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Compatible Weights and Valid Cycles in Non-spanning OSPF Rating
Patterns

Peter Brostrom and Kaj Holmberg
Department of Mathematics, Linkoping Institute of Teclogyl, SE-581 83 Linkdping, Sweden

Abstract

Many IP (Internet Protocol) networks use OSPF (Open Shoiash First) for determining the routing of traffic.
OSPF routers compute routing paths using link weights sehbynetwork administrator, and the routers send traffic on
all shortest paths to the destination. An interesting goest whether or not a set of prespecified routing patterns loa
realized in an OSPF network. If not, we seek structural proge that explain why no such weights exist. Mathematical
models for finding weights and for combining routing patteame presented. We show that two possibly non-spanning
routing patterns forming a “valid cycle” cannot simultanesly be obtained in an OSPF network. Two new methods for
finding valid cycles are presented, illustrated by numdrécamples, and shown to be faster than those previouslyrknow

Key words: Internet Protocol, OSPF, routing, compatible weightsidveycle.

1. Introduction set of desired routing paths. In fact it depends on the
structure of the desired routing paths if such weight

The Internet consists of a huge number of routing €xists. The administrator's problem is studied in this
domains, also called autonomous systems, and each doPaper, i.e. a set of desired routing paths is given, and
main is supervised by an administrator. The adminis- the task is to find weights such that all desired paths
trator has several responsibilities, and one of the most are shortest paths with respect to the weights, while any
important is to determine how traffic is routed through other path between the same pairs of routers should have
the domain. The routing is determined by choosing a @ larger sum of weights. If there are no such weights,
routing protocol, and by setting appropriate values on We wish to explain which parts of the routing paths that
routing parameters. There are several different rout- are in conflict. Since this problem consists of finding a
ing protocols available for autonomous systems, for ex- Set of weights with certain properties, it will be called
ample OSPF (Open Shortest Path First), RIP (Routing the Weight Finding Problem (WFP).

Internet Protocol) and IS-IS (Intermediate-System to [15], [3] and [9] present mathematical models for dif-

Intermefmate-System), see [19], [18], and [12.]' ferent versions of the WFP, and the differences origi-
We will here study networks where OSPF is used as nate mainly from the structure of the prespecified rout-
routing protocol. In such networks, each link is assigned ing paths. Some models require that at most one path is
a positive integer link weight by the network adminis- specified between a pair of nodes, while other models
trator, and the routers send traffic on the paths that haveg|ow more than one. Load balancing can only be used
aminimal sum of weights to each destination (called the it several paths are allowed between two nodes. Another
shortest paths). If several paths have the same minimaly5riation is that the desired routing paths sometimes
sum of weights, the router splits the traffic addressed to gre directed, and sometimes undirected. The case with
the destination evenly on all outgoing links that belong | ndirected routing paths yields symmetric routing, and
to a shortest path. A “routin_g pattern” contains all the his case is treated in [15] and [3]. The case with span-

paths that are used for routing. ning and directed routing patterns is studied in [9]. Di-

It is an easy task to compute the routing paths if rected routing paths allow non-symmetric routing since
the weights are known, and this is in fact exactly what it is possible to specify different paths in the different
the routers do when the routing paths are computed. directions between two nodes. Symmetric routing can
However, from an administrator’s point of view, itis not  also be obtained using directed routing paths, simply by
always as easy to find link weights that give a certain specifying pairs of oppositely directed paths, see [2].

(© 2009 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All righreserved.
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In previous research, the OSPF protocol has also beencontains results from computational tests. The last sec-
modeled as side constraints in network design modelstion contains conclusions.
and flow allocation models, see e.g. [4], [17], [23] and
[14]. A common approach is to introduce integer vari-
ables for the link weights, and let the side constraints 2. Problem formulation
use the weights for ensuring that traffic is routed only
on shortest paths to each destination. There are however We consider the directed gragh= (N, A) with the
disadvantages with this approach, one of which is a con- set of nodesV and the set of arcd. A number of node
straint coefficient that must be larger than the sum of pairs,(ox,dx), kK =1,..., K, is given, and for each,
weights on any path. This makes the LP-relaxation very a setS; of paths from node;, to noded;, is given.S
weak, which is a disadvantage when solution methods contains the desired shortest paths between these two
are considered. nodes.S; can either contain one single path or several

These difficulties may be avoided if the design model Paths (corresponding to splitting of the traffic), and each
is not based on the weights. An alternate approach path inSy is represented by the included arcs. The case
is therefore to develop network design models based When eachS;, contains one path is called “the single
on routing patterns which are obtainable from OSPF path case”. We will also use the set of all arcs in any
weights, but not explicitly including the weights. The 0f the paths inSy, i.e. Ry = U, cq, p = {(4,7) : Ip €
OSPF protocol is then modeled by ensuring that the Sk : (i,j) € p}. Each arc is included at most once in
routing patterns satisfies necessary conditions for the L2, even if it is present in more than one of the paths,
existence of compatible weights. Such conditions have SO |Rx| < |A|. We assume), contains all paths given
been developed by investigating infeasible instances of by the arcs inky.
the WFP. Necessary conditions for undirected routing  In an OSPF-network, integral weights;; > 1 are
paths are presented in [3], and necessary conditions forassociated with each link, j) € A. The paths used by
directed and spanning routing patterns are presented inthe routers are those with minimal sum of weigtts.e.
[11]. (A spanning routing pattern contains paths to/from the routers find the shortest paths to the destinations. We
all nodes, while in a non-spanning routing pattern, all will use the notatiolV(p) = >_; ;c, wi;, i.e. W(p)
nodes are not included.) denotes the total weight of pagh If W(p) < W(q)

In this paper we consider the case with directed rout- for all pathsq between the same pair of nodesijs
ing patterns and load balancing, and discuss severalcalled aminimal weight pathIf W(p) < W (q) for
models for the WFP. Compared to the model in [11], it all pathsg # p between the same pair of nodesis
is not required that the routing patterns are spanning. We called aunique minimal weight pathThis notation is
show that routing patterns with certain properties can also extended to sets of paths as follows. Pete a set
be combined into a single routing pattern, and describe of paths between a pair of nodesi¥(p) = W (p') for
the advantages of doing so. We prove that two possi- all pathsp € P,p’ € P andW (p) < W (q) for all paths
bly non-spanning routing patterns can not be obtained p € P and for all paths; ¢ P between the same pair
simultaneously if they contain a structure called “valid of nodes,P is called aunique minimal weight path set
cycle”. In [11] this was shown only for spanning routing The goal is to find weights) such thatS;, becomes
patterns. Two new methods for finding valid cycles are a unique minimal weight path set from nodgto node
proposed, and computational results indicate that thesedy, for all k. Such a set of weights is said to be com-
new methods are faster than the one previously known, patible with the given paths, so we use the terom-

[6], [11]. patible weightsObviously, a difficulty is that the same

The next section contains a detailed description of the set of weights are used for all the sefts. The differ-
problem and mathematical formulations of the weight e€nce between two different sets of compatible weights
finding problem defined for sets of routing paths. Sec- is unimportant, so the question of whether or not a set of
tion 3. investigates how non-spanning routing patterns compatible weights exist is more important than which
can be combined into so called SP-graphs. Valid cy- to choose. If compatible weights do not exist, we wish
cles are discussed in Section 4., and methods for find- to find a small set of paths or links that prohibits the ex-
ing valid cycles are presented in Section 5.. The caseistence of compatible weights. Our practical goal then
with symmetric routing paths is discussed in Section 6.. iS to extract information about how to modify the paths,
Section 7. contains numerical examples and Section 8.in order to enable the existence of compatible weights.
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Lemma 1 If a desired routing path contains a directed
cycle, no compatible weights exist.

Proof: Since a cycle leads to an already visited node, it
can only have minimal weight if its total weight is zero

or less. However, since no weight may be less than one,

the total weight of a cycle is positivel

Let p(s,t) denote a pathp (represented by the in-
cluded arcs) from node to nodet, N(p) the set of
nodes included in path, and N (S}) the set of nodes
included in any path irby.
Definition 1 If p andq are two paths and i§ C p, then
q is called a subpatiof p.
Lemma 2 If p is a minimum weight path with respect
to w and if ¢(s, t) is a subpath op, theng(s,t) is a
minimum weight path froma to ¢.
Proof: If not, there exists another pat(s,t) with
W(r(s,t)) < W(q(s,t)). Then we can replace the sub-
path q(s,t) by r(s,t) in p, and get a path with less
weight, which contradicts the assumption thats a
minimum weight pathO

Thus any subpath of any path # should be a min-
imal weight path.

There cannot be two different unique shortest paths

21

always subpath consistent. As the definition of subpath
consistency really concerns subpaths, the following is
not surprising.

Lemma 3 Ifthe pathg, andp, are subpath consistent,
then any two subpathg C p; andgs C p, are subpath
consistent.

Corollary 1 If S and.S; are subpath consistent, then
for any subpathp(s, t) of any path inSy, eithers and¢
does not both belong t&/(S;), or p(s,t) is a subpath

of some path irb;.

We will now show that subpath consistency is a neces-
sary condition for the existence of compatible weights.
Lemma 4 If two sets of desired paths are subpath in-
consistent, there exist no compatible weights.

Proof: If S, and S; are subpath inconsistent, then
there exists a subpati(s, t) € (S5 (s,t) \ S (s,t)) U
(SP(s,t) \ SZ(s,t)) for somes € N andt € N
such that SP(s,t) # 0 and SP(s,t) # 0. If
p(s,t) € SP(s,t)\ SP(s,t), thenp(s,t) should be a
minimal weight path according t§} but not accord-
ing to S;. If p(s,t) € S7(s,t) \ SY(s,t), thenp(s,t)
should be a minimal weight path according $p but

not according taSy. Since none of these cases can be

between two nodes, so if two desired paths pass the samd"Ue; there exist no compatible weights. o
pair of nodes, the paths between these two nodes must L€t us now set up @ mathematical model for finding

be identical. This property has previously been called
suboptimalityin for example [3]. In [3], it is shown that

compatible weights, if they exist. The model should
give weightsw such that all paths i}, should be the

in the undirected single path case, a necessary conditior>0rtest paths from the nodg to the noded;. All

for the existence of compatible weights is that all pairs
of desired paths are suboptimal.

We will now generalize the concept of suboptimal-
ity for the case with directed paths and load balancing,
under the name “subpath consistency” (since it is a re-
guirement that certain subpaths shall be consistent).
say that two sets of desired paths aubpath inconsis-
tentif both sets contain directed paths from one node to
another, and if these sets are not identical. Two sets o
desired paths which are not subpath inconsistent with
respect to any pair of nodes are calldpath consis-
tent If we let S9(s,t) be the set of all subpaths from
nodes to nodet of paths inSg, we can make a precise
definition of subpath consistency.

Definition 2 S, and S; are subpath consistent if
S2(s,t) = SP(s,t) forall s € N andt € N such that
S2(s,t) # 0 and Sy (s,t) # 0.

Thus, if S and.S; are subpath inconsisterﬁf(s, t) #

0, SF(s,1) # 0, and(Sg (s,1) \ S5 (5.£)) U (SF (s,1) \
S2(s,t)) # 0 for somes, t € N. Clearly, if [N (Sy) N
N(S5;)| < 2, there does not exist two such nodes, so two

We

other paths should be more expensive. Let us denote
the set ofall paths in the graph from nodsg. to node

di. by P;. We require that all paths i®; \ S; should
have a larger sum of weights than the pathSjnSince

the weights will be integral, the least difference will be
one, so we get constraints (1) below. Furthermore, all
shortest paths between a pair of nodes must obviously
have the same cost, which yields constraints (2). (In the

fsingle path case, constraints (2) are not present, as there

is only one path in eachy.)

P1:
Z wij— Z wi; > 1Vp € Sy,
(i,5)€q (i,5)€p
Vq € Py \ Sk, Vk
1)
Z wij — Z wi; =0Vp e Sy :p#r,
(i,5)€r (i,5)€p
Vr € S, Vk (2
w;; > 1, integer V(i,j) € A €))

sets of paths containing at most one node incommon are By construction itis obvious that any feasible solution
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to P1is a set of compatible weights. On the other hand,
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In the weight finding problem, we need different node

any set of compatible weights must satisfy (1), (2) and potentials for each se$x, so we introducer? Vi €
(3), and must therefore be a feasible solution to P1. N, Vk =1,..., K. We have

Thus we have the following.
Lemma 5 P1 has a feasible solution if and only if there
exists a compatible set of weights.

A feasible solution to P1 is not unique. For example,

multiplying a feasible set of weights with a positive

integer, yields another feasible solution. We consider
all feasible sets of weights as equivalent, although in
practice, unnecessarily large weights might be avoided.

Lemmas 4 and 5 yield the following.
Lemma 6 If two sets of paths are not subpath consis-
tent, then P1 has no feasible solution.

A disadvantage of the model P1 is the large number
of constraints, which comes from the large number of

possible paths in a network. Each pattinis compared
to all other paths from;, to di, either in constraint(s)
(4) orin (5).

Letting C}, denote the (unknown) minimal weight of
a path fromoy, to di, P1 can be rewritten as follows,
whereC), is variable.

P2:
Y w2 Ch+1V¥ge P\ Sk, Yk (4)
(i,5)€q
> wij = Ci¥p € S, Yk (5)
(i,5)€p
w;j > 1, integerv(i, j) € A (6)

The number of constraints is less in P2 than in P1

(unless|Sk| = 1 Vk). By simply using (5) one can

W(p) =nl —xF Vpe Sy, Vk,

and accordingto Lemma 2, this applies to any subpath
of p, i.e.

— ¥ for all

p(s,t) € Si (s,t) Vs € N(Sk),t € N(Sg) Vk.
Especially, this applies to subpaths consisting of single

links.

Wij = k w;-“ V(i,j) € p, ¥p € Sk, Yk

P

Here, (i, ) € p,p € Sk is more efficiently written as
(1,7) € Ry, since this avoids representing links more
than once. Furthermore we should have

W(q) >n} —nk +1Vq€ P\ Sk, Vk,

(since the weights and’ are integer-valued). We
thus get the following model.

P3:
wij +wF — 7wk = 0V(i, ) € R, Vk

Z wij + g, — T, > 1q € Py, \ Sk, Vk
(i,5)€q

(7)
(8)

w;; > 1, integerv(i,j) € A (9)

easily verify that any feasible solution of P1 is feasible Theorem 1 P3 has a feasible solution if and only if P1
in P2, and that any feasible solution of P2 is feasible has a feasible solution. _ _
in P1. Thus P2 has a feasible solution if and only if P1 Proof: Assume that we have a feasible solution to P1.

has a feasible solution.
According to [16], there exists a node potential,
m; Vi € N, satisfyingw;; +m; —m; > 0V(s,5) € Aif

Now let 7% be equal to the minimum sum of weights

from o, to i. We then getw;; = % — x¥ V(i,j) €

Ry, Vk, so (7) is satisfied. The paths ). \ Sj are not

all directed cycles in a graph have a non-negative sum Minimum weight paths, so all constraints in (8) are sat-

of weights. Furthermore, the node potentiatan be
chosen integer-valued i) is integer-valued. It is also
shown thatp is a minimum weight path if and only if
there is a potential satisfying,; = 7, —m; V(i, j) € p.

If we sum up these equalities for a minimal weight
path p starting in nodes and ending in node, we
get W(p(s,t)) = m — ms, since all other node po-
tentials cancel out. A patly from s to ¢ which is
not a minimum weight path must therefore satisfy
Wi(q(s,t)) > m — ms.

isfied. Constraints (9 are identical to (3), so we conclude
that P3 has a feasible solution.

Assume now that we have a feasible solution to P3.
Summing up constraints (7) over any patim S, yields
W (p) = m —mk . This ensures that constraints (2) are
satisfied. InsertingV (p) = ), — =%, into (8) immedi-
ately yields constraints (1). Thus a feasible solution to
P3 is also feasible in P

We conclude that P3 has a feasible solution if and
only if there exists a set of compatible weights.
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3. Combining paths into SP-graphs

P3 may have a large number of constraints in (8), due
to the large number of paths in the séis\ S).. Each
path in Py \ Sk contains at least one subpath (possibly a
single arc) that starts and ends at nodes spannét).by
and does not included any arc ®y. These subpaths
are not included in any path € Sk, and if we ensure
that these subpaths are not part of a minimal weight
path from node;, to noded;,, we have ensured that the
paths inP; \ Si have a larger sum of weights than the
paths inSy. Since many paths i®; \ Sy include the

23

A;. We can now formulate the following model.

P4.

wij +m — 75 = 0V(i,5) € A,V (10)

Z W5 —|—7Té —7Ti Z 1 Vq S Tslt,V(S,t) S ‘/l,\V/l
(i,7)€q
(11)
w; > 1, integer V(i,j) € A
(12)

The first set of constraints is in principle identical to
(7), and ensures that all pathsdpare minimum weight

same subpath, this can be used for reducing the size ofPaths. The second set of constraints ensures that each

the model.

We may also decrease the size of the model by com-
bining sets of minimum weight paths inghortest path
graphs SP-graphs. We will use the term “origin” (“des-
tination”) to denote any node in an SP-graph without

subpath that starts and endsdpand does not pass any
other node spanned by; is not a part of a minimum
weight path from an origin ofi; to a destination of4;.
Theorem 2 P4 has a feasible solution if and only if
compatible weights exist.

P4 is in principle a modification of P3. If each SP-

predecessors (successors). An SP-graph is defined tagyraph is equal to an arc sf&,, the result follows from

be a set of arcs which contains at least one path from
each origin to each destination, and does not contain

Lemma 5 and Theorem 1. Below we show how SP-
graphs can be combined into larger and fewer SP-graphs

any directed cycle. (Consequently each SP-graph mustwithout changing the feasibility of P4. As an alternative,

contain at least one origin and at least one destination.)

Ry, is an example of an SP-graph with a single origin
and a single destination. Since an SP-graph no longer is
associated with a single node pgig, di ), we introduce
the index! for SP-graphs and let; denote SP-graph

A set of weights is compatible with an SP-graph if
all paths in the SP-graph are minimum weight paths
and any other path from an origin to a destination is
not a minimum weight path. A set of weights is called
compatibleif it is compatible with each SP-graph. Let
us also extend the meaning of subpath consistency to
SP-graphs. Letd?(s,t) C A; denote the set of arcs
included in any path from to ¢ in A;.

Definition 3 Ay and A;» are subpath consistent if
Ajl(s,t) = Ajl(s,t) forall s € N andt € N such
that A5 (s,t) # 0 and A5, (s, t) # 0.

We will now give a model for finding compatible
weights to a set of SP-graphs (possibly with multiple
origins and destinations). L& be the set of node pairs
spanned by eacH,, i.e. letV, = {(s,t) : s € N(4))
andt € N(A;)}. For each(s,t) € V;, let T, be the set
of paths from node to nodet completely outsided;.
This means that each path T, starts at nods, ends

a general proof of Theorem 2 is found in [10].

The number of constraints (11) could be large if there
are many nodes not spanned by each SP-graph. How-
ever, if each SP-graph spans all nodes in the node set,
set (11) consists of only, (|A| — |4;|) constraints, so
here we see an incentive to make the SP-graphs as large
as possible. There are however restrictions on which
sets of paths can be combined. Starting from the case
when each SP-graph has one origin and one destination,
in which case P4 has a feasible solution if and only if
P3 has one, we will increase the sizes of the SP-graphs,
while maintaining the property that P4 has a feasible
solution if and only if compatible weights exist.

Assume that a number of SP-graphs are given. We
now seek the answer to the following question. Does
combining two of themA; andA,, into one SP-graph,

i.e. letting Ac = Ay U Ay, yield the same result in
P4 as using4;, and A;. separately? Let P4s denote
the case whem;; and A;» are treated separately, and
P4c the case when they are combined. We allow this
combination if either compatible weights exist for both
P4s and P4c, or compatible weights do not exist for any
of P4s and P4c.

We will consider the case whe#ty, and A;» has one
and the same origin, denoted byLet §~ (V) denote
all arcs leaving node seV¥, §+(N) all arcs entering

at nodet, and does not pass any other node spanned bynode setN, and~(N) all arcs with both endpoints in
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Fig. 1. A partition allowing combination.

node setV. N(A) denotes the set of nodes spanned by
the arc setd.

We find that two SP-graphs can be combined if they

Peter Brostrém & Kaj Holmberg—Non-spanning OSPF RoutinijeRas

be combined.

Proof: We study how P4 changes as a result of com-
bining A;; and A;». The w-variables are the same in
P4s and P4c, but the two sets of node pricksind?

in P4s will be combined into one set®, in P4c.

Assume first that P4s has a feasible solution,
(w, 7, 7%,...,7"). The solution remains feasible if
we increase/decrease all components7ih with a
constant. Letting#? A2+ (7L - 72) Vi € N
yields 7! = #2, which implies7! = #2 Vi € Ny,
since A, and A;» are identical inN, and since (10)
yields w;; = 7j — @} Y(i,j) € y(No) N Ay and
Wi = 7%]2 - 7ATZ2 V(Z,]) S ’}/(No) N Apr.

P4s and P4c have one constraint in set (10) for each
arc in Ac. For arcs iny(Ny), the constraints are iden-
tical, so the same-solution can be used. We seft =
7l Vi € Np. Next we note thatt! together withw
will ensure that (10) is satisfied for arcs.iy \ v(Ny),
so we setr’ = @} Vi € Ny. Similarly, 72 together

have the same (single) origin, are identical in a subgraph with @ satisfies (10) for arcs ial;» \ v(NVy), so we set

containing the origin, do not contain any arcs entering

7C = #2 Vi € N,.

the identical subgraph, and are completely separate in What remains is constraint set (11), stating that the

the rest of the graph. More specifically, & U N; U
Ny = N(ApUA;»), i.e. the set of nodes spannedy
andA;. is partitioned into the set¥,, N; andN,. Now
assume that € Ny and~(No) N Ay = v(Ng) N Ay,
i.e. thatA;; and A, are identical inNy. Also assume
thatN(Al/) NNy=10 andN(Aln) NNy =0, i.e. that
no part of Ay is in Ny and no part ofd; is in Nj.
Furthermore, we require that; N T (Ny) = 0 and
Apr 6T (Ng) = 0, i.e. that no arc iM; or A;» enters
the node sefV,. See Figure 1 for an example of such
a partition. HereA;, is indicated with dashed lines and
Ay by solid lines. Both have node 1 as origin. The
partition is given byN, = {1,2,3,4}, Ny = {5,6,7}
and N, = {8,9,10, 11}. An important consequence of
the assumptions is that;, consists of arcs iny(Ny),
arcs inv(N;) and arcs directed from nodes i¥, to
nodes inN;. So if a path in4; leaves the node sé{,
the path enters and stays insit¥g until the destination
is reached. Similarly4;. consists of arcs in(NNy), arcs
in v(NN2) and arcs directed from nodes i, to nodes
in Ns. The paths inA; first visit a sequence of nodes
in Ny and then a sequence of nodesNp.

Lemma 7 If there exists a partitioningio UN; UNy =
N(Ap U Apv), such thato € Ny is the only origin in
Ay and Ay, V(No) NAy = V(No) N Ay, N(Al/) n
Ny = 0, N(Al//) NNy = 0, Ay N 5+(N0) = () and
Apr N 6T (Ng) = 0, then P4c has a feasible solution if

paths completely outsidd should not be minimum
weight paths. We havel = 7} Vi € Ny U Ny, so P4c
satisfies all constraints from set (11) concerning paths
starting and ending itV U N; without passing nodes in
N,. Similarly, we haver¢ = 72 Vi € NyU N3, so P4c
satisfies all constraints from set (11) concerning paths
starting and ending itVy U N, without passing nodes

in Nl.

Now we study paths starting iN> and ending inV; .
Suppose that one constraint in set (11) is not satisfied
in P4c, for example the constraint defined for the path
q(s,t) froms € Ny to ¢ € N;. Sincer can be chosen
integer-valued ifw is integer-valued, see [16], we then
have~ ; 5 cy(s.) Wij + 75 —mf < 0. Now consider a
pathg = {q(o, s), ¢(s,t)}, whereq(o, s) is an arbitrary
path fromo to s completely insided. We then get

0 = Z (’LDZ'J'—FTFZ-C—T{'J-C): Z W45 +
(i.5)€q(0,s) (i.5)€q(0,s)
Wf—wg > Z ﬂ)ij—i—wg—wg
(4,5)€q(0,5)
+ Z ’lTJij-i-Wsc—?TtC: Z ’Ujij'i‘ﬂ'g—
(4,5)€q(s,t) (i.5)€q
ml =Y wy o+ -7
(i,5)€q

The first equality holds since (10) is satisfied for all

(i,4) € q(o, s). The node prices cancel out in the second

and only if P4s has one. Therefore the SP-graphs may and the fourth equality, and the last equality holds since
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¢ =7} Vi € Ny U N;. The inequality follows from
the assumption that (11) is not satisfied §dgs, t).

We thus ged”; ., @ij +7, — 7 <0,i.e.W(q) <
7} — @k, so the pathy does not have a larger sum of
weights than the path fromto ¢ in A;.. The pathg is
not completely insided;, sinces € Ns, so this contra-
dicts that the solution is feasible in P4s. Thus, assuming
that (11) is not satisfied yields a contradiction, so we
conclude that (11) is satisfied for all paths startingvin
and ending inN;. This reasoning can be repeated for
paths starting inV; and ending inV,, so we conclude
that P4c has a feasible solution if P4s has a feasible
solution.

Finally we note that if P4c has a feasible solution
(w,7¢,7%,...7"), we immediately get a feasible solu-
tion to P4s by usingr! = 7¢ and#n? = 7¢. O

The result also holds if the two SP-graphs are iden-
tical in a subgraph containing the common destination,
and completely separate in the rest of the graph. This
means that two SP-graphs can be combined if there
exists a partitioningVo U N1 U No = N (A U Apr)
such thatd € N, is the only destination of4;; and
Ay, v(No) N Ay = y(No) N Apry N(Ap) NNy = ),
N(Alw) NNy =0, Ay N 6_(N0) = () and 4;» N
5~ (Np) = (0. This can be shown by simply reversing the
roles of origins and destinations in the previous proof.
Corollary 2 If two SP-graphs are subpath consistent

nl =

and have the same node as the only origin, they may be

combined.
Proof: Letting No = N(A;) N N(A;»), it is easy to
see that the assumptions of Lemma 7 are satisfied.

If Ny = 0 (i.e. if all destinations of4;, are in Ng)
in the partitioning in Lemma 7 thed;, is a subset of
Ayps. In that case all sets of weights that are compatible
with A;» will also be compatible witt4;/, so A;; does
not add anything to P44, and A;» may be combined,
but the combination of them will be identical td;..
Therefore we can simply delet#¢;,. The same applies
to Al// if Ny = 0.

An SP-graph can sometimes be combined with a part
of another SP-graph. This could be useful when two SP-
graphs are similar, but do not have the same origin or
the same destination. Recall thaf (s, t) is the set of
arcs included in any path from noddo nodet in A;.
Lemma 8 P4 remains feasible/infeasiblef (s, t) is
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nal SP-graphA? (s, t) contains exactly the same paths
from s to t as A;, so the weights are also compati-
ble with A7 (s, t). Thus P4 remains feasible if the SP-
graph A7 (s, t) is added. P4 is infeasible when no set
of weights is compatible with each of the original SP-
graphs. Adding an SP-graph cannot change this fact.
Lemma 7 can be used repeatedly, since several desti-
nations are allowed. If we start froth;y = Ry, Ay =
R,, etc., and repeatedly combine SP-graphs with the
same origin, the resulting SP-graphs will contain an
arborescence. If all resulting SP-graphs are spanning,
each path irl’, consists of a single arc, so P4 can be
simplified to the following problem.

P5:
wij +m —mb =0V(i,j) € A, VI (13)
wij + 7l — wé- = 1V(i,j) € A, vl (14)
wi; > 1, integer V(i,j) € A (15)

Letting m denote the number of SP-graphs, we find
that P5 has onlyA|(m + 1) constraints since each arc
either is included in (13) or (14). In [11] we prove that,
if all SP-graphs are spanning, P5 has a feasible solution
if and only if there exists a set of compatible weights.

Let us also mention a case where SP-graphs may
not be combined. Assume that € N(A;) \ N(A;),

d € N(Al/) \ N(Al//), 02 € N(Al//) \N(Al/), dy €
N(Alu) \ N(Al/), andN(Al/) n N(Al//) #+ 0. If we
combineA;s and A;, this SP-graph will not only con-
tain the paths frona; to d; and fromos to ds, but also
from o1 to dy and fromos to d;. A feasible solution of
P4s ensures that the paths fremto d; and fromo,

to do are minimal weight paths, but not that the paths
from o; to ds and fromos to d; are of minimal weight.
Therefore, P4s being feasible does not imply that P4c
is feasible. Our conclusion is the following.

Lemma 9 Two SP-graphs cannot be combined if they
create a new origin-destination pair.

Thus, if the two sets of paths have at least one node in
common, but different origins and different destinations,
they may not be combined.

4. Valid cycles

defined as a separate SP-graph and added to the set of Our main goal is to analyze instances that lack com-

SP-graphs, for any pair of nodesandz.

Proof: The lemma is only interesting ift? (s, t) # 0.

If P4 has a feasible solution, it follows from Theorem 2
that some set of weights is compatible with each origi-

patible weights. In [7] this is done by finding unbounded
solutions to the LP-dual of the weight finding problem.
These unbounded solutions are represented by cycles,
in which dual variables can be changed infinitely. Here
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we will not use duality, but verify the effect of such
cycles in another way.

Recall that each; contains at least one path from
each origin to each destination, and Ap contains a
directed cycle. Now consider two SP-graplts; and
Ay, and acycleC C A, C = F U B, whereF is the
set of arcs considered to be uskdward and B the
set of arcs considered to usbdckward in relation to
SP-graphA4;.

Definition 4 A cycleC = F'U B is called feasibldf
B C Ay andF C Apr.

Definition 5 The arc(s, j) is called eligibleif (i,5) €
(F\ Ap)U(B\ Ap).

In words, an eligible arc lies i” but not in A;» or in
B but notinA4;.

Definition 6 The cycleC = F'U B is called improving

if it contains at least one eligible arc.

Definition 7 A cycleC = F'U B is called validif there
exist two indice¢’ and!” such that the cycle is feasible
and improving.

Theorem 3 Ifthere exists a valid cycle, then there exists
no compatible set of weights.

The proof for the spanning case (i.e. when all SP-graphs
span all nodes) is given in [11]. Here we give a more
general proof, covering both the spanning and non-

spanning cases.
Proof: Theorem 3 will be proved by summing the

weights around a valid cycle, once in view of SP-graph rePB (i

Ay and once in view of SP-graply,». Obviously these

two sums should be equal, but we will get a contradic-

tion, verifying that P4 cannot have a feasible solution.

LetT';(C) denote the sum of weights around the valid
cycleC = F'UB in view of SP-grapt;. Now we split
C into subpaths, depending on whether an arc i$’in
or B and also whether it is id;; or not. LetPll,P be the
set of subpaths iF" N A4;,, PP the set of subpaths in
BN Ay, QF be the set of subpaths i\ 4;/, and@Q?
be the set of subpaths ii \ A;/. Furthermore, lepf;,
denote subpath in the setP!’, etc.
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F B
U drys B \ Al/: U qryr-
T‘EQﬁ TGQ{?
We now get the following sum of weights around the

cycle.

Lo(@= D wy= D wy= > wyt
(i,J)EF (i,j)€B (LJ)EFNAy

(i,4)EF\Ay (i,j)€eBNAy (i,7)EB\ Ay

DD IS DD DIETES DD SIS
reP] (i,5)€pk, reQ); (i.5)€qk, rePF (i,5)€pE,

> 2wy

reQf (i,j)€q%,

Now introduces by letting wy; = =t — 7} +
st; V(i,j) € A. We haves!; = 0V(i,j) € A;, due to
constraint 4.1. We also note that for any paf(s, )
for any s and¢, we have

Wps,t) = Y,
(3,5)€p(s,t)
Z Séj-

(1,5)€p(s,t)
ForT'; (C), then’s cancel if we make this substitu-
tion, so we get
D@ = 3 D syt D D sy-
rePl (i,5)epk, reQ); (i,)€q”,
PED I LD DD DI 2

€D, reQ;; (i,5)€47,

l

! 1,
(mj — i+ 85;) = T —

1
T +

Now we note thanf = (), sinceB C Ay, so the
last term is equal to zero. Furthermm‘g = 0 for each
arc in Ay, i.e. for each arc irpf;, and inpZ,. That
makes terms one and three equal to zero, so only term
two remains. Now we note that # C A;, we have
QF = 0, which means that',(C) = 0. The other
possibility is F Z Ay, which impliesQ/; # 0. Each
pathr € QF starts and ends at nodes\{A; ) and does
not pass any other node spanned4yy, so there is one
constraint in 4.2 for each € Qf. Therefore, we have

Yiyeqr, S = 1¥r € Qff, i.e.Ty(C) > 0. There
Ie ’V‘ll

We require that each subpath starts and ends in o o
nodes spanned byt;, and does not pass any other &€ thus two possibilities, na\.me@ﬁ = (), which yields
node spanned byl;.. This means that each subpath in I'v(C) =0, and@Qj # 0, which yieldsI'» (C) > 0.

PF U PP consists of a single arc, while the subpaths  Let us now calculatd;» (C), which is the sum of
in @ U QF may consist of more than one arc. The weights around the same cycle, but takifg into ac-
cycleC consists of all these subpaths, and we have the count. Doing the same kind of partitioning of the arcs

following. in the cycle, we get
FNnAy= U pfl/, BnAy= U pfl/, F\Al/: Fl//(c) = Z Z si; + Z Z Séj -
rep[ reP? rePY, (i.5)€pk,, reQf, (i,9)€dk,
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Z Z si;-l - Z Z sﬁ'; cycle, a valid cycle with three arcs must contain two
rePE (i.j)ep?,, reQ?, (i.j)eq?,, arcs inF' and one inB (or two arcs inB and one in

Now we know thatF' C Ay, soQF = 0. Further- F). Th_en the two arcs of the same tygé(or B), mu§t

be adjacent, and thus form a path from one nagle,

to another;. Furthermore, the remaining arc, i (or
F), must also lead fromito j, in order to complete the
cycle. So there are two different desired paths fricim
j. Now either both of these paths are contained in both
. ; _ SP-graphs, in which case no arc in this cycle can be
t'eg’ namelnyf, = 0, which yieldsI'y(C) = 0, and eligible, or both of these paths are not contained in both
Qp» # 0, which yieldsT(C) <_0' ) SP-graphs, in which case the SP-graphs are not subpath

ThusTy(C) = I'iv(C) = 0 if and only if Qf = consistentr
0 and Q7 = 0. A valid cycle hasF" Z A, and/or The same reasoning can be used to show that, under
B ¢ Ap, while Qff = 0if F C Ay andQff = 0 if subpath consistency, a valid cycle with four arcs and
B C Ay, so for a valid cycle, at least one of the sets gges cannot contain adjacent arcsir{or B). How-
Qy, andQy’ is non-empty. Iff,(C) = 0 thenQj; = 0, ever, as shown in Section 7., a valid cycle can contain
which implies thatQ/’ # 0 and Ty (C) < 0.0nthe  foyrarcs and nodes if it is alternating between arcg in
other hand, i’ (C') = 0 thenQﬁ_ = 0, whichimplies 414 inB. One might want to use this in the method pre-
th;‘}tQﬁ #0 an%l“l/(C) > 0. Arthird possibility is that  sented in Section 5., but unfortunately there is probably
Qn # 0 and@y, # 0, which yieldsT'» (C) > 0 and no way of checking subpath consistency that is signif-

more, s, = 0 for all (i,j) € Ay, i.e. for all (4, 5) in

pk., orin pZ,. This makes the first three terms above
equal to zero, so only the last term remains. As above
we can show that the this term is zeralf;, = 0, and
negative ifQ5 # (. So again there are two possibili-

Iy (C) <. icantly faster than the methods in Section 5.. If this is
It is in neither of these cases possible thatC) = true, it is best to use our methods for simultaneously

'y, (C). Thus there is a contradiction, which proves the checking for valid cycles and subpath consistency.

theoremO Lemma 12 If two SP-graphs are subpath inconsistent,

This verifies that the existence of a valid cycle im- there exists a valid cycle.
plies that a compatible set of weights does not exist, re- Proof: If A;, andA; are subpath inconsistent there ex-
gardless of whether or not the SP-graphs span all nodesists somes € N(A;) NN (4;) andt € N(A,)NN(4;)
However, the fact that no valid cycle exists is notenough such thatAy (s, t) # 0, A7 (s,t) # 0 and (43 (s,t) \
to guarantee that compatible weights exist. Since valid A7 (s,¢)) U (A7 (s,t) \ A3 (s,t)) # 0. A valid cycle
cycles are obtained by comparing only two SP-graphs, it is now obtained by letting3 be a path froms to t in
is important to include as much information as possible A7 (s,¢) andF a path froms to ¢ in A7 (s, t), where at
in each SP-graph. This is done by combining as many least one arc irB lies in A7 (s,t) \ A7 (s, t) or at least
sets of desired paths as possible into each SP-graph. one arc inF lies in A7 (s, t) \ A7 (s,t). O

There are instances that do not have compatible Furthermore, there are examples (see Section 7. and
weights or valid cycles. In such cases, there are more [11]) with SP-graphs that are subpath consistent, but still
complicated structures that can be used to explain the have valid cycles. Therefore we can draw the following
lack of compatible weights, see [8]. However, such conclusion.
structures cannot be found as efficiently as valid cy- Lemma 13 The absence of a valid cycle is a stronger
cles. By combining sets of paths, one might transform necessary condition for the existence of compatible
such a complicated structure into a valid cycle, thereby weights than subpath consistency.
enabling the usage of the more efficient method in
Section 5..

Lemma 10 A valid cycle must contain at least three

nodes and three arcs. A practical method for finding valid cycles must con-
A proof of Lemma 10 is given in [11]. A stronger result  sider each pair of SP-graph&,= 1,...,m — 1 and

is true if subpath consistency holds. I” =1 +1,...,m. The arcs in one of the SP-graphs
Lemma 11 If the SP-graphs are subpath consistent, a will be used backwards, if they are included in the cy-
valid cycle must contain at least four nodes and four cle, and are therefore labeled with B. The arcs in the
arcs. other SP-graph are used forwards, if they are included
Proof: Since an SP-graph may not contain a directed in the cycle, and are therefore labeled with F. Arcs with

5. Methods for finding valid cycles
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one label, B or F, are eligible, while arcs labeled with similar to VCO in that it uses reductions in order to re-
both are not, and arcs with no label are not used at all. duce the size of the graph.

This can be seen as constructing a grépwhich con- The following parts ofG cannot be part of a valid
tains the arcs in one of the SP-graphs and the reversecdcycle, and can therefore be removed.
arcs in the other SP-graph. ¢ All arcs with endpoints in two different strongly con-

After this, one can either remove parts of the graph nected components.
that cannot be a part of a cycle, or start to search for e All strongly connected components with less than
a valid cycle. The first approach is used\i€0, the three nodes.
method given in [7], and iVC1, the first of our new ¢ All strongly connected components that does not con-
methods, while the second approach is use®¥ @2, tain any eligible arc.
the second of our new methods. Comparing to VCO, we find the following. The main
After removing arcs and nodes that cannot be a part difference is that we do not need to return to the re-
of a feasible cycle, VCO proceeds as follows. An eligi- duction phase. Eliminating a whole strongly connected
ble arc is chosen, and we try to find a feasible cycle con- component does not affect the other components. Fur-
taining this arc. If there exists no such cycle, the eligi- thermore, VCO needs to use a shortest path method in
ble arc is removed. If an isolated subgraph (a subgraphorder to try to find a valid cycle, starting from one end-
with in-degree or out-degree zero containing no eligible point of a certain eligible arc and searching for a path
arc) is found in the process, this subgraph is also elimi- to the other endpoint of the eligible arc. If no path ex-
nated. This kind of graph reduction is repeated until the ists between these two nodes, the arc is removed, and
whole graph is eliminated, or a valid cycle is found. the original reduction phase is reentered. In the new
The new variations of the method are based on methods, however, we know that a valid cycle exists
strongly connected componera$ G (i.e. subgraphs  and it can easily be found by a simple depth first search
containing a directed path between each pair of nodes).(DFS) between the endpoints of the eligible arc. Just as
Clearly each feasible cycle corresponds to a directed in VCO, we have the following result.
cycle in G, and all nodes in a directed cycle must Lemma 16 If the graph is completely eliminated by the
belong to the same strongly connected component of reduction phase, there exists no valid cycle with the two
G. Arcs between two strongly connected components SP-graphs considered.

cannot be part of a feasible cycle. Let us now present this method in an algorithmic form.
Lemma 14 A valid cycle lies within one strongly con-  First we give Tarjan’s method is a stack.
nected component @f. Tarjan’s method

A valid cycle must contain an eligible arc, so if a (1) Setk = 1. Setv(i) = 1Vi € N. SetS = (.
strongly connected component contains no eligible (2) For each € N, if v(i) = 1 then do SEARCHY).
arc, it contains no valid cycle. On the other hand, if it Procedure SEARCH(k)

contains an eligible arc, this arc is included in at least (1) Setv(i) =0, n(i) = k andk = k + 1.

one directed cycle ofr (i.e. in at least one feasible  (2) Setl(i) = n(i), and push onto S.

cycle), so a valid cycle exists. We have thus proved the (3) For each nodg such that(i, j) € A do:

following. If v(j) =1 then
Lemma 15 A valid cycle exists if and only if a strongly (&) SEARCHY).
connected component 6f contains an eligible arc. (b) Seti(:) = min(I(2),1(5)).

Lemma 10 states that a valid cycle contains at least three else if n(j) < n(i) andj is on S theni(i) =
nodes, so strongly connected components that consist of min(n(j), (7).

less than three nodes cannot contain valid cycles. One (4) If (i) = n(¢) then repeat pop from S until z = 1.
may also note that all arcs {# are reversed if the order  The main algorithm will be as follows.

of the SP-graphs are changed. The strongly connected Algorithm VC1

components are the same in the reversed graph as in the (1) Choice of SP-graphs:If all pairs of SP-graphs

original graph, so it suffices to investigate each pair of have been compared, go to 6. Otherwise choose
SP-graphs once. two SP-graphs4;; and A;» not previously com-
We now specify the two new methods for finding pared.

valid cycles. The first method, VCL1, finds strongly con-  (2) Graph construction: Construct a graphG by
nected components using Tarjan’s method, [22], and is adding the arcs i to the reversed arcs of;..
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Arcs in (Ap \ Ap) U (A \ Ap) are marked to the numbering assigned in step 1. If the DFS
eligible. does not reach all nodes, start the next DFS from
(3) Reduction phase: Find the strongly connected the highest numbered remaining node.
components irG with Tarjan’s method. (4) Each tree in the resulting spanning forest is a
Remove all arcs between two different strongly strong component off
connected components. Algorithm VC2
Remove all strongly connected components with Replace steps 3 and 4 in VC1 by the following:
less then three nodes. 3. Find strongly connected components: Find
Remove all strongly connected components that the strongly connected components Gf with
do not contain an eligible arc. Kosaraju's method.
Remove nodes with only one adjacent arc. 4. Cycle check:lf no strongly connected component
(4) Cycle check:If all nodes are eliminated: No valid contains an eligible arc: No valid cycle found. Go
cycle found. Go to 1. Otherwise, there exists a to 1. Otherwise, there exists a valid cycle. (Op-
valid cycle. (Optionally: Terminate the method.) tionally: Terminate the method.)
(5) Find valid cycle: Form a valid cycle by findingan  Theorem 4 After a finite number of steps, algorithms
eligible arc(i, j) € A;» and a path from nodgto VC1 and VC2 will terminate, either with a valid cycle

nodes:, or an eligible arqi, j) € A, and a path or a proof that no valid cycle exists.
from nodei to nodej. Terminate the method. No  The complexity of finding strongly connected compo-
compatible weights exist. nents in a graph witm nodes and: arcs isO(n + a)

(6) No valid cycle found: No valid cycle exists. Ter-  both with Tarjan’s method and with Kosaraju’s method,
minate the method. (Compatible weights may ex- see [1] and [13]. These methods are used on graphs with
ist.) |N| nodes and at mo&{ A, | arcs, whereA; | denotes

If the optional stopping criterion in step 4 is used, we largest number of arcs in an SP-graph. An eligible arc
will know that there exists a valid cycle, but we will not ~ can be found irO(|Az|), so if m is the number of SP-
find it. In step 5, the path is found by a simple depth- graphs, the complexity of VC1 and VC2G&m? (| N |+
first search. |AL])). For complete SP-graphs (i.e. extremely much

The second method, VC2, uses Kosaraju’s method, SPIitting) we would have)(|A.|) = O(IN?), while for
[20], for finding strongly connected components. The SiMple spanning trees we g8(|AL[) = O(|N]), and
method is based on two depth-first searches. The firstfor non-spanning SP-graphd | might be even less.
DFS starts at an arbitrary node and number the nodes in |f @ valid cycle is found, modification of the SP-
postorder (i.e. the nodes are numbered in the order the9'aphs can be made as described in [7], in order to pro-
DFS backs up from the nodes). The graplis then re- duce gompatlblg welghts. In short, one can either make
versed, and the next DFS starts at the node with highest@ feasible cycle infeasible, by removing an arc from one
number. A strongly connected componentis found each SP-graph, or make an improving cycle non-improving,
time the second DFS terminates, and the nodes reached®Y @dding an arc to one SP-graph (and thereby making
belong to the same component. As long as the second@? eligible arc non-ell|g|ble)._ Moving an arc within an
DFS have not reached all nodes, the DFS is restartedSP-graph may sometimes yield both effects at the same
at the unreached node with highest number. When all ime. In [7], we only considered spanning SP-graphs,
strongly connected components are found, we investi- Which often made removing arcs from SP-graphsimpos-
gate if some component contains an eligible arc. If this Sible. Allowing SP-graphs that are not spanning, makes
is the case, a valid cycle can be found by a DFS. The fémoving arcs _from SP-graphs a possible alternative to
other possible result is that no strongly connected com- @dding or moving arcs.
ponent contains an eligible arc, and Lemma 15 then tells
us that no valid cycle exists. 6. The symmetric single path case

Kosaraju's method

(1) Performa DFS off and number the nodes in order Some network operators require that the routing
of completion of the recursive calls. paths should be symmetric, which means that the same

(2) Reverse the directions of every arcéGh path should be used in both directions between two

(3) Perform a DFS on the reversed graph, starting the nodes. Some operators also require that the routing
search from the highest numbered node according paths should be unique. We call this case simmet-
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ric single path caseOur models have been developed SP-graphs formed as in-trees.

for the more general case, i.e. when the desired paths In [3] two necessary conditions for the existence of
not necessarily have to be symmetric and unique, but compatible weights, stronger than subpath consistency,
we can deal with the symmetric single path case as are given for the undirected case, namelydpelic com-
well. For our models, the symmetric single path case is patibility conditionand thegeneralized cyclic compat-

obtained by including a single path in each Sgt and ibility. In Section 7., examples from [3] are treated by
by ensuring that the reversed path is included in some the above approach. We find valid cycles in instances
other setSy. not satisfying the cyclic compatibility condition, in in-

The symmetric single path case has previously been stances satisfying the cyclic compatibility condition and
treated by using undirected graphs. The desired routing not satisfying the generalized cyclic compatibility con-
paths are represented by undirected paths, and we let  dition, and in instances satisfying the generalized cyclic
denote the desired path between negand noded;. compatibility condition. In other words, these cyclic
Mathematical models for the symmetric single path case conditions are not stronger necessary conditions for the
in undirected graphs are presented in [3]. A directed existence of compatible weights than the absence of
model also allows the same weight to be used, but may valid cycles. We have not been able to prove that there
also give different weights for the different directions. exists a valid cycle for each instance without compat-
Some operators require that the same weight should beible weights where the cyclic compatibility condition
used in both directions of a link, which is possible by or the generalized cyclic compatibility condition is not
using an undirected model (or a directed model with the satisfied, but have not found any instance satisfying
constraintsw;; = w;; ¥(i,j) € A, see e.g. [5]). the cyclic compatibility condition and the generalized

Let us now describe how undirected paths can be cyclic compatibility condition that has no valid cycle
converted to symmetric SP-graphs, so that our methods€ither: o o _
can be used. Two SP-graphs are introduced for each [N [3], no efficient method for checking if the cyclic
undirected pathp;, and A, consists of the arcs in the ~ compatibility condition or the generalized cyclic com-
directed path fromy, to d; visiting the same nodes in patibility condition is satisfied is given. The straight-
the same order ag, andA; contains the reversed arcs forward way would be to enumerate for each edge all
in Ay This way we will consider both “directions” of cycles c_ontalnmg the e_dge and checking aII_the d_eswed
each undirected path, so all information from the given Paths with both endpoints on the cycle. Doing this, as
undirected paths is retained. Furthermore, the directeddescribed here, can obviously not be done in polyno-
path in each SP-graph can be found in an undirected mial time. We bellgve that a more efficient a_pproach is
path, so no additional requirements have been intro- to convert the undirected routmg_ paths to dwgcted SP-
duced. The symmetric single path case has now beendraphs, and then search for valid cycles. This can be
converted from undirected paths to directed SP-graphs,done in polynomial time.
so P4 can be used for finding compatible weights and
a valid cycle method can be used for explaining why 7 gxamples
no compatible weights exists. We may also use Lemma
7 and Lemma 8 in order to combine the SP-graphs as | et us first study an example from [7]. Two subpath
much as possible. consistent SP-graphs are shown in Figures 2a-b. We

If this approach is used on undirected paths that are construct the grapti’ by adding the arcs inl, and the
suboptimal, the constructed SP-graphs will be subpath reversed arcs id;, see Figure 2c. Note that aft, 6) is
consistent. It then follows from Corollary 2 that two SP- the only arc which is included in both SP-graphs, so all
graphs with the same origin can be combined to an out- arcs exceptl, 6) are eligible. The strongly connected
tree with two branches. The combined SP-graph con- components ofx are{1, 6} and{2, 3,4, 5}, see Figure
tains the same paths as the original two SP-graphs, so it2d. The first strongly connected component has only
is subpath consistent with any other SP-graph. We cantwo nodes, and in addition contains no eligible arc, so
therefore use Lemma 7 repeatedly and combine all SP-it is removed. The second component contains several
graphs with the same origin to an out-tree with several eligible arcs, so we know that a valid cycle exists. We
branches. (Due to Lemma 8, we may also use subpathsget the cycle 2 - 4 - 3 - 5 - 2, and conclude that there
of the original paths.) The same holds for SP-graphs do not exist any compatible set of weights for these two
with the same destination, so we may also construct SP-graphs.



Peter Brostrom & Kaj Holmberg— Algorithmic Operations Rasé \ol.4 (2009) 19-35 31

YN

@) (5 ®

(a) (a)

— (2)

(b) (b) (6)

——{4)

D
@/i@

(d)
Fig. 2. (a) ngg)in-treeﬁh; (b) the out-treed,; (c) the graph Fig. 3. (a) The out-tree from node 5; (b) the in-tree to node 6;
G; (d) the strongly connected componentsGaf (c) the graph(; (d) the strongly connected componentshf

The next example comes from [3]. Five undirected valid cycle is found.

paths are given; 5-6, 1-4-5, 2-3-5, 3-1-6 and 4-2-6. The In [3] another, similar, example is given, which satis-
paths do not satisfy the cyclic compatibility conditions, fies the cyclic compatibility condition, but not the gener-
so we know that there do not exist any compatible alized cyclic compatibility condition. However, exactly
weights. The directed SP-graphs are constructed as dethe same valid cycle as found in the previous example
scribed in Section 6.. Figures 3a-b show those that give is present. So, at least in these two examples, the dif-
a valid cycle. When a valid cycle method is applied, ference between the cyclic compatibility condition and
these SP-graphs are combined to the directed graph inthe generalized cyclic compatibility condition seems to
Figure 3c, and its strongly connected components are be unrelated to the possible existence of a valid cycle.
{1,2,3,4} and{5,6}, see Figure 3d. The last one does  Our next example also comes from [3]. It is based on
not contain any eligible arc, but the first one does, so a the undirected graph and the undirected routing paths in
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8. Implementation and computational tests

Computational tests are performed on random net-
works with 10 to 90 nodesRaND) and on real life net-
works from the survivable network design data library
[21]; cOST266,DI-YUAN, FRANCE, GERMANY50, and
PIORO40. We use five different groups of test instances;
RC, TR, RND, RM1 andrM5. The computer used is a
2x750 MHz Sun-Blade-1000 with 3Gb physical mem-
ory.

The test instances have been generated by computing
spanning shortest path graphs to each node in the net-
work with respect to a set of weights, and then changing
one or several SP-graphs such that it is not certain that
compatible weights exist. The instances in graup
are generated by adding one arc to a random SP-graph.

1(6) (c) (The added arc belongs to a shortest path if the weight
is decreased by one.) A random arc is added to a ran-
Fig. 4. (a) Undirect_ed graph and routing paths; (b) theéetr  gom SP-graph irTR, and a random number (between 1
to node 3; (c) the in-tree to node 5. and|N|) of random arcs are added to random SP-graphs
in RND. The instances in groupm1 are generated by
removing one arc from a random SP-graph, and the in-
stances in grougM5 are generated by repeating this
) ) ... five times. We ensure that each SP-graph is connected.
Figure 4a. These paths satisfy all necessary conditionSg, i ermore, an instance is discarded if a modified SP-
pre_sented in [3], but there exists no compatible set of graph contains a directed cycle, and this is why groups
weights. TR andRND sometimes contain fewer instances.

[e)Ne)Né)Ne)Né) RIS N

A set of SP-graphs is constructed as described in We have also generated test instances with non-
Section 6.. Now we apply a valid cycle method, and SPanning SP-graphs. A spanning SP-graph contains

a valid cycle is found when the in-tree to node 3 and "outing paths from one or several origins to one des-
the in-tree to node 5 are investigated, see Figures 4b-c tination, and we generate non-spanning SP-graphs by
The valid cycle method finds three strongly connected COMPuUting the setd;’ (o, d;) for each origin and desti-
components, namelil, 2,4, 6}, {3} and{5}. The first nation of each SP-graph. The non-spanning SP-graphs
component consists of four eligible arcs, and a depth ¢&n be combined back to the spanning SP-graphs us-
first search results in the valid cycle 1-6-4-2-1. If we N9 Lemmas 7 and 8, so a non-spanning instance has
analyze the valid cycle, we find that the eligible arcs compatible weights if the spanning instance it was gen-
originate from the routing paths 2-1-3, 3-4-6, 2-4-5 and erated from has compatible weights. This also means

5-1-6. It can be verified that discarding any of these that the spanning and non-spanning versions contain
routing paths eliminates this particular conflict. the same information, so they constitute two different

ways of solving the same basic problem.

Let us finally consider an example which shows  Computational results foRAND networks and in-
the advantages of combining SP-graphs. There is nostances with spanning SP-graphs are summarized in Ta-
valid cycle for the SP-graphgl; = {(1,3),(3,2)}, ble 1. We use instances from groups and TR. N
Ay = {(1,4),(4,5)}, A3 = {(6,4),(4,2)} and denotes the number of nodes in the grolplenotes
Ay = {(6,3),(3,5)}. Now combineA; and A4, into the number of instances in the group, aNd denotes
As, and A3 and A4 into Ag, which is possible accord- the average number of arcs in the SP-graphs. Column
ing to Lemma 7. Applying VC1 or VC2 tad; and Ny shows the number of instances with valid cycles,
Ag yields the strongly connected componefit$, {6} and the remaining two columns show the solution times
and {2,3,4,5}. The last component contains several for VC1 and VC2. These columns show the total solu-
eligible arcs, forming the valid cycle 2-3-5-4-2. tion time (in seconds) for all instances in the different
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groups, so by dividing these numbers with the numbers  Table 3 shows computational results obtained for
of instances, the average time for one instance can bethe RAND networks and the non-spanning SP-graphs.
obtained. Column Ng shows the average number of SP-graphs
in each group. As for the previous groups of test in-
stances, we find that VC1 is faster for smaller instances
and that VC2 is faster for larger instances.

Table 1

N 1 N4a | Ny | VC1 | VC2
10 | 40 98| 18| 0.02| 0.08
15| 40| 151| 34| 0.04| 0.06
20| 40| 206| 33| 0.09| 0.10
RAND | 30 | 40| 326 | 33| 0.45]| 0.32

We also find that test instances with non-spanning SP-
graphs requirenuchmore solution time than the span-
ning ones. (Recall that these non-spanning instances

40| 20| 428] 39| 110! 0.78 contain the same paths as thel spanning, Qnd that thgy
50| 40| 533 39| 1.97!| 1.39 are separated as much as possible.) For an instance with
90| 40| 101.4| 38| 11.30| 8.48 90 nodes, a valid cycle method investigates approxi-

mately 4000 pairs of spanning SP-graphs or 5600000
pairs of nhon-spanning SP-graphs when no valid cycle
can be found. However, investigating a pair of spanning
SP-graphs require only 13% more solution time than a

If we compare the solution times for VC1 and VC2, pair of the non-spanning ones. Our conclusion is clearly
we find that VC1 is faster for smaller instances and that to combine SP-graphs as much as possible.

VC2 is faster for larger instances. VCO was applied to

the same random instances (with 10-30 nodes) in [6].

Comparing the solution times for VCO with the ones ob-

tained for VC1 and VC2, we find that the newer methods

are up to 500 times faster then the original method. VC1 9. Conclusions
and VC2 has time complexity(m?(|Az|+ |N|)) and

VCO has time complexity)(m?|N|?*|AL|) (reduced to The problem of finding weights that gives prespec-
O(m?|N|) for the single path case), where is the  ified routing patterns in IP networks using the OSPF
number of SP-graphs and, is the SP-graph with  protocol is considered. We discuss models that yield
the largest number of arcs. However, VCO was imple- compatible weights, and use them to analyze the situ-
mented in Tcl/Tk (www.tcl.tk) within the framework of  atijon when no compatible weights exist. We show that
the graphical package VINEOPT (www.vineopt.com). the absence of valid cycles is a necessary condition for
Tcl/Tk is a scripting language and much slower than an the existence of compatible weights for possibly non-
implementation in C (VC1) and C++ (VC2). spanning SP-graphs. We present two new methods for
Table 2 shows computational results obtained for finding valid cycles by investigating strongly connected
spanning SP-graphs and real-life networks. The solution components. Computational experiments indicate that
times for the two methods are very similar. The average the new methods are faster than the previously known
solution times per instance are smaller than 0.04 sec- method. We show that SP-graphs with certain properties
onds for all groups, so we conclude that both methods can be combined into a single SP-graph. Computational
work well for these types of instances. experiments indicate that the methods are faster if SP-
In [6], the LP-problem P5 was solved for the same in- graphs are combined as much as possible. Furthermore,
stances, with the codesoLVE(Ipsolve.sourceforge.net). we show how to apply our methods to the symmetric
We find, for example, that theosT1266 instances took  single path case (instead of using undirected models).
approximately 40 seconds per instance on average, the An interesting direction for future research is to in-

PIORO40 instances approximately 200 seconds and the . . !

. . clude a valid cycle method into a framework for find-
GERMANY50 instances approximately 500 seconds. ing the optimal desian of an OSPF network. or into a
We thus conclude that it ismuchquicker to use VC1 9 P 9 j

or VC2 than to try to solve P5. We also recall that P5 framework for optimizing the performance of existing
D O OSPF networks.

cannot be used for non-spanning instances; instead we

would have to use P3, which has more constraints and Acknowledgment: This work has been financed by

will take even longer time to solve. the Swedish Research Council.

Computational results foRAND networks
and spanning SP-graphs
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Table

2

Computational results for real-life networks and spann®@B-graphs.

COST1266: 37 nodes, 114 arcs DI-YUAN: 11 nodes, 84 arcs
I Na Ny | VC1 | vC2 I Na Ny | VC1 | vC2
RC 30| 3856| 25 | 047 | 0.34 || 30| 10.94| 3 0.02 | 0.05
TR 29| 3857 | 27 | 0.35| 0.20|| 30| 1094 | 7 0.02 | 0.04
RND || 30 | 38.96| 30 | 0.08| 0.03 | 30 | 11.33| 15 | 0.01 | 0.06
Rm1 || 30| 3851| 26 | 0.36 | 0.26 || 30 | 10.76 | 2 0.03 | 0.05
RM5 || 30| 38.40| 30 | 0.03| 0.03|| 30| 1045 | 7 0.02 | 0.03
FRANCE: 25 nodes, 90 arcs GERMANY50: 50 nodes, 176 arcy
I Na Ny | VC1 | vC2 I Na Ny | VC1 | vC2
RC 30| 26.28| 28 | 0.11| 0.10| 30| 54.26| 27 | 0.99 | 0.75
TR 30| 26.28| 28 | 0.10| 0.12| 29 | 5391 | 29 | 0.50| 0.27
RND || 29 | 26.57| 29 | 0.03| 0.04 || 27 | 54.35| 27 | 0.06 | 0.06
Rm1 || 30 | 26.20| 23 | 0.18| 0.10 || 30| 54.22| 27 | 1.06 | 0.77
RM5 || 30 | 26.04| 29 | 0.03| 0.03 || 30 | 54.14| 30 | 0.20| 0.10
PIORO40: 40 nodes, 178 arcs
I Na Ny | VC1 | vC2
RC 30| 42.18| 27 | 0.39 | 0.32
TR 30 | 42.18 | 27 | 0.49 | 0.27
RND || 30 | 42.64| 30 | 0.05| 0.04
rRmM1 || 30 | 42.13| 23 | 0.75| 0.59
RM5 || 30 | 42.03| 30 | 0.11| 0.10
Table 3

Computational results forRAND networks and non-spanning SP-graphs.

N | I Ns Na | Ny VC1 VC2
10 | 40 599| 2.09| 18 0.36 1.16
15| 40| 1154| 289 | 34 1.55 3.11
20| 40| 210.2| 3.25| 33 5.83 9.43
RAND | 30 | 40 | 422.8| 410 | 33 48.44 59.36
40 | 40 | 762.0| 493 | 39 243.67 245.67
50 | 40 | 1099.7| 5.84| 39 610.71 549.67
90 | 40 | 3344.0| 8.66 | 38 | 14422.50| 10690.67
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