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Abstract

We address reoptimization issues for the Steiner tree pmbWe assume that an optimal solution is given for some
instance of the problem and the objective is to maintain agmdution when the instance is subject to minor modification
the simplest such modifications being vertex insertions deidtions. We propose fast reoptimization strategiester t
case of vertex insertions and we show that maintenance obd golution for the “shrunk” instance, without ex nihilo
computation, is impossible when vertex deletions occuralfe provide lower bounds for the approximation ratios of
the reoptimization strategies studied.
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1. Introduction integer metric ofV. A Steiner tree fofV, R) is a Steiner
tree for ((V, (%)), R).

Given a graphG = (V, E), a subsetR C V of its
vertex-set (the so-callgdrminalvertices), and nonneg- - ) A g :
ative integer weight§w(e) : ¢ € E} on the edges comblnatorlalopt_|m|zat_|on_pro_blem_s|n network_des_|gn.
of G, the Steiner tree problem consists in finding a light- "€ frequency with which it arises in such applications
est Steiner tree fofG, R), i.e., a subtred of G with motivates numerous works on this problem, under sev-
R C V(T (where the weight of a tree is given by the eral assumptions, hypotheses a_nd models._ Ste|.ner treeis
sum of the weights of its edges). weI_I known.to beNP—hard. The first apprOX|mat|on_ al-

We will assume in the sequel that the graghis gor!thml_‘or I appeared in [1] (See aI;o [10,15]).Th|s_ al-
complete, and that the weights on the edges induce ag_orlthm is a_pr_lmal-dual generalization of the following
non-negative integer metric on the subsets of size 2 S'”_‘p'e heu”_St'C: compute the shortest paths be_tvx_/een all
of V, i.e., that for every three verticasy, z € V, the pairs of termlnal vertices and then compute aminimum-
triangle inequality:w(z2) < w(zy) + w(z=) holds. cost spanning tree over the shortest-path weighted com-

Therefore, an instance of the Steiner tree problem is of plete graph with vertex-sek. Removal of redundant

the form(V, R, w) whereR C V andw is a nonnegative edges might be needed in order to transform the tree
Y - so computed to a Steiner tree@f The approximation

Email: Bruno Escoffier [escoffier@lamsade.dauphine.fr], ratio achigved bY this algorit_hm is bounded from above
Martin Milanic  [martin.milanic@upr.sil, = Vange- by 2. If G is metric, then a minimum-cost spanning tree
lis Th. Paschos [paschos@lamsade.dauphine.fr]. on the induced subgragh[R] (in what follows, given a

L Part of this work was carried out while the author was with SUbset’” of vertices of a grapkr, we denote by[V"]

the LAMSADE on a visiting researcher position supported the subgraph of induced byl’) achieves the same ap-
by a common CNRS-NSF research project “Algorithmic De- proximation ratio. This result has been improved in [13]
cision Theory” between the LAMSADE and the DIMACS.  down to 1.55 in complete metric graphs and to 1.28 for

The Steiner tree problem is one of the most famous

(© 2009 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All rigdreserved.
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complete graphs with edge costs 1 and 2. A survey of handled in this paper. In Section 2., we handle inser-
approximation results for Steiner tree problem can be tion of one vertexc in the initial graph. We provide a
found in [10]. tight 3/2-approximation ratio in both cases wherés
In this paper we address threoptimizationissue terminal or nonterminal. In Section 3., we handle in-
where the following situation is considered. We are sertions of more than one vertex in the graph. In Sec-
given an optimum solution of an initial instance and we tion 3.1., we study insertion gf > 1 nonterminals and
wish to maintain a good solution efficiently, when the We prove, for this case also, a tight 3/2-approximation
instance is slightly modified. This working framework ratio for REOPT. On the other hand, in Section 3.2., we
has already been adopted for several optimization prob- assume thai vertices are inserted,of which being ter-
lems, such as scheduling problems ([5,6,14]) for prac- minals. For this case we show that the ratidREOPT
tical applications, and classical polynomial problems, is2—1/(k+2), while its lower bound i —2/(k+2).
such as the minimum spanning tree, where the goal is In Section 4., we provide a general lower bound on the
to recompute the optimum solution as fast as possible approximation ratios for a class of solution structures
([9,11]). It has been also addressed for the minimum showing, informally, that if one tries to keep a good ap-
traveling salesman problem in [2] and recently for both proximation ratio for the modified solution, one even-
minimum and maximum traveling salesman problems tually has to consider vertices that are not contained in
in [4,7], see [3] for a survey on the topic of reoptimiza- the initial optimal solution.
tion. Finally, for the complementary problem of vertex re-
For the Steiner tree problem handled here, we assumemovals from the initial graph, we show in Section 4.
that an optimal solutioff,,,,, has already been computed  that, sometimes, complete recomputation of a new so-
for a metric complete grap when some minor mod- lution for the “shrunk” instance is unavoidable.
ification occurs in the graph. This modification may be
th_e arrival of some (one or more)_new vertices together 5 e Vertex is Added
with the edges linking them t6/ (in such a way that
the extended grapt’ remains complete and metric), In this section, we consider two cases, according to
or the removal of some vertices 6f (together with the  \yhether the new vertex is terminal or not.
edges linking them to the surviving graph). Then, the
question is: “can one maintain, or at least mpd|fy VerY 51 The New Vertex is Nonterminal
quickly the existing solution, in order to obtain a good

solution for the modified instance without the need to | et7"be an optimum solution for an instandé R, w)
recompute such a solution thoroughly?”. The quality of of the Steiner tree problem. Suppose that a nonterminal
a solution is measured by computing its approximation vertex, sayz, is added tol together with new edges

ratio. More precisely, iff” is a Steiner tree fofV, R), {zy : y € V} and their weights such that the new
then we say thal" is a p-approximationfor (V, R, w) instance is again metric. LeE, denote a minimum
if w(T) < pw (Topr) WhereTqy, is a solution to the  spanning tree on the vertex-setU {x}.

Steiner tree problem. We say thais the approxima- We consider the algorithREOPT which consists in
tion ratio achieved byr". computing the best solution betweErandT, (ties bro-

Note that very recently, complexity and approxima- ken arbitrarily). Obviously, its complexity is the one of
tion algorithms for reoptimizing the Steiner tree prob- computation of a minimum spanning tree on the com-
lem have been obtained under another local modifica- plete graph induced b U {x}, i.e., O(|R|? log | R]).

tion setting, consisting of changing the status (termi- Theorem 1 REOPT is a 3/2-approximation algorithm.
nal/non terminal) of one vertex ([8]). This bound is tight.

In what follows, we propose a simple reoptimization Proof. Let 7' denote an optimal Steiner tree in the ex-
strategy, calledREOPT, mainly based upon a minimum  tended graph, anfi’ the solution computed bREOPT.

spanning tree computation adapted for the case stud-If = ¢ V(T'), thenT is optimum (and so i§"”). So we

ied (terminal, or nonterminal vertices), that efficiently may assume that € V(7). Let {z1,...,zx} be the

tackles the case of vertex insertions in the graph. Let us set of neighbors of in V(7). Removingr from T" re-
note that most of the approximation algorithms known sults in a forest” consisting oft > 1 treesTy, ..., Ty

for the Steiner tree problem seem to be hard to adaptwith =; € V(T;) for i € [k] (in what follows, we de-
in order to tackle dynamic situations such as the ones note by|[k] the set of integers from 1 tb). Note that
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k < |R|, since every tred; contains at least one termi-
nal vertex. Letly denote the set of edges incidentito

in 7. Then: .

o(7)=3ou(5)
Now, link the verticeszy, ...,z with a pathP =
(z1,...,zr). Together with the trees; (i > 1), this is
a Steiner tree on the initial graph, the value of which
is at leastw(T"). By triangle inequality, we get that
w(P) < 2w(Tp). Therefore:

k

w(T) <w(T) <20 (Ty) + > w (7)) @)

=1

Let i € [k]. Using an Euler tour onT; (and
triangle inequalities), we can easily find a path
P, = (a:i,v},...,vfi) starting in z; and contain-
ing all the terminal vertices)}, ..., v of T; such
that w(P;) < 2w(T;). Then, using again the trian-
gle inequality (v(xz;) + w(z;vl) > w(zv})), we
get that the path(z,v},...,v;") has value at most
w(zx;) + 2w(T;). Then, the union of thesé paths
(z,0},.. .,vfi) is a Steiner tred"” of value at most
w(Tp) + 222“:1 w(T;). Since this is a spanning tree
on RU {z}, we obtain:

w(T") <w(Ty) <w(T") <w (TO) +2zk:w (T)

i=1
2)
The sum of (1) and (2) leads to:

20(T") <3 w(Ty) = 3w(T),

k
i=0

which proves the upper bound claimed.

For the tightness of the lower bound, consider the fol-
lowing instance (see Figure 1). In the initial graph, there
are two groupd/; andV; of n terminal vertices each,
and one nonterminal vertex The weight between
and a vertex inV; is equal to 1, as well as the weight
between the new vertex and any vertex in; also,
the weight between andv is 1. All other weights are
equal to 2.

Then, on the initial instance, an optimum solutitn
is given by the union of all edges betweeand a vertex
in V1 and a path starting in and containing all the
vertices inVa: w(T') = 3n.

Given the symmetry of the final instance, it is easy
to see that an optimum spanning tree B {z} has

Bruno Escoffier et al. — Reoptimizations for the Steiner TPeeblem

Fig. 1. Instance with edges of weight 1.

the same value. However, the Steiner tree depicted in
Figure 1 has valuén + 1.

Finally, let us note that this example also shows that
the result remains tight even if we consider instances
with all the weights 1 or 2

If the number of terminal vertices is small, then one
can slightly improve the bound of TheoremRECPT
is a p’-approximation algorithm, where:

1 3 1

2@—7%)_5_2Om—1)

p<2 -

(3)

Indeed, when computing the path by triangle inequal-
ity we get thatw(P) < Zf;ll (w(zx;) +w(rxiyr)) =
2w(Ty) — w(zzy) — w(zxy). Choosing (without loss
of generality, by relabeling if necessary); andxxy
as the two heaviest among the edges, we have
w(zzy) + wlzzy) > 2w(Ty)/k and thenw(P) <
2(1 — 1/k)w(Tp). Then, inequality (1) becomes

k
w(T) < w(T) <20 - 1/kpw (To) + " w ()
Adding this new inequality with coefficient 1 and in-
equality (2) with coefficient — 2/k, and using the fact
thatk < |R| leads to (3).

If, instead of starting with an optimal solutiof,
we start from gp-approximate solution, a slight mod-
ification of the proof of Theorem 1 easily leads to the
fact that the solution computed BREOPT is a p'-
approximation, wherep’ < min{2,3p/(1+ p)}. In-
deed, inequality (2) is still valid (hence the approxima-
tion ratio is always bounded above by 2) and inequal-
ity (1) becomesw (7”) < 2pw (TO) o328 L w (TZ)
Adding this new inequality with coefficient 1 and in-
equality (2) with coefficient gives the upper bound
3p/(1+ p).

Finally, if we redefinel” to be the shortest amorig
T,, andT”, whereT” denotes a minimum spanning
tree on the vertex-se¥' (T') U {z}, then the so ob-
tained algorithm again has a tight approximation ratio
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of 3/2 — ©(1/|R)).

The result given here allows one to measure the qual-

ity of the initial solutionT" in the final instance if no
reoptimization at all is allowed.
Proposition 1 Let T' be a p-approximation for an in-
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by a pathP, = (z1,...,2%), then the union ofP,
andT; is a tree of value at mogtw(Ty) — w(zz,) —
(zzxy) +Z '~ w(T;). Then, to get a Steiner tree, we
have to connect. Note that eacll; (and in particu-
lar Tl) has at least one terminal vertex. If we linkto
one terminal vertex off;, then this edge has value at

stance(V, R, w) of the Steiner tree problem. Suppose mostw(za) + w(T}).

that a nonterminal vertex, say, is added toV to-
gether with new edgefey : y € V'} and their weights
such that the new instance is again metric. THEns

SinceT is an optimum solution on the initial instance,
w(T) < 2w(Ty) — w(zzr) — wlwzy) + X, w(T).
Moreover, since each terminal vertex is ¥(7T), the

ap -approximation for the extended instance such that: edge used bRECPT to connectz has value at most
p < 2(1—(1/|R]))p. This bound is sharp. w(zay) + w(T1). Then:

Indeed, from the previous discussion we easily get
w(T) < 2p(1 — 1/k)w (TO) + piZl w (TZ) and w(T) +w (zz1) +w (Tl)
the approximation ratio follows. For the sharpness of &

the bound, let the weights of edges connecting the new < 2w (TO) +> w (TZ) T w
vertexx to the vertices ofR be equal to 1, and let all i1
the remaining edge-weights be equal to 2. If we take

the current Steiner tree to be an optimal Steiner tree We can do the same thing choosing, insteadofeach

w (T/I) <

(Tl) —w (zxk)

in G, thenw(T) = 2(|R| — 1), while the new optimal
weight is|R).

2.2. The New Vertex is Terminal

of the T}’s:

(T")<2w(T0)+Z ( )—i—w(T) w(zzj_1)

In this subsection, we consider the case when the Summing up these inequalities leads to:

added vertex is terminal. As previously, [Etbe an op-
timum solution for an instanc@’, R, w) of the Steiner
tree problem. Suppose that a terminal vertex, saig
added toV" together with new edgelsry : y € V'} and

kw (T") < (2k — 1w (To) F(k+1) zkjw (T) (5)

=1

their weights such that the new instance is again metric. Adding (4) with coefficientk — 2) and (5) with coef-
Let T, denote a minimum spanning tree on the vertex- ficient 1 gives:

setR U {z}, and letT” denote the tre§’, augmented
with a lightest edge connecting a vertex®fwith z.
In this caseREOPT computes the solutiofi” which

is eitherT,, andT”, whichever is cheaper (ties broken

arbitrarily). The running time i© (| R|? log | R|).
Theorem 2 REOPT is a 3/2-approximation algorithm.
Furthermore, this bound is tight.

Proof. As in the proof of Theorem 1, lety, ...,z
denote the neighbors of in an optimum solutioril’
on the extended graph, I&, . .., T, be the connected
components obtained by removindrom 7' (with z; €
V(T3)), and IetTO be the union of edgesz;. Then
w(T’) = Zf o w(T3), and, as previously, the minimum
spanning tred, on R U {z} satisfies:

w(B) 2w (7)) @

If, as in the proof of Theorem 1, we link the vertices

w(T) <w(T,) <

k
(2k = 2)w (1) < 3k — 3) > _w(T)
=0

The tightness of the lower bound follows from the in-
stance given in the proof of Theorem 1 (Figure 1, con-
sidering nowz as a terminal vertexJi

As in Theorem 1, this result can be slightly improved
when the number of terminal vertices is small. More pre-
cisely, using the fact that we can assume that each non-
terminal vertex has degree at least 3 in an optimum so-
lution (since each optimum solution can be easily trans-
formed into another one where the degree of all nonter-
minal vertices is at least 3), one can see that linking
a terminal vertex of; costs at most(zx;) 4+ w(T};) /2.
Then, inequality (5) becomes

Ea

kw (T") < (2k — 1)w ( ) (k+1/2) Zw( )

i=1
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Adding this new inequality with coefficient 1 and
inequality (4) with coefficientk — 3/2) shows that the
output solutionig(3/2)—(1/(8|R|—6)))-approximate.

Moreover, as previously, if we start from a-
approximate solution instead of an optimum one, we
get amin{2, 3p/(p + 1) }-approximate solution.

As in the previous subsection, the result given here
allows one to measure the quality of the initial solu-
tion T in the final instance if no reoptimization at all is
allowed i.e., T is maintained and we are only allowed
to connectr).

Proposition 2 Let T' be a p-approximation for an in-
stance(V, R, w) of the Steiner tree problem (witl®| >

2). Suppose that a terminal vertex, sayis added td/
together with new edgdsy : y € V'} and their weights
such that the new instance is again metric. L&tde-
note the treel’, augmented with a lightest edge con-
necting a vertex ofR with x (ties broken arbitrarily).
Then, T is a p’-approximation for the extended in-
stance such thay’ < (2 — (1/|R|))p-

The bound directly follows from the fact that

kw (T") < (2k —1)pw (To) Fk+1D)p S w (T)
(andk > 2 otherwiseT” is optimum). The same in-

stance as in Proposition 1 shows the sharpness of they

bound.

3. More Vertices are Added

In this section, we consider two cases, according to
whether a set of nonterminal vertices or a set including
both terminal and nonterminal vertices is inserted into
the current graph.

3.1. Nonterminal Vertices

LetT be an optimum solution for an instan@dé R, w)
of the Steiner tree problem. Suppose thatontermi-
nal verticesY” = {y1,...,y,} are added td” together

with new edges and their weights such that the new

instance is again metric.

We generalizeREOPT as follows. ForY’ C Y,
let Ty, denote a minimum spanning tree on the
vertex-setR U Y'. REOPT computes the solutiof”

which is the cheapest one among the trees from

{T}U{Ty' : Y’ C Y} (ties broken arbitrarily). The
running time is at mosO (27 (|R| + p)?log (| R| + p)).
Theorem 3 REOPT is a 3/2-approximation algorithm.
This bound is tight.

Bruno Escoffier et al. — Reoptimizations for the Steiner TPeeblem

Proof. LetY = V(T) NY be the set of new vertices
used by an optimum solutiofi. We consider the con-
nected components, . . ., 7}, of the subgraph obtained
from 7' when we remove the new vertices. Moreover,
let us denote by, ..., X, the connected components
of the subgraph obtained froffi when we remove the
initial vertices. Finally, if in7" there is an edge be-
tween7; and X;, we denote this edge by;;. Note
that the bipartite grapt® = [U, L, E] where E is the
set of these edges;, U = {T},i = 1,...,k} and
L={X;,j=1,...,q}, is atree. Obviously:

k q
w (T) = Zw (TZ) + Zw(Xl) +w (E) (6)

i=1 j=1
First, we bound from above the value of the initial so-
lution 7'. Starting fromT", we remove all theX;’s (and
edges incident to it), in order to get a solution on the
initial instance.

ConsiderX; and add to it the edges; of T inci-
dent to it (together with the vertex df; extremity of
edgee;;). This is a tree; using an Euler tour on this
tree (and removing the vertices i;), we can connect

theT;’s adjacent taX; using a pathP; of value at most
(’U}(Xj) + Dijen; e wij). More precisely, if we note

dx, = max,, .p{w(ei;)}, since we compute a path
and not a cycfe, we can find a path such that:

w(P) <2 w(X)+ Y wy

’i‘ei]‘ EE

—dx,

J

Replacing all theX;’s (and edges incident to it) by the
pathsP;, we get a solution on the initial instance, the
value of which is at least the value 8t

w(T) <Y w (Ti)+2zq:w (X;)+2w (E)— _

q
dx,
=1 )= j=

1

(7)
Now, we bound from above the value of a minimum
spanning tred’;, on R U Y. Starting fromT’, now we
have to remove nonterminal vertices from thés. We
use the same technique. Consifierand the edges;;
of T incident to it. Again, this is a tree and using a Euler
tour on this tree, we can connect thg's adjacent tdl}
and the terminal vertices &, (if any) using a pathP;.
As previously, if we denoté;, = max . . z{w(ei;)},
we can find a path such that(P}) < 2(w(T}) +

j|e7;j GE wl]) - dTI '



Bruno Escoffier et al. — Algorithmic Operations Research4/42009) 86—94 91

Replacing theT;’s (and edges incident to it) by 3.2. Several Terminal and Nonterminal Vertices are
the P/’s, we get a tree oilR U Y, the value of which is Added
at leastw (75 ):
LetT be an optimum solution for an instan@é R, w)

k k of the Steiner tree problem. Suppose thavertices
Ty) <22w( )+Zw +2w( ) Z Y = {y1,...,y,} are added toV together with
i=1 = i=1 new edges and their weights such that the new in-
(8) stance is again metric. Among thegenew vertices,
Summing up (7) and (8), we get that the solutibh Y, = {y,,...,y,} are terminal, while the remaining
computed byREOPT satisfies: p — t are nonterminal.

As in the case where only nonterminal vertices are

k 1 added, forY” such thatt; C Y’ C Y, let Ty~ denote a
3Zw( ) + 32“’ minimum spanning tree on the vertex-§2t) Y. Also,
=l 7=1 we consider a minimum spanning tr&€Y;) on the new
b 1 terminal vertices, and link this tree o using a lightest
( ) Zd deﬂ edge (ties broken arbitrarily) betweén and V(7).

1 =1 N . .
= I This gives a solutio™”.

To conclude, using (6), we just have to show that 1nen,REOPT computes the solutiofi’ which is the
Z Ldyg, + > dx, > w(E ) The left hand side cheapest one among the trees frgff'} U{Ty : T} C
= j= =

corresponds to summing up, for each vertex in the Y’ C Y} (ties broken arbitrarily).

tree B, the heaviest edge incident to this vertex. This Theorem 4 REOPTisa(2—(1/(t + 2)))-approximation
sum is obviously greater than the total weight~) of algorithm.

the edges irB: to see this, just consider tha{ F) can

be seen as the sum, for each vertex (except the root)
of the edge linking this vertex to its fathdr.

The complexity ofREOPT is obviously exponential
in p (since, starting from easy instances whire- V 2,
REOPT is, in particular, a 3/2 approximate algorithm for - X )
the Steiner tree problem). This is not of major impor- thanew(T') (the value of will be specified later);
tance for our purpose since we look for reoptimization (2) wrer < ew(T).
strategies undeninor modification®f the instance. In the first case, lety andv; be two terminal vertices

Consider now the following strategy: output the bet- Such thatw(vov) > ew(T). Consider the tre€ rooted
ter among the given initial optimum solutigh and a  at vo, and consider a depth-first visit af, when v,
p-approximate solution to the Steiner tree problem on is on the right hand side branch of the tree (the last
RUY produced by some polynomial algorithin It is visited). Then, if we stop this visit when visiting for

Proof. As previously, let us denote ¥ an optimum
'Steiner tree ofG. The proof of the theorem is based
upon the following two cases:

(1) the maximum weightwr,, between two ter-
minal vertices (either new or initial) is greater

easy to prove that this strategy gives# (1 + p) ap- the second time, we have a path on all verticek f),
proximate solutiod . This might be an interesting trade-  Of value at mosRw(1") — w(vov1) (thanks to triangle
off between running time and approximation wheis inequalities). Hence, a minimum spanning tree on the
too large for an exhaustive lookup asREOPT but still terminal vertices has value at mdgt— e)w(7').

much smaller than the number of nonterminal vertices. | the second case, revisit the proof of Theorem 3, in
Note finally that hard cases for Steiner tree occur only particular (8) shown there (we use the same notations):
when the number of terminals is large, since otherwise
the problem can be optimally solved ([12]). N N
Ty) <2 w( )—i— w —|—2w(~)— d+.
2 An optimal solution of these instances is a minimum span- Yo ; z_: ; ‘
ning tree, which can be easily computed. (9)

% Using the fact thaf\ is p-approximate, and inequalities (7) ~ Note that this solutiofTy is still feasible, andv(7") <
and (8). w (Ty).
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Reuvisit also (7):

q q
w(@) <Y w () +2 ) w(X)+2w (B)-3 dx,
i=1 j=1 j=1
(10)
Of course,T' is not feasible (as soon as> 1). But
since the weight between any two terminal vertices is at
mostzw(T'), we can connect thenew terminal vertices
to an initial one with a path of value at mastu (7). In
other words, the solutioh” satisfiesw(7T") < w(T) +
tew(T). Using the fact thato(T) = Y5 w(T)) +

> -1 w(X;) +w(E), we get from (10):

q

w(@) <1 +t) > w (T) + @ +1) P w(X;)+

i=1

(2+te)w (E) - Zq:dxj

J=1

J=1

(11)

SinceT” is better tharf™’ andTy, we can sum up (9)
and (11). Using the fact thaf]_, dx, +>7_, dx, >
w(FE), we obtain:

20(1) <G +t) > w (T;) + (B +1e) 3w (X)) +

i=1 j=1

(3 + te)w (E) =B +to)w (T)

So, the solutio?” is both a(2 — ¢)- and a(3 + t¢)/2-
approximation. Letting: = 1/(¢ + 2), we obtain the
result.

Note finally that the running time is roughly

O(max{2"~"(|R| + p)*log(|R| + p),t* logt, t|T|}).

When the number of new nonterminal vertices is small,
this is very quickll

The result of Theorem 4 is independent on the num-
ber of nonterminal vertices added. Wheeg: 0, this is
the 3/2-approximation fop new nonterminal vertices.
Moreover, this bound is almost tight as shown in The-
orem 5 (Section 4.).

4. Negative Results

In the context of reoptimization, it seems natural to
reuse the pre-computed solution when the initial in-
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computations of a new solution but they rather exploit
existing ones. Hence, a natural question is to determine
whether it is always possible to maintain a good approx-
imation ratio using only vertices of the initial solution
plus, eventually, some newly added ones.

The next result shows that this is not the case. Infor-
mally, if we wish to keep a good approximation ratio,
we have to consider vertices not contained in the cur-
rent solution as well.

Theorem 5 Let T be an optimum solution for an in-
stance(V, R, w) of the Steiner tree problem, anxi be

the set of new vertices (either terminal or not). Bdbe

an algorithm for the reoptimization problem that pro-
duces a Steiner tree whose vertex-set is contained in
V(T) U X. Then, the following holds:

(1) if X = {z} (one vertex is added, either terminal
or not), A cannot achieve an approximation ratio
better than7/5; furthermore, if edge-weights are
either 1 or 2,A cannot achieve an approximation
ratio better thand/3;

2 if X = {x1,...,2¢} where, fori € [t], x; is
terminal ¢ terminal vertices are addedp can-
not achieve an approximation ratio better than
2 —(2/(t+2)), even if edge-weights are either 1
or 2.

Proof. We first deal with item 1. We consider the
graph G; on 5 vertices{v;, u},u? u?,t;} (see Fig-
ure 2), with the following weights:
o w(v;ul) =1, fork,1 € [3];

o w(ukbul) =2,fork,l €3],k #1,
o w(tyuk) =4/3, for k € [3];

The initial graph is composed of copiesGy, ...,G,
of G;, where{u¥ : k € [3],i € [n]} are terminal ver-
tices, with the following weights, foi, j € [n]:

w(titj) =3—¢fori # 7;

o all the other weights (between vertices of different

copies) are equal to 4.

This instance is metric. An optimum soluti@hon this
instance is given by taking edges:”, for k € [3] and
i € [n], and by linking vertices; by a path(¢1, . .., t,).
Its total weightisw(T") = 4n+(3—€)(n—1) ~ (T—e)n.

Now, we add the new vertex, wherew(zv;) = 2,
w(zuf) = 3, andw(xt;) = 3+4/3 = 13/3 (fork € [3]
andi € [n]). Assume that: is nonterminal. Theng is
useless to improve the solutidh by considering only
vertices inV/ (T'). However, the solutioff’ consisting in
taking the edgeswv; andv,u¥, for k € [3] andi € [n],

stance is subject to modifications. So, we are interestedhas valuesn. If, on the other handy is terminal, the

in particular in algorithms that do not perform ex nihilo

result is the same.
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Fig. 2. GraphG; (other weights correspond to shortest paths).

In the case of weights 1 or 2, we can get a similar
result with a bound of 4/3. We use the same kind of
graph, but instead of consideririg;, we considerH;
on 4 vertices{v;,u},u?,t;} (see Figure 3) with the
following weights:

o w(vukf) =1, fork € [2];

o w(tyuk) =1, fork € [2];

o all other weights are equal to 2.

The initial graph is composed of copiesHy, ..., H,

of H;, with weight 2 between vertices of different
copies.

(%

t;
Fig. 3. GraphH; with edges of weight 1.

An optimum solution?” for this instance is given by
taking edges;u¥, for k € [2] andi € [n], and by
linking verticest; by a path(ty, . . ., t,). Its total weight
isw(T)=2n+2(n—1)=4n —2.

Now, we add the new vertex, wherew(zv;) = 1,

i € [n], all other weights being equal to 2. Thenjs
useless to improve the solutidh by considering only
vertices inV (7).

However, the solutioril’ consisting in taking the
edgeszv; and v;uf, for k € [2] andi € [n], has
value3n. This completes the proof of item 1.

For the proof of item 2, i.e., for the case where
terminal vertices are added, consider that the initial
graph has 3 vertices,, v2, v3, With w(v;v2) = 2 and
w(v1v3) = w(vavs) = 1. Verticesv; andwv, are termi-
nal. An optimum solution i§" = {v;v2}. Then, add
terminal vertices, such that the weights betwegand
the new vertices are 1, and all other weights are 2.

Then, an optimum solution without considering
has value2(t + 1), whereas a star centereddp has
valuet + 2.1
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We now handle reoptimization when a vertex is
removed from the graph. We so have an initial in-
stance(V, R, w) of the Steiner tree problem, and one
vertexx € V is deleted. Of course, the strategy con-
sisting of computing a minimum spanning tree on the
set of surviving terminal vertices is a 2-approximation.
If we consider, as previously, algorithms operating on
some vertex-set contained W(T) \ {z}, then we
cannot improve this ratio.

Theorem 6 Let T" be an optimum solution for an in-
stance(V, R, w) of the Steiner tree problem, ande V/

a vertex deleted from the current graph. l&ebe an al-
gorithm for the reoptimization problem that produces a
Steiner tree whose vertex-set is contained (") \ {z }.
Then,A cannot achieve an approximation ratio better
than2, even if edge-weights are either 1 or 2.

Proof. Let us consider an initial instance consistingof
terminal vertices, . .., v,, and two nonterminal ver-
ticesz andy. Weights between terminal vertices are 2,
as well asw(zy), while all other weights are 1. Then
a starT’ onvy, ..., v, centered in: is an optimum so-
lution of the initial instance. When deleting vertex
the best solution included i\ {z} is a spanning tree
onvy,...,v,, whose value i(n — 1), while a star on
v1,...,v, centered iny has valuen. i

5. Conclusion

We have presented in this paper simple and fast re-
optimization algorithms for the Steiner tree problem.
We have handled insertion of one vertexn the ini-
tial graph. We have provided reoptimization techniques
achieving tight non-trivial approximation ratios for the
cases where one or more vertices are inserted in the
initial instance. We also have provided lower bounds
showing that good approximation ratios cannot always
be obtained without considering vertices that are not
contained in the initial optimal solution. Finally, we
have shown that when handling vertex removals, com-
plete recomputation of a new solution for the resulting
instance is sometimes unavoidable.

The analysis presented in the paper leaves several
open questions that, to our opinion, deserve further re-
search.

(1) Can one devise a reoptimization with a ratio better
than 3/2 in the case where edge-weights are 1 or 2?
We feel that a tight approximation ratio of 4/3
should be possible.

(2) The second question deals with the matching of
the upper and lower bounds BECPT in the case
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®3)
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where several terminal and nonterminal vertices

are added (Section 3.2.). Is it possible to get a [6]

lower bound o2 —1/(t+2), or an upper bound of
2—2/(t+2), or finally, to cross them somewhere

between? Can the negative result of 7/5 in item 1 7]

of Theorem 5 be tightened?

Can we find “general” lower bounds whgmon-
terminal vertices are added? Is it possible, for in-
stance, to get a bound of 3/2 whgmonterminal
vertices are added?
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