
All rights reserved © Preeminent Academic Facets Inc., 2009 This document is protected by copyright law. Use of the services of Érudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.
https://apropos.erudit.org/en/users/policy-on-use/

This article is disseminated and preserved by Érudit.
Érudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec à Montréal. Its mission is to
promote and disseminate research.
https://www.erudit.org/en/

Document generated on 08/04/2025 7:19 a.m.

Algorithmic Operations Research

Recoverable Robustness for Train Shunting Problems
Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Frigioni
and Alfredo Navarra

Volume 4, Number 2, Fall 2009

URI: https://id.erudit.org/iderudit/aor4_2art03

See table of contents

Publisher(s)
Preeminent Academic Facets Inc.

ISSN
1718-3235 (digital)

Explore this journal

Cite this article
Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D. & Navarra, A. (2009).
Recoverable Robustness for Train Shunting Problems. Algorithmic Operations
Research, 4(2), 102–116.

Article abstract
Several attempts have been done in the literature in the last years in order to
provide a formal definition of the notions of robustness and recoverability for
optimization problems. Recently, a new model of recoverable robustness has
been introduced in the context of railways optimization. The basic idea of
recoverable robustness is to compute solutions that are robust against a limited
set of disturbances and for a limited recovery capabilities. The quality of the
robust solution is measured by its price of robustness that determines the
trade-off between an optimal and a robust solution.
In this paper, within the recoverable robustness model, we emphasize
algorithmic aspects and provide definitions of robust algorithm and price of
robustness of a robust algorithm as a measure to evaluate its performance. A
robust algorithm provides a solution that maintains feasibility by possibly
applying available recovery capabilities in the case of changes to the input data.
We study various settings in the context of shunting problems, i.e. the reordering
of train cars over a hump yard. The considered shunting problems can be seen as
the reordering of an integer vector by means of a set of available stacks with the
further constraint that the pull operation does not involve only the element on
top of a stack, but all the elements contained in the stack.
We provide efficient robust algorithms concerning specific shunting problems. In
particular, we study algorithms able to cope with disturbances, as temporary
and local unavailability and/or malfunctioning of key resources that can occur
and affect planned operations. Various scenarios are considered, and robustness
results are presented.

https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/aor/
https://id.erudit.org/iderudit/aor4_2art03
https://www.erudit.org/en/journals/aor/2009-v4-n2-aor4_2/
https://www.erudit.org/en/journals/aor/

Algorithmic Operations Research Vol.4 (2009) 102–116

Recoverable Robustness for Train Shunting Problems

Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Frigioni

Department of Electrical and Information Engineering, University of L’Aquila, Monteluco di Roio, 67040 L’Aquila, Italy

Alfredo Navarra

Department of Mathematics and Computer Science, University of Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

Abstract

Several attempts have been done in the literature in the lastyears in order to provide a formal definition of the notions
of robustnessand recoverabilityfor optimization problems. Recently, a new model ofrecoverable robustnesshas been
introduced in the context of railways optimization. The basic idea of recoverable robustness is to compute solutions that
are robust against a limited set of disturbances and for a limited recovery capabilities. The quality of the robust solution
is measured by itsprice of robustnessthat determines the trade-off between an optimal and a robust solution.

In this paper, within the recoverable robustness model, we emphasize algorithmic aspects and provide definitions of
robust algorithmand price of robustnessof a robust algorithm as a measure to evaluate its performance. A robust
algorithm provides a solution that maintains feasibility by possibly applying availablerecovery capabilitiesin the case
of changes to the input data. We study various settings in thecontext ofshunting problems, i.e. the reordering of train
cars over a hump yard. The considered shunting problems can be seen as the reordering of an integer vector by means
of a set of available stacks with the further constraint thatthe pull operation does not involve only the element on top
of a stack, but all the elements contained in the stack.

We provide efficient robust algorithms concerning specific shunting problems. In particular, we study algorithms able
to cope withdisturbances, as temporary and local unavailability and/or malfunctioning of key resources that can occur
and affect planned operations. Various scenarios are considered, and robustness results are presented.

Key words: robustness, disturbance, recoverability, robust algorithm, shunting, hump yard

1. Introduction

In practical optimization problems information is of-
ten imperfect. Input data may be subject to changes or
may be completely unknown in advance. In contrast, the
standard optimization theory assumes that input data are
fully known in advance. Hence, it is important to de-
velop methods that consider the unavoidable imperfec-
tion of the input data for the construction of a solution
and for its prompt recovery in the case of disturbances.

⋆ This work was partially supported by the Future and
Emerging Technologies Unit of EC (IST priority - 6th FP),
under contract no. FP6-021235-2 (project ARRIVAL). An
extended abstract of this paper appeared in [9].
Email: Serafino Cicerone, [serafino.cicerone@univaq.it],
Gianlorenzo D’Angelo, [gianlorenzo.dangelo@univaq.it],
Gabriele Di Stefano, [gabriele.distefano@univaq.it], Daniele
Frigioni [daniele.frigioni@univaq.it], Alfredo Navarra
[navarra@dmi.unipg.it].

In this sense, what is needed is a notion ofrecoverable
robust solutionfor an optimization problem, that is a
solution that maintains feasibility by possibly applying
available recovery capabilities in the case of changes to
the input data.

Several attempts have been done in the literature in
the last years in order to provide formal definitions of
the notions ofrobustnessand recoverability for opti-
mization problems. For example, in the area of railway
optimization, the concepts of robustness and recover-
ability have been studied in terms of the classical robust
optimization (see, e.g., [3–5,18]) and online algorithms
(see [22] for an interesting survey), respectively. In par-
ticular, a robust plan is ana priori plan that maintains
feasibility and as much as possible of the quality of an
optimal solution in the case of imperfect information.
An online plan is areal-time plan that has to be de-
veloped when unpredictable disturbances in daily oper-
ations occur, and before the entire sequence of distur-

c© 2009 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.

Serafino Cicerone, et al. – Algorithmic Operations ResearchVol.4 (2009) 102–116 103

bances is known. The goal is to react fast, while retain-
ing as much as possible of the quality of an optimal so-
lution, that is, a solution that would have been achieved
if the entire sequence of disturbances was known in ad-
vance.

Despite this increasing interest, a final answer to the
question “what arerobustnessand recoverability for
an optimization problem?” has not yet been given. In
fact, the notion of robustness in every day life is much
broader than that pursued in the area of robust opti-
mization so far. In the most restricted sense, a robust
plan stays unchanged in every likely scenario. The ba-
sic idea of robustness is given by a problem and some
knowledge imperfection which one has to cope with.
That is, the solution provided for a given instance of the
problem must hold even though some changes in such
an instance occur. This kind of robustness is not always
suitable if some recovery strategies are not introduced.
Moreover, in many practical applications, there might
be the possibility to intervene before some scheduled
operations are being performed. This suggests to study
robustness and recoverability in a unified way.

Usually, modifications that may occur are restricted
to some specified subset of all possible ones. It is rea-
sonable to require that, if a disturbance occurs, then
one would like to maintain as much as possible a pre-
computed solution taking into account some “soft” re-
covery strategies. Recovering should be simple and fast.
Moreover, there are cases where recoverability is nec-
essary in order to still have some useful solution for
a problem. A solution that undergoes slight changes is
called robust even though it could require the use of
some recovery capabilities.

A first tentative of unifying the notions ofrobustness
and recoverability into a new integrated notion ofre-
coverable robustnesshas been done in [26] in the con-
text of railways optimization. This new notion describes
robustness with respect to (limited) recovery possibil-
ities. It integrates robustness and recoverability as the
solutions are required to be recoverable. The basic idea
of recoverable robustness is to compute solutions that
are robust against a limited set of scenarios and for a
limited recovery. The quality of the robust solution is
measured by itsprice of robustnessthat determines the
trade-off between an optimal and a robust solution.

In this paper, based on the directions given in [26],
we emphasize algorithmic aspects and provide a defini-
tion of robust algorithmand a definition for the corre-
spondingprice of robustness. The purpose is to capture
useful properties that help to overcome the standard no-

tion of robustness. Given an optimization problemP , a
modification functionM , and a set of available recovery
strategiesA, the corresponding recoverable robustness
problemP is a triple(P, M,A). Given an instancei of
P , M(i) is the set of the instances obtained by apply-
ing any possible disturbance toi. A robust algorithm
Arob takesi as input and outputs a feasible solution
for i that can be recovered in case of disturbance by
using recovery capabilities inA. In other words, given
an instancei of P and a disturbancej ∈ M(i), algo-
rithm Arob provides a solutions for i that can be turned
into a feasible solution forj by applying some recov-
ery strategies allowed byA. Solutions is then called
a robust solution. Clearly, robust solutions provided by
Arob can be far from the optimum. Such a distance is
measured by the notion of price of robustness. In [26],
the aim is to provide the best robust solution, i.e., the
one that minimizes the price of robustness.

In this paper we are interested in finding efficient ro-
bust algorithms, and evaluating them by comparing the
corresponding prices of robustness. In particular, we are
interested in finding robust algorithms for someshunt-
ing problems(see, e.g. [12,23–25]), that is the schedul-
ing of activities at a shunting yard in depots or stations.
In railroad shunting yards, incoming freight trains are
split up and re-arranged according to their destinations.
In stations and train depots, passenger trains are parked
overnight or during low traffic hours. In either case, we
are given an ordering of arriving units, i.e., either cars
or trains, and we have to decide how to use the tracks
of the shunting yard to reorder the units according to
a required departure sequence. Possible scheduling ac-
tivities are limited by the fixed number of available
tracks, by their length and by the way tracks may be ap-
proached. From a more general point of view, the con-
sidered shunting problems can be seen as the reorder-
ing of an integer vector by means of a set of available
stacks with the further constraint that the pull operation
does not involve only the element on top of a stack, but
all the elements contained in the stack.

In the literature, shunting problems have been stud-
ied along two main directions. The first assumes
a perfect knowledge of the incoming and outgoing
sequences of units, as in the standard optimization
theory, and many results have been achieved (see,
e.g., [6,11,12,15,16,19,23–25]). The second looks at
the shunting problem as an online problem: since the
trains could accumulate lateness before arriving at the
depot, the time of arrival of each train could be unpre-
dictable. The tracks must thus be assigned online, as

104 Serafino Cicerone, et al. – Train Shunting Problems

the trains arrive, on the basis of departure times and
previous assignments [13,14,31].

These two approaches lack in reality, sincedistur-
bances, concerning temporary and local unavailabil-
ity and/or malfunctioning of key resources, can occur
(e.g., different orders of the incoming trains/cars, new
trains/cars, missing trains/cars, or faulty infrastructures
like tracks). These disturbances can affect for exam-
ple the planned incoming unit sequence, but it is also
unlikely that we have no idea about the order of the
sequence, as in the online approach. In this paper, we
provide robust algorithms for the shunting over a hump
yard problem which are able to cope with a limited num-
ber of disturbances, and study their price of robustness.
We also study various levels of robustness according to
different recovery capabilities.

1.1. Related Work

Robustness problems have been addressed in many
fields of research. However, a concrete model that uni-
fies the provided approaches is still missing. In our
context, when no recovery capabilities are allowed, we
talk aboutstrict robustness. Fault tolerance problems
fall into this setting. In fact, when studying a problem
from the fault tolerance prospective, one has to cope
with some possible (limited) disruptions that may oc-
cur after planning a feasible solution. That is, the so-
lution must keep its feasibility even though the input
instance may change after applying the provided solu-
tion. An example of such an approach can be found
in networking problems. In [21], the problem of find-
ing a bi-connected spanning graph of the input net-
work is studied in order to maintain connectivity in
the case an edge becomes unavailable. A similar prob-
lem is studied in [7] but for wireless networks. That
is, in order to achieve the bi-connectivity or the most
generalk-connectivity, one has to opportunely tune the
transmission ranges of the nodes while minimizing the
power consumption. Classical networking problems like
k-shortest paths [17,30], the most vital node [28,32]
and the most vital edge [2,27] of a network also fall
into the set of problems which cope with possible and
limited disruptions. Apart for the robust optimization
approaches previously discussed [3–5,18], other prob-
lems related to strict robustness can also be found in
distributed storage and file sharing systems (see for in-
stance [1,8]). First approaches that allow the possibil-
ity of applying also limited recovery capabilities once
a disruption occurs can be found again in networking

problems, like for instance in [20]. In such a paper, in
fact, the idea was to pre-compute a useful graph which
might be used in order to replace a possible faulty edge
in order to recover the required connectivity. More clas-
sical techniques like parity check bits or RAID (Redun-
dant Array of Independent Disks [29]) systems used for
storage purposes can be also considered as examples
of recoverable robust systems. In fact, they make use
of redundance in order to keep safe the storage of data
subject to limited malfunctions, such as the loss of one
bit, or the damage of an hard disk. In such settings, once
a disruption occurs, a recovery algorithm can re-build
the missing information by making use of the redundant
data preventively stored.

1.2. Outline

The paper is organized as follows: in Section 2., we
describe our modification of the model concerning ro-
bustness for optimization problems given in [26] and
introduce our notions ofrobust algorithmandprice of
robustnessof a robust algorithm; in Section 3., we de-
scribe the shunting over a hump yard problem as given
in [24,25]; in Section 4., we give a robust model to
shunting problems arising in practical contexts, and for
each problem, we provide robust algorithms and eval-
uate their price of robustness; finally, in Section 5., we
give some conclusive remarks and discuss some open
problems.

2. Recoverable Robustness

In this section, motivated by algorithmic issues, we
describe a slightly different formulation of the notion of
recoverable robustness proposed in [26]. In particular,
given an optimization problemP , we first show how to
turn P into a recoverable robustness problemP . Then,
we formally define the notion ofrobust solutionsfor P ,
that is, the feasible solutions forP that also solveP .
Finally, we define the concept ofrobust algorithmfor
P , that is an algorithm that computes the robust solu-
tions forP , and then quantify itsprice of robustness. By
using the theoretically best robust algorithm forP , we
define the price of robustness of problemP . In conclu-
sion, we define the notions ofexactandoptimalrobust
algorithms.

In the remainder, an optimization problemP is char-
acterized by the following parameters.
• I, the set of instances ofP ;

Serafino Cicerone, et al. – Algorithmic Operations ResearchVol.4 (2009) 102–116 105

• F , a function that associates to any instancei ∈ I

the set of all feasible solutions fori;
• f : S → R

+, the objective function ofP , whereS =
⋃

i∈I F (i) is the set of all feasible solutions forP .
Note that, for several optimization problems the objec-
tive function is defined to have values inR. However,
it is possible to turn any such problem into an equiv-
alent one which satisfies our definition. Without loss
of generality, from now on we consider minimization
problems. Additional concepts to introduce robustness
requirements for a minimization problemP are needed:
• M : I → 2I – a modificationfunction for instances

of P . This function models the following case. Let
i ∈ I be the considered input to the problemP , and
let s ∈ S be the planned solution fori. A disturbance
is meant as a modification to the inputi, and such
a modification can be seen as a new inputj ∈ I.
Typically, the modificationj depends on the current
input i, and this fact is modeled by the constraint
j ∈ M(i). Hence, giveni ∈ I, M(i) represents the
set of instances ofP that can be obtained by applying
all possible modifications toi. Of course, when a
disturbancej ∈ M(i) occurs, a new solutions′ ∈
F (j) has to be recomputed forP .

• A – a class ofrecovery algorithmsfor P . Algorithms
in A represent the capability of recovering against
disturbances. Since in a real-world problem the ca-
pability of recovering is limited in some way, the
classA can be defined in terms of some kind ofre-
strictions, such as feasibility or algorithmic restric-
tions. An elementArec ∈ A works as follows: given
(i, s) ∈ I × S, an instance/solution pair forP , and
j ∈ M(i), a modification of the current instancei,
thenArec(i, s, j) = s′, wheres′ ∈ S represents the
recovered solution forP . In what follows we provide
two examples for the definition ofA.

(1) DefineA by imposing a constraint on the solutions
provided by the recovery algorithms. In particular,
the new (recovered) solutions computed by an al-
gorithm must not deviate too far from the original
solutions, according to a distance measured. For-
mally: given a real number∆ ∈ R and a distance
function d : S × S → R, each elementArec in
such a class fulfills the following constraint:

∀i∈I, ∀s∈S, ∀j ∈ M(i), d(s, Arec(i, s, j))≤∆.

(2) DefineA by bounding the computational power
of recovery algorithms. Formally: given a function

f : I × S × I → N, each elementArec in such a
class fulfills the following constraint:

∀i ∈ I, ∀s ∈ S, ∀j ∈ M(i), Arec(i, s, j) must be

computed inO(f(i, s, j)) time.

We can now formally define howP can be transformed
into a recoverable robustness problem.
Definition 1 A recoverable robustness problemP is de-
fined by the triple(P, M,A). All the recoverable ro-
bustness problems form the classRRP.
Definition 2 LetP = (P, M,A) ∈ RRP. Given an in-
stancei ∈ I for P , an elements ∈ F (i) is a feasible
solution for i with respect toP if and only if the fol-
lowing relationship holds:

∃Arec ∈ A : ∀j ∈ M(i), Arec(i, s, j) ∈ F (j).

In other words,s ∈ F (i) is feasible fori with respect
to P if it can be recoveredby applying an algorithm
Arec ∈ A for each possible disturbancej ∈ M(i).
We use the notationFP(i) to represent all the feasible
solutions fori with respect toP . Formally FP(i) is
defined as:

FP(i) ={s ∈ F (i) : s is a feasible solution fori

with respect toP}.

A possible scenario for this situation is depicted in Fig-
ure 1. In the remainder, solutions inFP(i) are also
calledrobust solutionsfor i with respect to the original
problemP .
Definition 3 Let P = (P, M,A) ∈ RRP. A robust al-
gorithmfor P is any algorithmArob such that, for each
i ∈ I, Arob(i) is a robust solution fori with respect to
P .
It is worth to mention that, ifA is the class of algo-
rithms that do not change the solutions, that is, if each
algorithmArec ∈ A fulfills the following condition

∀(i, s) ∈ I × S, ∀j ∈ M(i), Arec(i, s, j) = s,

then the robustness problemP = (P, M,A) represents
the so calledstrict robustness problem. Note that, in
this case, a robust algorithmArob for P must provide
a solutions for i such that, for each possible modifica-
tion j ∈ M(i), s ∈ F (j). This means that, sinceArec

has no capability of recovering against possible distur-
bances, thenArob has to find solutions that “absorb”
anypossible disturbance.

Let us consider Figure 1 again. Note that, ifs̄ denotes
the optimal solution forP when the input instance is

106 Serafino Cicerone, et al. – Train Shunting Problems

S

F (i)

i

s̄

FP(i)

j

M(i)

s

I

Arob(i)

F (j)

s′Arec ∈ A

Fig. 1. A scenario for recoverable robustness problem:I , set of instances;S, set of solutions;M(i), set of instances obtainable
after a small modification;F (i) andF (j), set of feasible solutions fori andj respectively;FP(i), set of recoverable solutions
for i; s̄, optimal non-robust solution fori; s, robust solution obtained byArob; s′, recovered solution obtained by an algorithm
Arec ∈ A after disturbancej ∈ M(i).

i, it is possible that̄s is not in FP(i); this implies that
every robust solution fori may be “very far” froms̄. A
“good” robust algorithm should find the best solution
in FP(i) for P , for each possible inputi ∈ I. The
following definition introduces the concepts ofprice of
robustnessof both a robust algorithm and a recoverable
robustness problem.
Definition 4 Let P ∈ RRP. Theprice of robustnessof
a robust algorithmArob for P is given by

POR(P , Arob) = max
i∈I

{

f(Arob(i))

min{f(x) : x ∈ F (i)}

}

.

Definition 5 Let P ∈ RRP. Theprice of robustnessof
P is given by

POR(P) = min{POR(P , Arob) : Arob is a robust

algorithm forP}.

Definition 6 Let P ∈ RRP and let Arob be a robust
algorithm forP . Then,
• Arob is exactif POR(P , Arob) = 1;
• Arob is P-optimal if POR(P , Arob) = POR(P).
Notice that, the definition of exact robust algorithm al-
ways refers to the problemP .

3. Shunting Over a Hump Yard

In this section, we report the shunting over a hump
yard problem as given in [23–25]. The problem is spec-
ified by an input trainTin composed ofn cars and an
output trainTout given by a permutation ofTin cars.

classification tracks

switches
hump

w

c

IN/OUT track

Fig. 2. Hump yard infrastructure composed ofw classification
tracks, each of sizec.

Each car is assigned with a unique label. The consid-
ered hump yard appears as in Figure 2. The hump yard
is made of an input track where trains arrive, and a set of
switches by which cars composing the incoming train
can be shunted over the available classification tracks.
A classification track is approached from a single side
and works like a stack. The set of classification tracks is
denoted byW , the size ofW is denoted byw, and the
size of each track, i.e., the number of cars that can fit
into a classification track, byc. Therefore, an instance of
the problem is given by a quadruple(Tin, Tout, W, c).

The hump yard supports a sorting operation by re-
peatedly doing the so calledtrack pull operation which
is made up of the following steps:
• Connect the cars of one classification track into a

train, calledpseudotrain;
• Pull the pseudotrain over the hump;
• Disconnect the cars in the pseudotrain;
• Push the pseudotrain slowly over the hump, yielding

single cars that run down the hill from the hump
towards the classification tracks;

Serafino Cicerone, et al. – Algorithmic Operations ResearchVol.4 (2009) 102–116 107

• Control the switches such that every single car goes
to a specified track.
The goal is to reorderTin according toTout by re-

peatedly performing the track pull operation (an exam-
ple of reordering by means of track pulls can be seen
in Figure 3). The cost of the reordering is measured by
the number of track pulls. Notice that, at least one pull
must be performed as the hump yard is used only when
one has to reorder or to park a train.

As in [24], we consider three different variants of
the shunting over a hump yard problem by specifying
constraints for parametersc andw. Namely,
Sh1: c bounded,w unbounded;
Sh2: c unbounded,w bounded;
Sh3: c andw unbounded.

When convenient, we refer toSh as any of the above
problems, indiscriminately, that is, when a result holds
for Sh, then it holds for all problemsSh1, Sh2 andSh3.

In [24], a polynomial algorithm for each of the above
problems is given. In particular, a2-approximation al-
gorithm for Sh1, and optimal algorithms forSh2 and
Sh3, are provided. As in [24], we do not consider the
case ofc andw bounded.

In what follows we describe the notation used
in [24,25] to represent ashunting plan. A shunting plan
specifies (i) a sequenceS of h track pull operations
given by the tracks whose cars are pulled, and (ii) for
every pulled car which track it is sent to. Note that,
if one track is pulled several times, then it appears in
S more than once. Of course, if there is no limit on
the number of tracks (w ≥ h), then there is no need
to reuse a track. GivenS, the itinerary of a car can be
described by the sequence of tracks it visits. For the
task at hand, it is convenient to specify this sequence
as a bit-string or codeb1 · · · bh where the different bits
stand for the pulled tracks, and there is a1 if and only
if the car visits that track. Now, if tracki is pulled, then
the new destination of a car is given by the position of
its next1 in its code, i.e., the lowest indexj > i such
that bj = 1. A shunting plan must specify a track pull
sequenceS and it has to associate a code to each car.
The length of each code is determined by the length of
S and cars may share the same code.

An example is shown in Figure 3. The sequence of
track pulls is given byS = {1, 2, 3, 4, 5} from right to
left among classification tracks. In the examplec = 3
and the number of track pulls is set to5. The set of
codes of length5 provided by a feasible solution satis-
fies the property that at each position at most three codes
have the corresponding bit set to1. This implements

the constraint onc and implies that at most eleven dif-
ferent codes can be generated. Cars from11 down to1
are associated with codes00000, 00001, 00010, 00011,
00100, 00110, 01000, 01100, 10000, 10001, 11000, re-
spectively. Figure 3 shows the sequence of configura-
tions obtained after each track pull and reorder of the
pulled cars according to their codes. The algorithm used
in the example has been proposed in [24]. From now
on, we refer to such an algorithm asAout. It computes
a shunting plan whenc is bounded and the input train
is unknown in advance. In particular,Aout providesn
different codes, one for each car inTin. Each code spec-
ifies the route that the corresponding car has to perform
among the shunting yard in order to be placed in the
desired position according toTout. In [24] it has been
shown thatAout is optimal with respect to the minimum
number of track pulls. For the sake of simplicity, it is
assumed thatTout is composed on a track not used for
shunting operations but that can contain the whole train.

Note that, whenTin is known in advance, two cars
might be assigned with the same code. This would imply
that they will have the same relative order inTout as
in Tin. Two cars that are consecutive inTout can get
the same code if they are in the correct order inTin.
A maximal set of cars inTout that has this property is
called achain.
Definition 7 In a shunting plan, for each codex, apure
chain is the set of all cars associated withx.

In practice, the number of chains inTin along with
the hump yard structure represents the key quantity with
respect to the number of track pulls that must be per-
formed by a shunting plan in order to obtain the desired
Tout. For this reason, in the remainder of the paper, we
use the following further notation:opt(k, c, w) ≥ 1 is
the number of track pulls needed by an optimal shunt-
ing plan in order to managek cars/chains over a hump
yard made ofw tracks, each of sizec (for Sh1 andSh3,
w = ∞, while for Sh2 andSh3, c = ∞); apx(k, c, w)
is the best known approximation algorithm for the cor-
responding shunting problem, andapxr is its approx-
imation ratio. When it is clear by the context we skip
parameters equal to∞ from the previous notation. Fur-
thermore, for every instancei = (Tin, Tout, W, c) we
denote byri andni the number of chains and cars in
Tin, respectively.

4. Disturbances and Recoverability

In this section, we provide robust algorithms for the
shunting problems described in Section 3. and evaluate

108 Serafino Cicerone, et al. – Train Shunting Problems

Fig. 3. Example of a shunting plan whenc = 3 and the number of track pulls is set to5. Cars from11 down to1 are associated
with codes00000, 00001, 00010, 00011, 00100, 00110, 01000, 01100, 10000, 10001, 11000 respectively.Tout is composed
outside the hump yard and the corresponding track is not shown.

their price of robustness as defined in Section 2.. For
example,Sh1 is defined by
• I: set of quadruples(Tin, Tout, W, c) where trainTin

is defined as a sequence of cars and trainTout is a
permutation ofTin;

• F (i): set of all feasible solutions for a given instance
i ≡ (Tin, Tout, W, c) ∈ I, i.e. any sequence of track
pulls combined with a set of codes (one per car) that
transformTin in Tout whenc is bounded;

• f : number of track pulls.
Regarding the modification functionM , we consider

four different possibilities:
M1: it models the case in which one car arrives in an

unexpected incoming position;
M2: it models the case in which the incoming train

contains one additional unexpected car;
M3: it models the case in which the incoming train

contains one car less than expected;
M4: it models the case in which one of the classifica-

tion tracks composing the hump yard may fault.
Concerning classes of recovery algorithms, we con-

sider the following three possibilities:
A1: ∀A ∈ A1, ∀(i, s) ∈ I×S, ∀j ∈ M(i), A(i, s, j) =

s, i.e., there are no recovery strategies to apply (strict
robustness);

A2: ∀A ∈ A2, ∀(i, s) ∈ I×S, ∀j ∈ M(i), A(i, s, j) =

s′, wheres′ may differ froms by at most one code
without affecting the track pull sequence, i.e., at
most one pure chain may be assigned with a new
code of the same length;

A3: ∀A ∈ A3, ∀(i, s) ∈ I×S, ∀j ∈ M(i), A(i, s, j) =
s′, wheres′ may differ froms by all the set of codes
without affecting the track pull sequence, i.e., every
pure chain may be assigned with a new code of the
same length.
Note that each of the three defined classes of recov-

ery algorithms do not affect the scheduled track pulls
sequence defined by a robust shunting algorithm. This is
motivated by the fact that modifying the track pulls se-
quence is expensive as it requires to change the switches
setting or increase the number of track pulls. Recovery
capabilities, instead, should be cheap operations since
they cannot be planned a priori but are used during the
operational phase.

For each shunting problem and for each modifica-
tion function, the three different classes of recovery al-
gorithms imply three different recoverable robustness
problemsP . However, by definition, every upper bound
to the price of robustness of each shunting problem with
A1 holds for the same problem withA2 as well as every
upper bound obtained withA2 holds forA3. Moreover,
every lower bound obtained withA3 holds forA2 as

Serafino Cicerone, et al. – Algorithmic Operations ResearchVol.4 (2009) 102–116 109

well as every lower bound obtained withA2 holds for
A1.

Each Section from 4.1. to 4.4. copes with a modifi-
cation function fromM1 to M4, respectively, and ana-
lyzes the price of robustness of all possible robustness
problems arising from the combination with the shunt-
ing problems and the classes of recovery algorithms.

4.1. One Car With Unexpected Incoming Position

Given an instancei = (Tin, Tout, W, c) of a shunting
optimization problemSh, let M1(i) represent all pos-
sible instances(T ′

in, Tout, W, c) obtainable fromi by
changing the position of just one car inTin. For each
of the three problems of Section 3. we study feasibility
of robust shunting plans for the three different classes
of recovery algorithms defined above.

The following lemma describes which practical situ-
ation a robust plan must be able to absorb/recover with
respect to a car incoming at an unexpected position.
Lemma 1 Letv be a car arriving at the hump yard in a
different position than expected. At most one additional
pure chain must be managed with respect to the expected
case.
Proof. If v composed a pure chain itself, then every
shunting plan is robust since the same code assigned to
v is valid also in the actual case. The same holds in all
cases where the change in the incoming position ofv

does not affect its relative position with respect to the
pure chain it belongs to, orv can be joint with some
other pure chains. In any other case, one pure chain is
created. In the remainder of the proof, we address these
cases.

If v was the first (last, resp.) car of its original chain,
and it arrives after (before, resp.) some cars of that chain
then it becomes a pure chain itself (see Figure 4). All
the other cars of its original pure chain still compose a
pure chain since their relative order do not change.

If v was part (in the middle) of a pure chain thenv

may arrive either before its original pure chain (case
a), or in the middle but before its expected placement
(case b), or in the middle but after its expected place-
ment (case c), or after its original pure chain (case d),
see Figure 5. Ifcase aoccurs, thenv with all cars of
the original pure chain after the expected position of
v still compose a chain but the remaining part of the
original pure chain cannot be assigned with the same
code. Ifcase boccurs, then the same arguments ofcase
a can be applied. Ifcase coccurs then the first part of
the original pure chain until the expected position ofv

plusv compose a pure chain, while the remaining cars
must be another pure chain. Ifcase doccurs, then same
arguments ofcase cstill hold.

Summarizing, in all cases at most one additional pure
chain is created. 2

In a shunting plan, Lemma 1 is reflected in the need of
at most one additional code.
Lemma 2 Let P = (Sh, M1,A1). For every input
train Tin, any robust shunting algorithmArob must
provide a unique code to each car ofTin.
Proof. Let us assume thatArob is robust with respect to
any possible change of one car position. Furthermore, let
us assume by contradiction thatArob assigns the same
code to two carsv andw. Without loss of generality,
let v being expected beforew in Tin. This means thatv
should appear beforew also in the outgoing train. Let
us consider the disturbance wherew precedesv in Tin.
SinceArob associates the same code tov andw, then
w will appear beforev also in the outgoing train. This
contradicts the hypothesis thatArob is a robust shunting
algorithm with respect to any change in the position of
one car. 2

Let us consider problemSh1. As mentioned in Sec-
tion 3., two solutions have been proposed in [24] for
this case. The first solution provides a2-approximation
of the optimum, i.e.,apxr = 2, but it cannot be used
for robustness purposes when consideringA1 since it
does not fulfill the condition of Lemma 2; The second
solution, i.e., algorithmAout described in Section 3.,
turns out to beP-optimal, whenP = (Sh, M1,A1).
Theorem 1 Let P = (Sh1, M1,A1). There exists a
P-optimal robust shunting algorithmArob such that
POR(P , Arob) = max

i∈I

opt(ni,c)
opt(ri,c)

.

Proof. We chooseAout asArob, i.e., we have one differ-
ent code for each car without considering chains. Such
a solution is clearly feasible for any change in the cars
order since it is completely independent on the incom-
ing order. From Lemma 2,POR(P) ≥ max

i∈I

opt(ni,c)
opt(ri,c)

, in

fact every robust algorithm must assign a unique code
to each car, hence it cannot pay less thanopt(ni, c).
Moreover, the solution provided byAout is optimal for
Sh1 when one unique code per car must be assigned and
hence, it follows thatPOR(P , Aout) = max

i∈I

opt(ni,c)
opt(ri,c)

.2

Even though Aout is P-optimal for A1, i.e.,
POR(P , Arob) = POR(P), it is not exact since in gen-
eralopt(n, c) ≥ opt(r, c).

It is worth noting that the number of codes provided

110 Serafino Cicerone, et al. – Train Shunting Problems

v v

v v2) v

expected position

1)

actual position

v

Fig. 4. A representation of the case whenv is the first (last, resp.) car of a pure chain and it arrives after (before, resp.) some cars
of the same pure chain. The concatenation of boxes of the samegray scale represents a pure chain; the dotted box represents Tin.

v

v

v

v

Original setting

v

v

va)

b)

c)

d)

v

v

Fig. 5. A representation of casesa, b, c andd. The concatenation of boxes of the same gray scale represents a pure chain; the
dotted box representsTin.

by the shunting algorithmArob of Theorem 1 is at most
c times the number of codes provided by the optimal
solution. In fact, we are in the case of tracks of bounded
sizec, and hence there cannot be more thanc cars asso-
ciated with the same code. This implies that if a chain
is composed by more thanc cars, then it must be split
into more classification tracks.
Theorem 2 Let P = (Sh1, M1,A2). There exists a
polynomial robust shunting algorithmArob such that
POR(P , Arob) ≤ 3.
Proof.The proof is structured in three parts: 1) We show
that there exists a polynomial shunting algorithm forP ;
2) We show that this algorithm is robust; 3) We show
that the price of robustness of this algorithm is less than
or equal to3.
(1) By Lemma 1, the change in the order of one car

may produce at most one additional pure chain,
hence at most one additional code is necessary to
cope with such occurrence. By the2-approximated

solution proposed in [24] forSh1, the need of
one additional code might imply the need of one
additional track pull since it might be that codes
of the original solution are already the maximum
number available to manageri chains. However,
we are underSh1 assumptions, i.e., the number
of tracks is unbounded. This implies that a robust
algorithm must provide one additional track pull
(i.e., the solution provided performs a number of
track pull upper bounded byapx(ri, c) + 1). This
can be obtained by choosing asArob an algorithm
that calculates codes as in [24] forSh1 and then
adding one bit (initially set to zero) corresponding
to the new pull. Clearly, the proposed algorithm
is polynomial since we add just one track pull
operation to the2-approximated solution proposed
in [24], which is polynomial.

(2) In order to prove thatArob is robust we need to
show that the modification of at most one code as

Serafino Cicerone, et al. – Algorithmic Operations ResearchVol.4 (2009) 102–116 111

defined byA2 is enough in order to make the so-
lution provided byArob feasible with respect to
any disturbance defined byM1. Let v be the car
subject to disturbanceM1. From Lemma 1, ifM1

occurs, then the pure chain containingv is split in
at most two pure chains denoted astop andbot-
tom. Without loss of generality, let us assume that
v belongs tobottom. Then an algorithm inA2 sim-
ply assigns the same code as planned byArob to v

andbottom, and the same code but with the first bit
set to one totop. By construction, the first pulled
track containstop. This implies that the number of
cars composingtop is less thanc, otherwise they
could not have been associated with the same code
by Arob. Once the first pull has been performed,
top will be placed abovebottom, since their codes
differ by just the first bit. Note that, there can be
other cars betweenbottomand top, but this does
not influence the solution since codes exactly de-
termine the outgoing order of the cars. Hence the
expected pure chain has been rebuilt and the shunt-
ing plan continues as was originally scheduled by
the2-approximation algorithm in [24].

(3) Since by point 2)Arob is robust with respect toM1

andA2, by point 1) it follows thatPOR(P , Arob) =

max
i∈I

apx(ri,c)+1
opt(ri,c)

≤ 2 + max
i∈I

1
opt(ri,c)

= 3. 2

As already said, every upper bound forA2 holds for
A3. Up to now, no better upper bound forA3 has been
found than that ofA2.

Let us consider problemsSh2 andSh3. As mentioned
in Section 3., for both these cases, polynomial optimal
algorithms have been proposed in [24]. If we consider
A1, then for bothSh2 andSh3, arguments similar to
those of Theorem 1 can be applied, and the following
theorem can be shown.
Theorem 3 LetP=(Sh2,M1,A1) (P=(Sh3,M1,A1)
resp.). There exists aP-optimal robust shunting algo-
rithm Arob such thatPOR(P , Arob) = max

i∈I

opt(ni,w)
opt(ri,w)

(POR(P , Arob) = max
i∈I

opt(ni)
opt(ri)

resp.).

If we considerA2, then in bothSh2 and Sh3, for
non-trivial plans we do not need to use one additional
track since any track is big enough to contain the whole
train. Hence, there is always enough space to wait for the
missing car/chain. The only exceptions arise when the
number of track pulls required by the optimal shunting
plan is too small in order to restore the expected car
positions. For instance, this happens whenTin ≡ Tout.
By applying arguments similar to those of Theorem 2,

we can show the following theorem.
Theorem 4 LetP=(Sh2,M1,A2) (P=(Sh3,M1,A2),
resp.). There exists a polynomial robust shunt-
ing algorithm Arob such that POR(P , Arob) =

max
i∈I

opt(ri,w)+1
opt(ri,w) = 1+max

i∈I

1
opt(ri,w) = 2 (POR(P , Arob)

≤ 1 + max
i∈I

1
opt(ri)

= 2, resp.).

Concerning the price of robustness of the problem,
the following theorem holds.
Theorem 5 Let P = (Sh, M1,A2). ThenPOR(P) ≥
2.
Proof. By Lemma 1, the change in the order of one
car might imply the need of at most one additional code
which in turn implies the need of one additional track
pull. However, in order to be robust with respect to
the considered disturbance, such additional track pull
must be planned a priori by any robust algorithmArob

since every algorithm inA2, by definition, affects only
codes. This impliesPOR(P) ≥ 1 + max

i∈I

1
opt(ri,c)

= 2

for Sh1, POR(P) ≥ 1 + max
i∈I

1
opt(ri,w) = 2 for Sh2 and

POR(P) ≥ 1 + max
i∈I

1
opt(ri)

= 2 for Sh3. 2

By Theorems 4 and 5, the following corollary can be
stated.
Corollary 1 LetP=(Sh2,M1,A2) (P=(Sh3,M1,A2)
resp.). There exists a robust shunting algorithm that is
P-optimal.

4.2. One New Car

Given an instancei = (Tin, Tout, W, c) of the shunt-
ing optimization problemSh, let M2(i) represent all
possible instances(T ′

in, T ′
out, W, c) obtainable fromi

by adding one unexpected carv that was not scheduled
in the original train but has to be considered in the ac-
tual shunting. For all problemsSh1, Sh2, Sh3, v should
be assigned, in general, with a new code. Again, this
might reflect the need of one further track pull.
Theorem 6 Let P = (Sh, M2,A1). No robust shunt-
ing algorithm exists.
Proof. In order to have a robust shunting plan with
A1, the unexpected carv should be assigned a priori by
any robust algorithmArob with a code independent of
its outgoing placement. On the other hand, each code
exactly determines the outgoing position of the corre-
sponding car with respect to all other cars, and the claim
holds. 2

If we considerA2 or A3, then it is possible to find
a robust shunting plan. In particular, according to the

112 Serafino Cicerone, et al. – Train Shunting Problems

incoming position ofv, it might be enough to assign
it with the same code of some already existent pure
chain. If v has to be placed at the end of the outgoing
train, then it may also happen that there are some spare
codes available and the problem is easily solvable. If
no codes are available (this happens if the size of the
codes is already minimized according to the number of
cars) or the incoming position ofv does not allow the
merge with an existent pure chain, then we need some
recovery strategy. Again, the strategy must be as less
“invasive” as possible.

Theorem 7 Let P = (Sh1, M2,A2). There exists a
polynomial robust shunting algorithmArob such that
POR(P , Arob) = max

i∈I

opt(ni+1,c−1)+1
opt(ri,c)

.

Proof. The proof is structured in three parts: 1) We show
that there exists a polynomial shunting algorithm forP ;
2) We show that this algorithm is robust; 3) We evaluate
the price of robustness of the proposed algorithm.

(1) We choose asArob the following modification of
Aout. We consider tracks of sizec − 1 instead of
c and code00 . . .0 assigned to the new possible
car. These choices imply the need of additional
track pulls. Moreover, we add one bit, initially set
to zero, in the rightmost position of each code.
By [24] the algorithm is polynomial.

(2) By point 1) Arob provides a set of codes repre-
senting non-consecutive integers. This implies that
wherever a new car has to be considered, there al-
ways exists an available code which an algorithm
in A2 can use to replace code00 . . .0. Moreover,
the constraint onc is preserved by having consid-
eredc−1 instead ofc. Hence,Arob is robust with
respect toM2 andA2.

(3) Since by point 2)Arob is robust, by point 1) it fol-
lows that POR(P , Arob) = max

i∈I

opt(ni+1,c−1)+1
opt(ri,c)

.
2

In order to better understand the intuition behind the
proof of Theorem 7, we make use of the following ex-
ample. LetTin be composed of10 cars plus at most one
new car,Tout be the reverse permutation ofTin, and
c− 1 = 3. As in the example of Figure 3,5 track pulls
are enough to realize the shunting plan and the avail-
able codes are:00000, 00001, 00010, 00011, 00100,
00110, 01000, 01100, 10000, 10001, 11000 that must
be assigned to the possible new car and to cars from
10 to 1, respectively. For instance, if the new car must
be inserted between cars2 and1, then we have many
available codes (namely,10010, 10011, 10100, 10101,

10110, 10111). In this case, an algorithm inA2 can, for
instance, change00000 in 10100. Nevertheless, if the
new car must be inserted between10 and9, then we do
not have available codes since there is no code avail-
able between00001 and00010. The new car may get
code00001 if it arrives after car10 or code00010 if it
arrives before both cars10 and9. If the new car arrives
before car10 but after car9 then we get in trouble since
there is no way to insert it between9 and10 without
changing other codes. In order to cope with this case we
can consider a different set of codes representing non-
consecutive integers. The new set of codes will be given
by 000000, 000010, 000100, 000110, 001000, 001100,
010000, 011000, 100000, 100010, 110000. Now we
have available codes in between any pair.

Theorem 8 LetP=(Sh2,M2,A2) (P=(Sh3,M2,A2)
resp.). There exists a polynomial robust shunt-
ing algorithm Arob such that POR(P , Arob) =

max
i∈I

opt(ni+1,w)+1
opt(ri,w) (POR(P , Arob) = max

i∈I

opt(ni+1)+1
opt(ri)

,

resp.).

Proof. In Sh2, similarly to proof of Theorem 7, we
use one different code for each car and preliminarily
assign code00 . . . 0 to the new car. Again, by scheduling
one additional initial track pull, all codes will be not
consecutive with respect to their integer representation.
As a consequence, between two codes provided byArob

there is always a code available that an algorithm in
A2 can use to replace code00 . . .0. The theorem then
follows by observing that the algorithm proposed in [24]
for Sh2 is optimal. Similar arguments hold forSh3. 2

Lemma 3 LetP = (Sh, M2,A2). Any robust shunting
algorithm Arob cannot assign the same code to four
different cars.

Proof. Assume by contradiction that four carsu, v, w

and z arriving at the hump yard in this order get the
same code inArob. Let y be an unexpected new car that
must be inserted afterv and beforew, arriving at the
hump yard beforeu. As y arrives beforeu and must be
inserted afterv, the two codes associated withu andv

must be different from the two codes associated withw

andz, since otherwise the four carsu, v, w andz would
always move all together and there would not be any
possibility to inserty in the middle. This implies that
at least two codes must be changed in order to obtain
the desired configuration. SinceA2 allows to change at
most one code, the lemma follows. 2

The following corollary is a direct consequence of
Lemma 3.

Serafino Cicerone, et al. – Algorithmic Operations ResearchVol.4 (2009) 102–116 113

Corollary 2 LetP=(Sh1,M2,A2) (P=(Sh2,M2,A2),

P = (Sh3, M2,A2) resp.).POR(P)≥max
i∈I

opt(
ni+1

3
,c)

opt(ri,c)

(POR(P) ≥ max
i∈I

opt((ni+1)/3,w)
opt(ri,w) and POR(P) ≥

max
i∈I

opt((ni+1)/3)
opt(ri)

, resp.).

Let us now consider the class of recovery algorithms
A3.
Theorem 9 LetP=(Sh1,M2,A3) (P=(Sh2,M2,A3),
P = (Sh3, M2,A3) resp.). There exists a poly-
nomial robust shunting algorithmArob such that
POR(P , Arob) = max

i∈I

apx(ri+1,c)
opt(ri,c)

(POR(P , Arob) =

max
i∈I

opt(ri+1,w)
opt(ri,w) and POR(P , Arob) = max

i∈I

opt(ri+1)
opt(ri)

,

resp.).
Proof. Arob simply computes a set of codes for the
expected cars by considering that, if a new unexpected
car v arrives, then one additional pure chain might be
created. In this case, any algorithm inA3 is able to
reassign all codes insertingv in the desired position.2

Theorem 10 LetP=(Sh1,M2,A3) (P=(Sh2,M2,A3),
P=(Sh3,M2,A3) resp.), thenPOR(P)≥max

i∈I

opt(ri+1,c)
opt(ri,c)

(POR(P)≥max
i∈I

opt(ri+1,w)
opt(ri,w) andPOR(P)≥max

i∈I

opt(ri+1)
opt(ri)

,

resp.).
Proof. The proof simply follows by observing that the
new unexpected car, according to its required position,
may constitute itself a pure chain. The need of one
further code is then necessary. 2

From Theorem 9 and Theorem 10 the following
corollary holds.
Corollary 3 LetP=(Sh2,M2,A3) (P=(Sh3,M2,A3)
resp.). There exists a robust algorithm that isP-optimal.

4.3. One Missing Car

If we considerM3, i.e., one missing car, then there
is no change to operate in the scheduled shunting plan
since cars order is preserved. This implies that any fea-
sible shunting algorithmArob is robust even thoughA1

is considered. The price of robustness in each case is
then given by the corresponding best known approxi-
mation ratio.

4.4. One Unavailable Track

Given an instancei = (Tin, Tout, W, c) of the shunt-
ing optimization problemSh, let M4(i) represent all
possible instances(Tin, Tout, W

′, c) obtainable fromi

if at most one track may become unavailable before the
scheduled shunting plan is run, i.e.|W ′| = |W | − 1.
Theorem 11 LetP = (Sh, M4,A1). No robust shunt-
ing algorithm exists.
Proof. The possible unavailable track is not known in
advance. A robust shunting algorithm should be able to
cope with the malfunctioning of any track by avoiding
to move cars in the unavailable one. It means that, in
general, a strict robust plan should avoid every track.2

Theorem 12 Let P = (Sh2, M4,A2). There exists no
robust shunting algorithm when the input instance is
composed ofr chains withr > w + 1.
Proof. Having r chains implies the need of at leastr

codes. Since a track may become unavailable, andA2

allows to change only one code, then each track must
be visited at most by one pure chain. This implies that
there cannot be two different pure chains whose codes
have a bit set to1 in the same position. It follows that at
mostw+1 codes are available (including code00 . . .0).
Therefore, ifr > w+1, then there are not enough codes
available to manager chains. 2

Theorem 13 LetP=(Sh1,M4,A2) (P=(Sh3,M4,A3)
resp.). There exists a polynomial robust shunting algo-
rithm Arob which outputs a set of codesC such that
POR(P , Arob) = |C| + 1.
Proof. For Sh1, the structure of the proof proceeds in
three parts: 1) We show that there exists a polynomial
shunting algorithm; 2) We show that this algorithm is
robust; 3) We evaluate the price of robustness of the
proposed algorithm.
(1) We choose asArob the following algorithm. We

consider tracks of sizec2 instead ofc and add one
bit, initially set to zero, in the rightmost position
of each code. We assign one different track to each
pure chain (this is feasible sincew is unbounded)
and preserve an empty track as the first to be pulled
out.

(2) If a disturbance occurs, then any algorithm inA2

can change the code of the chain supposed to visit
the unavailable track. The change must be done as
follows: first, the considered pure chain is parked
in the first track; after the pull of such a track, the
contained pure chain is moved on top of another
pure chain and merged with it. The constraint on
c is preserved sinceArob considers pure chains of
maximum lengthc

2 . Hence,Arob is robust with
respect toM4 andA2.

(3) Since by point 2)Arob is robust, by point 1) we
need one additional track pull, it follows that

114 Serafino Cicerone, et al. – Train Shunting Problems

POR(P, Arob) = max
i∈I

|C|+1
opt(ri,c)

= |C| + 1 with |C|

being the number of codes generated byArob.

Similar arguments hold forSh3 but the one concern-
ing tracks size constraint. In particular, ifC′ is the set
of codes generated by a robust algorithmArob in this
case, thenPOR(P , Arob) = max

i∈I

|C′|+1
opt(ri)

= |C′| + 1. 2

Theorem 14 LetP=(Sh1,M4,A3)(P=(Sh2,M4,A3),
P = (Sh3, M4,A3) resp.). There exists a poly-
nomial robust shunting algorithmArob such that
POR(P , Arob) = max

i∈I

apx(ri,c)+1
opt(ri,c)

≤ 3 (POR(P , Arob)=

max
i∈I

opt(ri,w−1)+1
opt(ri,w) , andPOR(P , Arob)=max

i∈I

opt(ri)+1
opt(ri)

≤

2, resp.).

Proof. In any considered case, the corresponding algo-
rithm proposed in [24] is applied with the only addition
of one track pull. SinceA3 allows to reassign any code,
the only attention thatArob must pay is to preserve one
track available (let such a track be the first scheduled
for the pull) for possible substitution when the distur-
bance occurs. The original set of codes is then enough
to manage the new situation since the same number of
tracks is available. 2

Theorem 15 Let P = (Sh,M4,A2) (P = (Sh,M4,A3)
resp.), thenPOR(P) ≥ 2.

Proof. In order to cope with the removal of one track
among the available ones, all the cars planned to move
on such a track by an optimal solution must be redirected
to one or more other tracks. Each pull of the faulty
track must be then reproduced by at least one other
track, and it cannot be completely absorbed by other
track pulls due to the optimality of the solution. Such
a pull must also be planned a priori since bothA2 and
A3 cannot affect pulls order. This implies that at least
one additional pull with respect to an optimal solution
must be scheduled a priori by any robust algorithm.
It then follows POR(P) ≥ 1 + max

i∈I

1
opt(ri,c)

= 2 for

Sh1, POR(P) ≥ 1 + max
i∈I

1
opt(ri,w) = 2 for Sh2 and

POR(P) ≥ 1 + max
i∈I

1
opt(ri)

= 2 for Sh3. 2

From Theorem 14 and Theorem 15 the following
corollary holds.

Corollary 4 Let P = (Sh3, M4,A3). There exists a
P-optimal robust shunting algorithm.

5. Conclusion

In this paper we have studied the shunting of train
cars in railways systems from the recoverable robustness
point of view as defined in [26]. Robustness by itself is
a not well defined property for optimization problems
when recovery strategies are available and/or necessary.
We have focused our attention on the definition of ro-
bust algorithms. An algorithm is said to be robust ac-
cording to some allowed recovery strategy, and against
some specified disturbances, if it provides a solution
which is valid also if a disturbance occurs by possibly
applying available recovery strategies. We also provide
a measure for the price of robustness for a robust al-
gorithm as the ratio between its performances and the
performances of an optimal algorithm both applied on
the expected input (without disturbances). The defini-
tion turns out to capture interesting properties among
our evaluations on different shunting problems and sce-
narios. The proposed robust algorithms show how ro-
bustness heavily affects performances. Some algorithms
that are optimal (in the robust meaning) with respect to
some disturbances may become even unfeasible in other
contexts. Another central issue concerns the available
recovery capabilities. Intuitively, the more available re-
covery strategies are powerful, the less is the price of
robustness for a robust algorithm. However, we have
shown that there are cases where increasing recovery
capabilities does not affect obtained results. Tables 2, 3
and 4 summarizes the obtained results for all the con-
sidered robustness problems arising fromSh1, Sh2 and
Sh3, respectively.

This paper gives more insight in the complex field of
robust optimization. Many other applications related or
not to shunting problems can be studied by following
our approach.

One interesting future work would be that of consid-
ering multiple disturbances as in the robustness model
proposed in [10]. Another interesting future work would
be also to study the dual of robust algorithms, i.e., re-
covery algorithms. What would be the design of a re-
covery algorithm once fixed the power/capabilities of a
class of robust algorithms?

References

[1] L. Alvisi, S. Rao, and H.M. Vin. Low-overhead protocols
for fault-tolerant file sharing. InProceedings of the
18th International Conference on Distributed Computing
Systems (ICDCS), pages 452–461. IEEE, 1998.

Serafino Cicerone, et al. – Algorithmic Operations ResearchVol.4 (2009) 102–116 115

Table 1

Shunting ProblemSh1

Modifications A1 A2 A3

M1 POR(P) ≥ max
i∈I

opt(ni,c)
opt(ri,c)

≥ 2 ≥ 2

POR(P , Arob) max
i∈I

opt(ni,c)
opt(ri,c)

3 3

M2 POR(P) indef. ≥ max
i∈I

opt((ni+1)/3,c)
opt(ri,c)

≥ max
i∈I

opt(ri+1,c)
opt(ri,c)

POR(P , Arob) no solution max
i∈I

opt(ni+1,c−1)+1
opt(ri,c)

max
i∈I

apx(ri+1,c)
opt(ri,c)

M3 POR(P) 1 1 1
POR(P , Arob) 2 2 2

M4 POR(P) indef. ≥ 2 ≥ 2
POR(P , Arob) no solution |C| + 1 3

Price of Robustness forSh1

Table 2

Shunting ProblemSh2

Modifications A1 A2 A3

M1 POR(P) ≥ max
i∈I

opt(ni,w)
opt(ri,w)

≥ 2 ≥ 2

POR(P , Arob) max
i∈I

opt(ni,w)
opt(ri,w)

2 2

M2 POR(P) indef. ≥ max
i∈I

opt((ni+1)/3,w)
opt(ri,w)

≥ max
i∈I

opt(ri+1,w)
opt(ri,w)

POR(P , Arob) no solution max
i∈I

opt(ni+1,w)+1
opt(ri,w)

max
i∈I

opt(ri+1,w)
opt(ri,w)

M3 POR(P) 1 1 1
POR(P , Arob) 1 1 1

M4 POR(P) indef. indef. ≥ 2

POR(P , Arob) no solution no solution max
i∈I

opt(ri,w−1)+1
opt(ri,w)

Price of Robustness forSh2

Table 3

Shunting ProblemSh3

Modifications A1 A2 A3

M1 POR(P) ≥ max
i∈I

opt(ni)
opt(ri)

≥ 2 ≥ 2

POR(P , Arob) max
i∈I

opt(ni)
opt(ri)

2 2

M2 POR(P) indef. ≥ max
i∈I

opt((ni+1)/3)
opt(ri)

≥ max
i∈I

opt(ri+1)
opt(ri)

POR(P , Arob) no solution max
i∈I

opt(ni+1)+1
opt(ri)

max
i∈I

opt(ri+1)
opt(ri)

M3 POR(P) 1 1 1
POR(P , Arob) 1 1 1

M4 POR(P) indef. ≥ 2 ≥ 2
POR(P , Arob) no solution |C| + 1 2

Price of Robustness forSh3

[2] Y.P. Aneja, R. Chandrasekaran, and K.P.K. Nair.
Maximizing residual flow under arc destruction.
Networks, 38(4):194–198, 2001.

[3] H. G. Bayer and B. Sendhoff. Robust Optimization
- A Comprehensive Survey. Computer Methods in
Applied Mechanics and Engineering, 196(33-34):3190–
3218, 2007.

[4] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski.

Mathematical Programming: Special Issue on Robust
Optimization, volume 107. Springer, Berlin, 2006.

[5] D. Bertsimas and M. Sim. The price of robustness.
Operations Research, 52(1):35–53, 2004.

[6] U. Blasum, M.R. Bussieck, W. Hochstättler, C. Moll,
H.-H. Scheel, and T. Winter. Scheduling trams in
the morning. Mathematical Methods of Operations
Research, 49(1):137–148, 1999.

116 Serafino Cicerone, et al. – Train Shunting Problems

[7] G. Calinescu and P. Wan. Range assignment for
biconnectivity and k-edge connectivity in wireless ad
hoc networks. Mobile Networks and Applications,
11(2):121–128, 2006.

[8] G. Chockler, R. Guerraoui, I. Keidar, and M. Vukolic.
Reliable distributed storage.IEEE Computer, 42(4):60–
67, 2009.

[9] S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni,
and A. Navarra. Robust algorithms and price of
robustness in shunting problems. InProceedings
of the 7th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems
(ATMOS), pages 175–190. Schloss Dagstuhl, 2007.

[10] S. Cicerone, G. Di Stefano, M. Schachtebeck, and
A. Schöbel. Dynamic algorithms for recoverable
robustness problems. InProceedings of the 8th
Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS). Schloss
Dagstuhl, 2008.

[11] S. Cornelsen and G. Di Stefano. Track assignment.
Journal of Discrete Algorithms, 5(2):250–261, 2007.

[12] E. Dahlhaus, P. Horak, M. Miller, and J. F. Ryan.
The train marshalling problem. Discrete Applied
Mathematics, 103(1-3):41–54, 2000.

[13] M. Demange, G. Di Stefano, and B. Leroy-Beaulieu. On
the online track assignment problem. Technical Report
ARRIVAL-TR-0028, ARRIVAL Project, December
2006.

[14] M. Demange, G. Di Stefano, and B. Leroy-Beaulieu.
Online Bounded Colorings. InProceedings of 4th
Latin-American Algorithms, Graphs and Optimization
Symposium (LAGOS), 2007.

[15] G. Di Stefano and M.L. Koči. A graph theoretical
approach to the shunting problem.Electr. Notes Theor.
Comput. Sci., 92:16–33, 2004.

[16] G. Di Stefano, Jens Maue, Maciej Modelski, A. Navarra,
Marc Nunkesser, and John van den Broek. Models for
rearranging train cars. Technical Report ARRIVAL-TR-
0089, ARRIVAL Project, 2007.

[17] D. Eppstein. Finding the k shortest paths.SIAM Journal
on Computing, 28(2):652–673, 1999.

[18] M. Fischetti and M. Monaci. Robust optimization
through branch-and-price. InProceedings of the 37th
Annual Conference of the Italian Operations Research
Society (AIRO), 2006.

[19] R. Freling, R. M. Lentink, L. G. Kroon, and D. Huisman.
Shunting of passenger train units in a railway station.
Transportation Science, 39(2):261–272, 2005.

Received 24-11-2008; revised 11-06-2009; accepted 31-08-
2009

[20] A. Galluccio and G. Proietti. Polynomial time algorithms
for 2-edge-connectivity augmentation problems.
Algorithmica, 36(4):361–374, 2003.

[21] N. Garg, V. Santosh, and A. Singla. Improved
approximation algorithms for biconnected subgraphs
via better lower bounding techniques. InProceedings
of the 4th annual ACM-SIAM Symposium on Discrete
algorithms (SODA), pages 103–111. SIAM, 1993.

[22] M. Groetschel, S. O. Krumke, and J. Rambau. Online
optimization of complex transportation systems. In
Online Optimization of Large Scale Systems, pages 705–
730. Springer, 2001.

[23] R. S. Hansman and U. T. Zimmermann. Optimal
sorting of rolling stock at hump yard. InMathematics
- Key Technology for the Future: Joint Project Between
Universities and Industry, pages 189–203. Springer,
2008.

[24] R. Jacob. On shunting over a hump. Technical Report
576, Institute of Theoretical Computer Science, ETH
Zürich, 2007.

[25] Riko Jacob, Peter Marton, Jens Maue, and Marc
Nunkesser. Multistage methods for freight train
classification. InProceedings of the 7th Workshop on
Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS), pages 158–174.
Schloss Dagstuhl, 2007.

[26] C. Liebchen, M. Lüebbecke, R. H. Möhring, and
S. Stiller. Recoverable robustness. Technical Report
ARRIVAL-TR-0066, ARRIVAL Project, 2007.

[27] E. Nardelli, G. Proietti, and P. Widmayer. A faster
computation of the most vital edge of a shortest
path. Information Processing Letters (IPL), 79(2):81–
85, 2001.

[28] E. Nardelli, G. Proietti, and P. Widmayer. Finding the
most vital node of a shortest path. InProceedings
of the 7th International Computing and Combinatorics
Conference (COCOON), volume 2108 ofLNCS, pages
278–287. Springer, 2001.

[29] D. Patterson, G. Gibson, and R. Katz.A Case
for Redundant Arrays of Inexpensive Disks (RAID).
University of California Berkley, 1988.

[30] L. Roditty. On the k-simple shortest paths problem in
weighted directed graphs. InProceedings of the 18th
annual ACM-SIAM symposium on Discrete algorithms,
pages 920–928. SIAM, 2007.

[31] T. Winter and U. Zimmermann. Real-time dispatch of
trams in storage yards.Annals of Operations Research,
96:287–315(29), 2000.

[32] Y.Chen, A. Hu, K. Yip, J. Hu, and Z. Zhong. Finding
the most vital node with respect to the number of
spanning trees. InIEEE International Workshop on
Neural Networks for Signal Processing, volume 2, pages
1670–1673, 2003.

