same for
all the assets. The reimbursement dates for the main
loan are assumed to happen at multiplesr of this time
unit. In practice time unit is equal to one month andr
usually ranges between 18 and 24 months. LetD :=
{t1, . . . , tT } be the set of reimbursement dates of the
main loan, wheret1 > 0. Let us define asn, n = r · T,
the main loan duration and asC its initial value. Since
t0 = 0, n corresponds to the date of the main loan last
reimbursementtT . We assumet ∈ D.

We indicate asM , with |M | = m, the set of assets
available at the closing date. Note thatM may include
assets underwritten at the closing date as well as assets
that have been underwritten before the closing date and
the outstanding principal of which has been partially re-
imbursed. Each asseti, i ∈ M, is characterized by an
initial valueCi of its outstanding principal which cor-
responds to the value of the asset outstanding principal
at the closing date, i.e.Ci = Ci0, and by the number of
its principal installmentsni which is equivalent to its
duration expressed in time units and to its maturity date.

We assume that the assets are sorted in non-increasing
order of their duration, i.e.n1 ≥ n2 ≥ . . . ≥ nm and
that {1, . . . , m1} = {i | ni > t}, with m1 ≤ m, i.e.
the firstm1 assets expire after the selection datet. The
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outstanding principal of either assets or main loan re-
duces over time with constant principal installments ac-
cording to the Italian amortization rule. To evaluate the
advantages of using this amortization rule with respect
to the French one we refer to [7].

Let us define asCi1 the outstanding principal of as-
seti at timet and aspi0 andpi1 the sum of outstanding
principals of asseti, from time 0, resp. timet, to the
asset maturityni:

Ci1 =
Ci

ni

(ni − t),

pi0 =
Ci

2
(ni + 1),

pi1 =
Ci

2ni

(ni − t)(ni − t + 1).

If i > m1, Ci1 andpi1 are equal to zero. The value
of the main loan outstanding principal at timet is given
by C − C

n
t.

We introduce two sets of binary variables indicating
the selection of each asseti at the initial datet0 and at
time t, as follows:

xi0 =

{

1 if asseti is included in the portfolio at timet0,

0 otherwise;

xi1 =

{

1 if asseti is included in the portfolio at timet,

0 otherwise.

Clearly,xi1 = 0 for i > m1.
The problem of selecting the assets at timet0 andt in

such a way that the sum of their outstanding principals
never exceeds the outstanding principal of the main loan
can be formulated as a linear integer program as follows:

(ABS-2) v(t) := max
m
∑

i=1

pi0xi0 +

m1
∑

i=1

pi1xi1 (1)

xi0 + xi1 ≤ 1, i = 1, . . . , m, (2)
m
∑

i=1

Cixi0 ≤ C, (3)

m1
∑

i=1

Ci

ni

(ni − t)(xi0 + xi1) ≤ C − C

n
t , (4)

xi0, xi1 ∈ {0, 1}, i = 1, . . . , m . (5)

The objective functionv(t) establishes the maximiza-
tion of the sum of the outstanding principals of the assets
from the date of their selection to their maturity. This
is equivalent to minimizing the gap between the main

loan outstanding principal and the sum of the outstand-
ing principals of the assets over time. Moreover, since
both main loan and assets follow Italian amortization
rule the sum of outstanding principals of the selected
assets will never exceed the main outstanding principal
provided that it does not exceed the loan at the dates
of assets selection (see [7]). The set of constraints (2)
implies that each asset can be selected at most once ei-
ther at time 0 or at timet. Constraint (3) states that the
sum of the outstanding principals of the assets selected
at timet0 must not exceed the outstanding principal of
the main loan at the same date. Similarly, constraint (4)
establishes that the sum of the outstanding principals of
the assets selected before and at timet must not exceed
the outstanding principal of the main loan at the same
date.

Problem (ABS-2) is a generalization of a two-
dimensional knapsack problem with additional XOR–
conditions between pairs of variables and a special
structure of the data. The standard two-dimensional
knapsack problem was treated extensively in [10],
where the authors also considered its Lagrangian re-
laxation in detail. If all assets expire before timet
the problem reduces to a simple knapsack problem.
Hence,m1 > 0 will be assumed. The same problem
using French instead of Italian amortization rule would
have implied a multi-dimensional knapsack problem
requiring an additional constraint for each reimburse-
ment date of the main outstanding principal (see also
[7]). The relatively simple structure of (ABS-2) with
only two capacity constraints can be exploited by a
Lagrangian relaxation approach to find upper bounds
on the optimal solution value and to create feasible
suboptimal portfolios. This will be the objective of the
next section.

3. Lagrangian Relaxation

Instead of directly exploiting the implicit knapsack
structure of the problem we propose a theoretically
more advanced approach based on the application of
Lagrangian relaxation to Problem (ABS-2). The compu-
tation of upper bounds based on Lagrangian relaxation
is aimed at the extraction of feasible solutions, thus it
is not promising to relax both constraints at the same
time removing most of the structure of the problem. In-
stead, we will pursue the two possibilities of relaxing
either constraint (3) or constraint (4) yielding the two
parametric problemsP1(λ) andP2(λ). For both cases
will we consider the Lagrangian dual problemsDP1
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and DP2. Each of the resulting solution values gives
an upper bound onv(t) and the corresponding solu-
tion frequently provides a reasonable selection of as-
sets. Thereby, one can hope for a better solution at the
cost of a more complex computation. In general, this
solution may be not feasible for the original problem
and can only be transformed heuristically into a feasi-
ble solution. In our approach this will fortunately not be
necessary. Theory on Lagrangian relaxation and its ap-
plication to combinatorial optimization problems can be
found in the seminal paper [3] or in the textbook [11].

Let us start with relaxing constraint (3).

DP1 min
λ≥0

f1(λ),

wheref1(λ) is defined as the solution value of the fol-
lowing problem:

P1(λ) f1(λ) := max

m
∑

i=1

pi0xi0 +

m1
∑

i=1

pi1xi1

+ λ

(

C −
m
∑

i=1

Cixi0

)

(6)

xi0 + xi1 ≤ 1, i = 1, . . . , m, (7)
m1
∑

i=1

Ci

ni

(ni − t)(xi0 + xi1) ≤ C − C

n
t , (8)

xi0, xi1 ∈ {0, 1}, i = 1, . . . , m . (9)

It is well known thatf1(λ) is an upper bound for
v(t) for everyλ since the optimal solution of (ABS-2)
is trivially feasible forP1(λ). The objective function
f1(λ) can be rewritten as

max

m
∑

i=1

ri(λ)xi0 +

m1
∑

i=1

pi1xi1 + λC (10)

with

ri(λ) := pi0 − λCi .

P1(λ) can be modelled by a standard knapsack prob-
lem KP where an “item”i corresponds to the selection
of a pairxi0, xi1 represented by the better alternative.
Weights and profits are given aswi := Ci

ni
(ni − t) and

pi(λ) := max{pi0 − λCi, pi1}, i = 1, ..., m1, whereas
the knapsack capacity is triviallyC − C

n
t. Naturally,

assets with duration shorter thant are not included
in the knapsack instance but selected if and only if
pi0 − λCi > 0:

P ′
1(λ) max

m1
∑

i=1

pi(λ)zi

m
∑

i=1

Ci

ni

(ni − t)zi ≤C − C

n
t ,

zi ∈ {0, 1}, i = 1, . . . , m1 .

For a given valueλ0, denoting the optimal solution
of P ′

1(λ0) by z∗i we can compute the value offi(λ0) as
follows: if z∗i = 1 we setxi0(λ0) := 1 if ri(λ0) ≥ pi1

andxi1(λ0) := 1, otherwise. Ifz∗i = 0 both variables
are set to zero.

Notice that in the knapsack problemP ′
1(λ), every

profit pi(λ) is a convex function consisting of a linear
function starting withpi(0) = pi0 and decreasing with
slope−Ci until λ = (pi0 − pi1)/Ci, from where the
profit continues as a constant functionpi(λ) = pi1 as
depicted in Figure 2 (left side).

The second possibility for a Lagrangian relaxation of
(ABS-2) is to relax constraint (4) yielding:

DP2 min
λ≥0

f2(λ),

wheref2(λ) is defined as the solution value of the fol-
lowing problem:

P2(λ) f2(λ) := max

m
∑

i=1

pi0xi0 +

m1
∑

i=1

pi1xi1+

λ

(

C − C

n
t −

m1
∑

i=1

Ci

ni

(ni − t)(xi0 + xi1)

)

xi0 + xi1 ≤ 1, i = 1, . . . , m, (11)
m
∑

i=1

Cixi0 ≤ C, (12)

xi0, xi1 ∈ {0, 1}, i = 1, . . . , m . (13)

As before,f2(λ) is a trivial upper bound forv(t) for
everyλ. Constraint (3) should be more significant for
the solution value (cf. remarks at the end of the paper
[7]). Hence, one can hope thatDP2, which guarantees
that (3) is fulfilled, should generate solutions only mod-
erately violating (4).

In the case ofDP2, the objective function yielding
f2(λ) can be equivalently written as:

m
∑

i=1

ai(λ) xi0 +

m1
∑

i=1

bi(λ) xi1 + λ

(

C − C

n
t

)

(14)
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with

ai(λ) := max

{

0, pi0 − λ
Ci

ni

(ni − t)

}

,

bi(λ) := max

{

0, pi1 − λ
Ci

ni

(ni − t)

}

,

for ni > t, and

ai(λ) := pi0, bi(λ) := 0,

otherwise.
For a given argumentλ0 the computation off2(λ0)

works as follows. Note that the selection ofxi1 does not
cause any effect in constraint (12). Hence, according to
(14), an optimal solution always exists where both vari-
ablesxi0, xi1 will never be set equal to0 but exactly
one of them will be set to1 as along asai(λ) > 0.
Sinceai(λ) ≥ bi(λ), the corresponding decisions can
be modeled by the following standard knapsack prob-
lem, whereyi = 1 indicates thatxi0 = 1 andxi1 = 0.

P ′
2(λ) max

m
∑

i=1

(ai(λ) − bi(λ))yi

m
∑

i=1

Ci yi ≤ C ,

yi ∈ {0, 1} i = 1, . . . , m .

Denoting the optimal solution ofP ′
2(λ0) by y∗

i we can
immediately deduct the value off2(λ0) in (14) by set-
ting xi0(λ0) := y∗

i andxi1(λ0) := 1 − y∗
i .

Taking a closer look at the coefficientsai(λ) and
bi(λ) we can characterize the profit valuespi(λ) :=
ai(λ)− bi(λ) in the above knapsack problemP ′

2(λ) as
follows. For smallλ, bothai(λ) andbi(λ) are strictly
positive and their differencepi0 − pi1 is constant for
everyi. Hence, the solution of a single instance of KP
is an optimal solution forP ′

2(λ) as long asbi(λ) > 0
holds for all i. For the case whereλ yields ai(λ) >
0 but bi(λ) = 0, the KP instance has profits linearly
decreasing inλ. For largerλ, there is alsoai(λ) = 0
and itemi can be discarded from consideration. The
situation is illustrated in Figure 2 (right side). Of course,
the breakpoints ofλ separating these three cases are
different for everyi. In the special caseni ≤ t, there is
pi(λ) = pi0.

4. Lagrangian Heuristics

It is well known and easy to see thatfi(λ), i =
1, 2, is a piecewise linear convex function overR+. In

-

6

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ

λ

pi(λ)

pi0−λCi

pi1

pi(λ):=max{pi0−λCi,pi1}

-

6
@

@
@

@
@@

@
@

@@
@

@ λ

pi(λ)

bi(λ)

ai(λ)

pi(λ):=ai(λ)−bi(λ)

Fig. 2. The profits of the knapsack problems associated with
DP1 (left figure) andDP2 (right figure) as functions ofλ.

fact, in both casesDP1 and DP2 the solution value
of every feasible solution is a piecewise linear convex
function inλ, and hence the property follows forfi(λ).
However, it should be noted that the solution function
of P ′

2(λ), which is used for computing values off2(λ),
is piecewise linear and decreasing but not at all convex.

It was pointed out before that in general a Lagrangian
relaxation approach will not necessarily generate a
feasible solution for an integer programming problem.
However, in the case ofDP1 and DP2 the objective
functionsfi(λ) have a special structure. In particular,
the convex functionsfi(λ) consist of a decreasing part
with λ < λmin for which the corresponding solutions
are infeasible for the original problem (ABS-2) since
the slope is given by the slack of the relaxed constraint.
For λ > λmin the slopes of the linear pieces are posi-
tive and correspond to feasible solutions with a positive
slack in the constraint. The positionλmin (excluding
degenerate cases where a linear piece has slope0) is a
breakpoint offi(λ). It is defined by the intersection of
the linear piece with maximal negative slope and the
piece with minimal positive slope. Taking the feasible
solution corresponding to the latter of these pieces
provides the feasible solution of our heuristic. We will
denote the resulting heuristics asHL1 andHL2.

4.1. Searching for the Lagrangian Dual

Computing the minimum offi(λ) can be done by a
variety of general search techniques. In all cases, we
have at hand during the execution of such an algorithm
a search interval[λℓ, λu] containing the optimal multi-
plier λmin. By means of the specific search procedure
a new multiplierλnew ∈ (λℓ, λu) is computed. After
evaluatingfi(λnew) we setλnew as a new lower or up-
per interval bound depending on the sign of the slope
of fi(λ) at λnew .

We will apply three different approaches to determine
a new multiplier:
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(i) Bisection: This trivial procedure performing bi-
nary search on theλ-axis simply choosesλbis :=
(λℓ+λu)/2 as depicted in Figure 3. It does not take
into account any available information onfi(λ).

(ii) Outer Approximation:Considering the slopes of
fi(λ) in the two endpoints of the search interval we
can intersect the corresponding tangents and thus
find a new search valueλoa as theλ-coordinate of
the intersection point (see Figure 3).

(iii) Outer Approximation with Angle Bisection:If
fi(λ) is fairly symmetric w.r.t.λmin, Outer Ap-
proximation should perform very well. For highly
asymmetric shapes offi(λ) a modification of this
method immediately comes to mind. Instead of
the intersection point of the two tangents we con-
struct the bisecting line of their angle. It is not
unlikely that this line points roughly towards the
minimum of fi(λ). To get a new multiplier, we
intersect this bisecting line with a horizontal line
given by any lower bound onfi(λ). Obviously,
every feasible solution for (ABS-2) (derived by a
heuristic) gives such a lower bound.

-
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Fig. 3. Search step for a given interval[λℓ, λu]: Bisection
yields λbis = (λℓ + λu)/2, Outer Approximation intersects
the two tangents offi(λ) at λℓ andλu producingλoa.

4.2. Initialization and Stopping Criteria

Important issues for the performance of the La-
grangian heuristics are the choice of the initial search
interval and the applied stopping criterion. Both of
these features were shown to be crucial elements in
practical experiments with Lagrange-type heuristics.

The standard choice of starting the search forλmin

with λℓ := 0 can not be easily improved. Simple initial
upper bounds onλmin can be found by taking a closer
look at the specific objective functions.

For f1(λ) we can easily compute a multiplierλu as

λu := max
i=1,...,m

pi0 − pi1

Ci

. (15)

For this choice ofλu there isri(λ) ≤ pi1 for all i in (10).
Hence, our functionf1(λ) has a fixed positive slope of
C atλu. Performing elementary calculations for (15) it
follows immediately that the maximum is attained for
the largestni, i.e. for i = 1, which results in

λu =
p10 − p11

C1
= t

(

1 − t − 1

2n1

)

.

Note thatλu ∈ (t/2 , t). Elaborating further on this
approach it can be seen that the slope off1(λ) will
stay positive as long asC >

∑m

i=1 Cixi0. This can be
guaranteed also for a smaller multiplier, namely ifλ is
chosen such that the sum ofCi of those assetsi where
ri(λ) > pi1 is less thanC. More formally, determine

i′ := arg max
i=1,...,m

i
∑

ℓ=1

Cℓ < C,

and compute as above an upper bound

λu =
pi′0 − pi′1

Ci′
= t

(

1 − t − 1

2ni′

)

. (16)

Recall that the assets are assumed to be sorted in de-
creasing order of duration.

In the case off2(λ) one can follow similar consider-
ations and compute a multiplier such that allai(λ) are
0. This yields

λu := max
i=1,...,m

pi0 ni

Ci(ni − t)
= max

i=1,...,m

ni(ni + 1)

2(ni − t)
.

(17)
Contrary to the previous case, the expression to be max-
imized (if treated as a continuous instead of pointwise
function) is not monotonous inni but attains a local
minimum forni = t+

√
t2 + t. Hence, the above max-

imum may be attained either for the asset with longest
or with shortest duration, which results in

λu = max

{

n1(n1 + 1)

2(n1 − t)
,

nm(nm + 1)

2(nm − t)

}

.

The same arguments applied above to derive (16) can
be also used to improve the value ofλu for f2(λ). How-
ever, we have to take care of the discussed behaviour of
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the expression maximized in (17). This means that we
gradually decreaseλu by collecting a set of assetsS in
the following way: Take the asset which generates the
maximum in (17), put it intoS and temporarily remove
it from consideration (only during the computation of
the initial upper bound onλmin). Recomputeλu as de-
fined in (17) with the reduced set of assets and iterate
this procedure as long as

C − C

n
t >

∑

i∈S

Ci

ni

(ni − t).

Upon termination this process will have implic-
itly computed two indices i′ and i′′ such that
S = {1, . . . , i′, i′′, . . . , m} (one of the two intervals
may be empty). Takingλu as the maximum overS
instead of{1, . . . , m} will yield ai(λ) > 0 only for
assetsi ∈ S. By the above stopping criterion even se-
lecting all these assets will produce a positive slope of
f2(λ) at λu.

Standard stopping criteria are bounds on the width
of the remaining search interval such asλu − λℓ < δ1

or on the positive value of the slope associated with the
solution atλu, which is equivalent to an upper bound
on the slack in the relaxed constraint of (ABS-2). The
only way to determineλmin with certainty is based on
the Outer Approximation described above. Indeed, the
intersection point of the two linear pieces of the func-
tion fi(λ) always lies below the actual functionfi(λ).
As soon as the evaluation offi(λ) at this point yields
the same solution set, i.e. the same linear piece, as in
the previous iteration, we know thatλmin is equal to
the λ–coordinate of the intersection point. Of course,
this property also holds for Outer Approximation with
Angle Bisection.

A related setup in the area of knapsack problems in-
volving a search procedure on a piecewise linear, convex
function, where every search value corresponds to the
solution of a standard knapsack problem, was treated
in [1] for the different context of an inverse-parametric
knapsack problem. Some of the computational features
reported in their work can also be used for the present
problems.

4.3. Worst-Case Analysis

Concerning the performance of the two Lagrange-
based heuristics we can give theoretical results show-
ing that both heuristics based onP1(λ) andP2(λ) can
behave as bad as possible.

Example 1 Consider a long term loan with normalized
volumeC = 1, a given parameterℓ and the second
selection pointt = ℓ− 1. Let three assets be given with
the following data:

i 1 2, 3

Ci 1 1
2 + ε

ni ℓ ℓ

pi0
1
2 (ℓ + 1) (1

4 + ε
2 )(ℓ + 1)

pi1
1
ℓ

(1
2 + ε)1

ℓ

Ci1
1
ℓ

(1
2 + ε)1

ℓ

The duration of the main loan is set ton = (ℓ −
1)/(1−(1+2ε)1/ℓ) thus guaranteeing that asset 2 and 3
can be selected together at timet sinceC01 = (1+2ε)1

ℓ
.

There are six feasible solutions (excluding symmetry)
to this example: Selecting the single asset 1 or 2 at time
0 or time t, selecting asset 2 at time 0 and asset 3 at
t and finally selecting both assets 2 and 3 at timet. In
the Lagrangian relaxationP1(λ) we get as additional
feasible solution the selection of both assets 2 and 3 at
time 0 and the empty set.

Constructing the Lagrangian solution functions for
each of these eight cases yields the following scenario
represented by the corresponding non-zero variables:

function selection profit λ − slope dominated by
g1(λ) x10 p10 0
g2(λ) x11 p11 1 g6(λ)
g3(λ) x20 p20

1
2 − ε g5(λ)

g4(λ) x21 p21 1 g6(λ)
g5(λ) x20, x31 p20 + p31

1
2 − ε

g6(λ) x21, x31 p21 + p31 1
g7(λ) x20, x30 p20 + p30 −2ε
g8(λ) ∅ 0 1 g6(λ)

Figure 4 illustrates these eight solutions as linear func-
tions in λ. Those functions which almost coincide are
represented only by a single line. The upper envelope
f1(λ), i.e. the maximum over all functions, is given in
bold.

Observing the above definitions it can be easily seen
thatg6(λ) dominatesg2(λ), g4(λ) andg8(λ) which can
thus be eliminated from further consideration. More-
over,g5(λ) dominatesg3(λ). Among the remaining four
functions we can calculate thatg5(λ), g6(λ) andg7(λ)
share a single intersection point at̄λ = p20−p21

C2
=

1
2 (ℓ + 1)− 1

ℓ
. From the slope of the functions it can be

seen thatg7(λ) > g5(λ) for λ < λ̄ andg6(λ) > g5(λ)
for λ > λ̄. Thus,g5(λ) cannot be part off1(λ). Finally,
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g6(λ) > g2(λ) > g4(λ) > g8(λ)

g5(λ) > g3(λ)

g7(λ), g1(λ)

λ̄= 1

2
(ℓ+1)− 1

ℓ

gi(λ)

1

2
(ℓ+1)

1

4
(ℓ+1)

λ
λ̄= 1

2
(ℓ+1)− 1

ℓ

f1(λ)

Fig. 4. Lagrange functions of the eight feasible solutions of
Example 1.

an elementary calculation shows thatg1(0) < g7(0)
and g1(λ̄) < g7(λ̄) = g6(λ̄). Considering again the
slopes of the three functions we have established:

f1(λ) =

{

g7(λ) for λ ≤ λ̄,
g6(λ) for λ > λ̄.

Hence,HL1 outputs as a solution the selection of both
assets2 and 3 but only at timet, whereas the optimal
solution chooses only asset 1 at time 0. Therefore, the
performance ratio ofHL1 can be bounded from above
by

lim
ℓ→∞

HL1

Opt
= lim

ℓ→∞

p21 + p31

p10
= lim

ℓ→∞

(1 + 2ε)1
ℓ

1
2 (ℓ + 1)

= 0.

Theorem 1 The performance ratio of heuristicHL1

can be arbitrarily bad. 2

Example 2 Consider again a long term loan with nor-
malized volumeC = 1 and duration equal ton. The
second selection point is set tot = 1. Let three assets
be given with the following data (ε < 1).

i 1 2 3
Ci 1 1 ε
ni 1 n − 1 n
pi0 1 n

2 ε · n+1
2

pi1 0 n−2
2 ε · n−1

2

Ci1 0 1 − 1
n−1 ε · n−1

n

Excluding the trivially dominated solutions consisting
of only asset 2 or 3 selected at timet = 1, there are six
feasible solutions: Selecting any single asset at time 0
and nothing else, combining asset 1 selected at time 0
with one of the other assets selected at time 1 and the
empty set. In the Lagrangian relaxationP2(λ) we get
three additional feasible solutions, namely the selection
of assets 2 and 3 one at time 0 the other at time 1 (which
clearly dominates selecting both of them only at time 1)
and selecting asset 1 at time 0 and both assets 2 and 3
at time 1. The resulting Lagrangian solution functions
for all nine relevant cases are given in table 1.

For all three infeasible solutions the slope of the La-
grangian function is given byh(ε) := 1

n(n−1) − ε · n−1
n

which is negative forε > 1
(n−1)2 . Note that some of the

dominations are not strict but they can be obtained by
appropriate tie-breaking rules. The nine solutions are
illustrated as linear functions inλ in Figure 5. As be-
fore functions with tiny deviation are represented only
by a single line and the maximum over all functions is
given in bold.

g2(λ) = g4(λ),

g6(λ) = g8(λ) > g7(λ)

g3(λ), g9(λ)

g1(λ), g5(λ)

gi(λ)

n

2

λ
λ̄= n−1

2

f2(λ)

Fig. 5. Lagrange functions of the eight feasible solutions of
Example 2.

To determine the upper envelopef2(λ) we start by
sorting the four remaining Lagrangian solution func-
tions forλ = 0 which yieldsg6(0) > g2(0) > g5(0) >
g1(0). Furthermore, forλ tending to infinity there is
f2(λ) = g1(λ). Now we compute the intersection point
of g1(λ) andg2(λ) denoted bȳλ. An elementary calcu-
lation yieldsλ̄ = n−1

2 .
Further calculations show thatg5(λ̄) < g1(λ̄) (for
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Table 1

function selection profit λ-slope dominated by
g1(λ) x10 p10 1 − 1

n

g2(λ) x20 p20
1

n(n−1)

g3(λ) x30 p30 (n − 1)( 1
n
− ε

n
) g5(λ)

g4(λ) x10, x21 p10 + p21
1

n(n−1)
g2(λ)

g5(λ) x10, x31 p10 + p31 (n − 1)( 1
n
− ε

n
)

g6(λ) x20, x31 p20 + p31 h(ε)
g7(λ) x30, x21 p30 + p21 h(ε) g6(λ)
g8(λ) x10, x21, x31 p10 + p21 + p31 h(ε) g6(λ)
g9(λ) ∅ 0 1 − 1

n
g1(λ)

n > 3) which implies that the intersection point ofg1(λ)
andg5(λ) is smaller than̄λ. Hence,g5(λ) is dominated
by g2(λ) for λ ≤ λ̄ and byg1(λ) for λ > λ̄ and will
never be a part off2(λ).

On the other hand it can be shown by a straightfor-
ward calculation thatg6(λ̄) > g1(λ̄). Hence, the inter-
section point ofg1(λ) andg6(λ) is larger thanλ̄. There-
fore, we can conclude thatg6(λ) dominatesg2(λ) for
λ ≤ λ̄ andg1(λ) trivially dominatesg2(λ) for λ > λ̄.
Hence,g2(λ) will never be a part off2(λ) which can
now be described asmax{g6(λ), g1(λ)}.

The Lagrangian heuristicHL2 will thus output the
feasible solution corresponding tog1(λ), i.e. selecting
only asset 1 at time 0 which yields a profit of 1 whereas
the optimal solution would select only asset 2 at time 0
reaching a profit ofn2 :

lim
n→∞

HL2

Opt
= lim

n→∞

p10

p20
= lim

n→∞

1
n
2

= 0.

Thus we have shown the following theorem:

Theorem 2 The performance ratio of heuristicHL2

can be arbitrarily bad. 2

The two worst-case examples also show that there is
no dominance between the two Lagrangian heuristics.
It can be checked that heuristicHL2 finds the optimal
solution for Example 1 and heuristicHL1 reports the
optimal solution for Example 2. Without going into the
details of the computation, this is due to the fact that
in each example one of the constraints is only slightly
violated by the solution given by the heuristic it is con-
structed to fail for. Applying the other heuristic, the re-
quired feasibility of that constraint immediately leads
to the optimal solution.

Corollary 3 There is no dominance betweenHL1 and
HL2. 2

5. Computational Analysis

5.1. Testing environment

This section is devoted to a comprehensive analysis
and comparison of the proposed Lagrangian heuristics
in a real-case decision environment provided by a Leas-
ing Bank in Milan (i.e. we assume that assets are leasing
contracts and the Originator is the bank itself).

Data sets are generated according to the parameter
ranges shown in Table 3 where the leasing contracts are
classified, according to the type of the underlying as-
set, into 5 different classes. More precisely, each class
is characterized by the type of assets involved, their
economic value (initial value of the underlying asset)
and by their average expiring date. An asseti belong-
ing to the classAs , s = 1, ..., 5, has the outstanding
principal at the closing dateCs

i and the duration (i.e.
number of installments)ns

i uniformly generated in the
ranges[Cs

min, Cs
max] resp.[ns

min, ns
max]. For instance,

classA1 (cf. first line of Table 3) consists of lease con-
tracts with value (initial outstanding principal) ranging
between 5000 and 75,000 Euros whose underlying as-
sets are small vans and motor vehicles. The asset dura-
tion (the term) for this class has an average length equal
to 35 months and can range between 25 and 45 months.
Notice that assets with larger initial values have longer
life (longer average term).

The Leasing Bank provides us with two different re-
alistic scenarios for generating data.
(1) ScenarioS1: hs := 1/5, ∀s.
(2) ScenarioS2:

h3 uniformly distributed in[0, 0.3]
h4 uniformly distributed in[0, 0.2]
h5 uniformly distributed in[0, 0.15]
h1 = h2 := 1

2 (1 − h3 − h4 − h5).
ScenarioS1 assumes that each class has the same

number of assets, whereas scenarioS2 imposes an up-
per bound on the percentagehs of the total number of
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Table 2

Class Underlying [Cs
min, Cs

max] average term [ns
min, ns

max]
Asset (in months)

A1 vehicles & vans [5, 75] 35 [25, 45]
A2 plant & machinery [5, 75] 48 [38, 58]
A3 vehicles & trucks [75, 1500] 47 [37, 57]
A4 plant & machinery [75, 1500] 54 [44, 64]
A5 real estate [75, 2000] 95 [85, 105]

Generation of assets for the classesA1 to A5.

assets which belong to each classs. For instance, the
cardinality of classA3 has to be lower than or equal to
30% of the total number of generated assets.

In real world problems the total number of assets
available at the closing date may vary widely since the
bank can carry out different securitizations. On average,
each ABS operation involves thousands of assets. We
have investigated realistic problems with four different
values ofm equal to 500, 1000, 5000 and 10000.

The time unit for asset reimbursement is equal to one
month, while the reimbursement dates of the main loan
are equally distributed over the ABS duration with inter-
val length between two dates equal to 18 or 24 months
and a number of reimbursement dates ranging between
4 and 6. More precisely, the main loan is assumed to
have a durationn equal to 96 and 120 months (resp. 8
and 10 years) if the reimbursement dates occur every
24 months, while it lasts 90 and 108 months (resp. 7.5
and 9 years) when reimbursement dates have periodic-
ity equal to 18 months. In all cases the main loan has
a term longer than the longest available asset. We have
set the initial valueC of the main outstanding princi-
pal equal to1

2

∑m

i=1 Ci. Given n, the settlement date
t is set equal to the first and the third reimbursement
date of the main loan, respectively. For instance, if the
termn of the main loan is equal to 96 months we have
generate instances witht equal to 24 and 72 months, re-
spectively. In particular, we have analyzed the following
eight pairs of values (n,t): (96,24), (96,72), (120,24),
(120,72), (90,18), (90,54), (108,18) (108,54). For each
m and each pair(n, t) we have generated 5 instances
with the same initial value of the main loan outstanding
principal for scenarioS1 and 5 for scenarioS2. This
means 80 instances for eachm and 320 instances alto-
gether.

Test problems have been run on a PC Intel(R) Pen-
tium IV Windows 2000 with 1500 Mhz. The code has
been written in Microsoftc© Visual C++. Optimal solu-
tions of (ABS-2) have been computed with CPLEXc©

Version 8.1. In particular, we have set a computation

time limit of 2 hours for CPLEX branch and cut routine.
This means that if no optimal solution has been found
within this time limit, the routine is stopped and the best
integer feasible solution found so far is provided.

5.2. Computational Results

In the following we provide the computational anal-
ysis and the comparison of the performances of the two
proposed heuristics. To generate the multiplierλ we
have implemented all the three methods described in
Section 4.1.. Nevertheless, we have decided to report
only the results for the Bisection (indicated as Bis) and
the Outer Approximation (indicated as OutApp) meth-
ods. The performances of the Outer Approximation with
Angle Bisection approach strongly depends on the so-
lution value of the heuristic used as lower bound. We
have used two different values for this bound. The first
one is based on the solution of an instance of KP which
results from settingxi1 = 0 for all i in (ABS-2), i.e.
solving the problem with assets selected only att0. If
the difference between the average duration of the as-
sets andt is fairly large one may expect to find quite a
good lower bound. Unfortunately this was not always
the case in our test problems. We then decided to use
as lower bound the final value provided byHL1 resp.
HL2 when using the Bisection method. In all cases, the
obtained computational performances were never better
than those found with Outer Approximation, thus we
decided to omit this approach from further considera-
tion.

We start the discussion of the computational results
by analyzing the efficiency and effectiveness of CPLEX
in solving the 320 instances to optimality within 2 hours
of computation time. Since solution values are of order
larger than109 Euro whenm = 500, larger than1010

whenm = 1000 and5000 and larger than1011 when
m =10000, we have changed the mixed integer opti-
mality gap tolerance of CPLEX from its default value
(equal to 10−4) to 10−8. In the case of instances with
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m = 10000 CPLEX may terminate with a solution
which differs from the optimal one by several thousand
Euros. Obviously the time required for the proof of op-
timality increases when the gap tolerance is reduced.

Tables 4 and 5 provide the number of instances solved
to optimality within the time threshold of two hours
for ScenarioS1 andS2, respectively. Each entry of the
two tables shows the number of generated instances (in
brackets) and the number of instances solved to optimal-
ity. About 80% and 75% of all instances of ScenarioS1

resp.S2 have been solved to optimality within 2 hours
of computation time. For the unsolved instances, we
have tried to remove the threshold on the computation
time finding out that, for almost all of them, CPLEX
was unable to find the optimal solution even after 10
hours of computation time. By comparing the two ta-
bles its evident that on average the number of solved
instances is quite similar in the two scenarios. In par-
ticular, in both cases, the most difficult problems are
those selecting assets at the first reimbursement date of
the main loan (see columns (96,24) (120,24), (90,18)
and (108,18)) rather than selecting assets at the third
one. The difference in terms of the computation time re-
quired is impressive: none of the problems witht equal
to the third reimbursement date of the main loan has re-
quired CPLEX more than 15 seconds to find the optimal
solution with an average time equal to 1.39 seconds.
On the contrary, if we consider the problems solved to
optimality with t equal to the first reimbursement date
of the main loan (i.e. instances with(n, t) values equal
to (96,24) (120,24), (90,18) and (108,18)) the average
time required by CPLEX increases to 236.1 seconds
with a maximum value equal to 2923 seconds. The re-
sult suggests that initial dates are most critical for asset
selection.

For m = 500 all but a few instances could be solved
to optimality. On the contrary, for some values ofn
and t (cf. (90,18) and (108,18) for ScenarioS2) no
optimal solution was found after 2 hours for instances
with 10000 assets.

Tables 6 and 7 show the average and the maximum
computation time required by CPLEX and by the two
heuristics to solve problems with the same number of
assets. For CPLEX we provide either the average time
out of the instances solved to optimality within 2 hours
or that taking into account also those instances stopped
after 2 hours (values into brackets). The running time of
CPLEX to compute the optimal solution of (ABS-2) is
on average quite high even for relatively small problems.
The deviation between different problems of the same

size is extremely large. Some instances could be solved
in less than one second whereas others require hours.

For heuristicsHL1 and HL2 most of the running
time is consumed by the solution of knapsack prob-
lems for each value ofλ. We have used CPLEX to
solveP ′

1(λ) and P ′
2(λ) knapsack problems by setting

the same tolerance gap used for optimal solutions. Of
course a specialized KP-code might be plugged in to
further improve the performance. On average, the com-
putation time increases with the number of assets and
both heuristics are more efficient when using Bisection
with respect to Outer Approximation method. This is
especially true for heuristicHL2 where the time re-
quired to solve the KP problems is, on average, higher
with respect toHL1 and the difference between Outer
Approximation and Bisection is justified by the larger
number of problems solved when using the first method
with respect to the second one. As can be seen by com-
paring the two tables, no relevant differences can be
noted between the two scenarios. Finally, if we take
a closer look to the results it can be noticed that for
heuristicHL1, those instances witht set equal to the
first reimbursement date of the main loan require, on
average, higher computation times with quite large de-
viations among different instances with the samem.

To measure the quality of the approximate solutions
we have computed their relative deviation from the op-
timal solution value, if available, or from the best inte-
ger solution value found by CPLEX after 2 hours. Table
8 shows the average and the maximum percentage er-
rors found by heuristicHL1 for eachm under Scenario
S1 andS2. The performances are shown for the cases
with Bisection and with Outer Approximation. Table 9
provides similar results for heuristicHL2.

The average error found by heuristicHL1 changes
only slightly with the number of assets, while its value
is, on average, larger for instances belonging to Scenario
S2 with respect to those of scenarioS1. If we analyze
the average performance of heuristicHL1 with Outer
Approximation (Bisection) on those instances witht
equal to 18 and 24 (i.e.t equal to the first reimbursement
date of the main loan) we find an average percentage
gap from the optimal solution value equal to 0.021%
(0.022%) for the instances in ScenarioS1 and to 0.11%
(0.23%) for those in ScenarioS2. The corresponding
values for instances witht equal to 54 and 72 are equal
to 0.75% (0.85%) and 1.27% (1.43%) for ScenarioS1

andS2, respectively. This can be justified by the fact that
the constraint at timet is more relevant whent is closer
to the closing date and that heuristicHL1 obtained by
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Table 3

(96,24) (96,72) (120,24) (120,72) (90,18) (90,54) (108,18) (108,54) total
500 5 (5) 5 (5) 5 (5) 5 (5) 4 (5) 5 (5) 4 (5) 5 (5) 38 (40)
1000 5 (5) 5 (5) 4 (5) 5 (5) 4 (5) 5 (5) 1 (5) 5 (5) 34 (40)
5000 2 (5) 5 (5) 2 (5) 5 (5) 0 (5) 5 (5) 2 (5) 5 (5) 26 (40)
10000 1 (5) 5 (5) 5 (5) 5 (5) 1 (5) 5 (5) 2 (5) 5 (5) 29 (40)
total 13 (20) 20 (20) 16 (20) 20 (20) 9 (20) 20 (20) 9 (20) 20 (20) 127 (160)

Number of instances solved by CPLEX to optimality within 2 hours – ScenarioS1.

Table 4

(96,24) (96,72) (120,24) (120,72) (90,18) (90,54) (108,18) (108,54) total
500 5 (5) 5 (5) 5 (5) 5 (5) 4 (5) 5 (5) 3 (5) 5 (5) 37 (40)
1000 4 (5) 5 (5) 3 (5) 5 (5) 1 (5) 5 (5) 1 (5) 5 (5) 29 (40)
5000 4 (5) 5 (5) 3 (5) 5 (5) 2 (5) 5 (5) 2 (5) 5 (5) 31 (40)
10000 2 (5) 5 (5) 2 (5) 5 (5) 0 (5) 5 (5) 0 (5) 5 (5) 24 (40)
total 15 (20) 20 (20) 13 (20) 20 (20) 7 (20) 20 (20) 6 (20) 20 (20) 121 (160)

Number of instances solved by CPLEX to optimality within 2 hours – ScenarioS2.

Table 5

m CPLEX HL1 HL2

Bis OutApp Bis OutApp
av. max. av. max. av. max. av. max. av. max.

500 97 (452) 2186 1.70 8 1.80 8 4.33 8 5.93 16
1000 162 (1218) 2923 2.75 15 2.95 14 8.82 21 13.98 43
5000 48 (2551) 1041 23.45 369 30.22 428 35.22 77 44.55 115

10000 72 (2032) 567 31.57 101 42.77 120 85.07 153 106.27 177

Average and maximum running time out of 40 instances – Scenario S1.

Table 6

m CPLEX HL1 HL2

Bis OutApp Bis OutApp
av. max. av. max. av. max. av. max. av. max.

500 80 (614) 1128 1.38 4 1.23 5 5.45 25 8.83 22
1000 147 (2086) 3265 3.80 16 4.07 18 9.35 18 18.42 56
5000 30 (1643) 296 17.42 223 23.12 339 37.07 66 58.70 107

10000 78 (2927) 1707 32.85 120 41.12 152 88.15 166 114.55 171

Average and maximum running time out of 40 instances – Scenario S2.

relaxing the constraint at the closing date is especially
effective when the constraint at timet provides a larger
contribution to the solution value.

HeuristicHL2 shows a different behaviour since it is
derived from Lagrangian relaxing the constraint at time
t. Nevertheless, also this heuristic has a performance
strongly dependent on the value oft, which tends to im-
prove whent increases, i.e. when the relevance of the
corresponding constraint decreases. HeuristicHL2 has
an average behaviour impressively better than that of
heuristicHL1. This is especially true in ScenarioS1.
The result was somehow expected sinceHL2 is based
on the relaxation of the weaker of the two constraints
of (ABS-2). The heuristic is able to find the optimal
solution and even to improve the best integer solution
provided by CPLEX in almost all the instances with
t =72 andt =54. The result can be explained by the
fact that these instances are characterized by a datet
quite far from the closing date so that there is a lim-
ited number of assets with duration longer thant and

the corresponding constraint provides a limited contri-
bution to the solution value. However, also in those in-
stances wheret is set equal to 24 and 18 and where the
corresponding constraint may provide a more relevant
contribution to the solution value, heuristicHL2 has an
average performance for eachm definitely better than
heuristicHL1. Finally, the negative percentage errors
(see Table 9, ScenarioS1) mean that in many of those
instances where the proof of optimality was not found
after 2 hours of computation time, heuristicsHL2 has
determined better integer solutions than those provided
by CPLEX.

In conclusion, we can say thatHL2 is a highly suc-
cessful algorithm which always yields the best solution
quality. This result, supported by Table 9, is further
strengthened by Table 10 which gives the number of
instances where each algorithm has found the optimal
solution value resp. the best known solution value. In
addition, the numbers reported in brackets indicate how
many times each heuristic has found a solution value
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Table 7

Scenario S1 Scenario S2

Bis OutApp Bis OutApp
m av. max. av. max. av. max. av. max.

500 0.483% 3.515% 0.547% 3.890% 1.389% 11.994% 0.848% 6.086%
1000 0.400% 5.336% 0.153% 1.673% 0.702% 5.714% 0.702% 5.714%
5000 0.285% 2.956% 0.275% 2.903% 0.575% 2.734% 0.575% 2.734%

10000 0.439% 3.637% 0.433% 3.576% 0.588% 1.916% 0.590% 1.916%

Heuristic HL1. Average and maximum percentage errors – ScenarioS1 and S2.

Table 8

Scenario S1 Scenario S2

Bis OutApp Bis OutApp
m av. max. av. max. av. max. av. max.

500 0.047% 0.216% -0.044% 0.216% 0.560% 11.297% 0.052% 0.447%
1000 0.021% 0.125% -0.064% 0.125% 0.127% 1.963% 0.127% 1.963%
5000 0.011% 0.172% -0.060% 0.039% 0.059% 1.466% 0.059% 1.466%

10000 -0.191% 0.017% -0.191% 0.017% 0.003% 0.121% 0.003% 0.121%

Heuristic HL2. Average and maximum percentage errors – ScenarioS1 and S2.

strictly better than that provided by CPLEX after two
hours.

In order to decide which method should be imple-
mented for multiplier determination we can say that
Outer Approximation method provides, on average, bet-
ter results with respect to Bisection at the cost of higher
computation times. In particular, the difference in com-
putation time is relatively small for heuristicHL1 so
that we can recommend to use the Outer Approximation
method with this algorithm, while for heuristicHL2 the
trade-off between computation time and quality of the
solution suggests Bisection as the method of choice.

Finally, in [7] we investigate different heuristic al-
gorithms to solve the multiple dates selection problem.
Those heuristics can be easily modified and applied to
the present problem with only two selection dates. In
[7] the best performing heuristic was ABS-Knap. Ap-
plied to the present problem ABS-Knap requires the se-
quential optimal solution of a 0-1 Knapsack problem at
each of the two selection dates. We tested this heuris-
tic on all 320 instances of our data set. The heuristic
is quite efficient never requiring more than a few min-
utes of running time. It is also quite effective reaching
in the majority of instances the same solution as found
by CPLEX in two hours, but never improving it. How-
ever, for a small number of instances the performance
of ABS-Knap was quite bad with a deviation from the
CPLEX solution of more than 10%.

In Table 11 we directly compare the performance of
ABS-Knap with respect to the best Lagrangian method
(i.e. HL2(Out App)). Specifically, we report the max-
imum and average percentage gap of ABS-Knap with

respect to procedureHL2. A positive value means that
ABS-Knap has a worse performance with respect to
HL2, whereas a negative one means the reverse is true.
On average, ABS-Knap works quite well. Nevertheless,
the Lagrangian approach clearly dominates for scenario
S1 with an improvement of up to 5%. For scenarioS2

the picture is less clear and no definite winner can be
determined. However, the Lagrangian approach is to be
preferred also forS2 since it is the more stable method.
Indeed, the maximum gap of the ABS-Knap solution
can be more than 11% (cf. max gap values in Table 11),
while for the instances where ABS-Knap yields bet-
ter solution than the Lagrangian approach the gaps are
fairly small, with a maximum deviation lower than2%.

Table 10

Scenario S1 Scenario S2

m av. max. av. max.
500 0.041% 2.917% 0.462% 11.297%

1000 0.063% 1.171% -0.129% 0.097%
5000 0.051% 1.729% -0.052% 0.018%

10000 0.184% 4.351% -0.004% 0.034%

HL2 versus ABS-Knap. Average and maximum per-
centage errors – ScenarioS1 and S2.

5.3. What practitioners do

The procedure currently applied in practice to select
assets was communicated by managers from financial
institutions dealing with the design of Asset-Backed Se-
curities. This is a surprisingly simple greedy-type pro-
cedure: The assets are sorted in decreasing order of the
value of their initial outstanding principalCi0. Going
through the list in this ordering an asset is added to the
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Table 9

HL1 HL2

m Bis OutApp Bis OutApp
S1 S2 S1 S2 S1 S2 S1 S2

500 0 1 (1) 0 3 20 (2) 19 (3) 23 (4) 20 (1)
1000 1 1 (1) 3 1 20 (2) 21 (7) 25 (6) 21 (7)
5000 2 1 2 1 21 23 (1) 25 (3) 23 (1)

10000 3 (2) 1 (1) 3 (2) 1 24 (3) 24 (3) 24 (3) 24 (3)

Number of instances out of 40 solved to optimality or as good as CPLEX
after 2 hours, number of instances with strictly better values in brackets.

Table 11

Scenario S1 Scenario S2

m min. av. max. min. av. max.
500 6.615% 10.067% 15.209% 5.140% 9.518% 21.060%

1000 7.075% 9.949% 15.150% 5.852% 9.399% 14.734%
5000 7.230% 9.494% 14.423% 6.148% 8.797% 12.968%

10000 4.839% 9.836% 13.964% 5.921% 9.347% 13.283%

Greedy-type heuristic applied in practice. Minimum, average and maximum percentage errors – ScenarioS1 and S2.

portfolio if its initial outstanding principal together with
the assets already selected does not violated the upper
bound given by the outstanding principal of the main
loan, otherwise it is discarded. After going through all
assets and fixing the assets selected att0 an analogous
process is performed for the selection at timet after re-
ordering the items by their outstanding principalCi1.
This procedure corresponds in some sense to the classi-
cal greedy algorithm for the standard knapsack problem
but does not take the asset duration into account.

Our computational results show that this real world
selection process incurs a huge deviation from the so-
lutions found by our heuristicsHL1 resp.HL2 and by
CPLEX after 2 hours. As can be seen from Table 12 this
deviation is roughly 10% on average and still around 5%
even in the best case! This comes as a surprise to some
extent since greedy solutions perform bad (as can be
seen by the usual worst-case analyses) if ”large” items
are given filling a significant fraction of the available
capacity. However, this is not the case in our test in-
stances where all assets have only tiny principals com-
pared to the main loan. We assume that the main reason
for this bad performance is the applied sorting criterion
which might be improved by using a product of the ini-
tial outstanding principal with the duration of the asset.

6. Conclusions and Future Developments

How should a financial manager face the challeng-
ing problem of optimally selecting the assets to be con-
verted into notes? Do there exist effective formulations
and solution methods for this problem? Practice has
shown that a wrong selection of assets may result in

a considerable loss of profit possibly making ineffec-
tive the whole financial operation. In this paper we pro-
vide useful insights for financial institutions involved
with ABS processes. The proposed two-period model
(ABS-2) helps decision makers to better formalize this
complex problem and its objective function, whereas
the analyzed Lagrangian heuristics can be used as prac-
tical methods extremely effective and easy to imple-
ment. Extensive computational results on a large set of
problems generated accordingly to real world scenar-
ios provided by a leasing bank show how the proposed
approximation algorithms yield high quality solutions
within very short computation time. Moreover, we no-
tice that the solution of (ABS-2) depends heavily on
the value oft. This moment in time will be in practice
a point of negotiation between the seller and the pur-
chaser and in many business scenarios it will be fixed
only after the selection of contracts at time0. Hence,
the question arises for the seller (the bank) which se-
lection datet ∈ T := {r, 2r, . . . , ⌊n

r
⌋r} would be most

profitable w.r.t.v(t). The resulting bi-level problem can
be derived from (ABS-2) as

max
t∈T

v(t) (18)

Clearly, this problem is even more difficult than
(ABS-2) which we tried to tackle by heuristics. It is
our intention to further analyze this problem from a
theoretical point of view and provide the Originator
with effective heuristics for solving it.
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