
All rights reserved © Preeminent Academic Facets Inc., 2009 This document is protected by copyright law. Use of the services of Érudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.
https://apropos.erudit.org/en/users/policy-on-use/

This article is disseminated and preserved by Érudit.
Érudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec à Montréal. Its mission is to
promote and disseminate research.
https://www.erudit.org/en/

Document generated on 08/04/2025 7:20 a.m.

Algorithmic Operations Research

2-Commodity Integer Network Synthesis Problem
S. N. Kabadi, R. Chandrasekaran and K. P.K. Nair

Volume 4, Number 2, Fall 2009

URI: https://id.erudit.org/iderudit/aor4_2art04

See table of contents

Publisher(s)
Preeminent Academic Facets Inc.

ISSN
1718-3235 (digital)

Explore this journal

Cite this article
Kabadi, S. N., Chandrasekaran, R. & Nair, K. P. (2009). 2-Commodity Integer
Network Synthesis Problem. Algorithmic Operations Research, 4(2), 117–132.

Article abstract
We consider the following 2-commodity, integer network synthesis problem:
Given two n×n, non-negative, symmetric, integer-valued matrices R = (rij) and S =
(sij) of minimum flow requirements of 2 different commodities, construct an
undirected network G = [N, E, c] on node set N = {1, 2, . . . , n} with integer edge
capacities {c(e) : e ∈ E}, such that: (i) for any two pairs (i, j) and (k, l), i ≠ j, k ≠ l,
of nodes in N, we can simultaneously send rij units of flow of commodity 1 from i
to j and skl units of flow of commodity 2 from k to l in G; and (ii) z = Σ {c(e) : e ∈
E} is minimum. We present strongly polynomial, combinatorial algorithms for
certain special cases of the problem; and for the general problem, we present a
strongly polynomial, combinatorial algorithm that produces a feasible solution
with objective function value no more than (the optimal objective function value
+3).

https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/aor/
https://id.erudit.org/iderudit/aor4_2art04
https://www.erudit.org/en/journals/aor/2009-v4-n2-aor4_2/
https://www.erudit.org/en/journals/aor/

Algorithmic Operations Research Vol.4 (2009) 117–132

2-Commodity Integer Network Synthesis Problem

S.N. Kabadi

Faculty of Business Administration, University of New Brunswick, Fredericton, N.B., Canada E3B5A3

R. Chandrasekaran

Department of Computer Science, University of Texas at Dallas, Richardson, Texas, U.S.A.

K.P.K Nair

Faculty of Business Administration, University of New Brunswick, Fredericton, N.B., Canada E3B5A3

Abstract

We consider the following 2-commodity, integer network synthesis problem: Given twon×n, non-negative, symmetric,
integer-valued matricesR = (rij) and S = (sij) of minimum flow requirements of2 different commodities, construct
an undirected networkG = [N, E, c] on node setN = {1, 2, . . . , n} with integer edge capacities{c(e) : e ∈ E}, such
that: (i) for any two pairs(i, j) and (k, l), i 6= j, k 6= l, of nodes inN , we can simultaneously sendrij units of flow
of commodity1 from i to j and skl units of flow of commodity2 from k to l in G; and (ii) z =

∑
{c(e) : e ∈ E} is

minimum. We present strongly polynomial, combinatorial algorithms for certain special cases of the problem; and for
the general problem, we present a strongly polynomial, combinatorial algorithm that produces a feasible solution with
objective function value no more than (the optimal objective function value+3).

Key words: 2-Commodity Flow, Network Synthesis, Strongly PolynomialAlgorithm

1. Introduction

Gomory and Hu [7] and Mayeda [17] have consid-
ered the following continuous, single-commodity net-
work synthesis problem.

Given an integern > 1 and a symmetric, non-
negative,n×n matrixR, (with rii = 0 ∀i = 1, . . . , n),
of minimum flow requirements between all pairs of
distinct nodes in the node setN = {1, 2, . . . , n}, con-
struct an undirected networkG = [N, E, c] on node set
N with edge setE and non-negative, real-valued edge
capacities{c(e) : e ∈ E}, such that (i) all the mini-
mum flow requirements are met one at a time, (that is,
for any i, j ∈ N, i 6= j, the maximum flow value inG
from i to j is at leastrij), and (ii)

∑
{c(e) : e ∈ E} is

minimum.

⋆ The work is supported in part by research grants from
the Natural Sciences and Engineering Research Council of
Canada to S.N. Kabadi and K.P.K. Nair.
Email: S.N. Kabadi [kabadi@unb.ca], R. Chandrasekaran
[x@y.com], K.P.K Nair [nairk@unb.ca].

In both [7] and [17], efficient combinatorial algo-
rithms are presented for the problem. The Gomory-
Hu algorithm in [7] has a computational complexity of
O(n2), and when all the elements of the matrixR are
integers, the edge capacities in the final network pro-
duced by the algorithm are multiples of half. Alternate
combinatorial algorithms for the problem are presented
in [6,21].

In [3] and [20], an integer version of the single-
commodity network synthesis problem is considered.
Here, all the elements of the matrixR are integers and
the edge capacities of the resultant network are required
to be integers. In [3] and independently in [20], al-
gorithms of computational complexityO(n2) are pre-
sented for the problem, and it is shown that whenever
max{ri,j : j ∈ N − {i}} > 1 ∀i ∈ N , the problem
hasinteger rounding property, (that is, the difference
between the sum of edge capacities in the optimal net-
works for the integer and continuous versions of the
problem is less than1). (As pointed out in [19], the al-
gorithm in [3] is lacunary and does not apply to some
cases.) Alternate algorithms for the problem are given

c© 2009 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.

118 S.N. Kabadi et al. – Integer Network Synthesis

in [14,19].
These results have been extended to different types

of flows such as (i) multipath flows [1,2,11,15,16],
(ii) flows with constraints on lengths of paths carrying
flow, (these are popularly known ashop constraints)
[5,10,12,13,18], and (iv) 2-commodity flows [8].

In this paper, we consider the following generaliza-
tion of the integer, single-commodity network synthe-
sis problem to 2-commodity, integer network synthesis
problem (2-INSP):

Given an integern > 1 and twon×n, non-negative,
symmetric, integer-valued matricesR = (rij) andS =
(sij), (with rii = sii = 0 ∀i = 1, 2, . . . , n), of min-
imum flow requirements of2 different commodities,
construct an undirected networkG = [N, E, c] with in-
teger edge capacities{c(e) : e ∈ E}, such that: (i) For
any two pairs(i, j) and(k, l), i 6= j, k 6= l, of nodes in
N , we can simultaneously sendrij units of flow of com-
modity1 from i to j andskl units of flow of commodity
2 from k to l in G, (it may be noted that we allow{i, j}
to be equal to{k, l}); and (ii) z =

∑
{c(e) : e ∈ E} is

minimum.
When S = 0, this problem reduces to the integer,

single-commodity case considered in [3,20]. It may be
noted that in case of2-commodity flows, integrality of
edge capacities does not guarantee existence of a 2-
commodity flow of given integral total flow value with
integer edge-flows. It guarantees only half integral edge-
flows [9]. In our problem we require only the the edge
capacities (and not the edge-flows) to be integers.

As we show in Section 3, an optimal solution to
the continuous version of this problem, (where we
allow edge capacities to be non-negative reals), can
be obtained by solving separately continuous, single-
commodity network synthesis problems on matricesR
and S and superposing the resultant networks. How-
ever, the same approach does not work for 2-INSP. We
present efficient optimal schemes for various special
cases of the 2-INSP problem. For the general case of
this problem, we present a scheme that is guaranteed
to produce a solution with sum of edge capacities no
more than (the optimal objective function value+3).

The following related problem is considered in [8]:
Given an integern > 1 and a symmetric, integral,

non-negative,n×n matrixR of minimum flow require-
ments, construct an undirected networkG = [N, E, c]
with integer edge capacities{c(e) : e ∈ E} such that:
(i) for any two pairs of distinct nodes(i, j) and(k, l),
such thati 6= j, k 6= l, and {i, j} 6= {k, l}, we can
simultaneously passrij units of flow from i to j and

rkl units of flow from k to l in the network; and (ii)∑
{c(e) : e ∈ E} is minimum. In [8], some interesting

structural results are obtained on this problem and an
algorithm is presented for the special case of the prob-
lem with rij = 0/1.

It may be noted that if corresponding to a given in-
stance of this problem we construct an obvious instance
of the 2-INSP problem by definingS = R, then in 2-
INSP, we allow{i, j} = {k, l}, whereas in the other
problem we do not. Thus the two problems are differ-
ent. We do not know the exact nature of relationship
between the two problems. But neither seems to be a
special case of the other.

In Section 2, we present minor modifications of (i)
one of the algorithms in [6] for the continuous, single-
commodity network synthesis problem and (ii) the algo-
rithm in [20] for the integer, single-commodity network
synthesis problem. These are used in our algorithms in
sections 4 and 5 for 2-INSP. In Section 3, we establish
a lower bound for the optimal objective function value
of 2-INSP. In Section 4, we present strongly polyno-
mial, combinatorial algorithms for certain special cases
of 2-INSP. Finally, in Section 5, we present our algo-
rithm for the general case of the problem that produces
a solution with objective function value no more than
(OPT +3), where OPT is the optimal objective function
value of the problem.

2. Algorithms For Single-Commodity Network Syn-
thesis Problem

We present in this section (i) a minor modification
of an algorithm in [6] for the continuous version of the
single-commodity network synthesis problem, which
we call the ModG-algorithm, and (ii) a minor modifi-
cation of the algorithm in [20] for the integer, single-
commodity network synthesis problem, which we call
the SC-algorithm.

First, we prove a minor result.
Lemma 1 The respective optimal objective function
values of the continuous and integer versions of the
single-commodity network synthesis problem remain
the same even if we allow the final network to have an
additional (Steiner) (n + 1)th node. If the additional
((n + 1)th) node is required to be a non-isolated node,
then the respective optimal objective function values of
the problems with the Steiner node are strictly greater
than those of the corresponding problems without the
Steiner node.

S.N. Kabadi et al. – Algorithmic Operations Research Vol.4 (2009) 117–132 119

Proof. Allowing the (n + 1)th node, (which could pos-
sibly be an isolated node), will obviously not increase
the optimal objective function value. Consider a feasi-
ble solutionG = [N, E, c] to the continuous or integer
version of the problem withN = N ∪ {n + 1}.

If the node(n + 1) is isolated inG, then deleting
the (n + 1)th node fromG gives us a feasible solution
to the problem without the Steiner node with the same
objective function value.

SupposeE contains an edge(n + 1, i) with positive
capacity. Contract this edge inG and label the new
nodei. Replace each pair of parallel edges by a single
edge with capacity equal to the sum of capacities of
the two edges. Let the resultant network (with node set
N) be G′. For any{i} ⊆ X ⊂ N , capacity of the cut
(X, N −X) in G′ is the same as the capacity of the cut
(X ∪{n+1}, N −X) in G. Feasibility of the network
G′ for the problem now follows from the feasibility
of the networkG and the classical max-flow min-cut
theorem [4]. The sum of capacities of edges inG′ is
strictly less than the sum of capacities of edges inG.
The result is thus proved.

Using Lemma 1, we assume throughout the rest of
this section that in continuous as well as integer single
commodity network synthesis problems, each row of the
input matrixR contains at least one positive element.
(We delete rows/columns ofR with all zero elements.)

ModG-algorithm
For eachi ∈ N = {1, 2, . . . , n}, let us defineai =
max{rij : j ∈ N − {i}}. Input to the algorithm is the
non-negative vector(ai : i ∈ N); and the algorithm
constructs an optimal solution (network)G∗ to the prob-
lem such that for anyi, j ∈ N, i 6= j, we can pass in
G∗ min{ai, aj} ≥ rij units of flow fromi to j. Using
Lemma 1, we assume, without loss of generality, that
ai > 0 ∀i.

The algorithm orders the nodes inN such thata1 =
a2 ≥ a3 ≥ · · · ≥ an. In each iterationk, it chooses the
subset of nodes{1, 2, . . . , nk} with the highest current
ai value, peels off the largest constant value∆k from the
currentai values of these nodes such that the ordering of
the values is preserved, and assigns an additional1

2∆k

capacity to each edge in the set{(1, 2), (2, 3), . . . , (nk−
1, nk), (nk, 1)}, (except whennk = 2, in which case
the algorithm assigns additional∆k capacity to the edge
(1, 2)). These additional edge capacities allow us to send
an additional∆k units of flow between each pair of
nodes in the set{1, 2, . . . , nk}. The process is repeated

until all the ai values are reduced to zero. A formal
description of the algorithm is given below.

ModG-algorithm

Step 0: Reorder the nodes in N if necessary such that
a1 = a2 ≥ a3 ≥ · · · ≥ an.
Seta0

i = ai ∀i ∈ N .
Initialize c∗((i, j)) = 0 ∀i, j ∈ N, i 6= j; k = 0.

Step 1: If ak
1 = 0, go to Step 3.

Else, letnk be the largest integer such that
ak

nk
=ak

1 .
If nk = n, then set∆k = ak

1 ; else,
set∆k = (ak

nk
− ak

nk+1).
If nk = 2, increase byc∗((1, 2)) by ∆k.
If nk > 2, increasec∗(e) by
1
2∆k ∀e ∈{(1, 2),(2, 3), . . . ,(nk−1, nk),(nk, 1)}.

Defineak+1
i =

{
ak

i − ∆k for i = 1, 2, . . . , nk

ak
i otherwise

Step 2 :Increasek by 1, and go to Step 1.
Step 3 :Let E∗ = {e : c∗(e) > 0}.

OutputG∗ = [N, E∗, c∗] and stop.

Lemma 2 The outputG∗ = [N, E∗, c∗] of the ModG-
algorithm is connected, containsO(n) number of edges
and is a feasible solution to the continuous version of
the single-commodity network synthesis problem.

Though Lemma 2 follows easily from results in [6],
we give here a complete proof of the lemma since it
will be useful in understanding proofs of validity of
algorithms in Section 4. which use the ModG-algorithm
as a subroutine.

Proof. Since ai > 0 ∀i, the setE∗ contains edges
{(1, 2), (2, 3), . . . , (n−1, n), (n, 1)}. Hence,G∗ is con-
nected.

Each edge inE∗ belongs to one of the cycles
{(1, 2, . . . , j, 1) : j = 3, 4, . . . , n}. The total number of
such edges is less than2n. The total number of edges
in E∗ is thusO(n).

By the classical max-flow min-cut theorem [4], it
follows that to prove feasibility of the networkG∗, it
is sufficient to show that for any cut(X, X) in G∗,

c∗[X, X] =
∑

{c∗((i, j)) : i ∈ X ; j ∈ X}

≥ min{max{ai : i ∈ X}, max{ai : i ∈ X}}.

120 S.N. Kabadi et al. – Integer Network Synthesis

Without loss of generality, let us assume that1 ∈ X .
Let 1 < j1 < j2 < · · · < jl = n + 1 be such that
X = {1, 2, . . . , j1 − 1}∪ {j2, j2 + 1, . . . , j3 − 1}∪ · · ·
andX = {j1, j1 +1, . . . , j2−1}∪{j3, j3 +1, . . . , j4−
1} ∪ · · · .

Obviously,l ≥ 2. It is easy to see thatmin{max{ai :
i ∈ X}, max{ai : i ∈ X}} = aj1 . Thus, we have to
show thatc∗[X, X] ≥ aj1 .

Let k′ be the smallest integer (iteration num-
ber) such thatnk′ ≥ j1, and let k be the last it-
eration number of the algorithm. (Thus,n

k
= n.)

The cut (X, X) contains 2⌊ l
2⌋ edges in the cycle

(1, 2, . . . , n, 1), and at least2 edges in each of the
cycles{(1, 2, . . . , nk, 1) : k = k′, k′ + 1, . . . , k − 1}.

Hence, in thek
th

iteration, capacities of2⌊ l
2⌋ edges

in the cut are increased by12∆k each; and for each
k ∈ {k′, k′ + 1, . . . , k − 1}, if nk = 2, then edge
(1, 2) is in the cut and in thekth iteration, its capacity
is increased by∆k; while if nk > 2, then in thekth

iteration, capacities of at least two edges in the cut are
increased by12∆k each. Hence,

c∗[X, X] ≥
∑

{∆k : k = k′, k′ + 1, . . . , k − 1} +

⌊ l
2⌋∆

k = aj1 + ⌊ l−2
2 ⌋∆k ≥ aj1 .

This proves the result.
Theorem 3 The ModG-algorithm is a strongly polyno-
mial, combinatorial algorithm with computational com-
plexityO(n2). The outputG∗ = [N, E∗, c∗] of the algo-
rithm is an optimal solution to the continuous version of
the single-commodity network synthesis problem with

∑
{c∗(e) : e ∈ E∗} =

1

2

∑
{ai : i ∈ N}

When the input{ai : i ∈ N} to the algorithm is integer
valued, all the edge capacities{c∗(e) : e ∈ E∗} are
multiples of half, and when all theai values are even,
the edge capacities are integers.

Theorem 3 follows easily from results in [6].

SC-algorithm for the integer, single-commodity
network synthesis problem

Input to this algorithm is an integer, non-negative,
symmetric,n × n matrix R of minimum flow require-
ments. It follows from Lemma 1 that we can assume,
without loss of generality, that every row ofR has a
non-zero entry. (Else, we can delete the rows/columns
of R with all 0 entries.)

The SC-algorithm computes theai value correspond-
ing to each rowi of R as in ModG-algorithm. It then (i)

deletes all the nodesi ∈ N = {1, 2, . . . , n} with ai = 1
to get a subset of nodesN (in Step 0); (ii) designs an
optimal network on the node setN using as input the
vector(ai : i ∈ N) (in steps 1-5); and (iii) adds to this
network the deleted nodes (withai = 1) and approapri-
ate edges with capacity1 (in Step 6) to get an optimal
solution to the entire problem.

To construct the optimal network on node setN ,
the SC-algorithm uses the ModG-algorithm for the
continuous version of the problem as a subroutine. If
all the values{ai : i ∈ N} are even, then the ModG-
algorithm produces a solution with integer capacities.
If some of theai values are odd, then the SC-algorithm
(i) pre-processes theai values to make sure thata1 is
odd and

∑
{ai : i ∈ N} is even (in steps 1-2); (ii) iden-

tifies the subsetQ of nodes inN with odd modifiedai

values, and peels off1 unit from these odd values (in
Step 3); (iii) uses the ModG-algorithm to constructs
an optimal network with the resultantai values for all
i ∈ N (which are now all even) as input (in Step 4);
(iv) makes up for the decrease inai values for alli ∈ Q

by adding to this network a suitable set of|Q|
2 edges

which cover all the nodes inQ, and assigning to each
of these edges a capacity of1 and finally makes an ad-
justment to account for the pre-processing (in Step 5).

SC-algorithm

Step 0: Computeai =max{rij : j∈ N −{i}} ∀i ∈ N .
Let N = {i : ai > 1}.
Order the nodesN = {1, 2, . . . , n} such that
a1 = a2 ≥ a3 ≥ · · · ≥ an.

Step 1: Setai = ai ∀i ∈ {2, 3, . . . , n}.
If

∑
{ai : i ∈ N} = odd, then seta1 = a1 + 1.

Else, seta1 = a1.
Step 2: If a1 is even andai is odd for somei ∈ N ,

then seta1 =a1+1, a2 =a2+1, and Index =1.
Else, set Index =0.

Step 3: Let Q = {i : i ∈ N ; ai = odd}. (By Step 2,
if Q 6= ∅, then1 ∈ Q.) Let ai = ai − 1 ∀i ∈ Q.
Then,a1 = a2 ≥ · · · ≥ an, and they are all
even numbers.

Step 4: Use the ModG-algorithm, with input
{ai : i ∈ N} to construct a network
G = [N, E, c]. (Since all theai’s are even,
c(e) = integer∀e ∈ E.)

Step 5: Let Q = {[1], [2], . . . , [|Q|]}, where

S.N. Kabadi et al. – Algorithmic Operations Research Vol.4 (2009) 117–132 121

[1] < [2] < · · · < [|Q|]. For each edge,
e ∈ T = {([i], [|Q|

2 + i]) : i = 1, 2, . . . ,
|Q|
2 }, if e ∈ E, then increasec(e) by 1;

else, add the edgee to E and setc(e) = 1.
If Index = 1, then subtract1 from c((1, 2)).
If N = N , then define networkG∗ = [N, E∗,
c∗] asE∗ = E andc∗ = c and go to Step 7.

Step 6: Construct the graphGR = [N, ER], where
ER = {(i, j) : rij > 0}.
In GR, shrink the node setN to a single
pseudo-node and find a spanning forest in the
resultant network. InG, augment the node set
to N ; and add toE edges inGR correspondi-
ng to the edge set of the chosen spanning for-
est and assign a unit capacity to each of these
new edges . Let the resultant network
beG∗ = [N, E∗, c∗].

Step 7: Output the networkG∗ = [N, E∗, c∗] and stop.

Theorem 4 The SC-algorithm is a strongly polynomial,
combinatorial algorithm with computational complexity
of O(n2). Let the number of edges in a spanning forest
of the graph obtained from the graphGR, (defined in
Step6 of the SC-algorithm), by shrinking the node set
N , (defined in Step0 of the SC-algorithm), to a single
pseudo-node bep. Then the networkG∗ = [N, E∗, c∗]
produced by the SC-algorithm containsO(n) number of
edges and is an optimal solution to the integer, single-
commodity network synthesis problem with

∑
{c∗(e) : e ∈ E∗} = p +

⌈
1

2

∑
{ai : i ∈ N}

⌉
.

Also, the subsetN of nodes, (defined in Step0 of the
algorithm), is connected inG∗.

Theorem 4 follows easily from results in [20]. It may
be noted that whenai > 1 ∀i ∈ N , the SC-algorithm
does not perform Step 6. In such a case, the algorithm
actually requires as input only the vector(ai : i ∈ N).
Hence,in our algorithms in sections 4 and 5, whenever
we use the SC-algorithm as a subroutine with allai’s
greater than1, we use as input to the algorithm only
the vector(ai : i ∈ N).

3. A Lower Bound For The Optimal Objective Func-
tion Value of 2-INSP Problem

We now consider the 2-commodity, integer network
synthesis problem (2-INSP), defined in Section 1.. The

input to the problem consists of twon×n, integer, sym-
metric, non-negative matricesR andS. Let us denote
the optimal objective function value of the problem by
OPT .

The following lemma can be proved along the same
lines as Lemma 1 using the two-commodity max-flow
min-cut theorem of Hu [9].
Lemma 5 The respective optimal objective function
values of 2-INSP and its continuous version remain the
same even if we allow the final network to have an ad-
ditional (Steiner)(n+1)th node. If the additional node
is required to be a non-isolated node, then the respec-
tive optimal objective function values of the problems
with the Steiner node are strictly greater than those of
the corresponding problems without the Steiner node.

For eachi ∈ N = {1, 2, . . . , n}, let ai = max{rij :
j ∈ N − {i}} andbi = max{sij : j ∈ N − {i}}.
Using Lemma 5 we shall henceforth assume, without
loss of generality, thatai +bi > 0 ∀i ∈ N . (Else, delete
nodes withai + bi = 0.)

Let us partition the node setN into the following
subsets:

N0,1 ={i : ai = 0, bi = 1};

N1,0 ={i : ai = 1, bi = 0};

N0,2 ={i : ai = 0, bi > 1};

N1,1 ={i : ai = bi = 1};

N1,2 ={i : ai = 1, bi > 1};

N2,0 ={i : ai > 1, bi = 0};

N2,1 ={i : ai > 1, bi = 1};

N2,2 ={i : ai > 1, bi > 1}

Let G̃ = [N, Ẽ], whereẼ = {(i, j) : rij + sij > 0},
and letN = {i : ai + bi > 1} = N − {N1,0 ∪ N0,1}.
Shrink inG̃ the node setN to a pseudo-nodes to get a
graphG. Let the number of edges in a spanning forest
of the graphG bep.

Lemma 6 Let OPT ′ be the optimal objective function
value of the instance of the 2-INSP problem onN with
the corresponding submatrices ofR and S as input.
Then a lower bound onOPT , the optimal objective
function value of 2-INSP onN , is (p + OPT ′). If there
exists an optimal solution to the problem onN in which
the entire node setN is connected, then an optimal
solution to problem onN can be obtained by adding to

122 S.N. Kabadi et al. – Integer Network Synthesis

this optimal solution to the problem onN , edges inG̃
corresponding to edge set of any spanning forest ofG.
Thus, in this case, the lower bound is achieved.
Proof. If N = ∅, then the result can be easily seen to
be true. (In this case, the elements ofR andS merely
specify the node-connectivity requirements. The result
follows from this obviously.) If the result is not true
in general, then letn∗ be the minimum value of|N |
for which a counter-example exists and for this value
of |N |, let p∗ be the minimum value ofp for which
a counter-example exists. Consider a counter-example
with input matricesR andS for which |N | = n∗, and
p = p∗. Let G∗ = [N, E∗, c∗] be an optimal solution to
this instance of 2-INSP.

If p∗ = 0, then using Lemma 5, we can assume that
N = N and therefore, such an instance of the problem
cannot be a counter-example. Hencep∗ must be greater
than zero.

Let u ∈ N − N be a tip node, (a node of degree1),
of some spanning forest of the graphG; and let(u, v)
be the edge of̃G corresponding to the edge incident
to nodeu in this spanning forest. Let us assume that
u ∈ N1,0. (The other case follows similarly.) Define
(n−1)×(n−1) matricesRu andSu, with rows/columns
indexed by the setNu = N − {u} as :

su
ij = sij ∀ i, j ∈ Nu;

and

ru
ij =






rij if i, j ∈ N − {u, v}
max{ruj , rvj} if i = v andj ∈ N − {u, v}
max{riu, riv} if j = v andi ∈ N − {u, v}
0 if i = j = v

Let au
i = max{ru

ij : j ∈ Nu − {i}} and bu
i =

max{su
ij : j ∈ Nu − {i}} ∀i ∈ Nu. Then,au

i = ai

and bu
i = bi ∀i ∈ Nu. Let OPT (u) be the optimal

objective function value of the instance of the 2-INSP
problem onNu with input matricesRu andSu; and let
the corresponding value ofp bepu.

By standard results in network flows [4], it follows
that for any nodej /∈ {u, v} of G∗, the maximum flow
value fromv to j in G∗ is at leastmin{ruv, ruj}. Since
u ∈ N1,0, this implies that the maximum flow value
from v to j in G∗ is at leastru

vj . The networkG∗ is
thus a feasible solution to the instance of the 2-INSP
problem onNu with nodeu as a Steiner node. Also,
by the choice of the nodeu, it follows thatG∗ contains
some edge(u, j) with capacity at least1. Hence, by
Lemma 5, it follows that,

OPT =
∑

{c∗(e) : e ∈ E∗} ≥ OPT (u) + 1

Now,Nu = {i : au
i +bu

i > 1} = N , andpu = p∗−1.
We thus get,

OPT ≥ OPT (u) + 1 ≥ p∗ − 1 + OPT + 1 ≥
p∗ + OPT ′,

whereOPT is the optimal objective function value of
the instance of the 2-INSP problem onNu = N with
the corresponding submatrices ofRu andSu as input.
Here, the second inequality follows by the definitions
of n∗ andp∗. The third inequality follows from the fact
that each element of the submatrix ofRu (Su) corre-
sponding toN is greater than or equal to the respective
element of the submatrix ofR (S) corresponding to
N ; and hence, any optimal solution to the instance
of the 2-INSP problem onN with the corresponding
submatrices ofRu andSu as input, is feasible for the
the instance of the 2-INSP problem onN with the
corresponding submatrices ofR andS as input.

If there exists an optimal solution to the problem on
N in which the entire node setN is connected, then it
is easy to see that the network, obtained by adding to
this optimal solution to the problem onN edges inG̃
corresponding to edge set of any spanning forest ofG,
is feasible to the problem on node setN with objective
function value (p + OPT ′).

Lemma 7 OPT ≥ p +
⌈

1
2

∑
{ai + bi : i ∈ N}

⌉
.

Proof. It follows from the two-commodity max-flow
min-cut theorem of Hu [9] that for any feasible solution
G′ = [N, E′, c′] to the problem onN ,∑

{c′(i, j) : j ∈ N −{i}} ≥ ai + bi for eachi ∈ N .
Hence,

2
∑

{c′(e) : e ∈ E′} ≥
∑

{(ai+bi) : i ∈ N}, which
implies that,∑

{c′(e) : e ∈ E′} ≥ ⌈ 1
2

∑
{(ai + bi) : i ∈ N}⌉.

By Lemma 6, we thus get,
OPT ≥ p + ⌈ 1

2

∑
{(ai + bi) : i ∈ N}⌉.

4. Algorithms for Special Cases of the 2-INSP Prob-
lem

In this section, we develop algorithms that produce
optimal solutions for some special cases of the 2-INSP
problem. For all the algorithms in this section, we use
as input only the non-negative vectors(ai : i ∈ N) and
(bi : i ∈ N), where, for eachi ∈ N , ai = max{rij :
j ∈ N −{i}} andbi = max{sij : j ∈ N −{i}}, andR

S.N. Kabadi et al. – Algorithmic Operations Research Vol.4 (2009) 117–132 123

andS are the integer, symmetric, non-negative matrices
of minimum flow requirements of the two commodities.
Using Lemma 5, we assume throughout thatai + bi >
0 ∀i ∈ N .

If |N | = n = 2, then obviouslya1 = a2 andb1 = b2,
andc∗((1, 2)) = a1 + b1 is an optimal solution to the
problem. Hence, we assume henceforth thatn > 2.

To start with, we observe that the continuous version
of the 2-INSP problem can be solved easily using the
results on the continuous, single-commodity network
synthesis problem.
Lemma 8 An optimal solution to the continuous ver-
sion of the 2-INSP problem, with input matricesR
and S, can be obtained by solving separately contin-
uous, single-commodity network synthesis problems on
matricesR and S to obtain optimal networksG1 =
[N, E1, c1] andG2 = [N, E2, c2], respectively; and su-
perposing the networksG1 andG2 to obtain the final
networkG∗ = [N, E∗, c∗] whereE∗ = E1 ∪ E2 and

c∗(e) =






c1(e) + c2(e) if e ∈ E1 ∩ E2

c1(e) if e ∈ E1 − E2

c2(e) if e ∈ E2 − E1

Proof. The networkG∗ is obviously feasible for the
continuous 2-INSP problem. Using the same arguments
as in the proof of lemma 7 but for the problem on the
entire node setN , we get12

∑
{(ai + bi) : i ∈ N} as a

lower bound on the optimal objective function value of
the continuous 2-INSP problem onN . It follows from
Theorem 3 that the networkG∗ achieves this lower
bound.

If we solve separately integer, single-commodity net-
work synthesis problems on matricesR andS (using
the SC-algorithm) and superpose the resultant networks,
then it follows from Theorem 4 that the sum of edge
capacities of the final network will be

p1 + p2 +

⌈
1

2

∑

i∈N1

ai

⌉
+

⌈
1

2

∑

i∈N2

bi

⌉
,

whereN1 = {i : ai > 1}; N2 = {i : bi > 1}; p1 is
the number of edges in a spanning forest of the graph
obtained fromG1 = [N, E1], whereE1 = {(i, j) :
rij > 0}, by shrinking the node setN1 to a pseudo-
node; andp2 is defined similarly withR replaced byS,
N1 by N2, andE1 by E2 = {(i, j) : sij > 0}. It can
be easily seen that this can be significantly larger than
the lower bound in Lemma 7 when|N1,2∪N2,1∪N1,1|
is large. We now identify some special cases of 2-INSP
for which this scheme produces an optimal solution.

Theorem 9 If ai 6= 1 and bi 6= 1 ∀i ∈ N , then ob-
taining separately optimal networks for integer, single-
commodity network synthesis problems on matricesR
and S and superposing the two networks produces a
feasible solution to 2-INSP with objective function value
within one of the optimal. If at least one of

∑
{ai :

i ∈ N} and
∑

{bi : i ∈ N} is even, then the solu-
tion obtained is an optimal solution to 2-INSP. If each
of the two integer, single-commodity network synthe-
sis problems on matricesR and S is solved using the
SC-algorithm, then the computational complexity of the
entire scheme isO(n2).
Proof. Since each network output by the SC-algorithm
containsO(n) number of edges, superposing the two
networks takesO(n) time. The computational complex-
ity of the scheme is thus the same as that of the SC-
algorithm, which isO(n2).

The networkG∗ = [N, E∗, c∗] produced by the
scheme is obviously feasible for 2-INSP. It follows
from Theorem 4 that

∑

e∈E∗

c∗(e) =

⌈
1

2

∑

i∈N

ai

⌉
+

⌈
1

2

∑

i∈N

bi

⌉

=

⌈
1

2

∑

i∈N

(ai + bi)

⌉
+ α,

whereα = 0 or 1; andα = 0 if and only if at least one
of

∑
{ai : i ∈ N} and

∑
{bi : i ∈ N} is even. The

result now follows from Lemma 7.
Theorem 10 Supposeai + bi > 1 ∀i ∈ N . Let N0 =
{i : ai > 0; bi > 0}. If |N0| ≤ 1, then an optimal so-
lution to 2-INSP can be obtained by solving separately
integer, single-commodity network synthesis problems
on matricesR andS and superposing the resultant net-
works. Thus, in this case,

OPT = m1 + m2 +

⌈
1

2

∑

i∈N1

ai

⌉
+

⌈
1

2

∑

i∈N2

bi

⌉
,

whereN1 = {i : ai > 1}, N2 = {i : bi > 1}, and
m1 andm2 are the number of nodes withai = 1 and
bi = 1, respectively.
Proof. Solving separately integer, single-commodity
network synthesis problems on matricesR andS and
superposing the resultant networks obviously produces
a feasible solution to the 2-INSP problem. It follows
from Theorem 4 that when the problem instance sat-
isfies the conditions of the theorem, the objective

124 S.N. Kabadi et al. – Integer Network Synthesis

function value of this solution is

m1 + m2 +

⌈
1

2

∑

i∈N1

ai

⌉
+

⌈
1

2

∑

i∈N2

bi

⌉
.

We now prove that under the conditions of the theorem,
this solution is optimal to 2-INSP. Thus, consider any
optimal solutionG∗ = [N, E∗, c∗] to such an instance
of the 2-INSP problem.

If E∗ contains no edge joining some node inN2,0

to some node inN0,2, then the subnetworksG1 =
[N0 ∪ N2,0, E1, c1] andG2 = [N0 ∪ N0,2, E2, c2] of
G∗ spanned by node setsN0 ∪ N2,0 andN0 ∪ N0,2,
respectively, are feasible solutions to integer, single-
commodity network synthesis problems with input ma-
tricesR andS, respectively, and the result follows from
Theorem 4.

SupposeE∗ contains an edge(u, v), (with capacity
at least1), with u ∈ N2,0 andv ∈ N0,2.

Case (i) :N1,1 = ∅ or at least one of
∑

{ai : i ∈ N}
and

∑
{bi : i ∈ N} is odd.Contract the edge(u, v) in

G∗, label the new node(n + 1), and replace each pair
of parallel edges by a single edge with capacity equal to
the sum of capacities of the two edges, to get a network
G′ = [N ′, E′, c′], whereN ′ = (N −{u, v})∪{n+1}.
Define (n − 1) × (n − 1) matricesR′ and S′, with
rows/columns indexed by the setN ′, as:

r′ij =






rij if i, j ∈ N − {u, v}
ruj if i = n + 1 andj ∈ N − {u, v}
riu if j = n + 1 andi ∈ N − {u, v}
0 if i = j = n + 1

and

s′i,j =






sij if i, j ∈ N − {u, v}
svj if i = n + 1 andj ∈ N − {u, v}
siv if j = n + 1 andi ∈ N − {u, v}
0 if i = j = n + 1

Let a′
i = max{r′ij : j ∈ N ′ − {i}} and b′i =

max{s′ij : j ∈ N ′ − {i}} ∀i ∈ N ′. Then a′
i = ai

and b′i = bi ∀i ∈ N − {u, v}; and a′
n+1 = au and

b′n+1 = bv. We shall show thatG′ is feasible for the
2-INSP problem with input matricesR′, S′.

By the two-commodity max-flow min-cut theorem
of Hu [9], it follows that to prove this it is sufficient to
show that for any cut(X, N ′ − X) in G′,

c′[X, N ′−X] =
∑

{c′((i, j)) : i ∈ X ; j ∈ N ′−X} ≥
max{r′ij : i ∈ X ; j ∈ N ′ − X} + max{s′ij : i ∈
X ; j ∈ N ′ − X}.

Without loss of generality, let us assume that(n+1) ∈
X . Let X∗ = (X ∪ {u, v})− {n + 1}. Then,

c′[X, N ′ − X] = c∗[X∗, N − X∗] ≥ max{rij : i ∈
X∗; j ∈ N−X∗}+max{sij : i ∈ X∗; j ∈ N−X∗} =
max{r′ij : i ∈ X ; j ∈ N ′ − X} + max{s′ij : i ∈
X ; j ∈ N ′ − X},

where the inequality follows from the feasibility ofG∗

for the given instance of 2-INSP and from the two-
commodity max-flow min-cut theorem. Thus,G′ is
feasible for the 2-INSP problem onN ′.

We thus get:

OPT =
∑

e∈E∗

c∗(e) ≥
∑

e∈E′

c′(e) + 1

≥

⌈
1

2

∑
{(a′

i + b′i) : i ∈ N ′}

⌉
+ 1

=

⌈
1

2

∑
{(ai + bi) : i ∈ N}

⌉
+ 1

≥ m1 + m2 +

⌈
1

2

∑

i∈N1

ai

⌉
+

⌈
1

2

∑

i∈N2

bi

⌉

wherem1 and m2 are as defined in the statement of
the theorem.

Case (ii) : |N1,1| = 1 and both
∑

{ai : i ∈ N} and∑
{bi : i ∈ N} are even.Let N1,1 = {x}. There must

be some edge(x, y) in G∗ with positive capacity. Let us
assume thaty ∈ N2,0. (The other case, wheny ∈ N0,2

follows similarly.)
Contract the edge(x, y) in G∗, label the new node

n∗, and replace each pair of parallel edges by a single
edge with capacity equal to the sum of capacities of
the two edges, to get a networkG = [N, E, c], where
N = (N − {x, y}) ∪ {n∗}.

Define (n − 1) × (n − 1) matricesR and S, with
rows/columns indexed by setN , as

rij =






rij if i, j ∈ N − {x, y}
max{rxj, ryj} if i = n∗ andj ∈ N − {x, y}
max{rix, riy} if j = n∗ andi ∈ N − {x, y}
0 if i = j = n∗

and

sij =






sij if i, j ∈ N − {x, y}
sxj if i = n∗ andj ∈ N − {x, y}
six if j = n∗ andi ∈ N − {x, y}
0 if i = j = n∗

S.N. Kabadi et al. – Algorithmic Operations Research Vol.4 (2009) 117–132 125

Let ai = max{rij : j ∈ N − {i}} and bi =
max{sij : j ∈ N − {i}}. Thenai = ai and bi = bi

∀i ∈ N − {x, y}; andan∗ = ay and bn∗ = bx = 1.

Let N
1

= (N1 −{y})∪ n∗. It can be shown, using ar-
guments similar to those in Case (i), thatG is feasible
for the 2-INSP problem with input matricesR, S. The
2-INSP problem with input matricesR, S is of the
type discussed in Case (i). Using this, and the validity
of the theorem for Case (i), we get:

OPT =
∑

e∈E∗

c∗(e) ≥
∑

e∈E

c(e) + 1

≥ 1 +




1

2

∑

i∈N
1

ai




+

⌈
1

2

∑

i∈N2

bi

⌉
+ 1

= 2 +

⌈
1

2

∑

i∈N1

ai

⌉
+

⌈
1

2

∑

i∈N2

bi

⌉

= m1 + m2 +

⌈
1

2

∑

i∈N1

ai

⌉
+

⌈
1

2

∑

i∈N2

bi

⌉

This proves the theorem.
We shall now give algorithms for other non-trivial,

special cases of 2-INSP.
Case 1 : ai > 1 ∀i ∈ N .

Input to this algorithm is non-negative vectors(ai :
i ∈ N) and (bi : i ∈ N), the elements of which are
defined as before.

In Step 0, the algorithm arranges the elements of
N in non-increasing order of theirai values; obtains
an alternate ordering{k1, k2, . . . , kn0

} of the subset of
nodes with positivebi values such that thebi values are
non-increasing; and then pre-processes the input data
to obtain modified values{ãi, b̃i : i ∈ N} such that (i)∑

{ãi + b̃i : i ∈ N} is even; (ii) the orderings of the
two sets of values are preserved; (iii) if there exists an
odd ãi-value, theña1 is odd; and (iv) if there exists an
odd b̃i-value, theñbk1

is odd.
Next, in Step1, the algorithm (i) identifies the subsets

Qa andQb of nodes with odd̃ai andb̃i values, respec-
tively; (ii) peels off1 unit from each of these odd̃ai and
b̃i values to obtain modified values,{ai, bi : i ∈ N};
and (iii) defines the multisetQ = Qa ∪ Qb. (Thus,Q
contains2 copies of each of the nodes inQa ∩ Qb.)

In Step2, the algorithm uses the ModG-algorithm to
constructs optimal networksGa and Gb (with integer
capacities) for even-valued input vectors(ai : i ∈ N)
and(bi : i ∈ N), respectively, and superposes these two
networks to obtain networkG with integer capacities.

In Step3, it makes up for the difference of1 between
some of the values in{ai, bi : i ∈ N} and their corre-
sponding values in{ãi, b̃i : i ∈ N} by adding toG a
suitable set of12 |Q| edges which cover all the nodes in
Q, and assigning to each of these edges a capacity of
1; and finally it makes an adjustment to account for the
pre-processing in Step0.

Algorithm 3

Step 0: Let N0 = {i : bi > 0}, and|N0| = n0.
Arrange nodes in the setN = {1, 2, . . . , n}
such thata1 = a2 ≥ · · · ≥ an.
Also, find an ordering{k1, k2, . . . , kn0

}
of the elements ofN0 such that
bk1

= bk2
≥ bk3

≥ · · · ≥ bkn0
.

If
∑

{ai+bi : i∈N} is odd, then set̃a1 =a1+1.
Else, set̃a1 = a1.
Setãi = ai ∀i ∈ {2, 3, . . . , n}

and b̃i = bi ∀i ∈ N .
If ã1 is even, and at least one of theãi’s is odd,
then set̃a1 = ã1+1, ã2= ã2+1, and Index1 =1.
Else, set Index1 =0.
Similarly, if b̃k1

is even, and at least one of
the b̃i’s is odd, then set̃bk1

= b̃k1
+ 1,

b̃k2
= b̃k2

+ 1, and Index2 =1.
Else, set Index2 =0.

Step 1: Let Qa = {i : ãi = odd} andQb = {i : b̃i =
odd}; and multisetQ = Qa ∪ Qb. (Thus,Q
contains 2 copies of each node inQa ∩ Qb.)

Set ai =

{
ãi if i /∈ Qa

ãi − 1 if i ∈ Qa

bi =

{
b̃i if i /∈ Qb

b̃i − 1 if i ∈ Qb

Step 2: With {ai : i ∈ N} as input, perform the
ModG-algorithm to obtain a network
Ga = [N, Ea, ca].
Similarly, with {bi : i ∈ N0} as input, perform
the ModG-algorithm to obtain a network
Gb = [N0, Eb, cb]. Superpose the two
networksGa andGb to obtain
networkG = [N, E, c], where,E = Ea ∪ Eb,

andc(e) =






ca(e) if e ∈ Ea − Eb

cb(e) if e ∈ Eb − Ea

ca(e) + cb(e) if e ∈ Ea ∩ Eb

Step 3: Arrange the elements ofQ={[1],[2],. . . ,[|Q|]}
such that[1] ≤ [2] ≤ · · · ≤ [|Q|].

126 S.N. Kabadi et al. – Integer Network Synthesis

(Thus, if Qa 6= ∅, then[1] = 1.)
DefineT ={([i],[|Q|

2 + i]) : i = 1,2,. . . , |Q|
2 }.

For each edgee ∈ T ∩ E add1 to c(e).
For each edgee ∈ T − E add the edgee to
E and assign it a capacityc(e) = 1.
Let the resultant network bẽG = {N, Ẽ, c̃}.
Let c∗(e) = c̃(e) ∀e ∈ Ẽ.
If Index1 = 1, reduce,c∗((1, 2)) by 1.
If Index2 = 1, reducec∗((k1, k2)) by 1.
Let E∗ = {e ∈ Ẽ : c∗(e) > 0}.
Output the networkG∗ = [N, E∗, c∗] and stop.

Theorem 11 The networkG∗ constructed by Algo-
rithm 3 is an optimal solution for Case 1 of 2-INSP.
Proof. By the two-commodity max-flow min-cut theo-
rem of Hu [9], it follows that to prove the feasibility of
the networkG∗ output by the algorithm, it is sufficient
to show that for any cut(X, X) in G∗,

c∗[X, X] ≥ min{max{ai : i ∈ X}, max{ai : i ∈
X}} + min{max{bi : i ∈ X}, max{bi : i ∈ X}}.

Without loss of generality, let us assume that1 ∈ X .
Let 1 < j1 < j2 < · · · < jl = n + 1 be such that
X = {1, 2, . . . , j1 − 1}∪ {j2, j2 + 1, . . . , j3 − 1}∪ · · ·
andX = {j1, j1 +1, . . . , j2−1}∪{j3, j3 +1, . . . , j4−
1} ∪ · · · .

Obviously,l ≥ 2. It is easy to see thatmin{max{ai :
i ∈ X}, max{ai : i ∈ X}} = aj1 ; and that there exists
h 6= k1 such thatmin{max{bi : i ∈ X}, max{bi : i ∈
X}} = bh, and nodesh andk1 lie on different sides
of the bipartition(X, X). Thus, we have to show that
c∗[X, X] ≥ aj1 + bh.

We first show that̃c[X, X] ≥ ãj1 + b̃h.

From the proof of Lemma 2, noting that∆k ≥ 1, we
get,

c[X, X] ≥ aj1 + bh + 2

⌊
l − 2

2

⌋
(1)

If l ≥ 4, then we get using inequality 1:

c̃[X, X] ≥ c[X, X] (2)

≥ aj1 + bh + 2 (3)

≥ ãj1 + b̃h (4)

Suppose2 ≤ l ≤ 3. Then nodes1 and j1 lie on
different sides of the bipartition(X, X) and similarly,
nodesk1 andh lie on different sides of the bipartition.
We consider all the four possible cases:

(i). Both ãj1 and b̃h are even: In this case,

c̃[X, X] ≥ c[X, X] (5)

≥ aj1 + bh (6)

= ãj1 + b̃h (7)

Here, the second inequality follows from expression 1.

(ii). ãj1 is odd and̃bh is even: In this case,̃a1 is odd
and the edge setT contains edges(1, u) and (j1, v),
for someu, v ∈ Q. If u ∈ X , then the edge(1, u) is in
the cut(X, X). Else, if u < j1, then by the definition
of the setT , v < u < j1; and if u ≥ j2, then, again
by the definition of the setT , v > u ≥ j2. In either
case, the edge(j1, v) is in the cut(X, X). From this,
and inequality 1, we get:

c̃[X, X] ≥ c[X, X] + 1 (8)

≥ aj1 + bh + 1 (9)

= ãj1 + b̃h (10)

(iii). b̃h is odd andãj1 is even: In this case,̃bk1
is

odd, and it can be shown using arguments similar to
those in case (ii) that expression 10 above holds.

(iv). Both ãj1 and b̃h are odd: In this case, both̃a1

and b̃k1
are odd. Let{y, z} = {k1, h}, wherey ∈ X

and z ∈ X. Then the edge setT , (defined in Step3
of the algorithm), contains edges(1, u), (j1, v), (y, w)
and(z, x), for someu, v, w andx in Q.

If any one of the edges(1, u) and (y, w) is not in
the cut(X, X), then it can be shown using the same
arguments as those in case (ii) that each of the edges
(j1, v), and(z, x) is in the cut. Thus, at least two edges
of the edge-setT lie in the cut(X, X). Using inequality
1, we get:

c̃[X, X] ≥ c[X, X] + 2 (11)

≥ aj1 + bh + 2 (12)

= ãj1 + b̃h (13)

Now, c∗((1, 2)) < c̃((1, 2)) iff a1 < ã1; and
c∗((k1,k2)) < c̃((k1, k2)) iff bk1

< b̃k1
. From this and

expressions 4, 7, 10 and 13, we get :

c∗[X, X] ≥ aj1 + bh

S.N. Kabadi et al. – Algorithmic Operations Research Vol.4 (2009) 117–132 127

This proves the feasibility ofG∗.
Using Theorem 3, we get :

∑

e∈E∗

c∗(e) =
∑

e∈Ea

ca(e) +
∑

e∈Eb

cb(e)+

|T | − Index1 − Index2

=
1

2

∑

i∈N

ai+
1

2

∑

i∈N

bi+|T |−Index1−Index2

=

⌈
1

2

∑

i∈N

(ai + bi)

⌉

The optimality ofG∗ now follows from Lemma 7.

Case 2 : ai > 0 andbi > 0 ∀i ∈ N .
Input to this algorithm is positive vectors(ai : i ∈ N)

and(bi : i ∈ N). Here, we use the fact that if we add
1 to eachai value and subtract1 from eachbi value
and the new values are non-negative, then a network
is feasible for the oldai, bi values if and only if it is
feasible for the modifiedai, bi values. Thus, we add
1 to eachai value and subtract1 from eachbi value.
This reduces the problem to Case 1 which we solve
using Algorithm 3.

Algorithm 4

Step 1: Setai = ai + 1 andbi = bi − 1 ∀i ∈ N
Step 2: Perform Algorithm 3, with input vectors

(ai : i = 1, 2, . . . , n) and(bi : i = 1, 2, . . . , n),
to construct a networkG∗ = [N, E∗, c∗].
Output the networkG∗.

Theorem 12 The networkG∗, constructed by Algo-
rithm 4, is an optimal solution for Case 2 of 2-INSP.
Proof. Sinceai > 0 andbi > 0 for eachi ∈ N , both
the vectors(ai : i ∈ N) and (bi : i ∈ N), defined in
Step1 of Algorithm 4, are non-negative vectors. It fol-
lows from Theorem 11 that the networkG∗ produced
by Algorithm 4 is an optimal solution for input vectors
(ai : i ∈ N), (bi : i ∈ N). Also, from the proof of
Theorem 11, it follows that for any cut(X, X) in G∗,

c∗[X, X] ≥ min{max{ai : i ∈ X}, max{ai : i ∈ X}}

+ min{max{bi : i ∈ X}, max{bi : i ∈ X}}

= min{max{ai : i ∈ X}, max{ai : i ∈ X}}

+ min{max{bi : i ∈ X}, max{bi : i ∈ X}}

The feasibility of the networkG∗ for the given input
vectors now follows from the two-commodity max-flow
min-cut theorem [9].

Also, using Theorem 11, we get:

∑

e∈E∗

c∗(e) =

⌈
1

2

∑

i∈N

{ai + bi}

⌉
=

⌈
1

2

∑

i∈N

{ai + bi}

⌉
.

The optimality of the solution now follows from
Lemma 7.

Case 3 : ai + bi > 1 ∀i ∈ N and |{i : ai > 0, bi >
0}| > 1.

Input to this algorithm is symmetric, non-negative,
integer matricesR andS of minimal flow requirements
of two commodities. We define vectors(ai : i ∈ N)
and(bi : i ∈ N), as before.

For any non-empty, proper subsetX of N , let us
definer(X) = max{rij : i ∈ X ; j ∈ X}, ands(X) =
max{sij : i ∈ X ; j ∈ X}.

The algorithm divides the node setN into three sets
: N2,0, N0,2 and the set of remaining nodes, which is
denoted byN0. As shown at the beginning of this sec-
tion, if |N0| ≤ 1 then an optimal solution to the prob-
lem can be obtained by applying the SC-algorithm to
thea-vector and theb-vector, separately, and superpos-
ing the two networks. Hence, here we only consider the
case with|N0| > 1.

If rij = 0 for all i ∈ N0 andj ∈ N2,0, and at least
one of

∑
{ai + bi : i ∈ N0} and

∑
{ai : i ∈ N2,0}

is even, or if the same situation holds forS with ai’s
replaced bybi’s and vice versa, then the algorithm sets
index ”Case” =1. In this case, optimal network for re-
quirements on node setN2,0 is constructed separately
using the SC-algorithm; optimal network for require-
ments on the rest of the nodes is constructed separately
and the final solution is the disjoint union of these two
networks.

Else, as in Algorithm 4, for eachi in N0 we increase
the ai value by1 and decrease thebi value by1. The
ai and bi values are further modified to obtain values
{ai, bi : i ∈ N}, such that (i) each of

∑
{ai + bi : i ∈

N0} +
∑

{ai : i ∈ N2,0} and
∑

{bi : i ∈ N0,2} is
even; (ii) the ordering of each of the four sets of values is
preserved; (iii) if there exists an oddai-value (bi value)
in N0 ∪ N2,0 (N0), then its largestai value (bi value)
is odd; and (iv) if there exists an oddbi value inN0,2,
then its largestbi value is odd.

We then (i) identify subsetsQa,0 andQa,1 of node
setsN0 and N2,0, respectively, with oddai values;

128 S.N. Kabadi et al. – Integer Network Synthesis

and subsetsQb,0 andQb,1 of nodes inN0 andN0,2,
respectively, with oddbi values; (ii) peel off1 unit from
each of these oddai andbi values, to obtain modified
values,{âi, b̂i : i ∈ N}; (iii) further modify the largest
âi andb̂i values in some of the setsN0, N2,0 andN0,2

such that the two largestâi values are equal and the two
largest̂bi values are equal.

In steps3 and4, the algorithm uses a modification
of the ModG-algorithm to construct optimal networks
(with integer capacities) for even-valued input vectors
(âi : i ∈ N) and (b̂i : i ∈ N), respectively, and su-
perposes these two networks to obtain networkĜ with
integer capacities.

In Step5, we make up for the difference of1 be-
tween some of the values in{âi, b̂i : i ∈ N} and the
corresponding values in{ai, bi : i ∈ N} by adding to
Ĝ a suitable set of edges which cover all the nodes in
the multisetQa,0 ∪Qa,1 ∪Qb,0, and the setQb,1, (each
of which has even cardinality); and assigning to each
of these edges a capacity of1, to get a networkG.

Finally, in Step6, we make an adjustment to account
for some pre-processing and alterations toai and bi

values done previously.

Algorithm 5

Step 0: SetN0 = {i : ai > 0, bi > 0};
Case = Indexa

0 = Indexa = 0;
Indexa

I = Indexb
I = Indexb

0 = 0;
Indf

a = Indf
b = 0.

Setn0 = |N0| andn1 = |N0 ∪ N2,0|.
Number the nodes inN0 as{1, 2, . . . , n0}
such thata1 ≥ a2 ≥ · · · ≥ an0

.
Find an alternate ordering{t1, t2, . . . , tn0

} of
nodes inN0 such thatbt1 ≥ bt2 ≥ · · · ≥ btn0

.
Number the nodes inN2,0 as{n0 + 1, n0+
2, . . . , n1} and number the nodes
in N0,2 as{n1 + 1, n1 + 2, . . . , n}, such that
ai ≥ aj ∀ n0 < i < j ≤ n1,
andbi ≥ bj ∀ n1 < i < j ≤ n.

Step 1a: If r(N0) = max{rij : i ∈ N0; j ∈ N0} = 0
and at least one of∑

{ai + bi : i ∈ N0} and
∑

{ai : i ∈ N2,0}
is even, then setCase = 1 and go to Step1b.
If s(N0) = max{sij : i ∈ N0; j ∈ N0} = 0
and at least one of∑

{ai + bi : i ∈ N0} and
∑

{bi : i ∈ N0,2}

is even,then rename theai’s asbi’s and the
bi’s asai’s; setCase = 1; and go to Step1b.
If

∑
i∈N ai +

∑
i∈N0 bi is even,

then go to Step1c.
If

∑
{bi : i ∈ N} +

∑
{ai : i ∈ N0} is

even, then rename all theai’s asbi’s and all
the bi’s asai’s; and go to Step1c.

Step 1b: If
∑

i∈N0{ai + bi} is odd, then add1 to bt1 .
If

∑
i∈N2,0 ai is odd, then add1 to an0+1.

Step 1c: If
∑

i∈N0,2 bi is odd then add1 to bn1+1.
Setai = ai + 1 andbi = bi − 1 ∀i ∈ N0;
andai = ai, andbi = bi for every otheri.
If Case = 0, then go to Step2b.

Step 2a: Construct an optimal networkGa,1 =
[N2,0, Ea,1, ca,1] using the SC-algorithm
with (ai : i ∈ N2,0) as input vector.
If s(N0) = 0 then, construct an optimal
networkG0 =[N0,E0,c0] using Algorithm 3
with (ai : i ∈ N0) and(bi : i ∈ N0) as input
vectors. Construct an optimal networkGb,1 =
[N0,2, Eb,1, cb,1] using the SC-algorithm
with (bi : i ∈ N0,2) as input vector.
Let G∗=[N, E∗, c∗], where,E∗ =
E0 ∪ Ea,1 ∪ Eb,1; and

c∗(e) =






ca,1(e) ∀e ∈ Ea,1

c0(e) ∀e ∈ E0

cb,1(e) ∀e ∈ Eb,1

Go to Step7.
Else,
If a1= even, andai is odd for somei ∈ N0,
then setIndexa

0 = 1, a1 =a1 + 1, a2 = a2+1.
ComputeQa,0 = {i : ai = odd; i ∈ N0}}.
setâi = ai − 1 ∀i ∈ Qa,0; âi = ai for
every otheri ∈ N0.
Construct an optimal networkGa,0 =
[N0, Ea,0, ca,0] using the ModG-algorithm
with (âi : i ∈ N0) as input vector.
Let Ĝa =[N0 ∪ N2,0,Êa,ĉa], where,Êa =
Ea,1 ∪ Ea,0; and

ĉa(e) =

{
ca,1(e) ∀e ∈ Ea,1

ca,0(e) ∀e ∈ Ea,0

Go to Step4a.
Step 2b: If a1 ≥ a(n0+1), then setu = 1.

Else, setu = n0 + 1.
If au= even, andai is odd for somei ∈
N0 ∪ N2,0, then setIndexa = 1,
au = au + 1, a(u+1) = a(u+1) + 1.
DefineQa,0 = {i : ai = odd; i ∈ N0};
Qa,1 = {i : ai = odd; i ∈ N2,0};
Setâi = ai − 1 ∀i ∈ Qa,0 ∪ Qa,1; âi = ai

S.N. Kabadi et al. – Algorithmic Operations Research Vol.4 (2009) 117–132 129

for every otheri.
Setâi = âi ∀ i.
If 2⌈ 1

2r(N0)⌉ < min{âi : i ∈ N0 ∪ N2,0},
then setIndf

a = 1 and go to Step3a.
If r(N0) < min{a1, a(n0+1)} − 1, then go to
Step3a.
If â(n0+1) = â1, then setIndexa

I = 1.
Else, add2 to the smaller of̂a(n0+1) andâ1.

Step 3a: Set ĉa(e) = 0 ∀e; a0
i = âi ∀i; andℓ = f = 0.

Step 3b: Let α = max{aℓ
i : i ∈ N0 ∪ N2,0}.

If α = 0, go to Step 4a.
If aℓ

1 < α, then setx = 0; else, letx ∈ N0

be the largest integer such thataℓ
x = α.

If aℓ
(n0+1) < α, then sety = n0;

else, lety ∈ N2,0 be the largest integer
such thataℓ

y = α.
If x=n0 then setβ1 =0; else setβ1 =aℓ

(x+1).
If y = n1, then setβ2 = 0;
else setβ2 = aℓ

(y+1).
Setβ = max{β1, β2}.
If the set{1, 2, . . . , x} ∪ {n0 + 1, n0 + 2, . . . ,
y} contains only 2 elements, say{w, z},
then increasêca((w, z)) by (α − β).
Else,
if y = n0, then increase the value ofĉa(e)
by 1

2 (α − β) for every
e ∈ {(1, 2), (2, 3) . . . , (x − 1, x), (x, 1)};
if x = 0, then increase the value ofĉa(e) by
1
2 (α − β) for everye ∈ {(n0 + 1, n0 + 2),
(n0 + 2, n0 + 3), . . . , (y − 1, y), (y, n0 + 1)};
otherwise, increase the value ofĉa(e) by
1
2 (α − β) for everye ∈ {(1, 2), . . . ,
(x − 1, x), (x, n0 + 1), (n0 + 1, n0 + 2), . . . ,
(y − 1, y), (y, 1)}.

Setaℓ+1
i =






β if i ∈ N0, i ≤ x; or
if i ∈ N2,0, i ≤ y

aℓ
i otherwise

Updatef = f + (α − β)
If f ≥ r(N0) andIndf

a = 1, then set
ℓ = ℓ + 1 and go to Step3d.

Step 3c: Setℓ = ℓ + 1 and go to Step3b.

Step 3d: Construct optimal networksGa,0 =
[N0, Ea,0, ca,0] andGa,1 = [N2,0, Ea,1, ca,1]
using the ModG-algorithm with(aℓ

i : i ∈ N0)
and(aℓ

i : i ∈ N2,0) as input vectors,

respectively. Update

ĉa(e) =






ĉa(e) + ca,0(e) ∀e ∈ Ea,0

ĉa(e) + ca,1(e) ∀e ∈ Ea,1

ĉa(e) otherwise

Step 4a: If bt1= even, and the set{bi : i ∈ N0}
contains at least one odd value, then
setIndexb

0 = 1, bt1 =bt1 + 1, bt2 = bt2 +1.
If b(n1+1) = even, and the set{bi : i∈N0,2}
contains at least one odd value, then
setIndexb

1 = 1, b(n1+1) = b(n1+1) + 1,

b(n1+2) = b(n1+2) + 1.
DefineQb,0 = {i : bi = odd; i ∈ N0};

Qb,1 = {i : bi = odd; i ∈ N0,2}.
Set b̂i = bi − 1 ∀i ∈ Qb,0 ∪ Qb,1; and
b̂i = bi for every otheri.
Set b̂i = b̂i ∀i.
Set ĉb(e) = 0 ∀e; b0

i = b̂i ∀i; andℓ = f = 0.
If 2⌈ 1

2s(N0)⌉ < min{b̂i : i ∈ N0 ∪ N0,2},
then setIndf

b = 1 and go to Step4b.
If s(N0) < min{bt1 , b(n1+1)} − 2, then
go to Step4b.
If b̂t1 = b̂(n1+1), then setIndexb

I = 1.

Else, add2 to the smaller of̂bt1 andb̂(n1+1).

Step 4b: Let α = max{bℓ
i : i ∈ N0 ∪ N0,2}.

If α = 0, go to Step5a.
If bℓ

t1
< α, then setx = 0; else, letx be

the largest integer such thatbℓ
tx

= α.
If bℓ

(n1+1) < α, theny = n1; else, lety be
the largest integer inN0,2 such thatbℓ

y =α.
If x=n0 then setβ1 =0; else setβ1 =bℓ

tx+1
.

If y=n1, then setβ2 =0; else setβ2 =bℓ
y+1.

Setβ = max{β1, β2}.
If the set{t1, t2, . . . , tx} ∪ {n1 + 1, n1 + 2,
. . . , y} contains only2 elements, say{w, z},
then increasêcb((w, z)) by (α − β).
Else,
if y=n1, then increase the value ofĉb(e) by
1
2 (α − β) for everye ∈ {(t1, t2),
(t2, t3) . . . , (tx−1, tx), (tx, t1)};
if x=0, then increase the value ofĉb(e) by
1
2 (α − β) for everye ∈ {(n1 + 1, n1 + 2),
(n1+2, n1+3), . . . , (y − 1, y), (y, n1+1)};
otherwise, increase the value ofĉb(e) by
1
2 (α − β) for everye ∈ {(t1, t2),
. . . , (tx−1, tx), (tx, n1+1), (n1+1, n1+2),
. . . , (y − 1, y), (y, t1)}.

130 S.N. Kabadi et al. – Integer Network Synthesis

Setbℓ+1
i =

{
β if i ∈ X
bℓ
i otherwise

whereX = {t1, t2, . . . , tx, n1+1, n1+2,
. . . , y.} Updatef = f + (α − β).
If f ≥ s(N0), andIndf

b = 1, then set
ℓ = ℓ + 1 and go to Step4d.

Step 4c: Setℓ = ℓ + 1; go to Step4b.

Step 4d: Construct optimal networksGb,0 = [N0,
Eb,0, cb,0] andGb,1 = [N2,0, Eb,1, cb,1],
using the ModG-algorithm with
(bℓ

i : i ∈ N0) and(bℓ
i : i ∈ N0,2) as input

vectors, respectively.
Update

ĉb(e) =






ĉb(e) + cb,0(e) ∀e ∈ Eb,0

ĉb(e) + cb,1(e) ∀e ∈ Eb,1

ĉb(e) otherwise

Step 5a: Set ĉ(e) = ĉa(e) + ĉb(e) ∀e; and
Ĝ = [N, Ê, ĉ], whereÊ = {e : ĉ(e) > 0}.
Setc(e) = ĉ(e) ∀e.
If the setQb,1 is non-empty, then order
its elements as(k1, k2, . . . , kq), such
thatk1 < k2 < · · · < kq, and increasec(e)
by 1 ∀e ∈ {(ki, ki+ q

2
) : i ∈ 1, 2, . . . , q

2}.
If Case = 1, then go to Step5b.
Define multisetQa = Qa,0 ∪ Qa,1 ∪ Qb,0.
If the multisetQa is non-empty and
contains at least two distinct nodes,
then order the elements ofQa as([1], . . . ,
[p]), in the order in which they appear
in the ordered sequence
(1, 2, . . . , n0, n0 + 1, n0 + 2, . . . , n1),
and increasec(e) by 1
∀e ∈ {([i], [i + p

2]) : i = 1, 2, . . . , p

2}.
SetG = {N, E, c} where
E = {e : c(e) > 0}; and go to Step6.

Step 5b: Define multisetQ′ = Qa,0 ∪ Qb,0.
If the multisetQ′ is non-empty and
contains at least two distinct nodes, then order
its elements as([1], [2], . . . , [p]), in the
order in which they appear in the ordered
sequence(1, 2, . . . , n0), and increasec(e)
by 1∀e ∈ {([i], [i + p

2]) : i = 1, 2, . . . , p

2}.
If the setQa,1 is non-empty, then order its
elements as(k1, k2, . . . , kℓ), such
thatk1 < k2 < · · · < kℓ, and increasec(e)
by 1 ∀e ∈ {(ki, ki+ ℓ

2
) : i ∈ 1, 2, . . . , ℓ

2}.

SetG = {N, E, c} where
E = {e : c(e) > 0}.

Step 6: Setc∗(e) = c(e) ∀e.
If Indexa =1, decreasec∗((u, u+1)) by 1.
If Indexa

0 = 1, decreasec∗((1, 2)) by 1.
If Indexb

0 = 1, decreasec∗((t1, t2)) by 1.
If Indexb

1 = 1, decreasec∗((n1+1, n1+2))
by 1.
If Indexa

I = 1, then increase the value of
c∗((1, n0 + 1)) by 1.
If Indexb

I = 1, then increase the value of
c∗((t1, n1 + 1)) by 1.
SetG∗ = {N, E∗, c∗},
whereE∗ = {e : c∗(e) > 0}.

Step 7: Output the networkG∗ and stop.

Theorem 13 The networkG∗ produced by Algorithm
5 is a feasible solution to Case 3 of the 2-INSP problem
and

∑
{c∗(e) : e ∈ E∗} ≤ (OPT + 3).

Proof. : It is easy to see that
∑

{c∗(e) : e ∈ E∗} ≤
⌈ 1

2

∑
{(ai + bi) : i ∈ N}⌉ + 3.

The bound on the objective function value now follows
from Lemma 7.

To prove the feasibility of the networkG∗, we use
the same approach as in the proof of Theorem 11. Thus,
consider any cut(X, X). It will be sufficient to show
that c∗[X, X] ≥ min{max{ai : i ∈ X}, max{ai : i ∈
X}} + min{max{bi : i ∈ X}, max{bi : i ∈ X}}. Let
min{max{ai : i ∈ X}, max{ai : i ∈ X}} = au; and
min{max{bi : i ∈ X}, max{bi : i ∈ X}} = bv. We
shall consider various cases:

For convenience, let(n0 + 1) = j andn1 + 1 = k.
If u = 1, thena1 ≤ aj , a1 ≤ â1 ≤ a1 + 2, and

(aj − 1) ≤ âj ≤ (aj + 1).
If â1 < âj , thenâj ≥ â1 ≥ (a1 + 2).
If â1 = âj , thenâj = â1 ≥ a1 andIndexa

I = 1.
If â1 > âj , thenân0+1 = â1 ≥ a1 + 1.

Thus, in every one of these cases, using the same
argument as in the proof of Theorem 11, we can show
that∑

{ĉa((i, j)) : i ∈ X ; j ∈ X} ≥ â1.

If u = j, thenaj ≤ a1, a1 ≤ â1 ≤ a1 + 2, and
(aj − 1) ≤ âj ≤ (aj + 1).
If âj < â1, thenâ1 ≥ âj ≥ (aj + 1).
If â1 = âj , thenâ1 = âj ≥ aj + 1 andIndexa

I = 1.
The casêaj > â1 is not possible.

S.N. Kabadi et al. – Algorithmic Operations Research Vol.4 (2009) 117–132 131

Thus, in every one of these cases, using the same
argument as in the proof of Theorem 11, we can show
that∑

{ĉa((i, j)) : i ∈ X ; j ∈ X} ≥ âj1 .

If u ∈ N0 − {1}, thenau ≤ a1, andâ1 ≥ âu ≥ au

and if âu = au, thenu ∈ Qa,0.
In this case, using the same argument as in the proof

of Theorem 11, it follows that∑
{ĉa((i, j)) : i ∈ X ; j ∈ X} ≥ âu.

If u ∈ N2,0 −{j}, thenau ≤ aj , andâj ≥ âu ≥ au

and if âu = au, thenu ∈ Qa,1.
In this case too, using the same argument as in the

proof of Theorem 11, it follows that∑
{ĉa((i, j)) : i ∈ X ; j ∈ X} ≥ âu.

It can be similarly shown that∑
{ĉb((i, j)) : i ∈ X ; j ∈ X} ≥ b̂v.

If nodes1 andj (t1 andk) lie on different sides of the
bipartition (X, X) then if possible, chooseu ∈ {1, j}
(v ∈ {t1, k}), preferablyu = j (v = t1).

Then, using the same approach as in the proof of
Theorem 11, the above facts and the choice of sets
Qa,0, Qa,1, Qb,0, Qb,1, it can be easily shown that
c∗[X, X] ≥ au + bv.

Except for the case(u ∈ N1, v ∈ N0), the result
now follows from the fact thatau + bv = au + bv.

Let us consider the caseu ∈ N1, v ∈ N0.
If u = j or v = t1, then using the same approach it

can be easily shown thatc∗[X, X] ≥ au + bv + 1 =
au + bv.

Now let us consider the caseu ∈ N1 − {j}}, v ∈
N0 − {t1}.

If nodes1 andj lie on different sides of the bipartition
(X, X), then it follows by the choice of the nodeu that
IndexaI=0. Similarly, if nodest1 andk lie on different
sides of the bipartition (X, X), then IndexbI=0. Thus,
in either case,c∗[X, X] ≥ au + bv + 2 > ax + by.

Else, each of node setsN0 andN1 intersects properly
each of the setsX and X. Thus, if we traverse the
node setN0 ∪ N1 in the order((j =)n0 + 1, n0 +
2, . . . , n1, 1, 2, . . . , n0, n0 + 1), then we cross the cut
(X, X) at least 4 times. Using the same argument as in
the proof of Theorem 11, it now follows thatc∗[X, X] ≥
au + bv + 1 = au + bv. This proves the result.

:

5. The General Case

We shall now use the insights gained from algorithms
for the special cases presented in Section 4. to develop
an algorithm for the general case that produces a feasible
network with objective function value within 3 of the
lower bound established in Section 3..

Step 0: Computeai = max{rij : j 6= i} and bi =
max{sij : j 6= i} ∀i ∈ N .

Let N = N0,2 ∪N1,2 ∪N2,0 ∪N2,1 ∪N1,1 ∪N2,2.
Design networkG = {N, E, c}, for input {ai, bi :

i ∈ N} using Algorithm 5 of case 3 of the previous
section.

Let c∗(e) = c(e) ∀e ∈ E.
Let Ñ = N0,1 ∪ N1,0 = N − N . Let G̃ = [N, Ẽ]

where Ẽ = {(i, j) : rij > 0 or sij > 0}. Contract
in G̃ the node setN to get graphG′. Find a spanning
forest inG′; and assignc∗(e) = 1 for all edgese in G′

corresponding to this spanning forest. LetE∗ = {e :
c∗(e) > 0}. Output networkG∗ = [N, E∗, c∗] and stop.

Theorem 14 The networkG∗, output by Algorithm 5.,
is feasible to the problem 2-INSP and has objective
function value no more than (OPT + 3).
Proof. This follows easily from Theorem 13 and Lemma
6.

References

[1] Y. P. Aneja, R. Chandrasekaran, S. N. Kabadi and K. P.
K. Nair. Flows over Edge-Disjoint Mixed Multipaths and
Applications, Discrete Applied Mathematics, 155(15),
1979-2000, 2007.

[2] R. Chandrasekaran, K.P.K. Nair, Y.P. Aneja and S.N.
Kabadi. Multi-terminal Multipath Flows: Synthesis,
Discrete Applied Mathematics, 143, 182-193, 2004.

[3] W. Chow and H. Frank. Survivable Communication
Networks and the Terminal Capacity Matrix,IEEE
Trans. on Circuit Theory, CT-17, 2, 192-197, 1970.

[4] L.R. Ford, and D.R. Fulkerson.Flows in Networks,
Princeton University Press, 1962.

[5] R. J. Gibbens and F. P. Kelly. Dynamic Routing in Fully
Connected Networks,IMA Journal of Mathematical
Control and Information, 7, 77-111, 1990.

[6] D. Gusfield. Simple Constructions for the Multi-
Terminal Network Flow Synthesis,SIAM J. Comput.,
12, 1, 157-165, 1983.

132 S.N. Kabadi et al. – Integer Network Synthesis

[7] R.E. Gomory and T.C. Hu. Multi-terminal network
flows, Journal of SIAM, 9, 551-570, 1961.

[8] R. Hassin and A. Levin. Synthesis of 2-Commodity Flow
Networks,Mathematics of Operations Research, 29 (2),
280-88, 2004.

[9] T. C. Hu. Multi-Commodity Network Flows,Operations
Research, 11, 344-360, 1963.

[10] A. Itai, Y. Perl and Y. Shiloach. The Complexity
of Finding Maximum Disjoint Paths with Length
Constraints,Networks, 12, 277-286, 1982.

[11] S. N. Kabadi, R. Chandrasekaran, K.P.K. Nair and Y. P.
Aneja. Integer Version of the Multipath Flow Network
Synthesis Problem,Discrete Applied Mathematics,
156(18), 3376-99, 2008.

[12] S. N. Kabadi, J. Kang, R. Chandrasekaran and K.
P. K. Nair. Hop-Constrained Network Flows: Analysis
and Synthesis,working paper, Faculty of Business
Administration, University of New Brunswick, October,
2003.

[13] S. N. Kabadi and K. P. K. Nair. Integer Network
Synthesis Problem for Hop Constrained Flows,working
paper, Faculty of Business Administration, University of
New Brunswick, June 2009.

Received 2-1-2009; revised 26-6-2009; accepted 2-7-2009

[14] S. N. Kabadi and R. Sridhar. Peeling Algorithm for
integral Network Synthesis,working paper, Faculty of
Business Administration, University of New Brunswick,
January, 1996.

[15] W. Kishimoto. A method for obtaining the maximum
multi-route flows in a network,Networks, 27, 279-291,
1996.

[16] W. Kishimoto and M. Takeuchi. Onm-route flows in
a network,IEICE Trans.J-76-A , 1185-1200, 1993 (in
Japanese).

[17] W. Mayeda. Terminal and branch capacity matrices
of a communication Net,IRE Transactions on Circuit
Theory, CT-7, 261-269, 1960.

[18] S. T. McCormick. The Complexity of Max Flow and Min
Cut with Bounded-Length Paths,working paper, Faculty
of Commerce and Business Administration, University
of British Columbia, May, 2001.

[19] A. Schrijver, Combinatorial Optimization: Polyhedraand
Efficiency, Algorithms and Combinatorics 24, Springer-
Verlag, New York, 2003.

[20] R. Sridhar and R. Chandrasekaran. Integer Solution of
Synthesis of Communication Network.Mathematics of
Operations Research, 17, 3, 581-585, 1992.

[21] K. Talluri. Network Synthesis with Few Edges,
Networks, 27, 109-115, 1996.

