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Generalized Traveling Salesman Problem Reduction Algorithms

Gregory Gutin and Daniel Karapetyan

Department of Computer Science, Royal Holloway Universityof London, Egham, Surrey TW20 0EX, UK

Abstract

The generalized traveling salesman problem (GTSP) is an extension of the well-known traveling salesman problem.
In GTSP, we are given a partition of cities into groups and we are required to find a minimum length tour that includes
exactly one city from each group. The aim of this paper is to present a problem reduction algorithm that deletes redundant
vertices and edges, preserving the optimal solution. The algorithm’s running time isO(N3) in the worst case, but it is
significantly faster in practice. The algorithm has reducedthe problem size by 15–20% on average in our experiments
and this has decreased the solution time by 10–60% for each ofthe considered solvers.
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1. Introduction

Thegeneralized traveling salesman problem(GTSP)
is defined as follows. We are given a weighted complete
undirected graphG on N vertices and a partitionV =
V1∪V2∪. . .∪VM of its vertices; the subsetsVi are called
clusters. The objective is to find a minimum weight
cycle containing exactly one vertex from each cluster.
There are many publications on GTSP (see, e.g., the
surveys [4,6] and the references therein). The problem
has many applications, see, e.g., [2,11]. It is NP-hard,
since thetraveling salesman problem(TSP) is its special
case (when|Vi| = 1 for eachi). The weight of an edge
xy of G is denoted dist(x, y) and will be often called
thedistancebetweenx andy.

Various approaches to GTSP have been studied.
There are exact algorithms such as branch-and-bound
and branch-and-cut described in [3]. Another approach
uses the fact that GTSP can be converted to an equiv-
alent TSP with the same number of vertices [2,13–15]
and then can be solved with some efficient TSP solver
such asConcorde [1]. Heuristic GTSP algorithms
have also been invistigated, see, e.g., [7,8,10,18–21].

Different preprocessing procedures are often used for
hard problems to reduce the computation time. There
are examples of such approaches in integer and lin-
ear programming (e.g., [9,17]) as well as for the Vehi-
cle Routing Problem [12]. In some cases preprocessing
plays the key role in an algorithm (e.g., [5]). We intro-
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duce preprocessing procedure for GTSP. A feature of
GTSP is that not every vertex of a problem should be
visited and, thus, GTSP may contain vertices that a pri-
ori are not included in the optimal solution and may be
removed. We have a similar situation with edges.

The experimental results show that almost each
GTSP instance tested in the literature can be reduced
by the presented procedure at a very low cost and that
this reduction is almost always beneficial for the GTSP
solvers.

2. Vertex Reduction

Since GTSP solution covers onlyM vertices, up to
N − M vertices may be reduced without a change of
the optimal solution. We present an approach to detect
some of the redundant vertices in a reasonable time.
Definition 1. Let C be a cluster,|C| > 1. We say that a
vertexr ∈ C is redundantif for each pairx, y of vertices
from distinct clusters different fromC, there exists a
vertexs ∈ C \ {r} such that dist(x, s) + dist(s, y) ≤
dist(x, r) + dist(r, y).

In other words, if for each pathxry there exists an-
other pathxsy, s ∈ C \ {r}, with the same or smaller
weight, vertexr can be removed. Testing this condition
for every vertex will take approximatelyO(N3 · |V |),
where|V | = N/M is the average cluster size. In the
symmetric case of the problem there is an efficient
heuristic that usually allows to reduce the preprocessing
time significantly.

Let us take two distinct verticesr and s in some

c© 2009 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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Table 1

Differences Table example.

s\x cl.2 v.1 cl.2 v.2 cl.2 v.3 cl.3 v.1 cl.3 v.2 Negative #

v.2 2 0 −1 −3 4 2
v.3 −1 −2 −1 1 2 3

max 2 0 −1 1 4

min{2, 0,−1} = −1 min{1, 4} = 1

clusterC. We can calculate the differences between the
distances tor ands from each vertexx /∈ C (∆r,s

x =
dist(x, r) − dist(x, s)) and save this information to a
Differences Tablesuch as Table 1. Notice that in Table 1
we assume that clusters 1 and 2 have three vertices each
and cluster 3 has two vertices,r belongs to the first
cluster and it is the first vertex in the cluster, i.e., vertex
s can be only the second and the third vertices of cluster
1.

Observe that a vertexr is redundant if there is no pair
of vertices from different clusters such that the sum of
differences∆ (see above) for these vertices is negative
for everys, i.e.,r is redundant if for everyx andy there
existss ∈ C \ {r} such that∆r,s

x + ∆r,s
y ≥ 0, wherex

andy belong to distinct clusters. That is due to

∆r,s
x + ∆r,s

y

= dist(x, r) − dist(x, s) + dist(y, r) − dist(y, s)

= dist(x, r) + dist(r, y) −
(

dist(x, s) + dist(s, y)
)

Therefore we need to check every pair of columns
(col1, col2) (except the pairs of columns corresponding
to the same clusters) in the Differences TableTrow,col. If
T1,col1+T1,col2 < 0, we check the second row (T2,col1+
T2,col2). If the result is still negative, we check the third
row, etc. If all the rows are checked and each time we
obtain a negative sum, the vertexr cannot be removed
and the rest of the procedure may be skipped.
Example 1. In the example above (Table 1) it is nec-
essary to perform up to6 tests provided in Table 2.

The only test that does not allow us to declare the
vertexr redundant is in the row 3 of the Table 2 (cl.2
v.2—cl.3 v.1) as both sums (fors = v.2 and fors = v.3)
are negative. (Certainly, there is no need to calculate the
sum fors = v.3 in rows 2, 4, and 6 in the example above,
and the calculations may be stopped after the row 3.)

Removing redundant vertex may cause a previously
irredundant vertex to become redundant. Thus, it is use-
ful to check redundancy of vertices in cyclic order until

Table 2

Vertices pairs for the example.

Pair Sum fors = v.2 Sum fors = v.3

cl.2 v.1—cl.3 v.1 −1 0
cl.2 v.1—cl.3 v.2 6 −1
cl.2 v.2—cl.3 v.1 −3 −1
cl.2 v.2—cl.3 v.2 4 0
cl.2 v.3—cl.3 v.1 −4 0
cl.2 v.3—cl.3 v.2 3 1

we see that, in the last cycle, no vertices are found to be
redundant. However, in the worst case, that would lead
to Θ(N2) redundancy tests. (Recall thatN is the total
number of vertices in GTSP.) Our computational expe-
rience has shown that almost all redundant vertices will
be found even if we restrict ourselves to testing each
vertex of GTSP at most twice. Thus, we assume in the
rest of the paper that each vertex is tested at most twice
for redundancy.

2.1. Acceleration Heuristic

In some cases it is possible to determine faster that a
vertexr is not redundant. If

min
x/∈Z

max
s∈C

∆r,s
x + min

x∈Z
max
s∈C

∆r,s
x < 0

for some clusterZ, thenr cannot be reduced. This con-
dition means that there exist two columns in the Differ-
ences Table corresponding to distinct clusters and the
sum of these columns maxima is negative. This ensures
that the sum for every row of these columns is also neg-
ative.

We can use an equivalent condition:

min
x∈

⋃

j<i
Vj

max
s∈C

∆r,s
x + min

x∈Vi

max
s∈C

∆r,s
x < 0
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This condition can be tested during the Differences Ta-
ble generation. For each column we calculate the max-
imum value:

vertexmax(x) = max
s∈C

∆r,s
x

Also for each clusterZ, we have

clustermin(Z) = min
x∈Z

vertexmax(x)

We definetotalmin(i) = minj<i clustermin(Vj); if
totalmin(i)+ clustermin(Vi) < 0 for somei, we can
conclude that vertexr is not redundant.

In the example above, the heuristic performs just
one check forV2 and V3. We havetotalmin(3) =
clustermin(V2) = −1 andclustermin(V3) = 1 and
−1+1 ≥ 0 so the acceleration heuristic does not reduce
our computations in this case.

Another way to make the redundancy test faster is to
order the rows of the Differences Table such that the
row with the minimal number of negative values would
be the first one. Notice that, if this row contains no
negative values, it is obvious thatr is redundant.

2.2. Algorithm Complexity

Let Kmin andKmax be the minimum and the maxi-
mum number of tests (of vertices) for redundancy. Ob-
serve thatKmin = N , since we will perform onlyN
tests if no vertex is detected to be redundant. Since we
have assumed that no vertex is tested more than twice
for redundancy,Kmax = 2N − 1.

Now consider how many operations are required for
each redundancy test (with a fixed vertexr). The test re-
quires table generation and table processing. Due to the
acceleration heuristic, table generation can be aborted
already after processing of two clusters. Thus, in the
best case it takesEmin = (|C|−1)(|X |+|Y |) operations
wherer ∈ C, andX andY are some other clusters. The
average size of a cluster can be estimated asN/M (re-
call thatM is the number of clusters). Therefore, in the
best case each redundancy test requires approximately

Emin(N
′) ≈

(

N ′

M
− 1

) (

2 ·
N ′

M

)

≈ 2 ·

(

N ′

M

)2

operations, whereN ′ is the current number of vertices
in the problem.

In the worst case both the table generation and the
further table inspection will be completed normally. Ta-
ble generation will take(|C|−1)(N ′−|C|) operations.

Table inspection takes about

(

N ′ − |C| − |V |
)2

(|C| − 1) /2

operations in the worst case, where|V | is the average
cluster size. Thus, we have the following number of
operations per test in the worst case:

Emax(N
′) ≈ (|C| − 1) (N ′ − |C|)

+

(

N ′ − |C| − |V |
)2

(|C| − 1)

2

≈ |C| · N ′ +
(N ′)2 · |C|

2
≈

(N ′)3

2M
.

The total number of operations in the worst case is

Kmax · Emax(N) ≈ 2 · N ·
N3

2M
=

N4

M
.

The total operation number in the best case is

Kmin · Emin(N) ≈ N · 2 ·

(

N

M

)2

= 2 ·
N3

M2
.

Since usuallyM = Θ(N), the algorithm complex-
ity changes fromO(N) to O(N3). The experimental
algorithm complexity isΘ(N2.4) (see Section 4.1.).

3. Edge Reduction

Definition 2. Let u, v be a pair of vertices from dis-
tinct clustersU andC respectively. Then the edgeuv
is redundantif for each vertexx ∈ V \ U \ C there
existsv′ ∈ C \ {v} such that dist(u, v′) + dist(v′, x) ≤
dist(u, v) + dist(v, x).

Testing this condition for every edge will work for
both symmetric and asymmetric cases and will take ap-
proximatelyO(N3 · |V |), where|V | is the average clus-
ter size. We introduce an algorithm for edge reduction
for the symmetric case of the problem; it proceeds as
follows. Given a vertexv ∈ C, where|C| > 1, we de-
tect redundant edges incident withv using the following
procedure:
(1) Select an arbitrary vertexv′′ ∈ C \ {v}.
(2) SetPx = ∆v,v′′

x for each vertexx ∈ V \C (recall
that∆r,s

x = dist(x, r) − dist(x, s)).
(3) Sort arrayP in non-decreasing order.
(4) For each clusterU 6= C and for each vertexu ∈ U

do the following:
(a) δ = ∆v,v′′

u
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(b) For each item∆v,v′′

x of the arrayP such that
∆v,v′′

x + δ < 0 check the following: ifx /∈
U and ∆v,v′

x + ∆v,v′

u < 0 for every v′ ∈
C \ {v, v′′}, the edgeuv is not redundant,
continue with the nextu.

(c) Edgeuv is redundant, set dist(u, v) = ∞.
To prove that the above edge reduction algorithm

works correctly, let fix some edgeuv, u ∈ U , v ∈ C,
U 6= C. The algorithm declares this edge redundant if
the following condition holds for eachx /∈ C (see 4b):

∆v,v′′

x + ∆v,v′′

u ≥ 0 or

∆v,v′

x + ∆v,v′

u ≥ 0 for somev′ ∈ C \ {v, v′′}

This condition is equivalent to

∆v,v′

x + ∆v,v′

u ≥ 0 for somev′ ∈ C \ {v}

So the algorithm declares the edgeuv redundant if
for eachx ∈ V \ C \ U there existsv′ ∈ C \ {v} such
that∆v,v′

x + ∆v,v′

u ≥ 0,

dist(x, v) − dist(x, v′) + dist(u, v) − dist(u, v′) ≥ 0

and

dist(u, v) + dist(v, x) ≥ dist(u, v′) + dist(v′, x).

Let us evaluate the algorithm’s complexity. The edge
reduction algorithm performs the following steps for
every clusterC, |C| > 1 for eachv ∈ C:
• Array P generation. This takesΘ(N) operation.
• Array P sorting. This takesΘ(N log2 N) operations.
• Edgesuv testing. Each test takesO(1) to O(N · |C|)

operations andΘ(N) tests are performed.
Thus the complexity of the entire algorithm is

Θ(N2 log2 N) in the best case, andΘ(N3 · |C|) in the
worst case.

As usually |C| = Θ(N), we may say that this al-
gorithm’s complexity varies fromΘ(N2 log2 N) to
Θ(N3). The experimental algorithm complexity is
Θ(N2.6) (see Section 4.1.).

After the search for redundant edges has been com-
pleted, the edge reduction algorithm finds redundant
vertices using the following observation: if after the
edge reduction procedure some vertex has finite dis-
tance edges to at most one cluster, then this vertex can
be declared redundant.

This reduction takesO(N2) operations.

4. Experiments

We tested the reduction algorithms on the standard
GTSP instances (see, e.g., [2,18–20]) which were gener-
ated from someTSPLIB [16] instances by applying the
clustering procedure of Fischetti, Salazar and Toth [3].
The algorithms were implemented in C++ and tested on
a computer with AMD Atlon 64 X2 Core Dual proces-
sor (3 GHz frequency).

We have tested three reduction algorithms: the Ver-
tex Reduction Algorithm (see Section 2.), the Edge Re-
duction Algorithm (see Section 3.), and the Combined
Algorithm witch first applies the Vertex Reduction Al-
gorithm and then the Edge Reduction Algorithm.

4.1. Experimental Results

Each test was repeated ten times. The columns of the
table are as follows:
• Instanceis the instance name. The prefix number is

the number of clusters of the instance; the suffix num-
ber is the number of vertices (before any preprocess-
ing).

• Rv is the number of vertices detected as redundant.
• Re is the number of edges detected as redundant. For

the Combined AlgorithmRe shows the number of
redundant edges in the already reduced by the Vertex
Reduction Algorithm problem.

• T is the preprocessing time in seconds.
The results of the experiments show that the prepro-

cessing time for the Vertex Reduction is negligible for
all the instances up to212u1060, i.e., for almost all
TSPLIB-based GTSP instances used in the literature.
The average percentage of detected redundant vertices
for these instances is 14%, and it is 11% for all consid-
ered instances. The experimental algorithm complexity
is aboutO(N2.4).

The Edge Reduction is more time-consuming than
the Vertex Reduction. The running time is negligible
for all instances up to115rat575. Note that in most
of the GTSP literature, only instances withN < 500
are considered. The average per cent of the detected
redundant edges for these instances is about 27%, and
it is 21% for all instances in Table 3. The experimental
algorithm’s complexity isO(N2.6).

4.2. Algorithms Application Results

Certainly, one can doubt the usefulness of our reduc-
tion algorithms since they may not necessarily decrease
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Table 3

Test results of the Reduction Algorithms.

Vertex reduction Edge reduction Combined reduction

Instance Rv Rv, % T Re, % Rv T Rv, %, Re, % T

4ulysses16 9 56.3 0.0 62.0 4 0.0 56.3 23.5 0.0
4gr17 11 64.7 0.0 35.8 3 0.0 64.7 23.0 0.0
5gr21 8 38.1 0.0 48.7 3 0.0 38.1 45.0 0.0
5ulysses22 11 50.0 0.0 44.3 2 0.0 50.0 39.5 0.0
5gr24 13 54.2 0.0 33.1 3 0.0 54.2 10.4 0.0
6fri26 13 50.0 0.0 28.7 3 0.0 50.0 20.3 0.0
6bayg29 12 41.4 0.0 37.9 5 0.0 41.4 33.6 0.0
9dantzig42 6 14.3 0.0 36.2 0 0.0 14.3 24.9 0.0
10att48 15 31.3 0.0 41.5 7 0.0 31.3 25.3 0.0
10gr48 18 37.5 0.0 27.0 4 0.0 37.5 25.5 0.0
10hk48 6 12.5 0.0 34.2 3 0.0 12.5 32.3 0.0
11berlin52 15 28.8 0.0 36.1 1 0.0 28.8 35.0 0.0
11eil51 9 17.6 0.0 32.6 3 0.0 17.6 28.8 0.0
12brazil58 14 24.1 0.0 24.5 3 0.0 24.1 29.0 0.0
14st70 12 17.1 0.0 36.5 3 0.0 17.1 24.6 0.0
16eil76 12 15.8 0.0 28.8 2 0.0 15.8 28.6 0.0
16pr76 2 2.6 0.0 29.0 1 0.0 2.6 29.7 0.0
20gr96 13 13.5 0.0 25.8 3 0.0 13.5 20.6 0.0
20rat99 11 11.1 0.0 23.7 3 0.0 11.1 23.2 0.0
20kroA100 16 16.0 0.0 20.9 2 0.0 16.0 18.8 0.0
20kroB100 8 8.0 0.0 28.1 2 0.0 8.0 25.0 0.0
20kroC100 19 19.0 0.0 27.2 2 0.0 19.0 24.2 0.0
20kroD100 19 19.0 0.0 27.9 2 0.0 19.0 19.8 0.0
20kroE100 21 21.0 0.0 26.4 1 0.0 21.0 20.2 0.0
20rd100 11 11.0 0.0 32.1 2 0.0 11.0 28.8 0.0
21eil101 14 13.9 0.0 35.5 1 0.0 13.9 31.5 0.0
21lin105 9 8.6 0.0 35.4 3 0.0 8.6 32.4 0.0
22pr107 9 8.4 0.0 35.6 0 0.0 8.4 35.9 0.0
24gr120 15 12.5 0.0 28.4 4 0.0 12.5 29.6 0.0
25pr124 17 13.7 0.0 32.5 3 0.0 13.7 22.2 0.0
26bier127 2 1.6 0.0 21.5 1 0.0 1.6 19.7 0.0
26ch130 16 12.3 0.0 25.9 3 0.0 12.3 21.2 0.0
28pr136 14 10.3 0.0 22.4 1 0.0 10.3 26.3 0.0
28gr137 10 7.3 0.0 19.9 1 0.0 7.3 17.0 0.0
29pr144 19 13.2 0.0 33.2 2 0.0 13.2 31.1 0.0
30ch150 22 14.7 0.0 19.9 2 0.0 14.7 18.1 0.0
30kroA150 20 13.3 0.0 22.5 6 0.0 13.3 19.5 0.0
30kroB150 14 9.3 0.0 23.8 2 0.0 9.3 23.4 0.0
31pr152 34 22.4 0.0 37.5 7 0.0 22.4 26.6 0.0
32u159 33 20.8 0.0 23.5 3 0.0 20.8 15.1 0.0
35si175 45 25.7 0.0 27.4 5 0.0 25.7 17.5 0.0
36brg180 97 53.9 0.0 57.9 51 0.0 53.9 16.9 0.0
39rat195 12 6.2 0.0 22.2 1 0.0 6.2 20.4 0.0
40d198 7 3.5 0.0 23.1 4 0.0 3.5 24.2 0.0
40kroA200 16 8.0 0.0 20.3 2 0.0 8.0 20.6 0.0
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Table 3

Test results of the Reduction Algorithms.

Vertex reduction Edge reduction Combined reduction

Instance Rv Rv, % T Re, % Rv T Rv , %, Re, % T

40kroB200 7 3.5 0.0 19.1 1 0.0 3.5 18.5 0.0
41gr202 4 2.0 0.0 18.8 1 0.0 2.0 18.5 0.0
45ts225 40 17.8 0.0 20.0 2 0.0 17.8 11.2 0.0
45tsp225 12 5.3 0.0 20.5 2 0.0 5.3 17.1 0.0
46pr226 12 5.3 0.0 29.6 1 0.0 5.3 28.4 0.0
46gr229 1 0.4 0.0 22.0 0 0.0 0.4 21.6 0.0
53gil262 16 6.1 0.0 21.8 3 0.0 6.1 18.9 0.0
53pr264 11 4.2 0.0 21.5 1 0.0 4.2 20.7 0.0
56a280 20 7.1 0.0 19.4 1 0.0 7.1 16.1 0.0
60pr299 15 5.0 0.0 16.2 0 0.0 5.0 14.7 0.0
64lin318 13 4.1 0.0 20.5 2 0.0 4.1 20.8 0.0
64linhp318 13 4.1 0.0 20.5 2 0.0 4.1 20.8 0.0
80rd400 11 2.8 0.0 14.8 1 0.1 2.8 13.0 0.0
84fl417 43 10.3 0.0 28.3 5 0.1 10.3 22.7 0.1
87gr431 0 0.0 0.0 17.2 0 0.3 0.0 17.2 0.3
88pr439 10 2.3 0.0 14.7 1 0.2 2.3 15.0 0.1
89pcb442 24 5.4 0.0 11.9 0 0.1 5.4 9.7 0.1
99d493 4 0.8 0.0 17.8 1 0.2 0.8 19.4 0.2
107att532 21 3.9 0.0 20.5 2 0.3 3.9 18.1 0.3
107ali535 29 5.4 0.1 16.6 2 0.5 5.4 14.3 0.5
107si535 96 17.9 0.0 26.5 9 0.3 17.9 17.9 0.1
113pa561 147 26.2 0.1 31.3 5 0.3 26.2 22.6 0.1
115u574 11 1.9 0.0 14.4 1 0.2 1.9 14.0 0.2
115rat575 18 3.1 0.0 11.2 2 0.2 3.1 10.9 0.1
131p654 88 13.5 0.1 32.6 2 0.8 13.5 28.2 0.5
132d657 8 1.2 0.0 10.8 0 0.3 1.2 9.6 0.3
134gr666 0 0.0 0.0 11.6 0 1.0 0.0 11.6 1.0
145u724 34 4.7 0.1 10.1 3 0.5 4.7 8.8 0.4
157rat783 25 3.2 0.0 9.8 2 0.4 3.2 8.4 0.3
200dsj1000 8 0.8 0.1 9.6 1 2.4 0.8 9.4 1.5
201pr1002 20 2.0 0.1 9.2 2 3.0 2.0 8.7 1.6
207si1032 85 8.2 0.2 12.1 12 1.2 8.2 10.2 0.9
212u1060 36 3.4 0.1 14.4 1 1.7 3.4 11.2 2.0
217vm1084 241 22.2 0.6 24.0 8 2.3 22.2 8.9 1.3
235pcb1173 11 0.9 0.1 8.2 0 1.5 0.9 8.2 1.3
259d1291 48 3.7 0.2 12.4 2 2.3 3.7 9.8 1.7
261rl1304 19 1.5 0.2 7.9 2 2.6 1.5 7.2 2.0
265rl1323 23 1.7 0.2 7.8 1 4.1 1.7 7.0 2.9
276nrw1379 11 0.8 0.2 7.4 1 3.7 0.8 7.1 2.6
280fl1400 23 1.6 0.9 17.4 0 6.5 1.6 17.5 5.3
287u1432 33 2.3 0.2 7.7 1 3.2 2.3 6.6 2.6
316fl1577 44 2.8 0.4 10.3 2 5.0 2.8 9.2 4.5
331d1655 14 0.8 0.2 6.7 1 3.7 0.8 6.7 3.7
350vm1748 285 16.3 2.5 19.8 2 11.4 16.3 11.0 5.5
364u1817 5 0.3 0.1 6.2 0 4.9 0.3 5.8 4.5
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Table 3

Test results of the Reduction Algorithms.

Vertex reduction Edge reduction Combined reduction

Instance Rv Rv, % T Re, % Rv T Rv, %, Re, % T

378rl1889 17 0.9 0.7 7.3 3 10.9 0.9 6.8 7.2
421d2103 8 0.4 0.2 6.7 1 2.9 0.4 6.6 2.7
431u2152 10 0.5 0.3 5.2 0 7.8 0.5 5.0 6.6
464u2319 24 1.0 0.6 3.9 0 10.3 1.0 3.8 9.7
479pr2392 33 1.4 0.9 5.9 1 15.4 1.4 5.3 13.4
608pcb3038 29 1.0 1.4 4.7 1 45.4 1.0 4.7 36.2
759fl3795 21 0.6 4.9 6.4 0 127.2 0.6 6.5 94.5
893fnl4461 22 0.5 3.4 3.1 0 80.2 0.5 2.9 46.7
1183rl5915 28 0.5 7.9 2.4 2 258.1 0.5 2.3 114.1
1187rl5934 38 0.6 9.4 3.0 2 308.3 0.6 2.7 139.6
1480pla7397 196 2.6 31.5 4.6 1 2147.9 2.6 3.6 1001.3
2370rl11849 37 0.3 40.7
2702usa13509 21 0.2 98.7

the running time of GTSP solvers. Therefor, we tested
the improvement of the running time of the following
GTSP solvers:
(1) Exact algorithm (Exact) based on a transformation

of GTSP to TSP [2]; the algorithm from [4] was
not available. The algorithm that we use converts a
GTSP instance withN vertices to a TSP instance
with 3N vertices in polynomial time, solves the
obtained TSP using theConcorde solver [1], and
then converts the obtained TSP solution to GTSP
solution also in polynomial time.

(2) Memetic algorithm from [19] (SD). A memetic
algorithm (MA) is a combination of a genetic al-
gorithm with local search.

(3) MA from [7] (GKK).
(4) MA from [18] (SG).
(5) A modified version of MA from [8], the state-of-

the-art GTSP memetic solver, (GK).
Each test was repeated ten times. The columns of the

tables not described in Section 4.1. are as follows:
• T0 is the initial problem solution time.
• B is the time benefit, i.e.,(T0−Tpr)/T0, whereTpr is

the preprocessed problem solution time; it includes
preprocessing time as well.
The experiments show that the Vertex Reduction, the

Edge Reduction and the Combined Reduction Tech-
nique significantly reduce the running time of theExact,
SD and GKK solvers. However, the Edge Reduction
(and because of that the Combined Reduction Techique)
is not that successful forSG (Table 7) and the origi-

Table 7

Time benefit forSG.

Vertices Red.

Instance T0, sec Rv, % B, %

84fl417.gtsp 4.5 10.3 12
87gr431.gtsp 8.3 0.0 6
88pr439.gtsp 10.2 2.3 -3
89pcb442.gtsp 11.5 5.4 0
99d493.gtsp 20.0 0.8 7
107att532.gtsp 25.1 3.9 11
107si535.gtsp 16.9 17.9 34
107ali535.gtsp 29.1 5.4 20
113pa561.gtsp 14.5 26.2 31

Average 8.0 13

nal version ofGK. That is because not every algorithm
processes infinite edges well.

Next we show that a solver can be adjusted to work
better with preprocessed instances. For this purpose we
modifiedGK as follows:
• The 2-opt heuristic [8] was extended with the clus-

ter optimization. For every iteration of 2-opt, where
edgesv1v2 and v3v4 are removed, instead of re-
placing them withv1v3 and v2v4 we replace them
with v′

1
v3 and v′

2
v4, wherev′

1
∈ cluster(v1) and

v′2 ∈ cluster(v2) andv′1 andv′2 are selected to min-
imize the solution objective value. (Herecluster(v)
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Table 4

Time benefit forExact.

Vertices Red. Edge Red. Combined Reduction

Instance T0, sec Rv, % B, % Re, % B, % Rv, % Re, % B, %

5gr21 0.8 38.1 40 48.7 52 38.0 45.0 56
5ulysses22 1.7 50.0 60 44.3 48 50.0 39.5 79
5gr24 0.2 54.2 74 33.1 53 54.1 10.4 81
6fri26 0.9 50.0 67 28.7 18 50.0 20.3 74
6bayg29 6.0 41.4 19 0.0 59 41.3 33.6 70
10gr48 16.1 37.5 57 27.0 2 37.5 25.5 55
10hk48 52.7 12.5 16 34.2 6 12.5 32.3 22
11eil51 32.8 17.6 37 32.6 17 17.6 28.8 42
14st70 150.4 17.1 43 36.5 17 17.1 24.6 50

Average 35.4 45.9 31.7 30.2 35.3 28.9 58.8

Table 5

Time benefit forGKK.

Vertices Red. Edge Red. Combined Reduction

Instance T0, sec Rv, % B, % Re, % B, % Rv , % Re, % B, %

89pcb442 60.7 5.4 4 11.9 17 5.4 9.7 35
99d493 85.2 0.8 14 17.8 19 0.8 19.4 29
107att532 101.2 3.9 9 20.5 20 3.9 18.1 20
107ali535 99.3 5.4 0 16.6 47 5.4 14.3 51
107si535 166.1 17.9 12 26.5 14 17.9 17.9 41
113pa561 101.8 26.2 15 31.3 21 26.2 22.6 47
115u574 103.6 1.9 -3 14.4 12 1.9 14.0 28
115rat575 219.3 3.1 38 11.2 36 3.1 10.9 45
131p654 165.4 13.4 21 32.6 12 13.4 28.2 38
132d657 189.1 1.2 10 10.8 22 1.2 9.6 24
134gr666 224.8 0.0 26 11.6 36 0.0 11.6 57
145u724 232.9 4.6 25 10.1 29 4.6 8.8 55
157rat783 392.7 3.1 1 9.8 16 3.1 8.4 29
200dsj1000 898 0.8 6 9.6 52 0.8 9.4 51

Average 6.3 12.7 16.8 25.2 6.3 14.5 39.3

is the cluster corresponding to the vertexv: v ∈
cluster(v).) Thereby, while the initial 2-opt heuris-
tic could decline some good 2-opt ifw(v1v3) = ∞
or w(v2v4) = ∞, the extended 2-opt will pass round
the infinite edges.

• Direct 2-opt heuristic [8] is excluded from the Local
Search Procedure.

• Every time before starting the Cluster Optimiza-
tion [8] we remove all vertices that cannot be in-
cluded in the solution, i.e., if a fragment of the

solution corresponds to clustersC1, C2 andC3 and
there is no edge fromC1 to v ∈ C2 or there is no
edge fromv to C3 then v can be excluded for the
current Cluster Optimization run.

• Since the modified Local Search Procedure is more
powerful than the previous one, we reduced the num-
ber of solutions in a generation and the termina-
tion condition is also changed (nowr = 0.2G +
0.03M +8 while previouslyr = 0.2G+0.05M +10
and Icur ≥ max(1.5Imax, 0.025M + 2) instead of
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Table 6

Time benefit forSD.

Vertices Red. Edge Red. Combined Reduction

Instance T0, sec Rv , % B, % Re, % B, % Rv, % Re, % B, %

157rat783 23.6 3.2 11 9.8 5 3.1 8.4 36
200dsj1000 100.3 0.8 47 9.6 36 0.8 9.4 42
201pr1002 54.9 1.9 12 9.2 22 1.9 8.7 43
207si1032 21.3 8.2 3 12.1 -1 8.2 10.2 24
212u1060 88.8 3.3 8 14.4 35 3.3 11.2 42
217vm1084 78.1 22.2 49 24.0 -2 22.2 8.9 57
235pcb1173 107.9 0.9 5 8.2 30 0.9 8.2 32
259d1291 169.4 3.7 9 12.4 25 3.7 9.8 26
261rl1304 140.4 1.5 9 7.9 47 1.4 7.2 66
265rl1323 132.6 1.8 20 7.8 20 1.7 7.0 32
276nrw1379 111.5 0.8 4 7.4 22 0.7 7.1 46

Average 4.4 16.1 11.2 21.7 4.4 8.7 40.5

Table 8

Time benefit forGK.

Vertices Red. Edge Red. Combined Reduction

Instance T0, sec Rv, % B, % Re, % B, % Rv, % Re, % B, %

89pcb442.gtsp 3.43 5.4 16 12.0 -2 5.4 9.8 7
99d493.gtsp 6.36 0.8 2 17.9 0 0.8 19.4 2
107att532.gtsp 5.96 3.9 7 20.6 10 3.9 18.1 11
107si535.gtsp 4.52 17.9 14 26.5 8 17.9 18.0 15
107ali535.gtsp 8.91 5.4 17 16.6 19 5.4 14.3 25
113pa561.gtsp 6.86 26.2 20 31.3 6 26.2 22.6 23
115u574.gtsp 7.43 1.9 -2 14.4 -6 1.9 14.0 -1
115rat575.gtsp 7.29 3.1 0 11.3 0 3.1 10.9 2
131p654.gtsp 5.47 13.5 11 32.7 2 13.5 28.3 13

8.7 9 20.4 4 8.7 17.3 11

Icur ≥ max(1.5Imax, 0.05M + 5), see [8]).
The modified algorithm does not reproduce exactly

the results of the initialGK heuristic; it gives a little bit
better solution quality at the cost of slightly larger run-
ning times. However, one can see (Table 8) that all the
Reduction Algorithms proposed in this paper influence
the modifiedGK algorithm positively.

Different reductions have different degree of success
for different solvers. The Edge Reduction is more ef-
ficient than the Vertex Reduction forGKK andSD; in
other cases the Vertex Reduction is more successful.
For every solver exceptSG the Combined Technique is
preferred to separate reductions.

Preprocessing is called to reduce the solution time.
On the other hand, there is no guaranty that the outcome
of the preprocessing will be noticeable. Thus, it is im-
portant to ensure at least that the preprocessing time is
significantly shorter than the solution time.

Five GTSP solvers are considered in this paper. The
first solver,Exact, is an exact one and, thus, it is clear
that its time complexity is larger thanΘ(N2.6) (see Sec-
tion 4.1.) or even the upper boundO(N3). The time
complexities of the other four solvers were estimated
experimentally, i.e., experiments were conducted for
problems of different size obtained fromTSPLIB [16]
and then an approximation for “solution time”/“instance
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Table 9

SD work time estimation.

Instance name Real solution time, sec Estimation, sec

45ts225 0.6 0.72
45tsp225 0.5 0.72
46pr226 0.7 0.73
46gr229 0.8 0.76
53gil262 0.9 1.14
53pr264 1.2 1.17
60pr299 1.3 1.69
64lin318 1.8 2.04
64linhp318 1.6 2.04
80rd400 3.5 4.05
84fl417 3.5 4.59
87gr431 3.7 5.07
88pr439 4.7 5.36
89pcb442 5.5 5.47
107si535 5.7 9.70
113pa561 6.7 11.18
115u574 13.2 11.97
115rat575 11.1 12.04
131p654 10.2 17.71
134gr666 14.0 18.70
145u724 27.9 24.03
157rat783 23.6 30.40
200dsj1000 100.3 63.32
201pr1002 54.9 63.70
207si1032 21.3 69.59
212u1060 88.8 75.41
217vm1084 78.1 80.65
235pcb1173 107.9 102.19
259d1291 169.4 136.24
261rl1304 140.4 140.40
265rl1323 132.6 146.63
276nrw1379 111.5 166.05

size” dependence was found. The experimental com-
plexity of SD is aboutΘ(N3) and it is aboutΘ(N3.5)
for GK, SG andGKK. Table 9 demonstrates the qual-
ity of our estimate forSD (hereTestimate(N) = 6.3319 ·
10−8 · N3).

Having the solvers time complexities, we can con-
clude that the preprocessing time is significantly smaller
than the solution time for arbitrary large instances as
the experimental complexity of preprocessing is smaller
than the complexity of even the fastest of the considered
solvers.

5. Conclusion

The GTSP reduction techniques allow one to signif-
icantly decrease the problem complexity at a very low
cost. Experiments show that the Combined Reduction
is often the most powerful among the presented algo-
rithms and takes even less time than the single Edge
Reduction. While the Vertex Reduction yields very nat-
ural problems and is successful with every considered
solver, the Edge Reduction changes some edge weights
to infinity values and, thus, not every solver benefits
from it. However, in this paper, it is shown that a solver
can be modified to process such problems well.

In this paper we consider the symmetric case only,
i.e., dist(x, y) = dist(y, x) for every pair of vertices
x and y. Other vertex and edge reduction algorithms
that can be immediately derived from Definitions 1 and
2 exist for the asymmetric case, and their time com-
plexity is O(N3). Recall thatN is the total number of
problem vertices.

AcknowledgementWe would like to thank Larry Sny-
der and John Silberholz for kindly providing the source
codes ofSD andSG, respectively.
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