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Article abstract

We consider the following 2-commodity, integer network synthesis problem:
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(sij) of minimum flow requirements of 2 different commodities, construct an
undirected network G = [N, E, c] on node set N = {1, 2, ..., n} with integer edge
capacities {c(e) : e € E}, such that: (i) for any two pairs (i, j) and (k,1),i + j, k # 1,
of nodes in N, we can simultaneously send rij units of flow of commodity 1 from i
to j and skl units of flow of commodity 2 fromk tolin G; and (ii) z =Z {c(e) : e €
E} is minimum. We present strongly polynomial, combinatorial algorithms for
certain special cases of the problem; and for the general problem, we present a
strongly polynomial, combinatorial algorithm that produces a feasible solution
with objective function value no more than (the optimal objective function value
+3).
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Abstract

We consider the following 2-commodity, integer networkhssis problem: Given two x n, non-negative, symmetric,
integer-valued matricef = (r;;) and S = (s;;) of minimum flow requirements @f different commodities, construct
an undirected networky = [N, E, ¢] on node sefN = {1, 2,...,n} with integer edge capacitief(e) : e € E}, such
that: (i) for any two pairs(s, j) and (k,1), i # j, k # [, of nodes inN, we can simultaneously semg; units of flow
of commodityl from ¢ to j and sy; units of flow of commoditg from k to [ in G; and (i) z = > {c(e) : e € E} is
minimum. We present strongly polynomial, combinatorigjogithms for certain special cases of the problem; and for
the general problem, we present a strongly polynomial, doatbrial algorithm that produces a feasible solution with
objective function value no more than (the optimal objecfiunction valuet3).

Key words: 2-Commodity Flow, Network Synthesis, Strongly PolynomAddjorithm

1. Introduction In both [7] and [17], efficient combinatorial algo-
rithms are presented for the problem. The Gomory-
Hu algorithm in [7] has a computational complexity of
O(n?), and when all the elements of the matixare
integers, the edge capacities in the final network pro-
duced by the algorithm are multiples of half. Alternate
Given an integem > 1 and a symmetric, non-  combinatorial algorithms for the problem are presented
negativep x n matrix R, (withr;; =0Vi =1,...,n), in [6,21].
of minimum flow requirements between all pairs of
distinct nodes in the node sét = {1,2,...,n}, con-
struct an undirected networ® = [N, E, ¢] on node set
N with edge setF’ and non-negative, real-valued edge
capacities{c(e) : e € E}, such that (i) all the mini-
mum flow requirements are met one at a time, (that is,
foranyi,j € N, i # j, the maximum flow value i+
fromi to j is at leastr;;), and (i) > {c(e) : e € E} is
minimum.

Gomory and Hu [7] and Mayeda [17] have consid-
ered the following continuous, single-commodity net-
work synthesis problem.

In [3] and [20], an integer version of the single-
commodity network synthesis problem is considered.
Here, all the elements of the matriX are integers and
the edge capacities of the resultant network are required
to be integers. In [3] and independently in [20], al-
gorithms of computational complexity(n?) are pre-
sented for the problem, and it is shown that whenever
max{r;; : j € N —{i}} > 1Vi € N, the problem
hasinteger rounding property, (that is, the difference
between the sum of edge capacities in the optimal net-
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in [14,19]. rg; units of flow fromk to [ in the network; and (ii)
These results have been extended to different types) {c(e) : e € E} is minimum. In [8], some interesting

of flows such as (i) multipath flows [1,2,11,15,16], structural results are obtained on this problem and an

(ii) flows with constraints on lengths of paths carrying algorithm is presented for the special case of the prob-

flow, (these are popularly known d®p constraintp lem with r;; = 0/1.

[5,10,12,13,18], and (iv) 2-commodity flows [8]. It may be noted that if corresponding to a given in-
In this paper, we consider the following generaliza- stance of this problem we construct an obvious instance

tion of the integer, single-commodity network synthe- Of the 2-INSP problem by definin§ = R, then in 2-

sis problem to 2-commodity, integer network synthesis INSP, we allow{i, j} = {k,l}, whereas in the other

problem (2-INSP): problem we do not. Thus the two problems are differ-
Given an integen > 1 and twon x n, non-negative, ent. We do not know the exact nature of relationship

symmetric, integer-valued matricés= (r;;) andS = betw_een the two problems. But neither seems to be a

(si7), (With 75y = 555 = 0 ¥i = 1,2,...,n), of min- special case of the other.

imum flow requirements of different commodities, In Section 2, we present minor modifications of (i)

construct an undirected netwofk= [N, E, ¢] with in- one of the algorithms in [6] for the continuous, single-

teger edge capacitigg(e) : e € E}, such that: (i) For commodity network synthesis problem and (ii) the algo-
any two pairs(i, j) and(k, 1), i # j, k # I, of nodes in rithm in [20] for the integer, single-commaodity network

N, we can simultaneously seng units of flow of com-  Synthesis problem. These are used in our algorithms in
modity 1 from to j ands;; units of flow of commodity sections 4 and 5 for 2-INSP. In Section 3, we establish
2 fromk to [ in G, (it may be noted that we allo, 5} a lower bound for the optimal objective function value
to be equal tdk,1}); and (ii) 2 = > {c(e) : e € E} is of 2-INSP. In Section 4, we present strongly polyno-
minimum. mial, combinatorial algorithms for certain special cases

When S = 0, this problem reduces to the integer, qf 2-INSP. Finally, in Section 5, we present our algo-
single-commodity case considered in [3,20]. It may be rithm fc_)r the_gener_al case of the problem that produces
noted that in case a-commodity flows, integrality of ~ & Solution with objective function value no more than
edge capacities does not guarantee existence of a 2{OPT +3), where OPT is the optimal objective function
commodity flow of given integral total flow value with ~ value of the problem.
integer edge-flows. It guarantees only half integral edge-
flows [9]. In our problem we require only the the edge
capacities (and not the edge-flows) to be integers. 2. AlgorithmsFor Single-Commodity Network Syn-

As we show in Section 3, an optimal solution to thesis Problem
the continuous version of this problem, (where we
allow edge capacities to be non-negative reals), can We present in this section (i) a minor modification
be obtained by solving separately continuous, single- of an algorithm in [6] for the continuous version of the
commodity network synthesis problems on matriées  single-commodity network synthesis problem, which
and S and superposing the resultant networks. How- we call the ModG-algorithm, and (ii) a minor modifi-
ever, the same approach does not work for 2-INSP. We cation of the algorithm in [20] for the integer, single-
present efficient optimal schemes for various special commodity network synthesis problem, which we call
cases of the 2-INSP problem. For the general case ofthe SC-algorithm.
this problem, we present a scheme that is guaranteed First, we prove a minor result.
to produce a solution with sum of edge capacities no Lemma 1 The respective optimal objective function
more than (the optimal objective function value). values of the continuous and integer versions of the

The following related problem is considered in [8]:  single-commodity network synthesis problem remain

Given an integern > 1 and a symmetric, integral, the same even if we allow the final network to have an

non-negativer x n matrix R of minimum flow require- additional (Steinej (n + 1)** node. If the additional
ments, construct an undirected netwdtk= [N, E, ¢] ((n+1)*") node is required to be a non-isolated node,
with integer edge capaciti€s:(e) : e € E} such that: then the respective optimal objective function values of
(i) for any two pairs of distinct node@, j) and (k, 1), the problems with the Steiner node are strictly greater

such thati # j, k # [, and{s,j} # {k,l}, we can than those of the corresponding problems without the
simultaneously pass;; units of flow froms to j and Steiner node.
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Proof. Allowing the (n + 1)** node, (which could pos-  until all the a; values are reduced to zero. A formal
sibly be an isolated node), will obviously not increase description of the algorithm is given below.

the optimal objective function value. Consider a feasi-
ble solutionG' = [N, E,¢] to the continuous or integer
version of the problem witlV = N U {n + 1}.

If the node(n + 1) is isolated inG, then deleting
the (n + 1)** node fromG gives us a feasible solution
to the problem without the Steiner node with the same
objective function value.

Supposel contains an edgér + 1,4) with positive
capacity. Contract this edge i@ and label the new
node:. Replace each pair of parallel edges by a single Else, letny be the largest integer such that
edge with capacity equal to the sum of capacities of aﬁk =af.
the two edges. Let the resultant network (with node set If ny = n, then setA* = af; else,

N) beG’. For any{i} C X C N, capacity of the cut setAF = (af —ak ).
(X, N —X)in G is the same as the capacity of the cut

ModG-algorithm

Step 0: Reorder the nodes in N if necessary such that
ap=az=a3 =+ 2 an.
Setal = a; Vi € N.
Initialize ¢*((i,7)) =0Vi,j € N, i # j; k=0.
Step 1: If a¥ =0, go to Step 3.

If ny = 2, increase by*((1,2)) by A*.
(XU{n+1},N - X)in G. Feasibility of the network
G’ for the problem now follows from the feasibility
of the networkG and the classical max-flow min-cut

If ng > 2, increase=*(e) by
1A% Ve €{(1,2),(2,3), ... ,(n—1,n4),(nk, 1)}
k_AF fori=1,2,...,np

Definea® ™ = ¢ ™ :
i a¥ otherwise

Step 2 :Increasek by 1, and go to Step 1.
Step 3 :Let E* = {e: ¢*(e) > 0}.
OutputG* = [N, E*, ¢*] and stop.

theorem [4]. The sum of capacities of edgestihis
strictly less than the sum of capacities of edgessin
The result is thus proved. ]

Using Lemma 1, we assume throughout the rest of
this section that in continuous as well as integer single
commodity network synthesis problems, each row of the| 41,2 2 The outpui*
input matrix R contains at least one positive element.
(We delete rows/columns &f with all zero elements.)

= [N, E*, ¢*] of the ModG-
algorithm is connected, contaiid¥(n) number of edges
and is a feasible solution to the continuous version of
the single-commodity network synthesis problem.

Though Lemma 2 follows easily from results in [6],
we give here a complete proof of the lemma since it
will be useful in understanding proofs of validity of
algorithms in Section 4. which use the ModG-algorithm
as a subroutine.

ModG-algorithm
For eachi ¢ N = {1,2,...,n}, let us definea; =
max{r;; : § € N — {i}}. Input to the algorithm is the
non-negative vectofa; : ¢ € N); and the algorithm
constructs an optimal solution (networK} to the prob-
lem such that for any,j € N, i # j, we can pass in
G* min{a;, a;} > r;; units of flow fromq to j. Using Proof. Sincea; > 0 Vi, the setE* contains edges
Lemma 1, we assume, without loss of generality, that {(1,2),(2,3),...,(n—1,n), (n,1)}. HenceG* is con-
a; > 0 V. nected.

The algorithm orders the nodes ivi such thatu; = Each edge inE* belongs to one of the cycles
az > as > --- > ayn. In each iteratiork, it chooses the  {(1,2,...,45,1): 7 =3,4,...,n}. The total number of

subset of node$l, 2, ..., n; } with the highest current
a; value, peels off the largest constant valMefrom the

currenta; values of these nodes such that the ordering of

the values is preserved, and assigns an additiéﬂé‘l
capacity to each edge inthe §¢t, 2), (2,3), ..., (ng—
1,nk), (ng, 1)}, (except whem,, = 2, in which case
the algorithm assigns additionAF capacity to the edge

(1,2)). These additional edge capacities allow us to send

an additionalA* units of flow between each pair of

nodes in the sefl, 2, ...,ns}. The process is repeated

such edges is less th@&m. The total number of edges
in E* is thusO(n).

By the classical max-flow min-cut theorem [4], it
follows that to prove feasibility of the networc™*, it
is sufficient to show that for any cufX, X) in G*,

X, X = {c"((i,j)) i€ X;j € X}
> min{max{a; : i € X}, max{a; :i € X}}.
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Without loss of generality, let us assume that X.
Letl < j1 < jo < --- < ji = n+ 1 be such that

X ={1,2,.. 1 =1} U{jajo+1,...,Js—1}U---
andX:{j11j1+11'"7j2_1}U{j31j3+11'"7j4_
1}U---.

Obviously,l > 2. Itis easy to see thatin{max{a; :

i € X},max{a; : i € X}} = aj,. Thus, we have to
show thatc*[X, X| > a;, .

Let ¥’ be the smallest integer (iteration num-
ber) such thatn,, > j;, and letk be the last it-
eration number of the algorithm. (Thus; = n.)
The cut (X, X) contains2|L]| edges in the cycle
(1,2,...,n,1), and at leas edges in each of the
cycles{(1,2,...,n,1) : k = k', k' +1,...,k —1}.
Hence, in thek" iteration, capacities o2|L] edges
in the cut are increased byA* each; and for each
ke {k,k+1,....k — 1}, if np, = 2, then edge
(1,2) is in the cut and in th&*" iteration, its capacity
is increased by\*; while if n;, > 2, then in thek!”

iteration, capacities of at least two edges in the cut are

increased by, A* each. Hence,

CIXX] > T{AR k= WK 41 R 1)+
LéJAk =aj + LFTQJAk > Ay -

This proves the resultm
Theorem 3 The ModG-algorithm is a strongly polyno-
mial, combinatorial algorithm with computational com-
plexityO(n?). The outpuG* = [N, E*, ¢*] of the algo-
rithm is an optimal solution to the continuous version of
the single-commodity network synthesis problem with

S {c(e) e e B} = %Z{ai Lie N}

When the inpufa; : i € N} to the algorithm is integer
valued, all the edge capacitidg*(e) : e € E*} are
multiples of half, and when all the; values are even,
the edge capacities are integers.

Theorem 3 follows easily from results in [6].

SC-algorithm for the integer, single-commodity
network synthesis problem

Input to this algorithm is an integer, non-negative,
symmetric,n x n matrix R of minimum flow require-
ments. It follows from Lemma 1 that we can assume,
without loss of generality, that every row @t has a

non-zero entry. (Else, we can delete the rows/columns

of R with all 0 entries.)
The SC-algorithm computes thg value correspond-
ing to each row of R as in ModG-algorithm. It then (i)

S.N. Kabadi et al. — Integer Network Synthesis

deletes all the nodeése N = {1,2,...,n}witha; =1
to get a subset of node¥ (in Step 0); (ii) designs an
optimal network on the node séf using as input the
vector(a; : i € N) (in steps 1-5); and (iii) adds to this
network the deleted nodes (with = 1) and approapri-
ate edges with capacity (in Step 6) to get an optimal
solution to the entire problem.

To construct the optimal network on node Sgt
the SC-algorithm uses the ModG-algorithm for the
continuous version of the problem as a subroutine. If
all the values{a; : i € N} are even, then the ModG-
algorithm produces a solution with integer capacities.
If some of thea; values are odd, then the SC-algorithm
(i) pre-processes the; values to make sure that is
odd and_{a; : i € N} is even (in steps 1-2); (i) iden-
tifies the subsef) of nodes inN with odd modifieda;
values, and peels off unit from these odd values (in
Step 3); (iii) uses the ModG-algorithm to constructs
an optimal network with the resultant values for all
i € N (which are now all even) as input (in Step 4);
(iv) makes up for the decreasednvalues for alli € @
by adding to this network a suitable set @ edges
which cover all the nodes iy, and assigning to each
of these edges a capacity band finally makes an ad-
justment to account for the pre-processing (in Step 5).

SC-algorithm

Step 0: Computea; =max{r;; : j€ N —{i}} Vi € N.
LetN = {i:a; >1}.

Order the nodedy = {1,2,..
a1 =az >az 2> -+ = am.

: Seta; =a; Vi € {2,3, . ,ﬁ}.

If > {a;:i € N} = odd, then seti; = a; + 1.
Else, sett; = a;.

. If @; is even andi; is odd for some € N,
then setn; =a1+1,a> =a»+1, and Index =1.
Else, set Index 9.

‘letQ = {i:i € N; @, = odd}. (By Step 2,

if Q+# @,thenl € Q.) Leta; =a; —1Vi € Q.

Then,a; =as > --- > @, and they are all

even numbers.

Use the ModG-algorithm, with input

{@; : i € N} to construct a network

G =[N, E,¢. (Since all thez,’s are even,

¢(e) = integerve € E.)

Let@ = {[1],[2],...,[|Q|]}, where

.,} such that

Step 4:

Step 5:
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[1] < [2] < --- < [|Q]]. For each edge,
eeT={([,[<L+i):i=12...,

'%'}, if e € E, then increaseé(e) by 1;

else, add the edgeto £ and se€(e) = 1.

If Index =1, then subtract from¢((1,2)).

If N = N, then define network’* = [N, E*,
c*l]asE* = E andc* = ¢ and go to Step 7.
Construct the grapt'r = [N, Eg], where
ER:{(Z',j):Tij >O} o

In Gg, shrink the node seV to a single
pseudo-node and find a spanning forest in the
resultant network. IrG, augment the node set
to N; and add toF edges inG'r correspondi-

ng to the edge set of the chosen spanning for-
est and assign a unit capacity to each of these
new edges . Let the resultant network

beG* = [N, E*, ¢*].
Step 7: Output the networlG* =

Step 6:

[N, E*, ¢*] and stop.
Theorem 4 The SC-algorithm is a strongly polynomial,
combinatorial algorithm with computational complexity
of O(n?). Let the number of edges in a spanning forest
of the graph obtained from the graphy, (defined in
Step6 of the SC-algorithm), by shrinking the node set
N, (defined in Step of the SC-algorithm), to a single
pseudo-node bg. Then the networks* = [N, E*, ¢*]
produced by the SC-algorithm contaifi$n) number of
edges and is an optimal solution to the integer, single-
commodity network synthesis problem with

> {e(e)

Also, the subselN of nodes, (defined in Stepof the
algorithm), is connected iG™*.

Theorem 4 follows easily from results in [20]. It may
be noted that when; > 1 Vi € N, the SC-algorithm

cee By =p+ FZ{az.zeN}w

does not perform Step 6. In such a case, the algorithmand letN = {i:a; +b; > 1} =

actually requires as input only the veciar; : i € N).
Hence,n our algorithms in sections 4 and 5, whenever
we use the SC-algorithm as a subroutine withalb
greater thanl, we use as input to the algorithm only
the vector(a; : i € N).

3. A Lower Bound For The Optimal Objective Func-
tion Value of 2-INSP Problem

We now consider the 2-commaodity, integer network

—Algorithmic Operations Research Va2dQ9) 117-132
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input to the problem consists of twox n, integer, sym-
metric, non-negative matrice® and S. Let us denote
the optimal objective function value of the problem by
OPT.

The following lemma can be proved along the same
lines as Lemma 1 using the two-commodity max-flow
min-cut theorem of Hu [9].

Lemma5 The respective optimal objective function
values of 2-INSP and its continuous version remain the
same even if we allow the final network to have an ad-
ditional (Steiner)n + 1) node. If the additional node

is required to be a non-isolated node, then the respec-
tive optimal objective function values of the problems
with the Steiner node are strictly greater than those of
the corresponding problems without the Steiner node.

Foreachi € N = {1,2,...,n}, leta, = max{r;; :
jEN— {’L}} andb; = max{sij 1] € N — {Z}}

Using Lemma 5 we shall henceforth assume, without
loss of generality, thad; +b; > 0Vi € N. (Else, delete
nodes witha; +b; = 0.)

Let us partition the node s&¥ into the following

subsets:

NOY ={i:a; =0,b; =1};
NYY ={i:a; =1,b; =0};
N®% ={i:a; =0,b; > 1};
Nl’l Z{Z La; = bi = 1};

NY2 ={i:a; =1,b; > 1};
NZO :{’L ta; > 1,b; = O},
N2t Z{Z ta; > 1,0 = 1};
N*% ={i:a; > 1,b; > 1}

LetG = [N E] whereE = {(2 ]) 1T+ Sij > 0},
{Nl ,0 U NO 1}
Shrink inG the node selV to a pseudo -nodeto get a
graphG. Let the number of edges in a spanning forest

of the graphG bep.

Lemma 6 LetOPT’ be the optimal objective function
value of the instance of the 2-INSP problemgrwith
the corresponding submatrices & and S as input.
Then a lower bound o®PT, the optimal objective
function value of 2-INSP oW, is (p + OPT"). If there
exists an optimal solution to the problem dhin which
the entire node selV is connected, then an optimal

synthesis problem (2-INSP), defined in Section 1.. The solution to problem oV can be obtained by adding to
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this optimal solution to the problem aN, edges inG
corresponding to edge set of any spanning forest of
Thus, in this case, the lower bound is achieved.
Proof. If N = @, then the result can be easily seen to
be true. (In this case, the elementsifand .S merely

specify the node-connectivity requirements. The result

follows from this obviously.) If the result is not true
in general, then lek* be the minimum value ofN|

for which a counter-example exists and for this value
of |N|, let p* be the minimum value of for which

S.N. Kabadi et al. — Integer Network Synthesis

OPT =>{c*(e):e€ E*} > OPT(u) + 1

Now, Nv = {i : al +bY > 1} = N, andp® = p*—1.
We thus get,

OPT > OPT(u)+1 > p* — 1+ OPT +1 >
p* + OPT',

whereOPT is the optimal objective function value of
the instance of the 2-INSP problem & = N with

a counter-example exists. Consider a counter-examplethe corresponding submatrices Bf and S* as input.

with input matricesk and S for which [N| = n*, and
p = p*. LetG* = [N, E*, ¢*] be an optimal solution to
this instance of 2-INSP.

If p* =0, then using Lemma 5, we can assume that
N = N and therefore, such an instance of the problem
cannot be a counter-example. Hep¢amust be greater
than zero.

Letu € N — N be atip node, (a node of degrég
of some spanning forest of the graph and let(u, v)
be the edge of7 corresponding to the edge incident
to nodew in this spanning forest. Let us assume that
u € N1O, (The other case follows similarly.) Define
(n—1)x (n—1) matricesR* andS™, with rows/columns
indexed by the seN* = N — {u} as:

SZZSU A4 i,jENU;

and
Tij if i,j€N—{u,v}
w ) max{ry;,m;} if i=vandj e N —{u,v}
"ij = max{r,, 7w} f j=vandi e N — {u,v}
0 ifi=j=uv
Let af = max{r}; : j € N* — {i}} and b} =
max{s{; : j € N* — {i}} Vi € N*. Then,a} = a;
andby = b; Vi € N“. Let OPT(u) be the optimal

objective function value of the instance of the 2-INSP
problem onN* with input matricesR™ andS"; and let
the corresponding value gfbe p*.

By standard results in network flows [4], it follows
that for any node ¢ {u,v} of G*, the maximum flow
value fromwo to j in G* is at leastmin{ry,, 7,; }. Since
u € N1, this implies that the maximum flow value
from v to j in G* is at leastr,;. The networkG* is
thus a feasible solution to the instance of the 2-INSP
problem onN* with nodewu as a Steiner node. Also,
by the choice of the node, it follows thatG* contains
some edgdu, j) with capacity at least. Hence, by
Lemma 5, it follows that,

Here, the second inequality follows by the definitions
of n* andp*. The third inequality follows from the fact
that each element of the submatrix Bf* (S*) corre-
sponding ta\ is greater than or equal to the respective
element of the submatrix oR (S) corresponding to
N; and hence, any optimal solution to the instance
of the 2-INSP problem oV with the corresponding
submatrices of?* and S* as input, is feasible for the
the instance of the 2-INSP problem aW with the
corresponding submatrices &fand S as input.

If there exists an optimal solution to the problem on
N in which the entire node séY is connected, then it
is easy to see that the network, obtained by adding to
this optimal solution to the problem aN edges inG
corresponding to edge set of any spanning forest of
is feasible to the problem on node 9étwith objective
function value p + OPT’). m

Lemma7 OPT >p+ [$> {a;+b;:i € N}|.
Proof. It follows from the two-commodity max-flow
min-cut theorem of Hu [9] that for any feasible solution
G' =[N, E’, ] to the problem onV,

S {c'(i,j) : j € N—{i}} > a; +b; for eachi € N.
Hence,

2> {c(e) :e€ E'} > > {(ai+b;) : i € N}, which
implies that,

S{c(e) e € B} 2[4 {(a; +bi) : i € N}.
By Lemma 6, we thus get,

OPT >p+ f%Z{(az—i—bl) ) GN}] ]

4. Algorithmsfor Special Cases of the 2-INSP Prob-
lem

In this section, we develop algorithms that produce
optimal solutions for some special cases of the 2-INSP
problem. For all the algorithms in this section, we use
as input only the non-negative vectdrs : i € N) and
(b; : ¢ € N), where, for eachi € N, a;, = max{r;; :

j € N—{i}}andb; = max{s;; : j € N—{i}},andR
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andsS are the integer, symmetric, non-negative matrices Theorem 9 If a; # 1 andb; # 1 Vi € N, then ob-
of minimum flow requirements of the two commodities. taining separately optimal networks for integer, single-

Using Lemma 5, we assume throughout that- b; > commodity network synthesis problems on matriBes
0Vie N. and S and superposing the two networks produces a
If IN| = n = 2, then obviouslyr; = ay andb; = b, feasible solution to 2-INSP with objective function value
andc*((1,2)) = a1 + by is an optimal solution to the  within one of the optimal. If at least one of {a; :
problem. Hence, we assume henceforth that 2. i€ N} and> {b; : i € N} is even, then the solu-

To start with, we observe that the continuous version tion obtained is an optimal solution to 2-INSP. If each
of the 2-INSP problem can be solved easily using the of the two integer, single-commodity network synthe-
results on the continuous, single-commodity network sis problems on matriceB and S is solved using the
synthesis problem. SC-algorithm, then the computational complexity of the
Lemma 8 An optimal solution to the continuous ver- entire scheme i€ (n?).
sion of the 2-INSP problem, with input matricés Proof. Since each network output by the SC-algorithm
and S, can be obtained by solving separately contin- containsO(n) number of edges, superposing the two
uous, single-commodity network synthesis problems onnetworks take€(n) time. The computational complex-

matrices R and S to obtain optimal network€:! = ity of the scheme is thus the same as that of the SC-
[N, B, c'] andG? = [N, E?, ¢?], respectively; and su-  algorithm, which isO(n?).

perposing the network&! and G? to obtain the final The networkG* = [N, E*,c*] produced by the
networkG* = [N, E*, ¢*] whereE* = E* U E? and scheme is obviously feasible for 2-INSP. It follows

from Theorem 4 that

ct(e)+c*(e) if e€ BN E?
c*(e) = cte) if e€ Bt — E? 1 1
( c2(e) if e€ E? — E! Z c*(e) = {Ezaz—‘ + {521%—‘
ecE* i€EN i€EN
Proof. The networkG* is obviously feasible for the 1
continuous 2-INSP problem. Using the same arguments = [5 Z(ai + bi)—‘ +a,
as in the proof of lemma 7 but for the problem on the ieN

entire node sedV, we get} > {(a; +b;) :i € N} asa B . P .
lower bound on the optimal objective function value of \(/)vfher?oz._. O orjl\;}ar;(:lc; — ?bl_f _ar.]d O?\P}{ |;‘Sate\lleear115t_|(_)rl11§
the continuous 2-INSP problem a@¥. It follows from 2.{a; i € 2Abi 1 € '

Theorem 3 that the networe* achieves this lower 'cSUlt now follows from Lemma /m .
bound. m Theorem 10 Supposer; +b; > 1Vi € N. Let NY =

S h. 0 i -
If we solve separately integer, single-commaodity net- I{Zt" alt>207|llillsT3 0. Ifb|N b|t§ 1,dtr;3en ar _optlmal sot |
work synthesis problems on matric&sand S (using ution to = can be obtained Ly solving separately

the SC-algorithm) and superpose the resultantnetworks,'ntege:' _smSgRIe-cgr;mogny networ_k sz/hnthessltpr(t)bletms
then it follows from Theorem 4 that the sum of edge on matricesiv anc.5 and sUperposing the resultant net-

capacities of the final network will be works. Thus, in this case,

1 1
prtp2t kig;azw + kg;zbiw ) OPT =m' +m? + B > aiw + B > bi—‘ :

1EN?T iEN?
whereN! = {i:q; > 1}; N>={i:b; > 1}; p1is
the number of edges in a spanning forest of the graph  whereN' = {i : a; > 1}, N> = {i : b; > 1}, and

obtained fromG! = [N, E'], where E' = {(i,j) : m! andm? are the number of nodes with = 1 and
r;; > 0}, by shrinking the node seV! to a pseudo-  b; = 1, respectively.
node; and, is defined similarly withR replaced bys, Proof. Solving separately integer, single-commodity

N' by N2, andE! by E? = {(i,j) : s;5 > 0}. It can network synthesis problems on matricksand S and

be easily seen that this can be significantly larger than superposing the resultant networks obviously produces
the lower bound in Lemma 7 wheiw2UN21UN | a feasible solution to the 2-INSP problem. It follows
is large. We now identify some special cases of 2-INSP from Theorem 4 that when the problem instance sat-
for which this scheme produces an optimal solution.  isfies the conditions of the theorem, the objective
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function value of this solution is
1 1
> w + {5
iENT
We now prove that under the conditions of the theorem,
this solution is optimal to 2-INSP. Thus, consider any
optimal solutionG* = [N, E*, ¢*] to such an instance
of the 2-INSP problem.
If E* contains no edge joining some nodeNit:°
to some node inV®2, then the subnetwork&® =
[NOU N2O E' ¢l andG? = [N° U N%2 E2 (%] of
G* spanned by node sef$’ U N0 and N° U N9
respectively, are feasible solutions to integer, single-
commodity network synthesis problems with input ma-
tricesR andS, respectively, and the result follows from
Theorem 4.

SupposeE* contains an edgéu, v), (with capacity
at leastt), with v € N2° andv € N%2.

7n1+4n2+-{ > mw.

iEN?

Case (i) :N*! = o or at least one of “{a; : i € N}
and> {b; : i € N} is odd.Contract the edgéu, v) in
G*, label the new nodén + 1), and replace each pair

of parallel edges by a single edge with capacity equal to

S.N. Kabadi et al. — Integer Network Synthesis

Without loss of generality, let us assume that+ 1) €
X. Let X* = (X U{u,v}) — {n+1}. Then,

dX,N' — X] = ¢*[X*,N — X*] > max{r;; : i €
XﬂjeN—Xﬂ+mmd&ﬁieXﬂjeN—Xﬂ:

x{rj ci € X;5 € N — X} + max{s}; : i €
X;jeN — X},

where the inequality follows from the feasibility 6f*

for the given instance of 2-INSP and from the two-
commodity max-flow min-cut theorem. Thus&’ is
feasible for the 2-INSP problem aN’.

We thus get:
OPT = Z c*(e) > Z de)+1
ecE* eckE’

Z[%Z{(a’i+b§):ieN’}w+l
= [%Z{(az‘sz)ZEN}—‘ —|—1
>m!' +m?+ E Zai—‘ + E

iENT

> b

1EN?Z

|

the sum of capacities of the two edges, to get a network Wherem! andm? are as defined in the statement of

G' =[N',FE', ], whereN' = (N —{u,v})U{n+1}.
Define (n — 1) x (n — 1) matricesR’ and S’, with
rows/columns indexed by the sat, as:

if i,j €N —{u,v}

iifi=n+1landje N — {u,v}
if j=n+1landie N —{u,v}

0 ifi=j=n+1
and
sij if i,j € N—{u,v}
o — ] Sui if i=n+1andje N — {u,v}
“J Siv 'Lf]:'R-i-land’LEN—{u"U}
Let af = max{r}; : j € N’ - {i}} and¥] =
max{s}; : j € N' —{i}} Vi € N'. Thena} = a

andb; = b; Vi € N — {u,v}; anda;,,, = a, and
by, .1 = b,. We shall show that’ is feasible for the
2-INSP problem with input matriceB’, S’.

By the two-commodity max-flow min-cut theorem
of Hu [9], it follows that to prove this it is sufficient to
show that for any cutX, N' — X) in G’,

X, N'=X]=>{d((i,j):ie X; je N-X} >
max{r;; : i € X;j € N' — X} + max{s;; : i €
X;jeN — X}

the theorem.

Case (ii) :|N*!| = 1 and both} {a; : i € N} and
S{b;:i € N} are evenLet N1 = {z}. There must
be some edgér, y) in G* with positive capacity. Let us
assume thay € N2, (The other case, whepe N2
follows similarly.)

Contract the edgéz, y) in G*, label the new node
n*, and replace each pair of parallel edges by a single
edge with capacity equal to the sum of capacities of
the two edges, to get a netwotk = [N, E, ¢|, where
N = (N —{z,y}) U {n*}. o

Define (n — 1) x (n — 1) matricesR and S, with
rows/columns indexed by séf, as

if i,j€N—{z,y}
max{ry;,ry;} if i =n*andj € N — {z,y}

Tij

Tij = max{riz,ry} if j=n*andi e N — {z,y}
0 if i=j=n"
and
sij if i,j € N—{z,y}
<) e if i=n*andj e N —{z,y}
Y] s if j=n*andi e N —{z,y}
0 ifi=j=n"
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Let @, = max{T;; : j € N — {i}} and b; =
max{3;; : j € N — {i}}. Thena@; = a; andb; = b;
Vi € N — {z,y}; anda,- = a, andb,- = b, = 1.

LetN' = (N! —{y})Un*. It can be shown, using ar-
guments similar to those in Case (i), ti@tis feasible
for the 2-INSP problem with input matrice®, S. The
2-INSP problem with input matrice®, S is of the
type discussed in Case (i). Using this, and the validity
of the theorem for Case (i), we get:
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In Step3, it makes up for the difference afbetween
some of the values ifa;, b;
sponding values i{a;, b; :
suitable set of |Q| edges which cover all the nodes in
Q, and assigning to each of these edges a capacity of
1; and finally it makes an adjustment to account for the
pre-processing in Stef

: 1 € N} and their corre-
i € N} by adding toG a

Algorithm 3
OPT =Y c*(e) > e)+1
ecE* EEE
Step 0: Let N® = {i : b; > 0}, and|N°| = no.
1 a 1 A Arrange nodes in the séf = {1,2,...,n}
>1+ |z a;| + | = bi| +1
N 2 ‘Z_l {2 iezNz —‘ such thata; = as > -+ > a,.
ieN Also, find an orderind k1, ks, . . . , kny }
1 1 0
—24 |2 Z a |+ | = bi of the elements oV such that
2 e 2.¢ br, = by = by = -+ 2 iy, -

- +m+[ } [ }
z€N1 Z€N2

This proves the theoremm

We shall now give algorithms for other non-trivial,
special cases of 2-INSP.
Casel :a; >1Vie N.

Input to this algorithm is non-negative vectdis :
i€ N)and(b; : i € N), the elements of which are
defined as before.

In Step0, the algorithm arranges the elements of
N in non-increasing order of their; values; obtains
an alternate orderin@k1, ks, . . ., k,, } Of the subset of
nodes with positivé; values such that thig values are
non-increasing; and then pre-processes the input data
to obtain modified value$a,, b 1€ N} such that (i)

S {a; +b; : i € N} is even; (i) the orderings of the
two sets of values are preserved; (iii) if there exists an
odd a;-value, theri; is odd; and (iv) if there exists an
odd b;-value, therby,, is odd.

Next, in Stepl, the algorithm (i) identifies the subsets
Q* andQ" of nodes with oddi; andb; values, respec-
tively; (i) peels off1 unit from each of these odg and
b; values to obtain modified value§g;,b; : i € N};
and (i) defines the multise) = Q* U Q°. (Thus,Q
contains2 copies of each of the nodes @r N Q°.)

In Step2, the algorithm uses the ModG-algorithm to
constructs optimal network§® and G? (with integer
capacities) for even-valued input vectdig : i € N)
and(b.
networks to obtain network’ with integer capacities.

Step 1:

Step 2:

i -1 € N), respectively, and superposes these two Step 3:

If > {a;+0b;:i€ N} is odd, then sei; =a;+1.
Else, sett; = a;.

Seta; = a; Vi € {2,3,...,n}

andBi =b; Vie N.

If a; is even, and at least one of thes is odd,
then seti; =a;+1,as=as+1, and Index1 =l.
Else, set Index1 $.

Similarly, if Bkl is even, and at least one of
thed,’s is odd, then seby, = by, + 1,

bk, = by, + 1, and Index2 =1.

Else, set Index2 $.

LetQ® = {i:d; = odd} andQ® = {i : b; =
odd}; and multiset) = Q* U Q°. (Thus,Q
contains 2 copies of each node@f N Q°.)

_ fa ifi¢qQa
Setai_{di—lifiEQa
B bi if i ¢ Q"
T lbi—1ifieq@b

With {@; : « € N} as input, perform the

ModG-algorithm to obtain a network

G* =[N, E%, ¢*].

Similarly, with {b; : i € N°} as input, perform

the ModG- algorithm to obtain a network

G® = [N°, E®, cb]. Superpose the two

networksG® andGb to obtain

networkG = [N, E,¢|, where,E = E* U EY,
c(e) if ec B¢ — E®

andé(e) = { c(e) if e€c B -~ E°®
c(e) +c(e) if e€c E*NE®

Arrange the elements @) ={[1],[2],...,[|Q|}

such thafl] < [2] < --- < [|Q]]-
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(Thus, ifQ* # @, then[1] = 1.)
DefineT={([i],[' +4)) : i = 1,2,..., 1€},
For each edge € TN E add1 to ¢(e).

For each edge € T — E add the edge to
E and assign it a capacitye) = 1.

Let the resultant network b6 = {N, E, é}.
Letc*(e) = é&(e) Ve € E.

If Index1 =1, reducec*((1,2)) by 1.

If Index2 =1, reducec*((k1, k2)) by 1.

Let E* = {e € E: c*(e) > 0}.

Output the networlG* = [N, E*, ¢*] and stop.

Theorem 11 The networkG* constructed by Algo-
rithm 3 is an optimal solution for Case 1 of 2-INSP.
Proof. By the two-commodity max-flow min-cut theo-
rem of Hu [9], it follows that to prove the feasibility of
the networkG™ output by the algorithm, it is sufficient
to show that for any cutX, X) in G*,

c*[X,X] > min{max{a; : i € X}, max{a; : i €
X1} + min{max{b; : i € X}, max{b; : i € X}}.

Without loss of generality, let us assume that X.
Letl < j1 < jo < --- < ji = n+ 1 be such that

X:_{15277]1_1}U{]27]2+157]3_1}U
andX = {j17j1+17'"7j2_1}u{j37j3+17'"7j4_
1HuU---.

Obviously,l > 2. Itis easy to see thatin{max{a; :
i € X}, max{a; : i € X}} = a;,; and that there exists
h # ki such thatmin{max{b; : i € X} max{b; : i €
X1} = by, and nodesh andk; lie on different sides
of the bipartition(X, X). Thus, we have to show that
c*[X,X] > aj, + bp.

We first show that[ X, X| > a;, + bp.

From the proof of Lemma 2, noting that* > 1, we
get,

e[X, X] >aj;, +by+2 V_Tw (1)

If I > 4, then we get using inequality 1:

&x, X] > elX, X| (2)
> Eji + 5h +2 (3)
> aj, + b (4)

Suppose2 < | < 3. Then nodesl and j; lie on
different sides of the bipartitiofX, X') and similarly,
nodesk; andh lie on different sides of the bipartition.
We consider all the four possible cases:
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(i). Bothaj, andbj, are even In this case,

aX, X] >eX, X] (5)
>aj, + by (6)
= aj, + bn (7

Here, the second inequality follows from expression 1.

(ii). a;, is odd andb, is even: In this casef; is odd
and the edge séf’ contains edges$l, «) and (ji,v),

for someu,v € Q. If u € X, then the edgél, u) is in

the cut(X, X). Else, ifu < j1, then by the definition
of the setT’, v < u < ji; and ifu > js, then, again
by the definition of the sef’, v > u > js. In either
case, the edgéj;,v) is in the cut(X, X). From this,
and inequality 1, we get:

X, X] >e[X, X] +1 (8)
> aj, + by + 1 (9)
= aj, + b (10)

(iii). by, is odd anda;, is even: In this casepy, is
odd, and it can be shown using arguments similar to
those in case (ii) that expression 10 above holds.

(iv). Botha;, and by, are odd: In this case, bothi,
andby, are odd. Let{y,z} = {ki,h}, wherey € X
andz € X. Then the edge sef, (defined in Stes
of the algorithm), contains edgé€sk, u), (j1,v), (y,w)
and(z, z), for someu, v, w andz in Q.

If any one of the edge$l, «) and (y, w) is not in
the cut(X, X), then it can be shown using the same
arguments as those in case (ii) that each of the edges
(j1,v), and(z, x) is in the cut. Thus, at least two edges
of the edge-s€f lie in the cut(X, X). Using inequality
1, we get:

X, X] >e[X, X]+2 (11)
>aj, + by +2 (12)
= dj, +bn (13)

Now, c*((1,2)) < ¢&((1,2)) iff a1 < ai; and
c*((k1,k2)) < é((k1, ko)) iff by, < bg,. From this and
expressions 4, 7, 10 and 13, we get :

X, X] > aj, + by
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This proves the feasibility of7*.
Using Theorem 3, we get :

Z c*(e) = Z c(e) + Z Ple)+

ecE* ecEa ecEb
|T| — Indexl — Index2

1 1 _
) Zai"' 3 Zbri- |T|—Index1—Index2
iEN iEN

The optimality ofG* now follows from Lemma 7=

Case?2 :a; >0andb; >0 Vie N.

Inputto this algorithm is positive vectofs; : i € N)
and(b; : i € N). Here, we use the fact that if we add
1 to eacha; value and subtract from eachb; value
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The feasibility of the networks* for the given input
vectors now follows from the two-commodity max-flow
min-cut theorem [9].

Also, using Theorem 11, we get:

. 1 _ 7 1
Z c*(e) = k Z{arl-bz'}—‘ = k Z{ai-l-bi}—‘ :
ecE* iEN iEN
The optimality of the solution now follows from
Lemma 7.m

Case3:a;+b; >1Vie Nand|{i:
0} > 1.

Input to this algorithm is symmetric, non-negative,
integer matriceg? and.S of minimal flow requirements
of two commodities. We define vectofs; : i € N)
and(b; : i € N), as before.

For any non-empty, proper subs&t of N, let us

a; > 0,b; >

and the new values are non-negative, then a networkdefiner(X) = max{r;; : i € X;j € X}, ands(X) =

is feasible for the old:;, b; values if and only if it is
feasible for the modified,;, b; values. Thus, we add
1 to eacha; value and subtract from eachb; value.

max{s;; i € X;j€ X}
The algorithm divides the node s&t into three sets
: N20, N%2 and the set of remaining nodes, which is

This reduces the problem to Case 1 which we solve denoted byN°. As shown at the beginning of this sec-

using Algorithm 3.

Algorithm 4

Step 1: Seta; =a; + 1 andb; =b; —1Vi € N
Step 2: Perform Algorithm 3, with input vectors
(@:i=1,2,...,n)and(b; :i=1,2,...,n),
to construct a network’™* = [N, E*, ¢*].
Output the networlG*.
Theorem 12 The networkG*, constructed by Algo-
rithm 4, is an optimal solution for Case 2 of 2-INSP.
Proof. Sincea; > 0 andb; > 0 for each: € N, both
the vectors@; : i € N) and(b; : i € N), defined in
Step1 of Algorithm 4, are non-negative vectors. It fol-
lows from Theorem 11 that the netwoék* produced
by Algorithm 4 is an optimal solution for input vectors
(@ :i€ N), (b : i € N). Also, from the proof of
Theorem 11, it follows that for any cytY, X) in G*,

c*[X, X] > min{max{a, : i € X}, max{a@; :i € X}}
+ min{max{b; : i € X}, max{b; : i € X}}
= min{max{a; : i € X}, max{a; :i € X}}
+ min{max{b; : i € X}, max{b; : i € X}}

tion, if [NY| < 1 then an optimal solution to the prob-
lem can be obtained by applying the SC-algorithm to
the a-vector and thé-vector, separately, and superpos-
ing the two networks. Hence, here we only consider the
case with| N°| > 1.

If r;; =0foralli e N°andj € N2°, and at least
one of Y {a; + b; : i € N°} and> {a; : i € N>}
is even, or if the same situation holds fSrwith a;’s
replaced by;’s and vice versa, then the algorithm sets
index "Case” =1. In this case, optimal network for re-
quirements on node s@{2° is constructed separately
using the SC-algorithm; optimal network for require-
ments on the rest of the nodes is constructed separately
and the final solution is the disjoint union of these two
networks.

Else, as in Algorithm 4, for eachin N° we increase
the a; value by1 and decrease thig value by1. The
a; andb; values are further modified to obtain values
{@;,b; : i € N}, such that (i) each of {@; + b; : i €
N} +3{a; : i € N*°Y and> {b; : i € N®2} is
even,; (ii) the ordering of each of the four sets of valuesis
preserved; (iii) if there exists an odg-value {; value)
in NOU N20 (N9, then its largesti; value §; value)
is odd; and (iv) if there exists an oddg value in N%-2,
then its largesb; value is odd.

We then (i) identify subsetQ*° and Q%! of node
sets N? and N2, respectively, with oddz; values;
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and subsets)** and Q"' of nodes inN° and N2,
respectively, with odd, values; (ii) peel offl unit from

each of these odd; andb; values, to obtain modified

values,{a;, b; : i € N'}; (iii) further modify the largest

a; andi)i
such that the two largeét values are equal and the two
largesth;

In steps3 and 4, the algorithm uses a modification
of the ModG-algorithm to construct optimal networks

values in some of the sefg?, N2:0 and N2

values are equal.

Step 1b:

(with integer capacities) for even-valued input vectors Step 1c:

(@i

i e N) and(b;

perposes these two networks to obtain netw@rwith
integer capacities.
In Step5, we make up for the difference df be-

tween some of the values _|{ul, b;
cprresponding values ifia;, b;
G a suitable set of edges which cover all the nodes in

:i € N} and the
: i € N} by adding to

the multiset*° U Q®! UQ"?, and the se®®!, (each

of which has even cardinality); and assigning to each

of these edges a capacity bfto get a networlG'.

Finally, in Step6, we make an adjustment to account

for some pre-processing and alterationsatoand b;
values done previously.

Algorithm 5

Step O:

Step la:

SetN? = {Z ta; > 0,0 > O},

Case = Index§ = Index® = 0;

Index§ = Inde:cl} = Inde:zrg =0;

Indf = Ind] = 0.

Setng = |[N°| andn; = |[N° U N20|.
Number the nodes iv® as{1,2,...,m0}
such thats; > as > -+ > ay,.

Find an alternate orderin1, t2, . .., tn, } Of
nodes inN" such thaty,, > b, >--- > by, .
Number the nodes iv*? as{ng + 1, ng+
2,...,n1} and number the nodes

in N%%2 as{n; +1,n1 +2,...,n}, such that
aizajVno<i<j§n1,
andb; > b; Vny <i<j<n.

If #(N°) = max{ry; :i € N%jec NO} =0
and at least one of

S {a; +b;:ie€ N} andd {a; : i € N>}
is even, then sef’'ase = 1 and go to Stefb.
If s(N°) = max{s;; :i € N%j € NO} =0
and at least one of

S {a; +b; i€ N} andd {b; : i € NO2}

: i € N), respectively, and su-

Step 2a:

Step 2b:

is even,then rename thg's asb;’s and the
b;’s asa;’s; setCase = 1; and go to Stefdb.
If > ien @i + D ;cno0 i iS even,
then go to Stepc.
If >{b;:ie N} +> {a;:i€ N°%is
even, then rename all thg’s asb;’s and all
theb;’s asa;’s; and go to Stefc.
If > ;cnolai + b} is odd, then add to by, .
If > ,cn20a;is odd, then add t0 ap 1.
If >,cno.2 b is odd then add to by, 1.
Seta; = a; + 1 andb; = b; — 1 Vi € NO;
anda; = a;, andb; = b, for every other.
If Case = 0, then go to Stepb.
Construct an optimal networ®®' =
[N2.0 pal c21] using the SC-algorithm
with (@; : i € N*°) as input vector.
If s(N°) = 0 then, construct an optimal
networkG® = [N°, E° ] using Algorithm 3
with (@; : i € N°) and(b; : i € N°) as input
vectors. Construct an optimal netwofk-! =
[N0:2, Eb1 cb:1] using the SC-algorithm
with (b; : i € N%2) as input vector.
Let G*=|N, E*, ¢*], where,E* =
E°u E»'u E»!; and

c¥(e) Ve € E¥1

c*(e) =3 Pe) VeeE°
l(e) Ve € Eb!

Go to Stepr.

Else,

If @,= even, andi; is odd for some € N©,
then Set[ndexg =1,a1=a; + 1,62 =as+1.
ComputeQ®® = {i : @; = odd; i € N°}}.
seta; =a; —1Vi € Qa,O; a; = a; for
every otheri € N°.

Construct an optimal networg®° =

[NO B0 29 using the ModG-algorithm
with (a; : i € N°) as input vector.

Let G*=[N° U N%0 E° ¢, where, E* =
E*ly E*9Y; and

ar [ c(e) Ve e E¥!

c (6) - {ca,O(e) Ve € Ea,O

Go to Stepda.

If @ > @(y041), then setw = 1.

Else, setu = ng + 1.

If @,= even, andy; is odd for some ¢
NOU N2, then setfndex® = 1,

Gy =ay + 1, A(yt1) = O(u+1) T 1.
DefineQ*° = {i : @; = odd; i € N°};
Q¥ = {i:a; = odd; i € N*Y};

SetZiZ =a; —1Vie Qa,O U Qa’l; ZL\Z = a;



Step 3a:

Step 3b:

Step 3c:

Step 3d:
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for every other.

If 2[1r(N°)] < min{a; : i € N°U N2},
then set/nd/ = 1 and go to Ste@a.

If 7(N°) < min{a1,a(,,+1)} — 1, then go to
Step3a.

If G(ny+1) = a1, then setindex§ = 1.

Else, ad to the smaller ofi(,, 1) anda;.

Seté?(e) = 0 Ve; af = a; Vi; andl = f = 0.

Let o = max{a} :i € N°U N2.0}.
If « =0, go to Step 4a.
If af < «, then setr = 0; else, letr € N°
be the largest integer such thgt = a.
If afnoﬂ) < a, then sety = ng;
else, lety € N2 be the largest integer
such thata), = .
If z=n, then set3; =0; else set3; —af
If y =n4, then setg, = 0;
else sef, = a(, ).
Sets = max{ﬁl,ﬁg}.
If the set{1,2,...,2} U{no+1,n0+ 2,...,
y} contains only 2 elements, sdw, 2},
then increasé®((w, z)) by (o — ).
Else,
if y = ng, then increase the value 6&f(e)
by 1(a — 3) for every
ee€{(1,2),(2,3)...,(z - 1,2),(z, 1) };
if z = 0, then increase the value &f(e) by
(o — ) for everye € {(no + 1,n0 + 2),
(”0 +27n0 +3)a 7(y_ 17y)v (y7n0 + 1)}'
otherwise, increase the value &f(e) by
(o — ) for everye € {(1,2),...,
(x —1,2),(x,n0 +1),(nop +1,n0 + 2),...,
(v —1,9), (y, D}
B if ie N° i<uz; or

if ie N30 i<y
af otherwise
Updatef = f + (o — ()
If f>r(N°) andInd! = 1, then set
¢=/{+1 and go to Stegd.

z+1)"

SetafJrl =

Set!{ = ¢+ 1 and go to Ste3b.

Construct optimal network&®° =
[NO,EG’O,CG’O] andG"vl — [NQ’O,Ea’l,Ca"l]
using the ModG-algorithm witlia? : i € N°)
and(a! : i € N?) as input vectors,

Step 4a:

Step 4b:
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respectively. Update

é(e) + c*9(e) Ve € B0
ér(e) + c®1(e) Ve € E¥!
é(e) otherwise

If b;,= even, and the s, : i € N°}
contains at least one odd value, then
SetIndexg = 1,Bt1 :Btl + 1,5152 = Btz—f—l.
If b(,,41) = even, and the seb; :i € N2}
contains at least one odd value, then
Setfndel'li =1, B(n1+1) = B(n1+1) +1,

b(ni+2) = b(ny42) +1.

DefineQ*® = {i : b; = odd; i € N°};

QY = {i:b; = odd; i € N*2}.

Seth; = b; — 1 Vi € Q4° U Q"!; and

b; = b; for every other.

Setéb(e) = 0 Ve; b0 = b; Vi; andl = f = 0.

If 2[1s(N%)] < min{b; : i € NOU N2},
then setlnd{: =1 and go to Stegb.

If s(N°) < min{b¢,,b(n,+1)} — 2, then
go to Steptb.

If by, = b(n,+1), then setindex) = 1.
Else, add to the smaller ob;, andb,, ).

Let o = max{bf : i € NOU N%2}.
If & =0, go to Stepha.
If bf, < «, then setz = 0; else, letz be
the largest integer such th(#tf = a.
If 0f,,, 11y < @, theny = ny; else, lety be
the largest integer itV such thab! =a.
If z=ng then setB; =0; else set3; :bel.
If y=n1, then setd, =0; else sefdo=0b!, ;.
Set3 = max{f3, B2}
If the Set{tl,tg, ceey tz} U {n1 +1,n1 + 2,
..,y } contains only2 elements, sajw, z},
then increaseé’((w, z)) by (a — f3).
Else,
if y=n;, then increase the value &f(c) by
(o — B) for everye € {(t1,t2),
(tQ, tg) ceey (tmfl, tm), (tm, tl)},
if z=0, then increase the value &f(e) by
(o — B) for everye € {(n1 +1,n1 +2),
(n14+2,n143),...,(y — L,y), (y,nm1+1)};
otherwise, increase the value ®f¢) by
(o — B) for everye € {(t1,t2),
vy (tmfl,tm), (tz,nl—i—l), (7’L1—|—1,TL1—|—2),

oy —19), (y, t1)}
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Step 4c:

Step 4d:

Step 5a:

Step 5b:
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o1 B if i€X
Setb; { bé otherwise
whereX = {tl,tg,.. Jte,mi+1,n1+2,
..,y} Updatef = f + (a — f).
If f>s(N°), andInd]/ =1, then set
¢=/{¢+1 and go to Stegd.

Setl = ¢+ 1, go to Stepib.

Construct optimal network&®? = [N©,
Eb,O Cb,O] andGb’l — [NQ,O Eb"l Cb’l]
using the ModG-algorithm with

(b¢ :i € NY) anddf : i € N%2) as input
vectors, respectively.

Update
e(e) + c*(e) Ve € EYO
ele) = ¢ eb(e) + cl(e) Ve € EbL
(e) otherwise
Seté(e) = ¢*(e) + ¢ (e) Ve; and
G =[N, E,d, whereE = {e : é(e) > 0}.
Seté(e) = é(e) Ve.

If the setQ®! is non-empty, then order
its elements agkq, k2, . . ., kq), such
thatk, < ko <--- < kg, and increase(e)
by 1 Ve € {(ki,kipa):i€1,2,...,4
If Case = 1, then go to Stepb.
Define multisetQ® = Q%% U Q*! U Q0.
If the multisetQ* is non-empty and
contains at least two distinct nodes,
then order the elements ¢f* as([1],...,
[p]), in the order in which they appear
in the ordered sequence

(1,2,. .,no,n0+1,n0+2,...,n1),
and increasé(e) by 1

Ve e {([i,[i+5]):i=1,2,..., 5}
SetG = {N, E, ¢} where

E = {e:2(e) > 0}; and go to Stefs.

2

Define multiset)’ = Q*° U Q"°.
If the multiset@’ is non-empty and

SetG = {N, E,¢} where
E = {e:¢(e) > 0}.

Step 6: Setc*(e) =7¢(e) Ve.
If Index®=1, decrease*((u,u+1)) by 1.
If Index} = 1, decrease*((1, )) by 1.
If Indexl = 1, decrease*((t1,t2)) by 1.
If Index? =1, decrease*((n1+1 ni1+2))

by 1.

If Index$ = 1, then increase the value of
c((1,m0 +1)) by 1.

If Indexb = 1, then increase the value of
C*((tl, niy + 1)) by 1.

SetG* = {N,E*,c*},

whereE* = {e: ¢*(e) > 0}.

Step 7: Output the networlG* and stop.

Theorem 13 The networkG* produced by Algorithm
5 is a feasible solution to Case 3 of the 2-INSP problem
andd {c*(e) : e € E*} < (OPT + 3).
Proof. : It is easy to see that_{c*(e)
f%Z{(aZ—i—bl) ) EN}-| + 3.
The bound on the objective function value now follows
from Lemma 7.

To prove the feasibility of the network™, we use
the same approach as in the proof of Theorem 11. Thus,
consider any cutX, X). It will be sufficient to show
thatc*[X, X| > min{max{a; : i € X}, max{a; : i €
X}} + min{max{b; : i € X}, max{b; : i € X}}. Let
min{max{a; : i € X}, max{a; : i € X}} = a,; and
min{max{b; : i € X}, max{b; : i € X}} = b,. We
shall consider various cases:

e € B*} <

For convenience, letng + 1) = j andn; + 1 = k.
If uw=1, thenal < aj, a1 < Zil < a; + 2, and
(a; —1) <a7 > (a7+1)
If a1 < aJ, thena; > a1 > (a1 + 2).
If @, = a;, thend; = a1 > ay andIndex} = 1.
If Eil > Zij, then&noﬂ =a; > a1+ 1.
Thus, in every one of these cases, using the same

contains at least two distinct nodes, then orderargument as in the proof of Theorem 11, we can show

its elements ag[1], [2],.. ., [p]), in the

order in which they appear in the ordered

sequencél, 2, ng), and increasé(e)
by Ve € {([d],[i +§]) :i=1,2,..., 5}

If the setQ*! is non-empty, then order its
elements agk;, kz, ..., ke), such

thatk; < ko < --- < kg, and increasé(e)
by 1 Ve € {(ki,k;;¢) i€ 1,2,..., 5}

that
>_{en((,

If u= 7 thenaj <ap,a <a; <a;+2, and
(aj — 1) S 6]- S (aj + 1)
If Eij < Zil, thena; > dj > (CLj + 1)
If Eil = Zij, then&l = dj > a; +1 andlndex‘} =1.
The casei; > @ is not possible.

i€ X;jeX}>an.
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Thus, in every one of these cases, using the same:

argument as in the proof of Theorem 11, we can show
that 5. The General Case

YA (@) i€ Xij € X} >y, We shall now use the insights gained from algorithms
0 A A for the special cases presented in Section 4. to develop
If w e N — {1}, thena, < a1, anda, > a, > a, an algorithm for the general case that produces a feasible

if G, = 0 . L . o
and if a, = au, thenu € Q. . network with objective function value within 3 of the
In this case, using the same argument as in the proof|ower bound established in Section 3..

of Theorem 11, it follows tht Step 0: Computea; = max{r;; : j # i} andb; =
Z{éa((lvj))lerjeX}zdu max{sij:j;éi}VieN.
Let N = N%2uUNM2UN2OUNZ2LU N U N22,
If ue N2 —{j}, thena, < a;, anda; > a, > aq Design networkG = {N, E, ¢}, for input {a;, b; :
and if a,, = a,, thenu € Q1. i € N} using Algorithm 5 of case 3 of the previous
In this case too, using the same argument as in the section.
proof of Theorem 11, it follows that Letc*(e) =¢(e) Ve € E. 3 3
S (i) cie X;j € X} > . Let N = N%' UN0 = N — N. LetG = [N, E]
where E = {(i,j) : m; > 0 or s;; > 0}. Contract
It can be similarly shown that in G the node selV to get graph’’. Find a spanning
SME((6,5)) 1i € X;j € X} > by forest inG’; and assign*(e) = 1 for all edgese in G’

corresponding to this spanning forest. et = {e :

If nodesl andj (¢; andk) lie on different sides of the ¢*(e) > 0}. Output networlG* = [N, E*, ¢*] and stop.

bipartition (X, X) then if possible, choose € {1,;}
(v € {t1,k}), preferablyu = j (v = t3). . _
Then, using the same approach as in the proof of Theorem 14 The networl™, output by Algorithm 5.,

Theorem 11, the above facts and the choice of sets fef_;\sible to the problem 2-INSP and has objective
Q0. Qo ’Qb,o Q"1, it can be easily shown that function value no more tharOPT + 3).
o [X’ X] >’a +5’ ’ Proof. This follows easily from Theorem 13 and Lemma

Except for the cas¢u € N',v € N°), the result "

now follows from the fact that,, + b, = a,, + bs.
Let us consider the casec N',v € NY.
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