Document generated on 08/04/2025 7:19 a.m.

Algorithmic Operations Research

Generalized Traveling Salesman Problem Reduction

Algorithms

Gregory Gutin and Daniel Karapetyan

Volume 4, Number 2, Fall 2009
URLI: https://id.erudit.org/iderudit/aor4_2art06

See table of contents

Publisher(s)

Preeminent Academic Facets Inc.

ISSN
1718-3235 (digital)

Explore this journal

Cite this article

Gutin, G. & Karapetyan, D. (2009). Generalized Traveling Salesman Problem
Reduction Algorithms. Algorithmic Operations Research, 4(2), 144-154.

All rights reserved © Preeminent Academic Facets Inc., 2009

Article abstract

The generalized traveling salesman problem (GTSP) is an extension of the
well-known traveling salesman problem. In GTSP, we are given a partition of
cities into groups and we are required to find a minimum length tour that
includes exactly one city from each group. The aim of this paper is to present a
problem reduction algorithm that deletes redundant vertices and edges,
preserving the optimal solution. The algorithm’s running time is ON®) in the
worst case, but it is significantly faster in practice. The algorithm has reduced the
problem size by 15-20% on average in our experiments and this has decreased
the solution time by 10-60% for each of the considered solvers.

This document is protected by copyright law. Use of the services of Erudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.

https://apropos.erudit.org/en/users/policy-on-use/

erudit

This article is disseminated and preserved by Erudit.

Erudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec a Montréal. Its mission is to
promote and disseminate research.

https://www.erudit.org/en/


https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/aor/
https://id.erudit.org/iderudit/aor4_2art06
https://www.erudit.org/en/journals/aor/2009-v4-n2-aor4_2/
https://www.erudit.org/en/journals/aor/

7N
Ph
Algorithmic Operations Research Vol.4 (2009) 144-154

Generalized Traveling Salesman Problem Reduction Algortims

Gregory Gutin and Daniel Karapetyan
Department of Computer Science, Royal Holloway University-ondon, Egham, Surrey TW20 0EX, UK

Abstract

The generalized traveling salesman problem (GTSP) is aeneidn of the well-known traveling salesman problem.
In GTSP, we are given a partition of cities into groups and we required to find a minimum length tour that includes
exactly one city from each group. The aim of this paper is &s@nt a problem reduction algorithm that deletes redundant
vertices and edges, preserving the optimal solution. Therahm’s running time isO(N?) in the worst case, but it is
significantly faster in practice. The algorithm has redudkd problem size by 15-20% on average in our experiments
and this has decreased the solution time by 10-60% for eatheofonsidered solvers.

Key words: Generalized Traveling Salesman Problem, Preprocessiedyd®on Algorithm

1. Introduction duce preprocessing procedure for GTSP. A feature of
GTSP is that not every vertex of a problem should be
Thegeneralized traveling salesman probl¢@iTSP) visited and, thus, GTSP may contain vertices that a pri-
is defined as follows. We are given a weighted complete ori are not included in the optimal solution and may be
undirected grapléz on N vertices and a partitiol’ = removed. We have a similar situation with edges.
V1UVLU. . .UV, of its vertices; the subsels are called The experimental results show that almost each
clusters The objective is to find a minimum weight GTSP instance tested in the literature can be reduced
cycle containing exactly one vertex from each cluster. by the presented procedure at a very low cost and that
There are many publications on GTSP (see, e.g., thethis reduction is almost always beneficial for the GTSP
surveys [4,6] and the references therein). The problem solvers.
has many applications, see, e.g., [2,11]. It is NP-hard,
since theraveling salesman proble(@ SP) is its special
case (whenV;| = 1 for eachi). The weight of an edge ~ 2. Vertex Reduction
xy of G is denoted distr, y) and will be often called
the distancebetween: andy. Since GTSP solution covers only vertices, up to
Various approaches to GTSP have been studied.”Y — / vertices may be reduced without a change of
There are exact algorithms such as branch-and-boundih€ OPtimal solution. We present an approach to detect
and branch-and-cut described in [3]. Another approach some pf the redundant vertices in a reasonable time.
uses the fact that GTSP can be converted to an equiv-Definition 1. LetC be aclusteriC| > 1. We say thata
alent TSP with the same number of vertices [2,13-15] Vertexr € Cisredundantf for each pairr, y of vertices
and then can be solved with some efficient TSP solver fom distinct clusters different frond’, there exists a
such asConcor de [1]. Heuristic GTSP algorithms ~ Vertexs € C'\ {r} such that digtz, s) + dist(s, y) <
have also been invistigated, see, e.g., [7,8,10,18-21]. dist(@,r) +dist(r. y). .
Different preprocessing procedures are often used for In other words, if for each pathry there exists an-

hard problems to reduce the computation time. There Oer Pathwsy, s € C \ {r}, with the same or smaller
are examples of such approaches in integer and "n_WEIght, vertex- can be removed. Testing this condition

. - 3 . Ty -1
ear programming (e.g., [9,17]) as well as for the Vehi- for every vertex will take approximatel@(N® - |V),

cle Routing Problem [12]. In some cases preprocessing\’\/here“t/.| - N/Mflstr:he avEIraget(r:]Iuste_r size. Ifrf1. t_het
plays the key role in an algorithm (e.g., [5]). We intro- symmetric case of theé problem there 1S an etlicien

heuristic that usually allows to reduce the preprocessing

Email: Gregory Gutin [G.Gutin@rhul.ac.uk], Daniel Kara- time significantly.
petyan [Daniel.Karapetyan@gmail.com]. Let us take two distinct vertices and s in some

(© 2009 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All righreserved.



Gregory Gutin & Daniel Karapetyan— Algorithmic OperatidResearch Vol.4 (2009) 144-154

Table 1

Differences Table example.

145

s\z cl2vl cl2v2 cl2v3 cl.3vl cl3v2 Negative #

v.2 2 0 -1 -3 4 2

v.3 -1 -2 -1 1 2 3

max 2 0 -1 1 4

min{2,0,-1} = —1 min{1,4} =1

clusterC. We can calculate the differences between the Table 2
distances to- ands from each vertex: ¢ C (AL* =
dist(x,r) — dist(z, s)) and save this information to a Vertices pairs for the example.
Differences Tablsuch as Table 1. Notice that in Table 1 Pair Sum fors = v.2 Ssum fors = v.3

we assume that clusters 1 and 2 have three vertices each
and cluster 3 has two vertices,belongs to the first
cluster and it is the first vertex in the cluster, i.e., vertex
s can be only the second and the third vertices of cluster
1.

Observe that a vertexis redundant if there is no pair
of vertices from different clusters such that the sum of
differencesA (see above) for these vertices is negative
for everys, i.e.,r is redundant if for every. andy there
existss € C'\ {r} such thatA}* + A7»* > 0, wherex
andy belong to distinct clusters. That is due to

A;’S + Ag,s
= dist(z, r) — dist(z, s) + dist(y, ) — dist(y, s)
= dist(z, r) + dist(r, y) — (dist(z, s) + dist(s,y))

Therefore we need to check every pair of columns
(coly, coly) (except the pairs of columns corresponding
to the same clusters) in the Differences Tdlilg,, co:- If
T coty +T11 col, < 0, we check the second ro@ ..;, +
T5 col,)- If the result is still negative, we check the third
row, etc. If all the rows are checked and each time we
obtain a negative sum, the vertexannot be removed
and the rest of the procedure may be skipped.
Example 1. In the example above (Table 1) it is nec-
essary to perform up t6 tests provided in Table 2.

The only test that does not allow us to declare the
vertexr redundant is in the row 3 of the Table 2 (cl.2
v.2—cl.3v.1) as both sums (fer= v.2 and fors = v.3)

cl.2 v.1—cl.3 v.1 -1 0
cl.2 v.1—cl.3 v.2 6 -1
cl.2 v.2—cl.3 v.1 -3 -1
cl.2 v.2—cl.3 v.2 4 0
cl.2 v.3—cl.3 v.1 —4 0
cl.2 v.3—cl.3 v.2 3 1

we see that, in the last cycle, no vertices are found to be
redundant. However, in the worst case, that would lead
to ©(N?) redundancy tests. (Recall that is the total
number of vertices in GTSP.) Our computational expe-
rience has shown that almost all redundant vertices will
be found even if we restrict ourselves to testing each
vertex of GTSP at most twice. Thus, we assume in the
rest of the paper that each vertex is tested at most twice
for redundancy.

2.1. Acceleration Heuristic

In some cases it is possible to determine faster that a
vertexr is not redundant. If
minmax A% + minmax A”7° < 0
z¢Z seC x€”Z seC
for some cluste®, thenr cannot be reduced. This con-
dition means that there exist two columns in the Differ-

ences Table corresponding to distinct clusters and the
sum of these columns maxima is negative. This ensures

are negative. (Certainly, there is no need to calculate the {nat the sum for every row of these columns is also neg-

sum fors =v.3inrows 2, 4, and 6 in the example above,
and the calculations may be stopped after the row 3.)
Removing redundant vertex may cause a previously
irredundant vertex to become redundant. Thus, it is use-
ful to check redundancy of vertices in cyclic order until

ative.
We can use an equivalent condition:

min

max A7® + min max A* < 0
mEU v; s€C
j<i 7

zeV; seC



146 Gregory Gutin & Daniel Karapetyan— Generalized TSP Reduacfilgorithms

This condition can be tested during the Differences Ta- Table inspection takes about
ble generation. For each column we calculate the max-

. —\2
imum value: (N’ Yo |V|) (1C] = 1) /2
vertexmaz(x) = max AL* ) , N
seC operations in the worst case, wheté| is the average
cluster size. Thus, we have the following number of

Also for each cluste#, we have . .
operations per test in the worst case:

clustermin(Z) = min vertexmax(x)

z€Z Enax(N') =~ (|C] = 1) (N' = |C])
—\2
We definetotalmin(i) = min;; clustermin(V;); if (N’ —|C] — |V|) (IC]-1)
totalmin(i) + clustermin(V;) < 0 for somei, we can +

. 2
conclude that vertex is not redundant. (N')2-[C] N (N')3

In the example above, the heuristic performs just ~|C| N+ ~ .
one check forV, and V3. We havetotalmin(3) = 2 2M
clustermin(Ve) = —1 and clustermin(V3) = 1 and The total number of operations in the worst case is
—1+1 > 0 so the acceleration heuristic does not reduce
our computations in this case. NE N_4

. Kmax'Emaxsz'N'——
Another way to make the redundancy test faster is to (V)

order the rows of the Differences Table such that the

. o : The total operation number in the best case is
row with the minimal number of negative values would

be the first one. Notice that, if this row contains no N2 N3
negative values, it is obvious thais redundant. Kmin - Enin(N) = N - 2- (M) =2 ik
2.2. Algorithm Complexity Since usuallyM = ©(N), the algorithm complex-

ity changes fromO(N) to O(N?). The experimental

Let Kmin and Kmax be the minimum and the maxi-  ggorithm complexity is9(N?4) (see Section 4.1.).

mum number of tests (of vertices) for redundancy. Ob-

serve thatKmin = N, since we will perform onlyN

tests if no vertex is detected to be redundant. Since we 3. Edge Reduction
have assumed that no vertex is tested more than twice

for redundancyKmax = 2N — 1. Definition 2. Let u, v be a pair of vertices from dis-
Now consider how many operations are required for finct clustersU and C' respectively. Then the edge
each redundancy test (with a fixed vertgxThe testre- 1S redundantif for each vertexz € V'\ U \ C there

quires table generation and table processing. Due to the®Xistsv’ € €'\ {v} such that digtu, v') + dist(v', ) <
acceleration heuristic, table generation can be abortedd'St(“a_”) + d_'St(“fo)_-_ .

already after processing of two clusters. Thus, in the Testing this condition for every edge will work for
best case it takeBmin = (|C|—1)(|X|+|Y|) operations both_symmetrlc an@symmetﬁc_ases and will take ap-
wherer € C, andX andY are some other clusters. The ProximatelyO(N?-[V[), where|V| is the average clus-
average size of a cluster can be estimated/A8/ (re- ter size. We mtrqduce an algorithm for e_dge reduction
call thatM is the number of clusters). Therefore, in the for the symmetric case of the problem: it proceeds as

best case each redundancy test requires approximatelyfollows. Given a vertex € C, where|C| > 1, we de-
tect redundant edges incident witlusing the following

N’ N N\ 2 procedure:
Emin(N') ~ (M - 1) (2 : M) ~2- (M) (1) Select an arbitrary vertex’ € C'\ {v}.
(2) SetP, = Auv" for each vertex: € V' \ C (recall
operations, wher@’ is the current number of vertices that A”* = dist(z, r) — dist(z, s)).
in the problem. (3) Sort arrayP in non-decreasing order.
In the worst case both the table generation and the (4) For each clustay # C and for each vertex € U
further table inspection will be completed normally. Ta- do the following:

"

ble generation will také¢|C| —1)(N’ — |C|) operations. (@) 6§ = AV



Gregory Gutin & Daniel Karapetyan— Algorithmic OperatidResearch Vol.4 (2009) 144-154

(b) For each iter\?*" of the arrayP such that
AvY" 4§ < 0 check the following: ifz ¢
U and A% + A%Y < 0 for everyv' e
C \ {v,v"}, the edgeuv is not redundant,
continue with the next.
(c) Edgeuw is redundant, set digt, v) = oo.
To prove that the above edge reduction algorithm
works correctly, let fix some edgev, v € U, v € C,
U # C. The algorithm declares this edge redundant if
the following condition holds for each ¢ C (see 4b):

AZV’U” + AZV’U” 2 0
ALY+ ALY >0

or

for somev’ € C'\ {v,v"}
This condition is equivalent to

AZY + AV >0 for somev’ € C\ {v}

So the algorithm declares the edge redundant if
for eachz € V' \ C'\ U there exista’ € C'\ {v} such
that AV + A%V >,

dist(z,v) — dist(z, v") + dist(u, v) — dist(u,v") > 0
and
dist(u, v) + dist(v, z) > dist(u,v") + dist(v’, z).

Let us evaluate the algorithm’s complexity. The edge
reduction algorithm performs the following steps for
every clusteiC, |C| > 1 for eachv € C:

e Array P generation. This take®(N) operation.

e Array P sorting. This take® (N log, N) operations.

e Edgesuw testing. Each test takeé3(1) to O(N - |C|)
operations an® (V) tests are performed.

Thus the complexity of the entire algorithm is
©(N?log, N) in the best case, arl(N? - |C]) in the
worst case.

As usually|C| = ©(N), we may say that this al-
gorithm’s complexity varies fromO(N2log, N) to
O(N3). The experimental algorithm complexity is
O(N?%) (see Section 4.1.).

147

4. Experiments

We tested the reduction algorithms on the standard
GTSP instances (see, e.g., [2,18—-20]) which were gener-
ated from som@SPLI B[16] instances by applying the
clustering procedure of Fischetti, Salazar and Toth [3].
The algorithms were implemented in C++ and tested on
a computer with AMD Atlon 64 X2 Core Dual proces-
sor @ GHz frequency).

We have tested three reduction algorithms: the Ver-
tex Reduction Algorithm (see Section 2.), the Edge Re-
duction Algorithm (see Section 3.), and the Combined
Algorithm witch first applies the Vertex Reduction Al-
gorithm and then the Edge Reduction Algorithm.

4.1. Experimental Results

Each test was repeated ten times. The columns of the
table are as follows:

e Instanceis the instance name. The prefix number is
the number of clusters of the instance; the suffix num-
ber is the number of vertices (before any preprocess-
ing).

e R, is the number of vertices detected as redundant.

e R, is the number of edges detected as redundant. For
the Combined AlgorithmR, shows the number of
redundant edges in the already reduced by the Vertex
Reduction Algorithm problem.

e T'is the preprocessing time in seconds.

The results of the experiments show that the prepro-
cessing time for the Vertex Reduction is negligible for
all the instances up t812ul1060, i.e., for almost all
TSPLI B-based GTSP instances used in the literature.
The average percentage of detected redundant vertices
for these instances is 14%, and it is 11% for all consid-
ered instances. The experimental algorithm complexity
is aboutO(N24).

The Edge Reduction is more time-consuming than
the Vertex Reduction. The running time is negligible
for all instances up td15r at 575. Note that in most
of the GTSP literature, only instances witth < 500
are considered. The average per cent of the detected
redundant edges for these instances is about 27%, and

After the search for redundant edges has been com-it is 21% for all instances in Table 3. The experimental
pleted, the edge reduction algorithm finds redundant algorithm’s complexity isO(N?6).

vertices using the following observation: if after the

edge reduction procedure some vertex has finite dis-4 2. Algorithms Application Results
tance edges to at most one cluster, then this vertex can

be declared redundant.
This reduction take®(NN?) operations.

Certainly, one can doubt the usefulness of our reduc-
tion algorithms since they may not necessarily decrease



148

Gregory Gutin & Daniel Karapetyan— Generalized TSP Reduacfilgorithms

Table 3

Test results of the Reduction Algorithms.

Vertex reduction

Edge reduction

Combined reduction

Instance R, R,,% T Re, % R, T Ry, %, Re,% T
4ulysses16 9 56.3 0.0 62.0 4 0.0 56.3 235 0.0
4grl7 11 64.7 0.0 35.8 3 00 64.7 23.0 0.0
5gr21 8 381 0.0 48.7 3 00 38.1 45.0 0.0
Sulysses22 11 50.0 0.0 443 2 00 50.0 395 0.0
5gr24 13 542 0.0 33.1 3 00 54.2 104 0.0
6fri26 13 50.0 0.0 28.7 3 00 50.0 203 0.0
6bayg29 12 41.4 0.0 37.9 5 00 41.4 33.6 0.0
9dantzig42 6 143 0.0 36.2 0 0.0 14.3 249 0.0
10att48 15 31.3 0.0 41.5 7 0.0 31.3 253 0.0
10gr48 18 375 0.0 27.0 4 00 375 255 0.0
10hk48 6 125 0.0 34.2 3 00 12.5 323 0.0
11berlin52 15 288 0.0 36.1 1 00 28.8 350 0.0
11eil51 9 176 0.0 32.6 3 00 17.6 28.8 0.0
12brazil58 14 241 0.0 245 3 00 241 29.0 0.0
14st70 12 171 0.0 36.5 3 00 171 246 0.0
16eil76 12 15.8 0.0 28.8 2 00 15.8 286 0.0
16pr76 2 26 0.0 29.0 1 0.0 2.6 29.7 0.0
20gr96 13 135 0.0 25.8 3 00 13.5 20.6 0.0
20rat99 11 111 0.0 23.7 3 00 111 23.2 0.0
20kroA100 16 16.0 0.0 20.9 2 00 16.0 188 0.0
20kroB100 8 8.0 0.0 28.1 2 00 8.0 250 0.0
20kroC100 19 19.0 0.0 27.2 2 00 19.0 242 0.0
20kroD100 19 19.0 0.0 27.9 2 00 19.0 19.8 0.0
20kroE100 21 21.0 0.0 26.4 1 00 21.0 20.2 0.0
20rd100 11 11.0 0.0 32.1 2 00 11.0 28.8 0.0
21eil101 14 139 0.0 355 1 00 13.9 315 0.0
21lin105 9 8.6 0.0 354 3 00 8.6 324 0.0
22pr107 9 84 0.0 35.6 0 0.0 8.4 359 00
249r120 15 125 0.0 28.4 4 0.0 12.5 29.6 0.0
25pri124 17 13.7 0.0 325 3 00 13.7 222 0.0
26bier127 2 16 00 215 1 00 1.6 19.7 0.0
26¢ch130 16 12.3 0.0 25.9 3 00 12.3 212 0.0
28pr136 14 10.3 0.0 22.4 1 00 10.3 26.3 0.0
28gr137 10 73 0.0 19.9 1 00 7.3 170 0.0
29pri144 19 13.2 0.0 33.2 2 00 13.2 311 0.0
30ch150 22 147 0.0 19.9 2 00 14.7 181 0.0
30kroA150 20 13.3 0.0 225 6 0.0 13.3 195 0.0
30kroB150 14 9.3 0.0 23.8 2 00 9.3 234 0.0
31prl52 34 224 00 375 7 0.0 22.4 26.6 0.0
32u159 33 20.8 0.0 235 3 00 20.8 151 0.0
35si175 45 25.7 0.0 27.4 5 00 25.7 175 0.0
36brg180 97 539 0.0 579 51 0.0 53.9 16.9 0.0
39rat195 12 6.2 0.0 22.2 1 0.0 6.2 204 0.0
40d198 7 35 0.0 23.1 4 0.0 3.5 242 0.0
40kroA200 16 80 0.0 20.3 2 00 8.0 206 0.0




Gregory Gutin & Daniel Karapetyan— Algorithmic OperatidResearch Vol.4 (2009) 144-154

Test results of the Reduction Algorithms.

Table 3

Vertex reduction

Edge reduction

Combined reduction

Instance R, R,,% T Re, % R, T R,, %, Re,% T
40kroB200 7 35 0.0 191 1 0.0 3.5 185 0.0
419r202 4 20 0.0 18.8 1 0.0 2.0 185 0.0
45ts225 40 178 0.0 20.0 2 0.0 17.8 11.2 0.0
45tsp225 12 53 0.0 20.5 2 0.0 53 171 0.0
46pr226 12 53 0.0 29.6 1 0.0 5.3 284 0.0
469r229 1 04 0.0 22.0 0 0.0 0.4 216 0.0
53gil262 16 6.1 0.0 218 3 00 6.1 189 0.0
53pr264 11 42 0.0 215 1 0.0 4.2 20.7 0.0
56a280 20 71 0.0 19.4 1 0.0 7.1 16.1 0.0
60pr299 15 50 0.0 16.2 0 0.0 5.0 147 0.0
641in318 13 41 0.0 20.5 2 0.0 4.1 20.8 0.0
64linhp318 13 41 0.0 20.5 2 0.0 4.1 208 0.0
80rd400 11 28 0.0 14.8 1 0.1 2.8 13.0 0.0
84fl417 43 10.3 0.0 28.3 5 0.1 10.3 227 01
879gr431 0 0.0 0.0 17.2 0 0.3 0.0 17.2 03
88pr439 10 23 0.0 14.7 1 0.2 2.3 150 0.1
89pch442 24 54 0.0 11.9 0 0.1 54 9.7 01
99d493 4 0.8 0.0 17.8 1 0.2 0.8 194 0.2
107att532 21 39 00 20.5 2 0.3 3.9 181 0.3
107ali535 29 54 01 16.6 2 0.5 54 143 0.5
107si535 96 179 0.0 26.5 9 0.3 17.9 179 0.1
113pa561 147 26.2 0.1 313 5 0.3 26.2 226 0.1
115u574 11 19 0.0 14.4 1 0.2 1.9 140 0.2
115rat575 18 31 0.0 11.2 2 0.2 3.1 109 0.1
131p654 88 135 0.1 32.6 2 0.8 135 282 0.5
132d657 8 1.2 00 10.8 0 0.3 1.2 96 03
1349r666 0 0.0 0.0 11.6 0 1.0 0.0 116 1.0
145u724 34 47 01 10.1 3 0.5 4.7 88 04
157rat783 25 3.2 0.0 9.8 2 0.4 3.2 84 03
200dsj1000 8 08 01 9.6 1 2.4 0.8 94 15
201pr1002 20 20 01 9.2 2 3.0 2.0 87 16
207si1032 85 82 0.2 121 12 1.2 8.2 10.2 0.9
212u1060 36 34 0.1 14.4 1 1.7 3.4 11.2 2.0
217vm1084 241 222 0.6 24.0 8 2.3 222 89 13
235pch1173 11 09 01 8.2 0 15 0.9 82 13
259d1291 48 37 0.2 12.4 2 2.3 3.7 98 1.7
261rl1304 19 15 0.2 7.9 2 2.6 15 7.2 20
265r11323 23 1.7 0.2 7.8 1 41 1.7 70 29
276nrw1379 11 08 0.2 7.4 1 3.7 0.8 71 26
280f11400 23 16 0.9 17.4 0 6.5 1.6 175 53
287u1432 33 23 0.2 7.7 1 3.2 2.3 6.6 26
316fl1577 44 28 04 10.3 2 5.0 2.8 9.2 45
331d1655 14 08 0.2 6.7 1 3.7 0.8 6.7 3.7
350vm1748 285 16.3 2.5 19.8 2 114 16.3 11.0 5.5
364u1817 5 03 01 6.2 0 49 0.3 58 45

149



150

Gregory Gutin & Daniel Karapetyan—

Generalized TSP Reduachilgorithms

Table 3

Test results of the Reduction Algorithms.

Vertex reduction Edge reduction Combined reduction
Instance Ry, Ry, % T Re, % R, T Ry, %, Re, % T
378r11889 17 09 07 7.3 3 10.9 0.9 6.8 7.2
421d2103 8 04 02 6.7 1 2.9 0.4 6.6 2.7
431u2152 10 05 03 5.2 0 7.8 0.5 5.0 6.6
464u2319 24 10 06 3.9 0 10.3 1.0 3.8 9.7
479pr2392 33 14 09 5.9 1 15.4 14 5.3 134
608pch3038 29 10 14 4.7 1 45.4 1.0 4.7 36.2
759f13795 21 06 4.9 6.4 0 1272 0.6 6.5 94.5
893fnl4461 22 05 34 3.1 0 80.2 0.5 2.9 46.7
1183r15915 28 05 7.9 2.4 2 2581 0.5 23 1141
1187r15934 38 06 94 3.0 2 3083 0.6 27 1396
1480pla7397 196 26 315 4.6 1 21479 2.6 3.6 1001.3
2370r111849 37 0.3 40.7
2702usal3509 21 0.2 987

the running time of GTSP solvers. Therefor, we tested
the improvement of the running time of the following
GTSP solvers:

(1) ExactalgorithmExact) based on a transformation

of GTSP to TSP [2]; the algorithm from [4] was

Table 7

Time benefit folSG.
Vertices Red.

not available. The algorithm that we use converts a Instance To,sec Ry, % B.%
GTSP instance witlV vertices to a TSP instance 84fl417.gtsp 4.5 10.3 12
with 3V vertices in polynomial time, solves the 87gr431.gtsp 8.3 0.0 6
obtained TSP using th@oncorde solver [1], and 88prd39.gtsp 10.2 2.3 -3
then converts the obtained TSP solution to GTSP 89pch442.gtsp 11.5 5.4 0
solution also in polynomial time. igg:ﬁgégztsgﬂsp 22%2 2‘2 171

(2) Mem_etlc algorlt_hm from [19]_$D). A memetic 107si535.gtsp 16.9 17.9 34
alg(_)rlthm _(MA) is a combination of a genetic al- 107ali535.gtsp 291 54 20
gorithm with local search. 113pa56L.gtsp 145 26.2 31

(3) MA from [7] (GKK).

(4) MA from [18] (SG). Average 80 13

(®)

A modified version of MA from [8], the state-of-
the-art GTSP memetic solveGK).

Each test was repeated ten times. The columns of thenal version ofGK. That is because not every algorithm

tables not described in Section 4.1. are as follows:
e Ty is the initial problem solution time.
e Bisthe time benefit, i.e(Ty — Tur) /To, whereTyy, is

processes infinite edges well.

Next we show that a solver can be adjusted to work
better with preprocessed instances. For this purpose we

the preprocessed problem solution time; it includes modifiedGK as follows:

preprocessing time as well.

e The 2-opt heuristic [8] was extended with the clus-

The experiments show that the Vertex Reduction, the ter optimization. For every iteration of 2-opt, where
Edge Reduction and the Combined Reduction Tech- edgeswviv, and vsv, are removed, instead of re-

nigue significantly reduce the running time of teact,

SD and GKK solvers. However, the Edge Reduction

placing them withv;v3 and vovy we replace them
with vjvs and vivy, wherev] € cluster(vy) and

(and because of that the Combined Reduction Techique) v} € cluster(ve) andv] andv; are selected to min-

is not that successful fd8G (Table 7) and the origi-

imize the solution objective value. (Hettuster(v)



Gregory Gutin & Daniel Karapetyan— Algorithmic OperatidResearch Vol.4 (2009) 144-154 151

Table 4

Time benefit folExact.

Vertices Red. Edge Red. Combined Reduction
Instance Ty, Sec Ry,, % B,% R.,% B,% Ry, R., % B,%
5gr21 0.8 38.1 40 48.7 52 38.0 45.0 56
Sulysses22 1.7 50.0 60 44.3 48 50.0 39.5 79
5gr24 0.2 54.2 74 33.1 53 54.1 10.4 81
6fri26 0.9 50.0 67 28.7 18 50.0 20.3 74
6bayg29 6.0 41.4 19 0.0 59 41.3 33.6 70
10gr48 16.1 375 57 27.0 2 375 255 55
10hk48 52.7 12.5 16 34.2 6 12,5 32.3 22
11eil51 32.8 17.6 37 32.6 17 17.6 28.8 42
14st70 150.4 17.1 43 36.5 17 17.1 24.6 50
Average 354 459 31.7 30.2 35.3 28.9 58.8

Table 5

Time benefit foIGKK.

Vertices Red. Edge Red. Combined Reduction

Instance To, sec R,,% B,% Re.,% B,% R,,% R.,% B,%

89pch442 60.7 54 4 11.9 17 54 9.7 35

99d493 85.2 0.8 14 17.8 19 0.8 19.4 29

107att532 101.2 3.9 9 20.5 20 3.9 18.1 20

107ali535 99.3 54 0 16.6 47 54 14.3 51

107si535 166.1 17.9 12 26.5 14 17.9 17.9 41

113pa561 101.8 26.2 15 31.3 21 26.2 22.6 47

115u574 103.6 1.9 -3 14.4 12 1.9 14.0 28

115rat575 219.3 3.1 38 11.2 36 3.1 10.9 45

131p654 165.4 13.4 21 32.6 12 13.4 28.2 38

132d657 189.1 1.2 10 10.8 22 1.2 9.6 24

1349r666 224.8 0.0 26 11.6 36 0.0 11.6 57

145u724 232.9 4.6 25 10.1 29 4.6 8.8 55

157rat783 392.7 3.1 1 9.8 16 3.1 8.4 29

200dsj1000 898 0.8 6 9.6 52 0.8 9.4 51

Average 6.3 12.7 16.8 25.2 6.3 14.5 39.3
is the cluster corresponding to the vertexv € solution corresponds to clustets, C; andC5; and
cluster(v).) Thereby, while the initial 2-opt heuris- there is no edge fron®; to v € Cs or there is no
tic could decline some good 2-optif(v,v3) = oo edge fromv to C3 thenwv can be excluded for the
or w(vavy) = 00, the extended 2-opt will pass round current Cluster Optimization run.
the infinite edges. e Since the modified Local Search Procedure is more
Direct 2-opt heuristic [8] is excluded from the Local powerful than the previous one, we reduced the num-
Search Procedure. ber of solutions in a generation and the termina-

Every time before starting the Cluster Optimiza- tion condition is also changed (now = 0.2G +
tion [8] we remove all vertices that cannot be in- 0.03M + 8 while previouslyr = 0.2G +0.05M + 10
cluded in the solution, i.e., if a fragment of the and Iy > max(1.51max, 0.025M + 2) instead of



152 Gregory Gutin & Daniel Karapetyan— Generalized TSP Reduacfilgorithms

Table 6

Time benefit foISD.

Vertices Red. Edge Red. Combined Reduction

Instance To, sec R,,% B, % Re,% B, % Ry, % R.,% B,%

157rat783 23.6 3.2 11 9.8 5 31 8.4 36
200dsj1000 100.3 0.8 47 9.6 36 0.8 9.4 42
201pr1002 54.9 1.9 12 9.2 22 1.9 8.7 43
207si1032 21.3 8.2 3 12.1 -1 8.2 10.2 24
212u1060 88.8 3.3 8 14.4 35 3.3 11.2 42
217vm1084 78.1 22.2 49 24.0 -2 22.2 8.9 57
235pch1173 107.9 0.9 5 8.2 30 0.9 8.2 32
259d1291 169.4 3.7 9 12.4 25 3.7 9.8 26
261r11304 140.4 15 9 7.9 47 14 7.2 66
265r11323 132.6 1.8 20 7.8 20 1.7 7.0 32
276nrw1379 111.5 0.8 4 7.4 22 0.7 7.1 46
Average 44 16.1 112 217 4.4 8.7 405

Table 8

Time benefit foiGK.

Vertices Red. Edge Red. Combined Reduction
Instance To, sec Ry, % B, % R, % B,% R,, % R., % B,%
89pch442.gtsp 3.43 5.4 16 12.0 -2 5.4 9.8 7
99d493.gtsp 6.36 0.8 2 17.9 0 0.8 194 2
107att532.gtsp 5.96 3.9 7 20.6 10 3.9 18.1 11
107si535.gtsp 4.52 17.9 14 26.5 8 17.9 18.0 15
107ali535.gtsp 8.91 54 17 16.6 19 5.4 14.3 25
113pab61.gtsp 6.86 26.2 20 31.3 6 26.2 22.6 23
115u574.9tsp 7.43 1.9 -2 14.4 -6 1.9 14.0 -1
115rat575.gtsp 7.29 3.1 0 11.3 0 3.1 10.9 2
131p654.gtsp 5.47 135 11 32.7 2 135 28.3 13
8.7 9 20.4 4 8.7 17.3 11
Teyr > max(1.51max, 0.056M + 5), see [8]). Preprocessing is called to reduce the solution time.

The modified algorithm does not reproduce exactly On the other hand, there is no guaranty that the outcome
the results of the initiaGK heuristic; it gives a little bit ~ of the preprocessing will be noticeable. Thus, it is im-
better solution quality at the cost of slightly larger run- portant to ensure at least that the preprocessing time is
ning times. However, one can see (Table 8) that all the significantly shorter than the solution time.

Reduction Algorithms proposed in this paper influence  Five GTSP solvers are considered in this paper. The
the modifiedGK algorithm positively. first solver,Exact, is an exact one and, thus, it is clear

Different reductions have different degree of success that its time complexity is larger thad( N2-%) (see Sec-
for different solvers. The Edge Reduction is more ef- tion 4.1.) or even the upper bour@(N?). The time
ficient than the Vertex Reduction f@KK andSD; in complexities of the other four solvers were estimated
other cases the Vertex Reduction is more successful.experimentally, i.e., experiments were conducted for
For every solver excel8G the Combined Techniqueis  problems of different size obtained fronSPLI B [16]
preferred to separate reductions. and then an approximation for “solution time”/“instance



Gregory Gutin & Daniel Karapetyan— Algorithmic OperatidResearch Vol.4 (2009) 144-154 153

Table 9 5. Conclusion

SD work time estimation. The GTSP reduction techniques allow one to signif-
icantly decrease the problem complexity at a very low
cost. Experiments show that the Combined Reduction

Instance name  Real solution time, sec  Estimation, sec

4515225 0.6 0.72 is often the most powerful among the presented algo-
45tsp225 0.5 0.72 rithms and takes even less time than the single Edge
46pr226 0.7 0.73 . . o

469229 08 0.76 Reduction. While th_e Vertex Reduc.tlon yields very nat-
53gil262 0.9 114 ural problems and is successful with every considered
53pr264 1.9 117 solver, the Edge Reduction changes some edge weights
60pr299 1.3 1.69 to infinity values and, thus, not every solver benefits
64lin318 1.8 2.04 from it. However, in this paper, it is shown that a solver
64linhp318 1.6 2.04 can be modified to process such problems well.
80rd400 3.5 4.05 In this paper we consider the symmetric case only,
84fl417 3.5 4.59 i.e., distz,y) = dist(y,x) for every pair of vertices
87gra3l 3.7 5.07 z andy. Other vertex and edge reduction algorithms
88pra39 4.7 5.36 that can be immediately derived from Definitions 1 and
89pcp442 5:5 5.47 2 exist for the asymmetric case, and their time com-
10751535 57 970 lexity is O(N?). Recall thatN is the total number of
113pa561 6.7 1118 PeXy Vo)

115u574 13.2 1197  Problem vertices.

115rat575 11.1 12.04

131p654 10.2 17.71 AcknowledgementWe would like to thank Larry Sny-
134gr666 14.0 18.70 der and John Silberholz for kindly providing the source
145u724 27.9 24.03 codes ofSD andSG, respectively.

157rat783 23.6 30.40

200dsj1000 100.3 63.32

201pr1002 54.9 63.70 References

207si1032 21.3 69.59

212u1060 88.8 75.41 [1] D. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook.
217vm1084 78.1 80.65 Concorde TSP Solver. Availablelat t p: / / www. t sp.
235pcb1173 107.9 102.19 gat ech. edu.

259d1291 169.4 136.24 [2] D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, and
261r11304 140.4 140.40 A. Zverovitch. Transformations of generalized ATSP into
265r11323 132.6 146.63 ATSP, Operations Research Letters 31 (2003), 357-365.
276nrw1379 111.5 166.05 [3] M. Fischetti, J. J. S. Gonzalez, and P. Toth. A Branch-

and-Cut algorithm for the symmetric generalized traveling
salesman problem. Operations Research 45 (3) (1997),
378-394.
[4] M. Fischetti, J. J. S. Gonzalez, and P. Toth.
The Generalized Traveling Salesman and Orienteering
size” dependence was found. The experimental com- Problems. InThe Traveling Salesman Problem and its

plexity of SD is about®(N?3) and it is aboutd (N3-?) Variations (G. Gutin and A. Punnen, eds.), Kluwer,

for GK, SG andGKK. Table 9 demonstrates the qual- Dordrecht, 2002. _ _ _

ity of our estimate foSD (hereTesimad N) = 6.3319 - [5] R. Fourer, D. M. Gay. Experience with a Primal Presolve
10-8 . N3) Algorithm. Large Scale Optimization: State of the Art.

1994. 135-154.

Having the solvers time complexities, we can con- [6] G. Gutin. Traveling Salesman Problems.Hiandbook of
! Graph Theory(J. Gross, and J. Yellen, eds.), CRC Press,

clude that the preprocessing time is significantly smaller 5592

than the solution time for arbitrary large instances as (7] g. Gutin, D. Karapetyan, and N. Krasnogor. A memetic

the experimental complexity of preprocessing is smaller  gigorithm for the generalized traveling salesman problem.
than the complexity of even the fastest of the considered  NICSO'07, InStudies in Computational Intelligenceol.

solvers. 129, pp. 199-210, 2008.



154 Gregory Gutin & Daniel Karapetyan— Generalized TSP Reduacfilgorithms

[8] G. Gutin, and D. Karapetyan. A memetic algorithm Problem into the Standard Traveling-Salesman Problem.
for the generalized traveling salesman problem. Natural Information Sciences 74, 177-189.
Computing, 2009, to appear. [15] C. E. Noon, and J. C. Bean (1993). An Efficient
[9] P. Gutman, and |. loslovich. On the generalized Transformation of the Generalized Traveling Salesman

Wolf problem: Preprocessing of nonnegative large-scale Problem. INFOR 31, 39-44.
linear programming problems with group constraints. [16] G. Reinelt. TSPLIB—A traveling salesman problem

Automation and Remote Control, Volume 68, Number 8, library. ORSA Journal on Computing. 3 (1991), 376-384,
August 2007, 1401-1409. htt p:
[10] H. Huang, X. Yang, Z. Hao, C. Wu, Y. Liang, and [/ www. crpc.rice.edu/softlib/tsplib/.

X. Zhao. Hybrid Chromosome Genetic Algorithm for [17] M\W.P. Savelsbergh. Preprocessing and probing
Generalized Traveling Salesman Problems. Phys. Rev. E,  techniques for mixed integer programming problems.
American Physical Society, 2004, 70. ORSA Journal on Computing, 6:445-454, 1994.

[11] G. Laporte, A. Asef-Vaziri, and C. Sriskandarajah. [18] J. Silberholz, B. Golden. The Generalized Traveling
Some applications of the generalized travelling salesman ~ Salesman Problem: a new Genetic Algorithm approach.
problem. Journal of the Operational Research Society 47  Extending the Horizons: Advances in Computing,

(12) (1996), 1461-1467. Optimization, and Decision Technologies, 2007, 165-181.
[12] G. Laporte, H. Mercure, and Y. Nobert. A Branch [19] L. V. Snyder, and M. S. Daskin. A random-key genetic

and Bound Algorithm for a Class of Asymmetrical algorithm for the generalized traveling salesman problem.

Vehicle Routing Problems. The Journal of the Operational European Journal of Operational Research 174 (2006),

Research Society, Vol. 43, No. 5, Mathematical 38-53. _

Programming in Honour of Ailsa Land. (May, 1992), pp.  [20] M. F. Tasgetiren, P. N. Suganthan, and Q.-K. Pan. A

469-481. discrete particle swarm optimization algorithm for the

[13] G. Laporte, and F. Semet. Computational evaluation of ~ generalized traveling salesman problem. GECCO '07:
a transformation procedure for the symmetric generalized ~ Proceedings of the 9th annual conference on Genetic and
traveling salesman problem, INFOR 37 (1999) (2), pp. evolutionary computation, 2007, 158-167.

114-120. [21] X. Zhao, J. Lin, H. Huang, and Z. Hao. \oid

[14] Y. N. Lien, E. Ma, and B. W.-S. Wah (1993). Vertex Genetic Algorithm for Production-Distribution
Transformation of the Generalized Traveling-Salesman ~ Supply Chain GTSP Model. Journal of Information and

Computing Science, Volume 1, Number 5, December
Received 10-3-2008; revised 4-12-2008; accepted 1-2-2009 2006, 259-265.




