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Approximated MLC shape matrix decomposition with interleaf collision
constraint

Antje Kiesel and Thomas Kalinowski
Institut fur Mathematik, Universitat Rostock, 18051 Rk, Germany

Abstract

Shape matrix decomposition is a subproblem in radiatiorrae planning. A given fluence matri® has to be
decomposed into a sum of shape matrices corresponding t@demous fields that can be shaped by a multileaf
collimator (MLC). We solve the problem of minimizing theixdely time for an approximation ofl satisfying certain
prescribed bounds, under the additional condition that tised MLC requires the interleaf collision constraint.

Key words: Intensity modulated radiation therapy (IMRT); multileallimator; combinatorial optimization; programming
involving graphs

1. Introduction geneous fields which are shaped by the MLC. The two
most important objectives in the optimization problem
are the total irradiation time, or delivery time (DT), and

the tumor tissue. At the same time one has to minimize the number of used fields, or decomposition cardinality
the damage to the healthy tissue, and in particular to (DC). Starting with ,[2] and [6].there have been pro-
sensible structures or organs at risk. Intensity modulated po;ed ;everal algorlthms_ for this prc_)blem [3,10,15,16],
radiation therapy was introduced in order to improve [@King into account additional machine dependent con-
the quality of radiation treatment. In clinical practice it straints as the interleaf CO”'.S'On constraint [1,7] or the
is common to use a linear accelerator which can releasetongue-and-groove constraint [11] (see [8] or [9] for a
radiation from different directions (Fig. 1). In addition, survey).

a multileaf collimator (MLC) (Fig. 2) can be used to All of these algorithms start with the given fluence
protect certain parts of the irradiated area. matrix A and construct a sequence of leaf positions re-
alizing this matrix. But from a practical point of view
there seem to be some doubits if it is reasonable to con-

In modern cancer therapy radiation is used to destroy

For the treatment planning, the first step is to deter-
mine a set of directions (typically 3-9), from which ra- id fixed 4 for all. Fi h
diation is released, given by positions of the isocenter, S'der every entry;;; as fixed once and for all. First, the

table angles and gantry angles [5,13]. In a second Stelo’matrix Aisa refsult. c_)f numerjcal computations which
for each direction the fluence distribution is optimized, are based on simplified physical models of how the ra-

subject to the required dose distribution in the target, diation passes through the patients body, and second,
The final step is to determine, for each fluence distribu- 1€ representation ol as a superposition of homoge-
tion, a corresponding sequence of MLC leaf positions. N€0US fields is also based on model assumptions which
Recently, there have been attempts to formulate the op-2'€ not strictly correct, for instance the dose dellve.red
timization problem more globally [5,14], but most of to an exposed b|xe! (_jepends on _the _shape of the field.
the widely used treatment planning systems model the So it might be sufficient, to realize (in our model) a

three steps independently. In this paper we consider theMatrix that is close tod. It is a natural question, how
last step for the MLC in the so callestep-and-shoot much the delivery time can be reduced by giving only

mode. This means the radiation is switched off while the 2" gpproximate representation Afsatisfying certgin
leaves are moving, and so the generated intensity modu-"""Mum and maximum dose constraints. As an imme-

lated field is just a superposition of finitely many homo- dlate_ consequence, the r_lext problem arises: find an ap-
proximation with this optimal DT which is as close as

Email: Antje Kiesel [antje.kiesel@uni-rostock.de], Thomas Possible toA. These questions have been answered for
Kalinowski [thomas.kalinowski@uni-rostock.de]. unconstrained MLCs in [4,12], and in the present paper

(© 2009 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All rigdreserved.
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2. Notation and problem formulation

= |

Throughoutthe rest of the paper, for a natural number
n, [n] denotesthe sdtl, 2,...,n} and forintegersn <
n, [m,n] denotes the sdtn, m+1, ..., n}. Forintegers
a, we also use the notatian. for the nonnegative part,

defined by
a ifa>0,
ay = )
0 otherwise

Our starting point is am x n—matrix A with nonnega-
tive integer entries. The entry; represents the desired
fluence at bixel, j). In addition, for each entryi, j)
we have lower and upper bounds anda;;, such that

0 < aij < aij < agj.

Definition 1.[Feasible Approximation] Any integer ma-
trix B with

@Sbijﬁa_ij

is called &easible approximatioof A. Thetotal change
TC(B) of a feasible approximatioB is defined by

TC(B) = Z Z |blj - aij|.
i=1 j=1

The homogeneous fields that can be shaped by the
MLC are described by binary matrices of sizex n
which we callshape matrices

Definition 2.[Shape matrix] Anm x n matrix S is
a shape matrixif there are pairs of integer§;, ;)

(i = 1,...,m), such that the following conditions are
satisfied:
1 ifl;<j<ry,
1) sij =

0 otherwise
(2) l; <7rip1 andr; > l;44 forall i € [m —1].
The first condition in Definition 2 asserts that, in each
row, there is exactly one (possibly empty) interval re-
we generalize the ideas from these references to MLCsceiving radiation, while the rest of the row is covered
with interleaf collision constraint. either by the left or by the right leaf. The second condi-
In Section 2. we give a precise statement of the prob- tion is called interleaf collision constr_aint (ICC). It en-

lem, Section 3. reviews an exact algorithm for shape SUres that the left leaf of rowand the right leaf of row

matrix decomposition with interleaf collision constraint ¢ = 1 do not overlap, which is required by some widely
in Section 4. we present our graph-theoretical charac- Us€d MLCs, for instance the Elekta MLC. An MLC leaf

terization of the minimal DT of an approximation with ~ Séguence for corresponds to a representationas
a constructive proof, in Section 5. we show how the @ Weighted sum of shape matrices.

total change can be reduced heuristically, and the final Definition 3.[Shape matrix decomposition] Ahape
Section 6. contains some test results. matrix decompositionf A is a representation ol as

Fig. 2. Leaf pairs of a multileaf collimator.
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a positive integer combination of shape matrices maximal weight of a— s—path in the following digraph
. G=(V,E) [79].
A:ZutS(t). V ={q,s}U[m] x [0,n+ 1],
=1 E={(¢,(1,0)) :i € [m]} U{((i,n +1),5) : i € [m]}
Thedelivery time(DT) of this decomposition is just the U{((4,5), (4,5 +1)) : i €[m], j €[0,n]}
sum of the coefficients, U{((i,4), (i +1,7)) : i€m—1], j€n]}
DT = Z Ug. In order to avoid case distinctions, we add two columns
t=1 to our matrix and put
Example 1 For the shape matrix decomposition aio = iny1 =0 (i € [m]).
1330 0110 0110 Now we can define arc weights by
0241 0010 0110 . . .
1144 =2 0011 + 1111 ' .w(q,(z',().)):w((z,n—i—l),s):O(zE[m])
3310 1100 0000 w((i,5 —1),(2,7)) = (ai; — aij—1)+
1000 (i€[m], jeln+1])
Lot w((i, j), (i +1,7)) = —aij (i € [m—1], j € [n])
0011 w((i,5), (i —1,7)) = —a;; (1 € [2,m], j € [n]).
1110
We call this graph th®T-ICC-graphfor A. Fig. 3 shows
we haveDT = 4. the DT-ICC-graph for the matrix
Now we formulate three optimization problems. 450145
MinDT. Find a shape matrix decomposition = 2941314
S, uS® such thatDT = S7F_, u is minimal. A=1539194
Approx-MinDT. Find a feasible approximatioB and 533953
a shape matrix decompositioR = ), u;S®
such thgtDT — Zt:_l Zt 'S]: mlr?;)rlnal. . Definition 4. Let A be an intensity matrix, and le¥
Approx-MinDT-TC. Find a feasible apprcl)CX|mat|c()E be the DT-ICC-graph ford. The maximal weight of
and a shape matrix decompositibn= 3, ; u:S aq — s—path inG is calledICC-complexityof 4 and

such thatDT = Zle u; is minimal, and under this  denoted by:(A). More formally,

conditionT'C'(B) is minimal.
The first problemMinDT is the exact decomposition ~ ¢(A) = max{w(P) : Pisaq—s—pathinG.}.
problem which can be solved by several efficient algo-
rithms [1,7,10]. The idea underlying one of these algo-
rithms is reviewed in the next section because it is the formulated as follows. -
basis for our approach to the second problspprox- Theorem 1 The minimal DT of a decomposition df
MinDT . Finally, we observe that the second part of each With ICC equalsc(A).
of the problemdApprox-MinDt and Approx-MinDT-
TC, the search for the shape matrix decomposition, can 4, Approximation
be ignored safely, because, once the maftiis fixed,
we can apply any exact decomposition algorithm to  To simplify our notation, for eacki, j) € [m] x [n]
complete the task. we introduce the interval of acceptable fluence values

Using this definition the main result of [7] can be

i . I,,:[a,,’w}’ Wii < @i < QWir.
3. Review of the exact decomposition RO A ==
. _ o We want to find a matribx8 such that

The basis of our approach is a characterization of

the minimal DT of a decomposition with ICC as the b;; € I;; for (i,j) € [m]x[n] and ¢(B) — min.
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Fig. 3. The DT-ICC-graph for matrix.

We follow an approach from [12] and replace every such that
vertex(i, j) € [m] x [n] by |I;| copies, i.e. by the set

W(Z.ajv k) = max { mlan(Za.] - 17 l) + (k - l)+7

Vij ={(3,5)} x Lij. minW(z’ —1,5,0) =1

. N . . . manz—i—l], )—1}.
In order to avoid case distinctions in the discussion be-
low we also replace the vertices in colunthandn + 1

by The intuitive idea is that for every feasible approxima-

tion B with b;; = k, the maximal weight of g-(3, j)-
path in the DT-ICC-graph foB is at leastiV (i, j, k).
Vio ={(:,0,0)} and V; 41 ={({,n+1,0)}. The numbersiV (i, j, k) can be computed efficiently
(complexity O(m?nA?), where A denotes any upper
An arc((i, §), (i, j + 1)) in the DT-ICC-graphG is re- bound for|IZ-j_|) as desgriped_in Algorithm 1. Agai_n, in
placed by the complete bipartite graph x V; 1, and order to avoid case distinctions at the boundaries, we
similarly for the arcq(i, j), (i + 1, §)). The weights of add the values
the arcq(4, j, k), (i, 7+1,1)) should model the approx- SN SN o
imation matrix B if we chooseb;; = k andb; j11 =, W(0,5,0) = W(m+1,j,0) = doj = am1, N 0
and similarly for the other arc types. Hence we define (j € [n])-

the arc weights by By construction, for any feasible approximatidh

with b;, = k, the DT-ICC-graph forB contains a

w(q, (i,0,0)) =0 (i € [m]), path of weight at leastV (i, n, k). Hence the numbers
w((i,n+1 O) s) =0 (i € [m]), W (i,n, k) can be used to define a lower bouiel) for
w((i,0,0), (i,1,k)) =k (i € [m], k € L1), the ICC-complexity of a feasible approximation 4f
w((i,n, k) (z n+1,0)) =0 (i € [m], k € Ln), Definition 5. The ICC-approximation complexitgf A
w((4, ] k), (i,5,0) = (1 —k)y (i € [m],j € [n] (with respect to the given intervals;) is defined by
ke lij-1,l € ly), 6(A):maxmkinW(i,n,k).

o _ ) b€ lij L € Ly 5), We will show that this bound is sharp by an explicit
w((i,j, k), (i —1,4,1)) = —k (i € [2,m],j € [n], construction of an approximation matri® with this
kel eliyy;). ICC-complexity. For the last column we put

w((i, 4, k), (i +1,5,1)) = =k (i € [m = 1], j € [n],
]

In order to determine the minimal complexity of an bin = ain  FW(i,n,am) < &(A),
approximation matrix we compute numbé#(i, j, k) max{k : W(i,n, k) <
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Algorithm 1 (Computation of the numbers W (i, j, k))
for i € [m] do W (#,0,0) =0
for j =1ton do
for i € [m] do
for all & do
Wi, j, k) = ming W(i,5 — 1,1) + (k= 1)+
fori =2tom do
for all k£ do

W (i, j, k) = max {W (i, j, k), min, W(i — 1,5,1) — I}

for i/ =i — 1 downto 1 do
for all k¥ do

Wi, j, k) = max {W (i, j, k), miny W (i’ +1,5,1) — I}

Forj < n, we assume that the entrigs; ., are already
determined, and put

bij = max{k : W(i,j, k) + (bi,j-ﬁ-l — k)
< Wi, 5+ 1,bij11)}-

+

Example 2 We consider the following fluence matrix

A with c(A) = 8.
400
A= (()04)

We choose the upper and lower bound such that—
a;j] < 1 for every(i, j). The intervals and an optimal

approximation are
1] (310
5 o=(19)

with ¢(B) = 4, realized by the optimal decomposition

310\ (110 n 100 n 100+ 000
113) \001 111 000 001/
Our algorithm obtains matrixB as follows. First we

compute the numbefd’ (i, j, k), and obtain, for each
(i,7), a vector

(Wi,j,aw Wigay+1-- s Wi,j,m) :
These vectors are collected in the following array.

3,3)  (3,3)
2,2) (4,5,6).

(3,4,5
(0,1

~— —

(
(
Thus the optimal DT is

max{min{3, 3}, min{4,5,6}} = 4.

For the third column we choodgs = 0 and b3 = 3.
For the entry(1,2) we have

W(1,2,0)+w((1,2,0),(1,3,0))
=W(1,2,1) +w((1,2,1),(1,3,0))
= W(1,3,0).

We choose the maximal possible valyg= 1. Observe
thatbi, = 0 is indeed not possible, since it leads to an
increased DT. For entry2, 2) we have

W(2,2,0)+w((2,2,0),(2,3,3)) =2+3 > W(2,3,3),

so hereby, = 1 is the only possible choice. Similarly,
we geth;; = 3 andby; = 1. Clearly, the latter one can
be replaced by 0.

In order to prove that our method is correct, we need
some simple properties of the numbé&¥s3i, j, k).
Lemma 2 For every(i, j) € [m]x [n] and every: such

that (¢, j, k), (4,7, k + 1) € V;; we have
Wi, j, k) <W(@,5,k+1) <W(,j5k)+1. (1)
Furthermore,W (i, j,k + 1) = W (i, j, k) + 1 iff
Wi, j k) =W(i,j—1,0)+ (k— 1)y

for somel € I; ;1 with [ < k.
Proof. Since

W(27]_1’Z)+(k_l)+ < W(Z,]—l,l)—(k+1—l)+

and using the definition of thB&/ (i, j, k), we conclude
W (i, j, k) < W(i,j, k+1). On the other hand, we have
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Wi, j, k)= max{mlinW(i,j 1,0+ (k—=1)4,
mlinW(i —-1,7,0) =1,
min (i +1,5,0) - 1}
Zmax{mlinW(z’,j — L)+ (k+1-1),
min W (i = 1,5,0) ~ 1,
min W (i +1,5,0) = 1} — 1
=W(,jk+1)—1,

where equality occurs iftV (i, j, k) = W (i, 5 — 1,1) +
(k—10)yandk > 1. m

The next lemma is the key step of our argument. It

asserts that the choséy do not lead to conflicts inside
the columns.
Lemma 3 For all j and alli € [m — 1], we have

W (i, j, bij) — biy < W (i +1,5,bit15),
and for all j and all i € [2,m], we have

W (i,4,bi5) —bi; < W (i —1,5,bi—15)-

Using Lemma 1, this is possible only if
W (i, j,bij + 1) = W (i, §,b;;) + 1.
Using Lemma 1 repeatedly, we obtain
W (i, j, k) = W(i, j, bi;) + 9.
But together this implies

W(i,j, k) —k=W(,j,bij) — bij,
which is a contradictionm

Now let G be the DT-ICC-graph fo3. Denote by
aq(4,j) the maximal weight of & — (¢, j)—path in
G. Note that the numbers; (i,j) can be computed
similarly to the number¥V (i, j, k). Clearly,a4 (i, 1) =
b;1, and the procedure for column> 1 is described in
Algorithm 2.
Lemma 4 Forall (i, j) we havex, (i, j) < W (i, 7, bi;).
Proof. We use induction on. For j = 1 the claim is
obvious:

Oél(i, 1) = W(Z, 1, bzl) = bil-

Proof. We only show the first statement, since the sec- Now let j > 1. After the initialization of the numbers
ond one can be proved similarly. Suppose the statementq, (4, j) in the first loop of Algorithm 2 we obtain for

is false, i.e.

W (i, j,bij) — bij > W (i +1,7,biy15).
By construction, there is somg < I;; such that
W(imja k) -k S VV(Z + 17ja bi-l—l,j)'

Case 1.k < b;;. Letd = b;; — k > 0. By Lemma 2
we have

But now we obtain

> W(Z + 11j7 bi+1,j)a

(bij — )

and this is the required contradiction.
Case 2.k > b;;. Letd = k —b;; > 0. By construction
of the numbers;;,

W (i, 3, bij) + (bij+1 — bij) |
<W(i,j+1, bi7j+1),
W (i, 3, bij + 1) + (bije1 — (bij + 1)),
>W (4,54 1,0 41) -

everyi,

(i, j) = ai(i,j — 1) + (bij — bij—1)+
<W(i,j—1,bij-1) + (bij — bij—1)

+

We just have to check that this inequalities remain valid

in every updating step. Suppose the first violation occurs

when we replacey: (¢, j) by a1 (2 £ 1,7) — bix1,5. In
this case,

ai(i,j) = a1(i £1,5) — bit1,
SW(i+1,7,bi+1,5) — bit1,
S W(27]a bij)7

where the last inequality is Lemma 3. So the statement

of the lemma remains validm

By Lemma 4 (and Theorem 1), matri¥ allows a
decomposition withDT < ¢(A) and this implies the
following theorem.
Theorem 5 The minimalDT of a decomposition of a
feasible approximation of equalsi(A) and an approx-
imation matrix B realizing thisDT can be constructed
as described above in tin@(m?nA?).
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Algorithm 2 (Computation of the numbers «; (i, j) for fixed j > 2)

for i € [m] do

(i, 7) = (i, j — 1) 4 (bij — bij—1)+
for i =2 tom do

o (i, j) = max {on (i, §), 0 (i — 1,5) — bi—1,5}
for i/ =i — 1 downto 1 do

a1 (i', ) = max {e1 (', 7), 01 (i' + 1, 7) — birs1,5}

Proof. The only thing that is left to prove is the complex-
ity statement. For this it is sufficient to note that the com-
putation of the number# (i, j, k) dominates the com-
putation time, since this has complexi®(m?nA?) as
can be seen immediately from Algorithm 1. But after
the numbersV (i, 7, k) have been computed we look at
every entry(i, j) only once and in order to fik;; we
have to do at most;;| comparisons. So the matrix

is determined in time&(mnA) and this concludes the
proof. m

5. Reducing the total change

The construction described in Section 4. leads to an
approximationB with minimal delivery time, but a large
total changel’C(B). The reason is, that we put

bij =max{k : W(i,j, k) + (bijr1 —k) <
W(i,j+1,bij41)},

even if none of the vertice@, j, k) is critical, i.e. part
of a ¢-s-path of maximal weight in the DT-ICC-graph
of a feasible approximation ofl.. Thus, the aim is to
find an approximation with the same delivery time, but
smaller total change. Clearly, we can replaceby a
valueb;; with b;; < b;; < a;; in the caseh;; < a;j,
respectively witha;; > b;; > b;; in the caseu;; > bij,
if this decision does not increase the maximal weight
of a ¢g-s-path in the DT-ICC-graph.

Let thereforeG be the DT-ICC-graph o8B and let
a1 (4, j) denote the maximal weight of &(i, j)-path
in G. Similarly, letas (i, j) denote the maximal weight
of an (4, j)-s-path in G. The valuesaz(i,j) can be
computed similarly as the numbess (i, j).

Definition 6. Let B be a feasible approximation of
A. For (i,5) € [m] x [n], an integerb is called
(i, j)—feasible (with respect toB) if the following
conditions are satisfied.
(1) be IU
(2) a1(i,j = 1) + (b = bij—1)+ + (bij+1 — b))+ +
as(i,j+ 1) < E(A).

(3) =1 0ra1(i,j - 1) + (b— bi,j—l)+ - b—l—OéQ(i —
1,j) < &A).
(4) it =mor al(i,j— 1) + (b— bi,j—l)-&— - b+0¢2(i+
1) < &(A).
(5) i=1o0r Oél(i — l,j) — bifl.,j + (bi,j+1 — b)+ +
aso(i,j+1) < é(A).
6) i=morai(i+1,5)— bivi,; + (bi,j+1 — b)+ +
az(i,j +1) < ¢(A).
(7) 1€ {l,m} or Oél(i — l,j) — bifl_’j —b+ Oég(i +
1, j) < &(A).
(8) 1€ {l,m} or Oél(i + l,j) — bi+1_j —b+ OéQ(i —
1,7) < é(A).
In other wordsp is (i, j)—feasible iff we can replace
bi; by b without destroying theDT'—optimality of B.
Fig 4 illustrates the different possibilities for a path to
pass through vertexi, j). Each of these possibilities
corresponds to one of the conditions 2 through 8 in
Definition 6.

We propose a heuristic, formally described in Algo-
rithm 3, to reduce the total change. Clearly, the appli-
cation of this algorithm can be iterated until no more
changes occur.

6. Test Results

In this section we demonstrate the DT-reduction ob-
tained by the methods from Section 4. and the total
change reduction using the heuristic approach from Sec-
tion 5.. We use matrices of si2é x 15 and30 x 30 with
random entries;; € {0,1,...,L} for L € {8,12,16}.

In our tests we choose the upper and lower bounds for
the entries such that each entry is changed by at most
2, i.e. we put

aij = (a; —2)y, @ = a5 +2.

For eachL, we construct decompositions 8900 ma-

trices, and compute the average minimal delivery time
¢(A) and the total change according to our algorithm
from Section 4.. Finally, we analyze the total change
reduction, that can be achieved using Algorithm 3. The
results are shown in Table 2 and 3. For comparison we



56 Antje Kiesel & Thomas Kalinowski—Approximated MLC shapetmadecomposition

04 o——>e
(6,7—-1)  (J)  (4,5+1) T l
o—>eo—o o— e, . °
(i, — 1) (4,7) (i+1,7)
(i—1,9) (%, 7) (i,7+1) (i—1,7) (i—1,7)

[ o——>0

o——e °
(4, 7) (4,5 +1) (i+1,5)

Fig. 4. The seven different types of paths that are affecyethé choice of;;.

Algorithm 3 (Heuristic for total change minimization)
for j =1ton do
fori =1tom do
if bij < a;; and b;; + 1 is (4, j)—feasiblethen b;; + +
if bij > Qyj and bij —1is ( ,j)—feasiblethen bij - —
l)a

)
Update the numbera; (k,1) and as(k, 1)
include the minimal DT for exact decomposition with DT-reduction: forL = 16, allowing a change of
ICC [7]. Columns DT}’ and ‘D13’ contain the average at most 2 for each entry reduces the DT by more
delivery times for the exact and for the approximated de- than30%.
composition, respectively. Columng'Cy’ and ‘T'Cy’ (2) Our heuristic leads to a large total change reduc-
contain the total change values before and after the ap- tion: for L = 16 the total change can be reduced
plication of Algorithm 3. Our algorithms are completely by almost 60%.
Table 1

L DI, DI, TC, TC, 7. Summary and discussion

8 357 146 329.1 1887 N o

12 51.8 292 3583 140.8 We presented an efficient method to minimize exactly

16 67.7 44.6 3739 11238 the decomposition time in approximated MLC shape

matrix decomposition with interleaf collision constraint
Test results form = n = 15. . . .
T DT DT T TC We also described a heuristic for reducing the total ap-
1 2 1 2 . .

8 677 245 13600 8372 proximation error, and demonstrated the proposed al-

12 97.9 514 14843 6513 gorithms on randomly generated matrices. The obvious

16 127.7 799 1546.2 505.4 next problem, which is the subject of ongoing research,

is to find an exact algorithm for the minimization of the

Test results forn = n = 30. total change.

practicable. On a 3GHz workstation, the computations
for the last row, i.e. for the decomposition of 1000 ma- R aferences

trices of sizel5 x 15 with entries from{0, 1, ...,16}

took only 5 seconds fom = n = 15 and less than a 1] p, Baatar, H.W. Hamacher, M. Ehrgott, and G.J.
minute form = n = 30. Basically, we can draw two Woeginger. Decomposition of integer matrices and
conclusions from our results. multileaf collimator sequencingDiscrete Appl. Math.
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