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Approximated MLC shape matrix decomposition with interleaf collision
constraint

Antje Kiesel and Thomas Kalinowski

Institut für Mathematik, Universität Rostock, 18051 Rostock, Germany

Abstract

Shape matrix decomposition is a subproblem in radiation therapy planning. A given fluence matrixA has to be
decomposed into a sum of shape matrices corresponding to homogeneous fields that can be shaped by a multileaf
collimator (MLC). We solve the problem of minimizing the delivery time for an approximation ofA satisfying certain
prescribed bounds, under the additional condition that theused MLC requires the interleaf collision constraint.

Key words: Intensity modulated radiation therapy (IMRT); multileaf collimator; combinatorial optimization; programming
involving graphs

1. Introduction

In modern cancer therapy radiation is used to destroy
the tumor tissue. At the same time one has to minimize
the damage to the healthy tissue, and in particular to
sensible structures or organs at risk. Intensity modulated
radiation therapy was introduced in order to improve
the quality of radiation treatment. In clinical practice it
is common to use a linear accelerator which can release
radiation from different directions (Fig. 1). In addition,
a multileaf collimator (MLC) (Fig. 2) can be used to
protect certain parts of the irradiated area.

For the treatment planning, the first step is to deter-
mine a set of directions (typically 3–9), from which ra-
diation is released, given by positions of the isocenter,
table angles and gantry angles [5,13]. In a second step,
for each direction the fluence distribution is optimized,
subject to the required dose distribution in the target.
The final step is to determine, for each fluence distribu-
tion, a corresponding sequence of MLC leaf positions.
Recently, there have been attempts to formulate the op-
timization problem more globally [5,14], but most of
the widely used treatment planning systems model the
three steps independently. In this paper we consider the
last step for the MLC in the so calledstep-and-shoot
mode. This means the radiation is switched off while the
leaves are moving, and so the generated intensity modu-
lated field is just a superposition of finitely many homo-

Email: Antje Kiesel [antje.kiesel@uni-rostock.de], Thomas
Kalinowski [thomas.kalinowski@uni-rostock.de].

geneous fields which are shaped by the MLC. The two
most important objectives in the optimization problem
are the total irradiation time, or delivery time (DT), and
the number of used fields, or decomposition cardinality
(DC). Starting with [2] and [6] there have been pro-
posed several algorithms for this problem [3,10,15,16],
taking into account additional machine dependent con-
straints as the interleaf collision constraint [1,7] or the
tongue-and-groove constraint [11] (see [8] or [9] for a
survey).

All of these algorithms start with the given fluence
matrix A and construct a sequence of leaf positions re-
alizing this matrix. But from a practical point of view
there seem to be some doubts if it is reasonable to con-
sider every entryaij as fixed once and for all. First, the
matrix A is a result of numerical computations which
are based on simplified physical models of how the ra-
diation passes through the patients body, and second,
the representation ofA as a superposition of homoge-
neous fields is also based on model assumptions which
are not strictly correct, for instance the dose delivered
to an exposed bixel depends on the shape of the field.
So it might be sufficient, to realize (in our model) a
matrix that is close toA. It is a natural question, how
much the delivery time can be reduced by giving only
an approximate representation ofA satisfying certain
minimum and maximum dose constraints. As an imme-
diate consequence, the next problem arises: find an ap-
proximation with this optimal DT which is as close as
possible toA. These questions have been answered for
unconstrained MLCs in [4,12], and in the present paper

c© 2009 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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Fig. 1. A linear accelerator.

Fig. 2. Leaf pairs of a multileaf collimator.

we generalize the ideas from these references to MLCs
with interleaf collision constraint.

In Section 2. we give a precise statement of the prob-
lem, Section 3. reviews an exact algorithm for shape
matrix decomposition with interleaf collision constraint,
in Section 4. we present our graph-theoretical charac-
terization of the minimal DT of an approximation with
a constructive proof, in Section 5. we show how the
total change can be reduced heuristically, and the final
Section 6. contains some test results.

2. Notation and problem formulation

Throughout the rest of the paper, for a natural number
n, [n] denotes the set{1, 2, . . . , n} and for integersm <

n, [m, n] denotes the set{m, m+1, . . . , n}. For integers
a, we also use the notationa+ for the nonnegative part,
defined by

a+ =

{

a if a ≥ 0,

0 otherwise.

Our starting point is anm×n−matrixA with nonnega-
tive integer entries. The entryaij represents the desired
fluence at bixel(i, j). In addition, for each entry(i, j)
we have lower and upper boundsaij andaij , such that

0 ≤ aij ≤ aij ≤ aij .

Definition 1.[Feasible Approximation] Any integer ma-
trix B with

aij ≤ bij ≤ aij

is called afeasible approximationof A. Thetotal change
TC(B) of a feasible approximationB is defined by

TC(B) =

m
∑

i=1

n
∑

j=1

|bij − aij |.

The homogeneous fields that can be shaped by the
MLC are described by binary matrices of sizem × n

which we callshape matrices.

Definition 2.[Shape matrix] Anm × n matrix S is
a shape matrixif there are pairs of integers(li, ri)
(i = 1, . . . , m), such that the following conditions are
satisfied:

(1) sij =

{

1 if li < j < ri,

0 otherwise.
(2) li < ri+1 andri > li+1 for all i ∈ [m − 1].

The first condition in Definition 2 asserts that, in each
row, there is exactly one (possibly empty) interval re-
ceiving radiation, while the rest of the row is covered
either by the left or by the right leaf. The second condi-
tion is called interleaf collision constraint (ICC). It en-
sures that the left leaf of rowi and the right leaf of row
i± 1 do not overlap, which is required by some widely
used MLCs, for instance the Elekta MLC. An MLC leaf
sequence forA corresponds to a representation ofA as
a weighted sum of shape matrices.

Definition 3.[Shape matrix decomposition] Ashape
matrix decompositionof A is a representation ofA as
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a positive integer combination of shape matrices

A =

k
∑

t=1

utS
(t).

Thedelivery time(DT) of this decomposition is just the
sum of the coefficients,

DT =

k
∑

t=1

ut.

Example 1 For the shape matrix decomposition








1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0









= 2 ·









0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0









+









0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0









+









1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0









we haveDT = 4.
Now we formulate three optimization problems.
MinDT. Find a shape matrix decompositionA =

∑k

t=1 utS
(t) such thatDT =

∑k

t=1 ut is minimal.
Approx-MinDT. Find a feasible approximationB and

a shape matrix decompositionB =
∑k

t=1 utS
(t)

such thatDT =
∑k

t=1 ut is minimal.
Approx-MinDT-TC. Find a feasible approximationB

and a shape matrix decompositionB =
∑k

t=1 utS
(t)

such thatDT =
∑k

t=1 ut is minimal, and under this
conditionTC(B) is minimal.

The first problemMinDT is the exact decomposition
problem which can be solved by several efficient algo-
rithms [1,7,10]. The idea underlying one of these algo-
rithms is reviewed in the next section because it is the
basis for our approach to the second problemApprox-
MinDT . Finally, we observe that the second part of each
of the problemsApprox-MinDt andApprox-MinDT-
TC, the search for the shape matrix decomposition, can
be ignored safely, because, once the matrixB is fixed,
we can apply any exact decomposition algorithm to
complete the task.

3. Review of the exact decomposition

The basis of our approach is a characterization of
the minimal DT of a decomposition with ICC as the

maximal weight of aq−s−path in the following digraph
G = (V, E) [7,9].

V = {q, s} ∪ [m] × [0, n + 1],

E = {(q, (i, 0)) : i ∈ [m]} ∪ {((i, n + 1), s) : i ∈ [m]}

∪ {((i, j), (i, j + 1)) : i ∈ [m], j ∈ [0, n]}

∪ {((i, j), (i + 1, j)) : i ∈ [m − 1], j ∈ [n]}

∪ {((i, j), (i − 1, j)) : i ∈ [2, m], j ∈ [n]} .

In order to avoid case distinctions, we add two columns
to our matrix and put

ai0 = ai,n+1 = 0 (i ∈ [m]).

Now we can define arc weights by

w(q, (i, 0)) = w((i, n + 1), s) = 0 (i ∈ [m])

w((i, j − 1), (i, j)) = (aij − ai,j−1)+

(i ∈ [m], j ∈ [n + 1])

w((i, j), (i + 1, j)) = −aij (i ∈ [m − 1], j ∈ [n])

w((i, j), (i − 1, j)) = −aij (i ∈ [2, m], j ∈ [n]).

We call this graph theDT-ICC-graphfor A. Fig. 3 shows
the DT-ICC-graph for the matrix

A =









4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3









.

Definition 4. Let A be an intensity matrix, and letG
be the DT-ICC-graph forA. The maximal weight of
a q − s−path inG is calledICC-complexityof A and
denoted byc(A). More formally,

c(A) = max{w(P ) : P is a q − s − path inG.}.

Using this definition the main result of [7] can be
formulated as follows.
Theorem 1 The minimal DT of a decomposition ofA

with ICC equalsc(A).

4. Approximation

To simplify our notation, for each(i, j) ∈ [m] × [n]
we introduce the interval of acceptable fluence values

Iij =
[

aij , aij

]

, aij ≤ aij ≤ aij .

We want to find a matrixB such that

bij ∈ Iij for (i, j) ∈ [m]× [n] and c(B) → min .
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Fig. 3. The DT-ICC-graph for matrixA.

We follow an approach from [12] and replace every
vertex(i, j) ∈ [m] × [n] by |Iij | copies, i.e. by the set

Vij = {(i, j)} × Iij .

In order to avoid case distinctions in the discussion be-
low we also replace the vertices in columns0 andn+1
by

Vi0 = {(i, 0, 0)} and Vi,n+1 = {(i, n + 1, 0)}.

An arc((i, j), (i, j + 1)) in the DT-ICC-graphG is re-
placed by the complete bipartite graphVij ×Vi,j+1, and
similarly for the arcs((i, j), (i± 1, j)). The weights of
the arcs((i, j, k), (i, j+1, l)) should model the approx-
imation matrixB if we choosebij = k andbi,j+1 = l,
and similarly for the other arc types. Hence we define
the arc weights by

w(q, (i, 0, 0)) = 0 (i ∈ [m]),

w((i, n + 1, 0), s) = 0 (i ∈ [m]),

w((i, 0, 0), (i, 1, k)) = k (i ∈ [m], k ∈ Ii1),

w((i, n, k), (i, n + 1, 0)) = 0 (i ∈ [m], k ∈ Iin),

w((i, j − 1, k), (i, j, l)) = (l − k)+ (i ∈ [m], j ∈ [n],

k ∈ Ii,j−1, l ∈ Iij),

w((i, j, k), (i + 1, j, l)) = −k (i ∈ [m − 1], j ∈ [n],

k ∈ Iij , l ∈ Ii+1,j),

w((i, j, k), (i − 1, j, l)) = −k (i ∈ [2, m], j ∈ [n],

k ∈ Iij , l ∈ Ii−1,j).

In order to determine the minimal complexity of an
approximation matrix we compute numbersW (i, j, k)

such that

W (i, j, k) = max
{

min
l

W (i, j − 1, l) + (k − l)+,

min
l

W (i − 1, j, l)− l,

min
l

W (i + 1, j, l) − l
}

.

The intuitive idea is that for every feasible approxima-
tion B with bij = k, the maximal weight of aq-(i, j)-
path in the DT-ICC-graph forB is at leastW (i, j, k).
The numbersW (i, j, k) can be computed efficiently
(complexityO(m2n∆2), where∆ denotes any upper
bound for|Iij |) as described in Algorithm 1. Again, in
order to avoid case distinctions at the boundaries, we
add the values

W (0, j, 0) = W (m + 1, j, 0) = a0j = am+1,j = 0

(j ∈ [n]).

By construction, for any feasible approximationB

with bin = k, the DT-ICC-graph forB contains a
path of weight at leastW (i, n, k). Hence the numbers
W (i, n, k) can be used to define a lower boundc̃(A) for
the ICC-complexity of a feasible approximation ofA.

Definition 5. The ICC-approximation complexityof A

(with respect to the given intervalsIij ) is defined by

c̃(A) = max
i

min
k

W (i, n, k).

We will show that this bound is sharp by an explicit
construction of an approximation matrixB with this
ICC-complexity. For the last column we put

bin =

{

ain if W (i, n, ain) ≤ c̃(A),

max{k : W (i, n, k) ≤ c̃(A)} otherwise.
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Algorithm 1 (Computation of the numbers W (i, j, k))
for i ∈ [m] do W (i, 0, 0) = 0
for j = 1 to n do

for i ∈ [m] do
for all k do

W (i, j, k) = minl W (i, j − 1, l) + (k − l)+
for i = 2 to m do

for all k do
W (i, j, k) = max

{

W (i, j, k), minl W (i − 1, j, l) − l
}

for i′ = i − 1 downto 1 do
for all k do

W (i′, j, k) = max
{

W (i′, j, k), minl W (i′ + 1, j, l) − l
}

Forj < n, we assume that the entriesbi,j+1 are already
determined, and put

bij = max{k : W (i, j, k) + (bi,j+1 − k)+
≤ W (i, j + 1, bi,j+1)}.

Example 2 We consider the following fluence matrix
A with c(A) = 8.

A =

(

4 0 0
0 0 4

)

We choose the upper and lower bound such that|bij −
aij | ≤ 1 for every(i, j). The intervals and an optimal
approximation are

(

[3, 5] [0, 1] [0, 1]
[0, 1] [0, 1] [3, 5]

)

, B =

(

3 1 0
1 1 3

)

with c(B) = 4, realized by the optimal decomposition
(

3 1 0
1 1 3

)

=

(

1 1 0
0 0 1

)

+

(

1 0 0
1 1 1

)

+

(

1 0 0
0 0 0

)

+

(

0 0 0
0 0 1

)

.

Our algorithm obtains matrixB as follows. First we
compute the numbersW (i, j, k), and obtain, for each
(i, j), a vector

(

Wi,j,aij
, Wi,j,aij+1, . . . , Wi,j,aij

)

.

These vectors are collected in the following array.

(3, 4, 5) (3, 3) (3, 3)
(0, 1) (2, 2) (4, 5, 6).

Thus the optimal DT is

max{min{3, 3}, min{4, 5, 6}} = 4.

For the third column we chooseb13 = 0 and b23 = 3.
For the entry(1, 2) we have

W (1, 2, 0)+w((1, 2, 0), (1, 3, 0))

= W (1, 2, 1) + w((1, 2, 1), (1, 3, 0))

= W (1, 3, 0).

We choose the maximal possible valueb12 = 1. Observe
that b12 = 0 is indeed not possible, since it leads to an
increased DT. For entry(2, 2) we have

W (2, 2, 0)+w((2, 2, 0), (2, 3, 3)) = 2+3 > W (2, 3, 3),

so hereb22 = 1 is the only possible choice. Similarly,
we getb11 = 3 andb21 = 1. Clearly, the latter one can
be replaced by 0.
In order to prove that our method is correct, we need
some simple properties of the numbersW (i, j, k).
Lemma 2 For every(i, j) ∈ [m]×[n] and everyk such
that (i, j, k), (i, j, k + 1) ∈ Vij we have

W (i, j, k) ≤ W (i, j, k + 1) ≤ W (i, j, k) + 1. (1)

Furthermore,W (i, j, k + 1) = W (i, j, k) + 1 iff

W (i, j, k) = W (i, j − 1, l) + (k − l)+

for somel ∈ Ii,j−1 with l ≤ k.
Proof. Since

W (i, j−1, l)+(k− l)+ ≤ W (i, j−1, l)−(k+1− l)+

and using the definition of theW (i, j, k), we conclude
W (i, j, k) ≤ W (i, j, k+1). On the other hand, we have
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W (i, j, k) = max
{

min
l

W (i, j − 1, l) + (k − l)+,

min
l

W (i − 1, j, l) − l,

min
l

W (i + 1, j, l) − l
}

≥ max
{

min
l

W (i, j − 1, l) + (k + 1 − l)+,

min
l

W (i − 1, j, l) − l,

min
l

W (i + 1, j, l) − l
}

− 1

= W (i, j, k + 1) − 1,

where equality occurs iffW (i, j, k) = W (i, j − 1, l)+
(k − l)+ andk ≥ l.

The next lemma is the key step of our argument. It
asserts that the chosenbij do not lead to conflicts inside
the columns.
Lemma 3 For all j and all i ∈ [m − 1], we have

W (i, j, bij) − bij ≤ W (i + 1, j, bi+1,j),

and for all j and all i ∈ [2, m], we have

W (i, j, bij) − bij ≤ W (i − 1, j, bi−1,j).

Proof. We only show the first statement, since the sec-
ond one can be proved similarly. Suppose the statement
is false, i.e.

W (i, j, bij) − bij > W (i + 1, j, bi+1,j).

By construction, there is somek ∈ Iij such that
W (i, j, k) − k ≤ W (i + 1, j, bi+1,j).
Case 1.k < bij . Let δ = bij − k > 0. By Lemma 2

we have

W (i, j, k) ≥ W (i, j, bij) − δ.

But now we obtain

W (i, j, k) − k ≥ (W (i, j, bij) − δ) − (bij − δ)

> W (i + 1, j, bi+1,j),

and this is the required contradiction.
Case 2.k > bij . Let δ = k − bij > 0. By construction

of the numbersbij ,

W (i, j, bij) + (bi,j+1 − bij)+
≤ W (i, j + 1, bi,j+1) ,

W (i, j, bij + 1) + (bi,j+1 − (bij + 1))+
> W (i, j + 1, bi,j+1) .

Using Lemma 1, this is possible only if

W (i, j, bij + 1) = W (i, j, bij) + 1.

Using Lemma 1 repeatedly, we obtain

W (i, j, k) = W (i, j, bij) + δ.

But together this implies

W (i, j, k) − k = W (i, j, bij) − bij ,

which is a contradiction.
Now let G be the DT-ICC-graph forB. Denote by

α1(i, j) the maximal weight of aq − (i, j)−path in
G. Note that the numbersα1(i, j) can be computed
similarly to the numbersW (i, j, k). Clearly,α1(i, 1) =
bi1, and the procedure for columnj > 1 is described in
Algorithm 2.
Lemma 4 For all (i, j) we haveα1(i, j) ≤ W (i, j, bij).
Proof. We use induction onj. For j = 1 the claim is
obvious:

α1(i, 1) = W (i, 1, bi1) = bi1.

Now let j > 1. After the initialization of the numbers
α1(i, j) in the first loop of Algorithm 2 we obtain for
everyi,

α1(i, j) = α1(i, j − 1) + (bij − bi,j−1)+

≤ W (i, j − 1, bi,j−1) + (bij − bi,j−1)+
≤ W (i, j, bij).

We just have to check that this inequalities remain valid
in every updating step. Suppose the first violation occurs
when we replaceα1(i, j) by α1(i ± 1, j) − bi±1,j. In
this case,

α1(i, j) = α1(i ± 1, j) − bi±1,j

≤ W (i ± 1, j, bi±1,j) − bi±1,j

≤ W (i, j, bij),

where the last inequality is Lemma 3. So the statement
of the lemma remains valid.

By Lemma 4 (and Theorem 1), matrixB allows a
decomposition withDT ≤ c̃(A) and this implies the
following theorem.
Theorem 5 The minimalDT of a decomposition of a
feasible approximation ofA equals̃c(A) and an approx-
imation matrixB realizing thisDT can be constructed
as described above in timeO(m2n∆2).
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Algorithm 2 (Computation of the numbers α1(i, j) for fixed j ≥ 2)
for i ∈ [m] do

α1(i, j) = α1(i, j − 1) + (bij − bi,j−1)+
for i = 2 to m do

α1(i, j) = max {α1(i, j), α1(i − 1, j) − bi−1,j}
for i′ = i − 1 downto 1 do

α1(i
′, j) = max {α1(i

′, j), α1(i
′ + 1, j) − bi′+1,j}

Proof.The only thing that is left to prove is the complex-
ity statement. For this it is sufficient to note that the com-
putation of the numbersW (i, j, k) dominates the com-
putation time, since this has complexityO(m2n∆2) as
can be seen immediately from Algorithm 1. But after
the numbersW (i, j, k) have been computed we look at
every entry(i, j) only once and in order to fixbij we
have to do at most|Iij | comparisons. So the matrixB
is determined in timeO(mn∆) and this concludes the
proof.

5. Reducing the total change

The construction described in Section 4. leads to an
approximationB with minimal delivery time, but a large
total changeTC(B). The reason is, that we put

bij = max{k : W (i, j, k) + (bi,j+1 − k) ≤

W (i, j + 1, bi,j+1)},

even if none of the vertices(i, j, k) is critical, i.e. part
of a q-s-path of maximal weight in the DT-ICC-graph
of a feasible approximation ofA. Thus, the aim is to
find an approximation with the same delivery time, but
smaller total change. Clearly, we can replacebij by a
valueb′ij with bij < b′ij ≤ aij in the casebij < aij ,
respectively withaij ≥ b′ij > bij in the caseaij > bij ,
if this decision does not increase the maximal weight
of a q-s-path in the DT-ICC-graph.

Let thereforeG be the DT-ICC-graph ofB and let
α1(i, j) denote the maximal weight of aq-(i, j)-path
in G. Similarly, letα2(i, j) denote the maximal weight
of an (i, j)-s-path in G. The valuesα2(i, j) can be
computed similarly as the numbersα1(i, j).

Definition 6. Let B be a feasible approximation of
A. For (i, j) ∈ [m] × [n], an integerb is called
(i, j)−feasible (with respect toB) if the following
conditions are satisfied.
(1) b ∈ Iij .
(2) α1(i, j − 1) + (b − bi,j−1)+ + (bi,j+1 − b)+ +

α2(i, j + 1) ≤ c̃(A).

(3) i = 1 or α1(i, j − 1)+ (b− bi,j−1)+ − b+α2(i−
1, j) ≤ c̃(A).

(4) i = m or α1(i, j−1)+(b− bi,j−1)+− b+α2(i+
1, j) ≤ c̃(A).

(5) i = 1 or α1(i − 1, j) − bi−1,j + (bi,j+1 − b)+ +
α2(i, j + 1) ≤ c̃(A).

(6) i = m or α1(i + 1, j) − bi+1,j + (bi,j+1 − b)+ +
α2(i, j + 1) ≤ c̃(A).

(7) i ∈ {1, m} or α1(i − 1, j) − bi−1,j − b + α2(i +
1, j) ≤ c̃(A).

(8) i ∈ {1, m} or α1(i + 1, j) − bi+1,j − b + α2(i −
1, j) ≤ c̃(A).

In other words,b is (i, j)−feasible iff we can replace
bij by b without destroying theDT−optimality of B.
Fig 4 illustrates the different possibilities for a path to
pass through vertex(i, j). Each of these possibilities
corresponds to one of the conditions 2 through 8 in
Definition 6.

We propose a heuristic, formally described in Algo-
rithm 3, to reduce the total change. Clearly, the appli-
cation of this algorithm can be iterated until no more
changes occur.

6. Test Results

In this section we demonstrate the DT-reduction ob-
tained by the methods from Section 4. and the total
change reduction using the heuristic approach from Sec-
tion 5.. We use matrices of size15×15 and30×30 with
random entriesaij ∈ {0, 1, . . . , L} for L ∈ {8, 12, 16}.
In our tests we choose the upper and lower bounds for
the entries such that each entry is changed by at most
2, i.e. we put

aij = (aij − 2)+, aij = aij + 2.

For eachL, we construct decompositions of1000 ma-
trices, and compute the average minimal delivery time
c̃(A) and the total change according to our algorithm
from Section 4.. Finally, we analyze the total change
reduction, that can be achieved using Algorithm 3. The
results are shown in Table 2 and 3. For comparison we
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(i, j − 1) (i, j) (i, j + 1)

(i, j − 1) (i, j)
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(i − 1, j)

(i + 1, j)

(i, j) (i, j + 1)(i − 1, j)

(i, j) (i, j + 1)

(i − 1, j)

(i, j)

(i + 1, j) (i + 1, j)

(i, j)

(i − 1, j)

Fig. 4. The seven different types of paths that are affected by the choice ofbij .

Algorithm 3 (Heuristic for total change minimization)
for j = 1 to n do

for i = 1 to m do
if bij < aij and bij + 1 is (i, j)−feasiblethen bij + +
if bij > aij and bij − 1 is (i, j)−feasiblethen bij −−
Update the numbersα1(k, l) andα2(k, l)

include the minimal DT for exact decomposition with
ICC [7]. Columns ‘DT1’ and ‘DT2’ contain the average
delivery times for the exact and for the approximated de-
composition, respectively. Columns ‘TC1’ and ‘TC2’
contain the total change values before and after the ap-
plication of Algorithm 3. Our algorithms are completely

Table 1

L DT1 DT2 TC1 TC2

8 35.7 14.6 329.1 188.7
12 51.8 29.2 358.3 140.8
16 67.7 44.6 373.9 112.8

Test results form = n = 15.
L DT1 DT2 TC1 TC2

8 67.7 24.5 1360.0 837.2
12 97.9 51.4 1484.3 651.3
16 127.7 79.9 1546.2 505.4

Test results form = n = 30.

practicable. On a 3GHz workstation, the computations
for the last row, i.e. for the decomposition of 1000 ma-
trices of size15 × 15 with entries from{0, 1, . . . , 16}
took only 5 seconds form = n = 15 and less than a
minute form = n = 30. Basically, we can draw two
conclusions from our results.
(1) The approximation approach leads to a significant

DT-reduction: forL = 16, allowing a change of
at most 2 for each entry reduces the DT by more
than30%.

(2) Our heuristic leads to a large total change reduc-
tion: for L = 16 the total change can be reduced
by almost 60%.

7. Summary and discussion

We presented an efficient method to minimize exactly
the decomposition time in approximated MLC shape
matrix decomposition with interleaf collision constraint.
We also described a heuristic for reducing the total ap-
proximation error, and demonstrated the proposed al-
gorithms on randomly generated matrices. The obvious
next problem, which is the subject of ongoing research,
is to find an exact algorithm for the minimization of the
total change.
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