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Several attempts have been done in the literature in the last years in order to
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optimization problems. Recently, a new model of recoverable robustness has
been introduced in the context of railways optimization. The basic idea of
recoverable robustness is to compute solutions that are robust against a limited
set of disturbances and for a limited recovery capabilities. The quality of the
robust solution is measured by its price of robustness that determines the
trade-off between an optimal and a robust solution.

In this paper, within the recoverable robustness model, we emphasize
algorithmic aspects and provide definitions of robust algorithm and price of
robustness of a robust algorithm as a measure to evaluate its performance. A
robust algorithm provides a solution that maintains feasibility by possibly
applying available recovery capabilities in the case of changes to the input data.
We study various settings in the context of shunting problems, i.e. the reordering
of train cars over a hump yard. The considered shunting problems can be seen as
the reordering of an integer vector by means of a set of available stacks with the
further constraint that the pull operation does not involve only the element on
top of a stack, but all the elements contained in the stack.

We provide efficient robust algorithms concerning specific shunting problems. In
particular, we study algorithms able to cope with disturbances, as temporary
and local unavailability and/or malfunctioning of key resources that can occur
and affect planned operations. Various scenarios are considered, and robustness
results are presented.
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Abstract

Several attempts have been done in the literature in theyksats in order to provide a formal definition of the notions
of robustnessnd recoverabilityfor optimization problems. Recently, a new moder@toverable robustnesms been
introduced in the context of railways optimization. Theibadea of recoverable robustness is to compute solutioas th
are robust against a limited set of disturbances and for atéohrecovery capabilities. The quality of the robust siolt
is measured by itprice of robustnesthat determines the trade-off between an optimal and a rtoboisition.

In this paper, within the recoverable robustness model,

mehasize algorithmic aspects and provide definitions of

robust algorithmand price of robustnes®f a robust algorithm as a measure to evaluate its perforrearc robust
algorithm provides a solution that maintains feasibility possibly applying availableecovery capabilitiesn the case
of changes to the input data. We study various settings irconéext ofshunting problemsi.e. the reordering of train
cars over a hump yard. The considered shunting problems easebn as the reordering of an integer vector by means
of a set of available stacks with the further constraint ttia pull operation does not involve only the element on top

of a stack, but all the elements contained in the stack.

We provide efficient robust algorithms concerning specHienging problems. In particular, we study algorithms able
to cope withdisturbancesas temporary and local unavailability and/or malfunctiog of key resources that can occur
and affect planned operations. Various scenarios are ctmmed, and robustness results are presented.

Key words: robustness, disturbance, recoverability, robust aligarjtshunting, hump yard

1. Introduction

In practical optimization problems information is of-

ten imperfect. Input data may be subject to changes or

may be completely unknown in advance. In contrast, the

In this sense, what is needed is a notiomexfoverable
robust solutionfor an optimization problem, that is a
solution that maintains feasibility by possibly applying
available recovery capabilities in the case of changes to
the input data.

standard optimization theory assumes that input data are Several attempts have been done in the literature in

fully known in advance. Hence, it is important to de-
velop methods that consider the unavoidable imperfec-
tion of the input data for the construction of a solution
and for its prompt recovery in the case of disturbances.

* This work was partially supported by the Future and
Emerging Technologies Unit of EC (IST priority - 6th FP),
under contract no. FP6-021235-2 (project ARRIVAL). An

extended abstract of this paper appeared in [9].
Email: Serafino Cicerone, [serafino.cicerone@univagq.it],

Gianlorenzo D’Angelo, [gianlorenzo.dangelo@univag.it]
Gabriele Di Stefano, [gabriele.distefano@univag.it]ni2ée
Frigioni  [daniele.frigioni@univaq.it], Alfredo Navarra
[navarra@dmi.unipg.it].

the last years in order to provide formal definitions of
the notions ofrobustnessand recoverability for opti-
mization problems. For example, in the area of railway
optimization, the concepts of robustness and recover-
ability have been studied in terms of the classical robust
optimization (see, e.g., [3-5,18]) and online algorithms
(see [22] for an interesting survey), respectively. In par-
ticular, a robust plan is aa priori plan that maintains
feasibility and as much as possible of the quality of an
optimal solution in the case of imperfect information.
An online plan is areal-time plan that has to be de-
veloped when unpredictable disturbances in daily oper-
ations occur, and before the entire sequence of distur-

(© 2009 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All rigdreserved.
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bances is known. The goal is to react fast, while retain- tion of robustness. Given an optimization probléma

ing as much as possible of the quality of an optimal so- modification function\/, and a set of available recovery
lution, that is, a solution that would have been achieved strategies4, the corresponding recoverable robustness
if the entire sequence of disturbances was known in ad- problemP is a triple(P, M, A). Given an instancéof

vance. P, M (i) is the set of the instances obtained by apply-
Despite this increasing interest, a final answer to the ing any pOSSibIQ disturbance o A robust _algorithm_
question “what argobustnessand recoverability for Arop takesi as input and outputs a feasible solution

an optimization problem?” has not yet been given. In for i that can be recovered in case of disturbance by
fact, the notion of robustness in every day life is much using recovery capabilities id. In other words, given
broader than that pursued in the area of robust opti- an instance of P and a disturbancg € M (i), algo-
mization so far. In the most restricted sense, a robust rithm A,.,;, provides a solutior for i that can be turned
plan stays unchanged in every likely scenario. The ba- into a feasible solution fo§ by applying some recov-
sic idea of robustness is given by a problem and some ery strategies allowed byl. Solutions is then called
knowledge imperfection which one has to cope with. a robust solution. Clearly, robust solutions provided by
That s, the solution provided for a given instance of the Ao, can be far from the optimum. Such a distance is
problem must hold even though some changes in suchmeasured by the notion of price of robustness. In [26],
an instance occur. This kind of robustness is not always the aim is to provide the best robust solution, i.e., the
suitable if some recovery strategies are not introduced. one that minimizes the price of robustness.
Moreover, in many practical applications, there might  |n this paper we are interested in finding efficient ro-
be the possibility to intervene before some scheduled pust algorithms, and evaluating them by comparing the
operations are being performed. This suggests to studycorresponding prices of robustness. In particular, we are
robustness and recoverability in a unified way. interested in finding robust algorithms for sosteunt-
Usually, modifications that may occur are restricted ing problemgsee, e.g. [12,23-25]), that is the schedul-
to some specified subset of all possible ones. It is rea- ing of activities at a shunting yard in depots or stations.
sonable to require that, if a disturbance occurs, then In railroad shunting yards, incoming freight trains are
one would like to maintain as much as possible a pre- split up and re-arranged according to their destinations.
computed solution taking into account some “soft” re- In stations and train depots, passenger trains are parked
covery strategies. Recovering should be simple and fast.overnight or during low traffic hours. In either case, we
Moreover, there are cases where recoverability is nec- are given an ordering of arriving units, i.e., either cars
essary in order to still have some useful solution for or trains, and we have to decide how to use the tracks
a problem. A solution that undergoes slight changes is of the shunting yard to reorder the units according to
called robust even though it could require the use of a required departure sequence. Possible scheduling ac-

some recovery capabilities. tivities are limited by the fixed number of available
A first tentative of unifying the notions @bbustness  tracks, by their length and by the way tracks may be ap-
and recoverabilityinto a new integrated notion oé- proached. From a more general point of view, the con-

coverable robustnedsas been done in [26] in the con-  sidered shunting problems can be seen as the reorder-
text of railways optimization. This new notion describes ing of an integer vector by means of a set of available
robustness with respect to (limited) recovery possibil- stacks with the further constraint that the pull operation
ities. It integrates robustness and recoverability as the does not involve only the element on top of a stack, but
solutions are required to be recoverable. The basic ideaall the elements contained in the stack.
of recoverable robustness is to compute solutions that |n the literature, shunting problems have been stud-
are robust against a limited set of scenarios and for ajed along two main directions. The first assumes
limited recovery. The quality of the robust solution is a perfect knowledge of the incoming and outgoing
measured by itprice of robustnesthat determines the  sequences of units, as in the standard optimization
trade-off between an optimal and a robust solution. theory, and many results have been achieved (see,
In this paper, based on the directions given in [26], e.g., [6,11,12,15,16,19,23-25]). The second looks at
we emphasize algorithmic aspects and provide a defini- the shunting problem as an online problem: since the
tion of robust algorithmand a definition for the corre-  trains could accumulate lateness before arriving at the
spondingprice of robustnessThe purpose is to capture  depot, the time of arrival of each train could be unpre-
useful properties that help to overcome the standard no-dictable. The tracks must thus be assigned online, as
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the trains arrive, on the basis of departure times and problems, like for instance in [20]. In such a paper, in
previous assignments [13,14,31]. fact, the idea was to pre-compute a useful graph which
These two approaches lack in reality, sirdistur- might be used in order to replace a possible faulty edge
bances concerning temporary and local unavailabil- in order to recover the required connectivity. More clas-
ity and/or malfunctioning of key resources, can occur sical techniques like parity check bits or RAID (Redun-
(e.q., different orders of the incoming trains/cars, new dant Array of Independent Disks [29]) systems used for
trains/cars, missing trains/cars, or faulty infrastruesu ~ storage purposes can be also considered as examples
like tracks). These disturbances can affect for exam- of recoverable robust systems. In fact, they make use
ple the planned incoming unit sequence, but it is also of redundance in order to keep safe the storage of data
unlikely that we have no idea about the order of the subject to limited malfunctions, such as the loss of one
sequence, as in the online approach. In this paper, webit, or the damage of an hard disk. In such settings, once
provide robust algorithms for the shunting over a hump a disruption occurs, a recovery algorithm can re-build
yard problem which are able to cope with a limited num- the missing information by making use of the redundant
ber of disturbances, and study their price of robustness.data preventively stored.
We also study various levels of robustness according to

different recovery capabilities. 1.2 Outline

The paper is organized as follows: in Section 2., we
describe our modification of the model concerning ro-

Robustness problems have been addressed in manyustness for optimization problems given in [26] and
fields of research. However, a concrete model that uni- introduce our notions ofobust algorithmandprice of
fies the provided approaches is still missing. In our robustnes®f a robust algorithm; in Section 3., we de-
context, when no recovery capabilities are allowed, we scribe the shunting over a hump yard problem as given
talk aboutstrict robustnessFault tolerance problems in [24,25]; in Section 4., we give a robust model to
fall into this setting. In fact, when studying a problem shunting problems arising in practical contexts, and for
from the fault tolerance prospective, one has to cope each problem, we provide robust algorithms and eval-
with some possible (limited) disruptions that may oc- uate their price of robustness; finally, in Section 5., we
cur after planning a feasible solution. That is, the so- give some conclusive remarks and discuss some open
lution must keep its feasibility even though the input problems.
instance may change after applying the provided solu-
tion. An example of such an approach can be found
in networking problems. In [21], the problem of find-
ing a bi-connected spanning graph of the input net-
work is studied in order to maintain connectivity in In this section, motivated by algorithmic issues, we
the case an edge becomes unavailable. A similar prob-describe a slightly different formulation of the notion of
lem is studied in [7] but for wireless networks. That recoverable robustness proposed in [26]. In particular,
is, in order to achieve the bi-connectivity or the most given an optimization problen?, we first show how to
generalk-connectivity, one has to opportunely tune the turn P into arecoverable robustness problefn Then,
transmission ranges of the nodes while minimizing the We formally define the notion abbust solutionsor P,

1.1. Related Work

2. Recoverable Robustness

power consumption. Classical networking problems like
k-shortest paths [17,30], the most vital node [28,32]
and the most vital edge [2,27] of a network also fall
into the set of problems which cope with possible and
limited disruptions. Apart for the robust optimization

approaches previously discussed [3-5,18], other prob-

that is, the feasible solutions fd? that also solveP.
Finally, we define the concept abbust algorithmfor
P, that is an algorithm that computes the robust solu-
tions for P, and then quantify itprice of robustnes®8y
using the theoretically best robust algorithm @y we
define the price of robustness of problémin conclu-

lems related to strict robustness can also be found in Sion, we define the notions ekactandoptimalrobust

distributed storage and file sharing systems (see for in-

stance [1,8]). First approaches that allow the possibil-
ity of applying also limited recovery capabilities once
a disruption occurs can be found again in networking

algorithms.

In the remainder, an optimization probleris char-
acterized by the following parameters.
e ], the set of instances df;
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e F', a function that associates to any instamnce [ f:1IxSxI— N, eachelement,.. in such a
the set of all feasible solutions foy class fulfills the following constraint:
e [: S — RT, the objective function of?, whereS =
U,cr F (i) is the set of all feasible solutions fét. VieI,Vs e SVje M(i), Arec(i,s,j) must be
Note that, for several optimization problems the objec- computed inO(f (i, s, j)) time.

tive function is defined to have valuest However, _
it is possible to turn any such problem into an equiv- We can now formally define how can be transformed

alent one which satisfies our definition. Without loss into a recoverable robustness problem.

of generality, from now on we consider minimization Definition 1 Arecoverable robustness problé&his de-

problems. Additional concepts to introduce robustness fined by the triple(P, M, A). All the recoverable ro-

requirements for a minimization problefare needed: ~ bustness problems form the cl&R2RP.

e M : I — 2! — amodificationfunction for instances  Definition 2 LetP = (P, M, A) € RRP. Given an in-
of P. This function models the following case. Let stancei € I for P, an element € F(i) is a feasible
i € I be the considered input to the problémand solutionfor ¢ with respect toP if and only if the fol-
lets € S be the planned solution for A disturbance ~ lowing relationship holds:
is meant as a modification to the inpytand such . . S .
a modification can be seen as a new input I. FArec € AV € M(i), Arec(iss.j) € F(5)-
Typically, the modificatiory depends on the current  |n other words,s € F(i) is feasible fori with respect
input 4, and this fagt is modeled by the constraint g P if it can be recoveredby applying an algorithm
j € M(i). Hence, given € I, M(i) representsthe 4 < A for each possible disturbangee M (i).
set of instances aP that can be obtained by applying  we use the notatiofi (i) to represent all the feasible
all possible modifications té. Of course, when a  gojutions fori with respect toP. Formally Fp(i) is

disturbancej € M (i) occurs, a new solutior’ € defined as:
F(j) has to be recomputed fdp.

e A —aclass ofecovery algorithmgor P. Algorithms Fp(i) ={s € F(i) : s is a feasible solution foi
in A represent the capability of recovering against with respect tgP}.

disturbances. Since in a real-world problem the ca- . _ o . o
pability of recovering is limited in some way, the A possible scenario for this situation is depicted in Fig-
class.A can be defined in terms of some kindref ure 1. In the remainder, solutions F(i) are also
strictions such as fea5|b|||ty or a|g0rithmic restric- calledrobust solutiondor ¢ with respect to the Orlglnal
tions. An element, .. € A works as follows: given ~ problemP.
(i,s) € I x S, an instance/solution pair faP, and ~ Definition 3 Let? = (P, M, A) € RRP. Arobust al-
j € M(i), a modification of the current instange ~ 9orithmfor P is any algorithm4,.,, such that, for each
then A,..(i, s, j) = s', wheres’ € S represents the @ € I, Aroy(7) is a robust solution foé with respect to
recovered solution foP. In what follows we provide ~ P-
two examples for the definition of. It is worth to mention that, if4 is the class of algo-
(1) DefineA by imposing a constraint on the solutions fithms that do not change the solutispthat is, if each
provided by the recovery algorithms. In particular, algorithmA,... € A fulfills the following condition
the new (recovered) solutions computed by an al- , , . L
gorithm must not deviate too far from the original V(i s) € Ix 5, ¥j € M(i), Arec(is 5,5) = 5,

solutions, according to a distance measute-or- then the robustness problefh= (P, M, A) represents
mally: given a real numbef € R and a distance  the so calledstrict robustness problemNote that, in
functiond : S x S — R, each element, . in this case, a robust algorithr,;, for P must provide
such a class fulfills the following constraint: a solutions for i such that, for each possible modifica-
tion j € M (i), s € F(j). This means that, sincé, ..
Viel,Vs€S,Vj € M(i), d(s, Arec(is s, 7)) <A. has no capability of recovering against possible distur-

bances, them,.,, has to find solutions that “absorb”
any possible disturbance.

(2) Define A by bounding the computational power Let us consider Figure 1 again. Note tha denotes
of recovery algorithms. Formally: given a function the optimal solution forP when the input instance is
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_ Amb(.i). .

Arece-A'“""'

Fig. 1. A scenario for recoverable robustness problénset of instances$, set of solutionsM (4), set of instances obtainable
after a small modificationf’(¢) and F'(j), set of feasible solutions farand; respectively;F» (i), set of recoverable solutions
for 4; 5, optimal non-robust solution faf, s, robust solution obtained by,.;; s’, recovered solution obtained by an algorithm
Arec € A after disturbanceg € M (i).

i, it is possible thag is not in Fp(i); this implies that classification tracks
every robust solution foi may be “very far” froms. A

“good” robust algorithm should find the best solution hump

in Fp(i) for P, for each possible input € I. The TN ~Switches
following definition introduces the conceptsfce of IN/OUT track
robustnes®f both a robust algorithm and a recoverable
robustness problem.

Definition 4 Let’P € RRP. Theprice of robustnessf

a robust algorithmA,.,;, for P is given by

B f(Arob(i))
POR(P, Ayop) = max { min{f(z): x € F(i)}} '

frmm &

Fig. 2. Hump yard infrastructure composeduotlassification
tracks, each of size.

Each car is assigned with a unique label. The consid-
ered hump yard appears as in Figure 2. The hump yard
is made of an input track where trains arrive, and a set of
switches by which cars composing the incoming train
can be shunted over the available classification tracks.
A classification track is approached from a single side
and works like a stack. The set of classification tracks is
denoted byiV, the size ofi¥’ is denoted byw, and the
size of each track, i.e., the number of cars that can fit
into a classification track, by Therefore, an instance of
the problem is given by a quadrupl&;,,, Tout, W, ¢).

The hump yard supports a sorting operation by re-
peatedly doing the so callgdhck pull operation which
is made up of the following steps:
e Connect the cars of one classification track into a
3. Shunting Over a Hump Yard train, calledpseudotrairn

e Pull the pseudotrain over the hump;

In this section, we report the shunting over a hump e Disconnect the cars in the pseudotrain;
yard problem as given in [23-25]. The problem is spec- e Push the pseudotrain slowly over the hump, yielding
ified by an input train7;,, composed of. cars and an single cars that run down the hill from the hump
output trainTy,,; given by a permutation of}, cars. towards the classification tracks;

Definition 5 Let’ P € RRP. Theprice of robustnessf
P is given by

POR(P) =min{POR(P, Ayob) : Arop is a robust
algorithm for P} .

Definition 6 Let P € RRP and let A,.., be a robust
algorithm forP. Then,

e A, is exactif PORP, A,0p) = 1;

o A, is P-optimalif POR(P, A,,) = POR(P).

Notice that, the definition of exact robust algorithm al-
ways refers to the problerB.
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e Control the switches such that every single car goes the constraint o and implies that at most eleven dif-

to a specified track. ferent codes can be generated. Cars fidndown to1

The goal is to reordef;,, according toT,,; by re- are associated with codes000, 00001, 00010, 00011,
peatedly performing the track pull operation (an exam- 00100, 00110, 01000, 01100, 10000, 10001, 11000, re-
ple of reordering by means of track pulls can be seen spectively. Figure 3 shows the sequence of configura-
in Figure 3). The cost of the reordering is measured by tions obtained after each track pull and reorder of the
the number of track pulls. Notice that, at least one pull pulled cars according to their codes. The algorithm used
must be performed as the hump yard is used only whenin the example has been proposed in [24]. From now
one has to reorder or to park a train. on, we refer to such an algorithm as,,;. It computes

As in [24], we consider three different variants of a shunting plan when is bounded and the input train
the shunting over a hump yard problem by specifying is unknown in advance. In particulad,,; providesn

constraints for parameteesandw. Namely, different codes, one for each carii,. Each code spec-
Shy: ¢ boundedzw unbounded:; ifies the route that the corresponding car has to perform
Shsy: ¢ unboundedw bounded:; among the shunting yard in order to be placed in the
Shs: ¢ andw unbounded. desired position according th,,;. In [24] it has been

When convenient, we refer th as any of the above ~ Shown thatd,; is optimal with respect to the minimum
problems, indiscriminately, that is, when a result holds humber of track pulls. For the sake of simplicity, it is
for Sh, then it holds for all problem§h;, Shy andShs. assumed that,,; is composed on a track not used for

In [24], a polynomial algorithm for each of the above shunting operations but that can contain the whole train.
problems is given. In particular, Zzapproximation al- Note that, wherfl;;, is known in advance, two cars
gorithm for Shy, and optimal algorithms foSh, and might be assigned with the same code. This would imply
Shs, are provided. As in [24], we do not consider the that they will have the same relative orderip,, as
case ofc andw bounded. in T3,. Two cars that are consecutive f,; can get

In what follows we describe the notation used the Same code if they are in the correct ordefjp.

in [24,25] to represent shunting planA shunting plan A maximal _set of cars il that has this property is
specifies (i) a sequencg of i track pull operations caII_ed_ _achaln _

given by the tracks whose cars are pulled, and (ii) for Defl_m_tlon 7 Inashunting plan, f(_)reach_code,apure
every pulled car which track it is sent to. Note that, Cchainis the set of all cars associated with

if one track is pulled several times, then it appears in N Practice, the number of chains #, along with
S more than once. Of course, if there is no limit on the hump yard structure represents the key quantity with

the number of tracksu{ > h), then there is no need respect to the number of t.rack pulls that_must be per-
to reuse a track. Gives, the itinerary of a car can be formed by a shunting plan in order to obtain the desired

described by the sequence of tracks it visits. For the Lout- FOT this reason, in the remainder of the paper, we

task at hand, it is convenient to specify this sequence USe the following further notationupt (k, ¢, w) > 1 is
as a bit-string or cod, - - - b, where the different bits the number of track pulls needed by an optimal shunt-

stand for the pulled tracks, and there i$ & and only ing plan in order to manage car_s/chains over a hump

if the car visits that track. Now, if trackis pulled, then yard made 9‘“ tracks, each of size(for jghl andShs,

the new destination of a car is given by the position of % = 0 While for Shy andShs, ¢ = oo); apz(k, ¢, w)

its next1 in its code, i.e., the lowest indek> i such is the be_st known_approxmatlon algor_lth_m for the cor-

thatb; = 1. A shunting plan must specify a track pull "€SPonding shunting problem, angr is its approx-

sequénceﬁ‘ and it has to associate a code to each car. 'Mation ratio. When it is clear by the contex.t we skip

The length of each code is determined by the length of parameters equal t&’. from the previous notation. Fur-

S and cars may share the same code. thermore, for every instance= (Tin, Tout, W, c) We
An example is shown in Figure 3. The sequence of denote byr; _andnl- the number of chains and cars in

track pulls is given bys = {1, 2, 3,4, 5} from right to Tin, respectively.

left among classification tracks. In the example- 3

and the number of track pulls is set 5o The set of 4. Disturbances and Recoverability

codes of lengtlb provided by a feasible solution satis-

fies the property that at each position at most three codes In this section, we provide robust algorithms for the

have the corresponding bit set to This implements  shunting problems described in Section 3. and evaluate
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$={1,2,3,4,5}

EEEEE@

Fig. 3. Example of a shunting plan when= 3 and the number of track pulls is setioCars froml11 down to1 are associated
with codes00000, 00001, 00010, 00011, 00100, 00110, 01000, 01100, 10000, 10001, 11000 respectively.T,,: is composed
outside the hump yard and the corresponding track is not show

their price of robustness as defined in Section 2.. For s’, wheres’ may differ froms by at most one code

example,Sh; is defined by without affecting the track pull sequence, i.e., at
o [:setof quadruple€l;,,, Tout, W, ¢) where trainT;, most one pure chain may be assigned with a new
is defined as a sequence of cars and tfaiy is a code of the same length;
permutation off},,; As: VA € A3, V(i,s) € IxS, Vj € M(i), A(i,s,j) =

e F'(i): set of all feasible solutions for a given instance &', wheres’ may differ froms by all the set of codes
i = (Tin, Tout, W, ) € 1, i.€. any sequence of track without affecting the track pull sequence, i.e., every
pulls combined with a set of codes (one per car) that  pure chain may be assigned with a new code of the

transformT},, in T,,: whenc is bounded:; same length.

e f: number of track pulls. Note that each of the three defined classes of recov-
Regarding the modification functiai/, we consider  ery algorithms do not affect the scheduled track pulls

four different possibilities: sequence defined by a robust shunting algorithm. This is

My it models the case in which one car arrives in an motivated by the fact that modifying the track pulls se-
unexpected incoming position; guence is expensive as it requires to change the switches

Ms,: it models the case in which the incoming train setting or increase the number of track pulls. Recovery
contains one additional unexpected car; capabilities, instead, should be cheap operations since

Mjs: it models the case in which the incoming train they cannot be planned a priori but are used during the
contains one car less than expected; operational phase.

My: it models the case in which one of the classifica-  For each shunting problem and for each modifica-
tion tracks composing the hump yard may fault. tion function, the three different classes of recovery al-
Concerning classes of recovery algorithms, we con- gorithms imply three different recoverable robustness

sider the following three possibilities: problemsP. However, by definition, every upper bound

Ay VA e Ay, V(i,s) € IxS, V5 € M(i), A(i,s,j) = to the price of robustness of each shunting problem with
s, i.e., there are no recovery strategies to apply (strict .4, holds for the same problem with, as well as every
robustness); upper bound obtained witd, holds for.4;. Moreover,

Aot VA € Ay, V(i,s) € IxS, V5 € M(i), A(i,s,j) = every lower bound obtained witll; holds for A, as
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well as every lower bound obtained witfy, holds for plusv compose a pure chain, while the remaining cars

Ay must be another pure chain.dése doccurs, then same
Each Section from 4.1. to 4.4. copes with a modifi- arguments otase cstill hold.

cation function fromM; to My, respectively, and ana- Summarizing, in all cases at most one additional pure

lyzes the price of robustness of all possible robustnesschain is created. |

problems arising from the combination with the shunt-

ing problems and the classes of recovery algorithms. In a shunting plan, Lemma 1 is reflected in the need of

at most one additional code.

_ - Lemma 2 Let P = (Sh, M;,.A;). For every input
4.1. One Car With Unexpected Incoming Position train T},, any robust shunting algorithmt,,, must
provide a unique code to each carBf,.
Proof. Let us assume that,.,;, is robust with respect to
any possible change of one car position. Furthermore, let
us assume by contradiction thdt,, assigns the same
code to two carg andw. Without loss of generality,
let v being expected before in T;,,. This means that
should appear before also in the outgoing train. Let
us consider the disturbance whesgrecedes in T;,,.
Since A,.,, associates the same codevtandw, then
w will appear beforey also in the outgoing train. This
contradicts the hypothesis that,;, is a robust shunting
algorithm with respect to any change in the position of
done car. ]

Given an instance = (T;,,, Tout, W, ¢) of a shunting
optimization problemSh, let M; (i) represent all pos-
sible instancegT, , T,.., W, c) obtainable fromi by
changing the position of just one car ,. For each
of the three problems of Section 3. we study feasibility
of robust shunting plans for the three different classes
of recovery algorithms defined above.

The following lemma describes which practical situ-
ation a robust plan must be able to absorb/recover with
respect to a car incoming at an unexpected position.
Lemma 1 Letv be a car arriving at the hump yard in a
different position than expected. At most one additional
pure chain must be managed with respect to the expecte
case. Let us consider problerfh;. As mentioned in Sec-
Proof. If v composed a pure chain itself, then every tion 3., two solutions have been proposed in [24] for
shunting plan is robust since the same code assigned tathis case. The first solution providegapproximation
v is valid also in the actual case. The same holds in all of the optimum, i.e.apzr = 2, but it cannot be used
cases where the change in the incoming positiom of  for robustness purposes when considetitgsince it
does not affect its relative position with respect to the does not fulfill the condition of Lemma 2; The second
pure chain it belongs to, ar can be joint with some  solution, i.e., algorithm4,,; described in Section 3.,
other pure chains. In any other case, one pure chain isturns out to beP-optimal, whenP = (Sh, M;, A;).
created. In the remainder of the proof, we address theseTheorem 1 Let P = (Shy, Mi, A;). There exists a
cases. ‘P-optimal robust shunting algorithrm,.,;, such that

If v was the first (last, resp.) car of its original chain, POR(P, Ayop) = maxzpté:ff»g))_
and it arrives after (before, resp.) some cars of that chain ier P,

then it becomes a pure chain itself (see Figure 4). All Proof. We choosed,., aS.A“’b’ .., we hgve one_dlffer-
. o S ent code for each car without considering chains. Such
the other cars of its original pure chain still compose a

T . . a solution is clearly feasible for any change in the cars
pure chain since their relative order do not change. : L . .
. . : order since it is completely independent on the incom-
If v was part (in the middle) of a pure chain then

; opt(n;,c)
may arrive either before its original pure chairage M9 order. From Lemma 2R0R(P) > T&X%’ n
a), or in the middle but before its expected placement fact every robust algorithm must assign a unique code
(case b, or in the middle but after its expected place- to each car, hence it cannot pay less that(n;, c).
ment Case ¢, or after its original pure chaircése d, Moreover, the solution provided by,.,; is optimal for
see Figure 5. Itase aoccurs, therv with all cars of Shi when one unique code per car must be assigned and
the original pure chain after the expected position of hence, it follows thaPOR(P, A,.:) = max%. O
v still compose a chain but the remaining part of the el h
original pure chain cannot be assigned with the same Even though A,,; is P-optimal for A;, ie.,
code. Ifcase boccurs, then the same argumentsase POR(P, A,o») = POR(P), it is not exact since in gen-
a can be applied. Itase coccurs then the first part of  eralopt(n, ¢) > opt(r, c).
the original pure chain until the expected positiorvof It is worth noting that the number of codes provided
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Fig. 4. A representation of the case wheis the first (last, resp.) car of a pure chain and it arrivesrdfiefore, resp.) some cars
of the same pure chain. The concatenation of boxes of the geaescale represents a pure chain; the dotted box repseggnt
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Fig. 5. A representation of casesb, ¢ andd. The concatenation of boxes of the same gray scale repseagnire chain; the

dotted box represents;,.

by the shunting algorithm,.,, of Theorem 1 is at most
¢ times the number of codes provided by the optimal
solution. In fact, we are in the case of tracks of bounded
sizec, and hence there cannot be more thaars asso-
ciated with the same code. This implies that if a chain
is composed by more thancars, then it must be split
into more classification tracks.
Theorem 2 Let P = (Shy, M;, As). There exists a
polynomial robust shunting algorithm,..;, such that
POR('P, Amb) < 3.
Proof. The proofis structured in three parts: 1) We show
that there exists a polynomial shunting algorithm7gr
2) We show that this algorithm is robust; 3) We show
that the price of robustness of this algorithm is less than
or equal to3.

(1) By Lemma 1, the change in the order of one car

may produce at most one additional pure chain,

solution proposed in [24] foiShy, the need of
one additional code might imply the need of one
additional track pull since it might be that codes
of the original solution are already the maximum
number available to manage chains. However,
we are underSh; assumptions, i.e., the number
of tracks is unbounded. This implies that a robust
algorithm must provide one additional track pull
(i.e., the solution provided performs a number of
track pull upper bounded bypx(r;, ¢) + 1). This
can be obtained by choosing ds,;, an algorithm
that calculates codes as in [24] f8h; and then
adding one bit (initially set to zero) corresponding
to the new pull. Clearly, the proposed algorithm
is polynomial since we add just one track pull
operation to th@-approximated solution proposed
in [24], which is polynomial.

hence at most one additional code is necessary to (2) In order to prove that,; is robust we need to

cope with such occurrence. By theapproximated

show that the modification of at most one code as
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defined by.4 is enough in order to make the so- we can show the following theorem.
lution provided byA, ., feasible with respect to  Theorem 4 LetP = (Shy,M;,As) (P=(Shs,M;,As),
any disturbance defined by/;. Let v be the car resp.). There exists a polynomial robust shunt-

subject to disturbanc/,. From Lemma 1, if\/; ing algorithm A,,, such that PORP,Am) =
occurs, then the pure chain containing split in max el gL — 9 (POR(P, Ayop)

at most two pure chains denoted tap and bot- i€l Opt(r“w)l ich opiriw)

tom Without loss of generality, let us assume that = 1 10X g5 = 2, 1€sp.).

v belongs tdottom Then an algorithm id, sim- Concerning the price of robustness of the problem,
ply assigns the same code as plannedihy;, to v the following theorem holds.

andbottom and the same code but with the first bit Theorem 5 Let P = (Sh, M, As). ThenPOR(P) >

set to one tdop. By construction, the first pulled 2.

track containgop. This implies that the number of ~ Proof. By Lemma 1, the change in the order of one
cars composingop is less tharn, otherwise they  car might imply the need of at most one additional code
could not have been associated with the same codewhich in turn implies the need of one additional track
by A,.,. Once the first pull has been performed, pull. However, in order to be robust with respect to
top will be placed abovéottom since their codes  the considered disturbance, such additional track pull
differ by just the first bit. Note that, there can be must be planned a priori by any robust algoritbiy,;,
other cars betweehottomandtop, but this does  since every algorithm itds, by definition, affects only

not influence the solution since codes exactly de- codes. This implie®oR(P) > 1 + mg;cm =2
termine the outgoing order of the cars. Hence the T
expected pure chain has been rebuilt and the shunt—for Sh, PORP) 2 1+ Rer opt(row) — 2 for Shs and
ing plan continues as was originally scheduled by POR(P) > 1 + malxopt;(m) = 2 for Shs. O
the 2-approximation algorithm in [24]. ©
(3) Since by point 21, is robust with respect td/; By Theorems 4 and 5, the following corollary can be
andAs,, by point 1) it follows thaPOR(P, A,.o;) = stated.
max @200+l co e 1 g O Corollary 1 LetP=(Sha,M;,As) (P=(Shs,M,As2)
iel. optric) = iel optri:c) resp.). There exists a robust shunting algorithm that is

As already said, every upper bound fds holds for P-optimal.

As. Up to now, no better upper bound f@lz has been
found than that of4s. 4.2. One New Car
Letus consider problentsh, andShs. As mentioned
in Section 3., for both these cases, polynomial optimal
algorithms have been proposed in [24]. If we consider

Az, then for bothShy, and Shs, arguments similar to
those of Theorem 1 can be applied, and the following
theorem can be shown.

Theorem 3 LetP = (She, M1, A1) (P=(Shs,Mi,A;)
resp.). There exists &-optimal robust shunting algo-

Given an instancé = (T}, Tout, W, ¢) of the shunt-
ing optimization problemSh, let Mx(i) represent all
possible instance§€T”, , T..., W, c) obtainable from:
by adding one unexpected cathat was not scheduled
in the original train but has to be considered in the ac-
tual shunting. For all problemtsh,, Shs, Shs, v should
be assigned, in general, with a new code. Again, this
) opt(ns.0) might reflect the need of one further track pull.
rithm A, such thatPOR(P, A;op) = TAX 0t (rs,w) Theorem 6 Let P = (Sh, M, A;). No robust shunt-
(POR(P, Ayop) = ax 22tni) resp.). ing algorithm exists.

el 0Pt Proof. In order to have a robust shunting plan with
If we considerA,, then in bothSh, and Shs, for Ay, the unexpected carshould be assigned a priori by

non-ktrlylal plans WekQOkT_ot need tt10 use one aﬁd't'ﬁnfll any robust algorithmi,.,, with a code independent of
track since any track is big enough to contain the whole ;. outgoing placement. On the other hand, each code

train. Hence, there is always enough space to wait for the exactly determines the outgoing position of the corre-

missing car/chain. The only exceptions arise when the g, jing car with respect to all other cars, and the claim
number of track pulls required by the optimal shunting holds O

plan is too small in order to restore the expected car
positions. For instance, this happens wign = T,.;. If we considerA; or As, then it is possible to find
By applying arguments similar to those of Theorem 2, a robust shunting plan. In particular, according to the
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incoming position ofv, it might be enough to assign
it with the same code of some already existent pure
chain. If v has to be placed at the end of the outgoing
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10110, 10111). In this case, an algorithm id, can, for
instance, chang@0000 in 10100. Nevertheless, if the
new car must be inserted betwekhand9, then we do

train, then it may also happen that there are some sparenot have available codes since there is no code avail-

codes available and the problem is easily solvable. If
no codes are available (this happens if the size of the
codes is already minimized according to the number of
cars) or the incoming position af does not allow the

able betweer®0001 and00010. The new car may get
code00001 if it arrives after carl0 or code00010 if it

arrives before both cand) and9. If the new car arrives
before can0 but after cad then we get in trouble since

merge with an existent pure chain, then we need somethere is no way to insert it betweénand 10 without
recovery strategy. Again, the strategy must be as lesschanging other codes. In order to cope with this case we

“invasive” as possible.

Theorem 7 Let P = (Shy, M2, As). There exists a
polynomial robust shunting algorith,..;, such that
POR(P, A,op) = maxZiitLe- ]

icl

opt(r;,c)
Proof. The proofis structured in three parts: 1) We show
that there exists a polynomial shunting algorithm7gr
2) We show that this algorithm is robust; 3) We evaluate
the price of robustness of the proposed algorithm.

(1) We choose asl,.,;, the following modification of
A,.:. We consider tracks of size— 1 instead of

¢ and coded0...0 assigned to the new possible
car. These choices imply the need of additional
track pulls. Moreover, we add one bit, initially set
to zero, in the rightmost position of each code.
By [24] the algorithm is polynomial.

By point 1) A,.,;, provides a set of codes repre-
senting non-consecutive integers. This implies that
wherever a new car has to be considered, there al-
ways exists an available code which an algorithm
in A5 can use to replace cod® . ..0. Moreover,
the constraint omr is preserved by having consid-
eredc — 1 instead ofc. Hence,A,.;, is robust with
respect talM, and As.

Since by point 21, is robust, by point 1) it fol-

_ opt(n;+1,c—1)+1
lows thatPOR(P,A7Ob) = TgIXW
(]

)

®)

In order to better understand the intuition behind the
proof of Theorem 7, we make use of the following ex-
ample. Letl};,, be composed of0 cars plus at most one
new car,T,,; be the reverse permutation @f,,, and
¢ — 1= 3. As in the example of Figure 3, track pulls
are enough to realize the shunting plan and the avail-
able codes are(0000, 00001, 00010, 00011, 00100,
00110, 01000, 01100, 10000, 10001, 11000 that must
be assigned to the possible new car and to cars from
10 to 1, respectively. For instance, if the new car must
be inserted between ca?sand 1, then we have many
available codes (namelyp010, 10011, 10100, 10101,

can consider a different set of codes representing non-
consecutive integers. The new set of codes will be given
by 000000, 000010, 000100, 000110, 001000, 001100,
010000, 011000, 100000, 100010, 110000. Now we
have available codes in between any pair.
Theorem 8 LetP = (Sha,Ms,As) (P=(Shs,M2,As)
resp.). There exists a polynomial robust shunt-
ing algorithm A,,, such that POR(P, A,.p)
opt(ni+1,w)+1 (POR(P7ATOb) _ m?i}XOpt(ni+l)+l
1€

max
il
resp.).

Proof. In Shs, similarly to proof of Theorem 7, we
use one different code for each car and preliminarily
assign codeo . .. 0 to the new car. Again, by scheduling
one additional initial track pull, all codes will be not
consecutive with respect to their integer representation.
As a consequence, between two codes provided, by
there is always a code available that an algorithm in
As can use to replace cod® . ..0. The theorem then
follows by observing that the algorithm proposed in [24]
for She is optimal. Similar arguments hold féth;. O

opt(r;,w) opt(r;) !

Lemma 3 LetP = (Sh, M2, As). Any robust shunting
algorithm A,.,, cannot assign the same code to four
different cars.

Proof. Assume by contradiction that four caisv, w
and z arriving at the hump yard in this order get the
same code i, Lety be an unexpected new car that
must be inserted after and beforew, arriving at the
hump yard before. As y arrives before, and must be
inserted aftew, the two codes associated withandv
must be different from the two codes associated with
andz, since otherwise the four catis v, w andz would
always move all together and there would not be any
possibility to inserty in the middle. This implies that
at least two codes must be changed in order to obtain
the desired configuration. Singg, allows to change at
most one code, the lemma follows. ]

The following corollary is a direct consequence of
Lemma 3.
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Corollary 2 LetP = (Shy,Ms,A3) (P=(Sh2,M3,A>),

n;+1

P = (Shs, M3, As) resp.).POR(P) Zmea}(%

(PORP) = T&X% and PORP) >
opt((ni+1)/3)

maX== ity v 1esp.).

Let us now consider the class of recovery algorithms
As.
Theorem 9 LetP = (Shy,M2,A3) (P=(Sha,M2,A3),
P (Shs, M3, A3) resp.). There exists a poly-
nomial robust shunting algorithmA,.,;, such that
POR(PaArob) = ma}XaPI(TiJFLC
1€

opt(ri,c)) (POR(PvATob) =

opt(rit+1,w) _ opt(ri+1)
I ) and POR(P, A,op) = I
resp.).

Proof. A,,, simply computes a set of codes for the
expected cars by considering that, if a new unexpected
carv arrives, then one additional pure chain might be
created. In this case, any algorithm iy is able to
reassign all codes insertingin the desired positiorJ

Theorem 10 LetP = (Shy,Ms,Az) (P=(Sha,Ms,As3),

P =(Shs,M,,A3) resp.), therPoR(P) > mafi"i;ﬁl;)c)
i€ “
opt(ri+l,w opt(ri+1)
(POR(P) 2 I?eaIX Spgf(Ti,w)) andPOR(P) =z I?eaIX gpg(h’) !

resp.).

Proof. The proof simply follows by observing that the
new unexpected car, according to its required position,
may constitute itself a pure chain. The need of one
further code is then necessary. |

From Theorem 9 and Theorem 10 the following
corollary holds.
Corollary 3 LetP =(Sha,Ms,A3) (P=(Shs,Ms,A3)
resp.). There exists a robust algorithm thaBisoptimal.

4.3. One Missing Car

If we consideriMs, i.e., one missing car, then there
is no change to operate in the scheduled shunting plan
since cars order is preserved. This implies that any fea-
sible shunting algorithmlt,..;, is robust even thougH
is considered. The price of robustness in each case is
then given by the corresponding best known approxi-
mation ratio.

4.4. One Unavailable Track

Given an instancé = (T;,,, Tout, W, ¢) of the shunt-
ing optimization problemSh, let M,(i) represent all
possible instancel’;,,, Tou:, W', ¢) obtainable fromi
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if at most one track may become unavailable before the
scheduled shunting plan is run, i|&’| = || — 1.
Theorem 11 Let P = (Sh, My, A;). No robust shunt-
ing algorithm exists.

Proof. The possible unavailable track is not known in
advance. A robust shunting algorithm should be able to
cope with the malfunctioning of any track by avoiding
to move cars in the unavailable one. It means that, in
general, a strict robust plan should avoid every track.

Theorem 12 Let P = (Shq, My, As). There exists no
robust shunting algorithm when the input instance is
composed of chains withr > w + 1.

Proof. Having r chains implies the need of at least
codes. Since a track may become unavailable,.4nd
allows to change only one code, then each track must
be visited at most by one pure chain. This implies that
there cannot be two different pure chains whose codes
have a bit set td in the same position. It follows that at
mostw+1 codes are available (including codi@. . . 0).
Therefore, ifr > w+1, then there are not enough codes
available to manage chains. |

Theorem 13 LetP = (Shy,My4,As) (P =(Shs,M4,A3)
resp.). There exists a polynomial robust shunting algo-
rithm A,.,, which outputs a set of cod&s such that
POR(P, Ayop) = |C| + 1.

Proof. For Shy, the structure of the proof proceeds in
three parts: 1) We show that there exists a polynomial
shunting algorithm; 2) We show that this algorithm is
robust; 3) We evaluate the price of robustness of the
proposed algorithm.

(1) We choose asl,.,;, the following algorithm. We
consider tracks of siz€ instead ofc and add one
bit, initially set to zero, in the rightmost position
of each code. We assign one different track to each
pure chain (this is feasible sineeis unbounded)
and preserve an empty track as the first to be pulled
out.

If a disturbance occurs, then any algorithmAn

can change the code of the chain supposed to visit
the unavailable track. The change must be done as
follows: first, the considered pure chain is parked
in the first track; after the pull of such a track, the
contained pure chain is moved on top of another
pure chain and merged with it. The constraint on
c is preserved sincd,.,;, considers pure chains of
maximum lengths. Hence, A, is robust with
respect toM, and As.

Since by point 2)A,., is robust, by point 1) we
need one additional track pull, it follows that

)

®3)
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POR(P, Ayop) = rglealxo,‘m‘;tfc) = |C|+ Lwith |C|

being the number of codes generatedAy;,.

Similar arguments hold fashs but the one concern-
ing tracks size constraint. In particular,Gf’ is the set
of codes generated by a robust algorithiy,;, in this

case, thePoR(P, A,.p) = mgx'c/‘“ =|C'|+1. O

opt(r;)

Theorem 14 LetP = (Shy, M4, As3)(P = (Sha,My,As),
P (Shs, My, As) resp.). There exists a poly-
nomial robust shunting algorithmA,.., such that

POR(P, Arop) = max 2t < 3 (POR(P, Ayop) =

opt(ri,w—1+1 _ opt(ri H1
X it ANAPOR(P, Arop) =max oy <
2, resp.).

Proof. In any considered case, the corresponding algo-
rithm proposed in [24] is applied with the only addition
of one track pull. Sincels allows to reassign any code,
the only attention thati,.,, must pay is to preserve one
track available (let such a track be the first scheduled
for the pull) for possible substitution when the distur-

bance occurs. The original set of codes is then enough
to manage the new situation since the same number of

tracks is available. O

Theorem 15 Let P = (Sh,My4,As) (P = (Sh,My,As3)
resp.), therPOR(P) > 2.

Proof. In order to cope with the removal of one track

Train Shunting Problems

5. Conclusion

In this paper we have studied the shunting of train
cars in railways systems from the recoverable robustness
point of view as defined in [26]. Robustness by itself is
a not well defined property for optimization problems
when recovery strategies are available and/or necessary.
We have focused our attention on the definition of ro-
bust algorithms. An algorithm is said to be robust ac-
cording to some allowed recovery strategy, and against
some specified disturbances, if it provides a solution
which is valid also if a disturbance occurs by possibly
applying available recovery strategies. We also provide
a measure for the price of robustness for a robust al-
gorithm as the ratio between its performances and the
performances of an optimal algorithm both applied on
the expected input (without disturbances). The defini-
tion turns out to capture interesting properties among
our evaluations on different shunting problems and sce-
narios. The proposed robust algorithms show how ro-
bustness heavily affects performances. Some algorithms
that are optimal (in the robust meaning) with respect to
some disturbances may become even unfeasible in other
contexts. Another central issue concerns the available
recovery capabilities. Intuitively, the more available re
covery strategies are powerful, the less is the price of
robustness for a robust algorithm. However, we have
shown that there are cases where increasing recovery
capabilities does not affect obtained results. Tables 2, 3
and 4 summarizes the obtained results for all the con-

among the available ones, all the cars planned to moveSidered robustness problems arising fréf, Sh, and

on such atrack by an optimal solution must be redirected
to one or more other tracks. Each pull of the faulty

Shs, respectively.
This paper gives more insight in the complex field of

track must be then reproduced by at least one other "Obust optimization. Many other applications related or

track, and it cannot be completely absorbed by other
track pulls due to the optimality of the solution. Such

a pull must also be planned a priori since bgth and

As cannot affect pulls order. This implies that at least
one additional pull with respect to an optimal solution

must be scheduled a priori by any robust algorithm.

It then follows POR(P) > 1 + malxm = 2 for
1€ v

Shl, POR(P) 2 1+ Hilea,lxm = 2 for ShQ and

PORP) > 1+ mQX; = 2 for Shs. i

opt(r;)
From Theorem 14 and Theorem 15 the following
corollary holds.

Corollary 4 Let P = (Shs, My, As). There exists a
‘P-optimal robust shunting algorithm.

not to shunting problems can be studied by following
our approach.

One interesting future work would be that of consid-
ering multiple disturbances as in the robustness model
proposed in [10]. Another interesting future work would
be also to study the dual of robust algorithms, i.e., re-
covery algorithms. What would be the design of a re-
covery algorithm once fixed the power/capabilities of a
class of robust algorithms?
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