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Solving some Multistage Robust Decision Problems with Huglenplicitly
Defined Scenario Trees

Michel Minoux
University Paris 6, France

Abstract

This paper describes models and solution algorithms fovieglrobust multistage decision problems under a special
type of uncertainty model referred to here as parsimonidii® main interest of such a model is to provide compact
representations of potentially huge scenario trees, legdd efficient dynamic programming-based computation tfrap
strategies. Also, contrary to the case of most previoushliploed work on similar problems, which essentially requir
an independence assumption (on the occurrences of uncet@ints in different time periods ) our model handles - and
properly exploits - some form of dependence over time viareemt of uncertainty budget constraints. Examples of
application are discussed including optimal inventory mgement and the search for robust shortest paths in directed
acyclic graphs. Computational results illustrating andigating the proposed approach are also presented.

Key words: robust optimization, robust dynamic programming, undetyamodels, multistage decision models, inventory
management.

1. Introduction some expert's experience and skills. It should be noted
that most of the contributions concerning scenario-
How to take the best possible decisions on how to based two-stage or multistage stochastic programming
manage a system when information available on this (see [5],[20]) have been focused on optimizing expected
system is partial, unreliable and subject to all kinds of values : extensions to handle some measures of risk
uncertainty, has long been a major concern in Decision (variance, CVar), in these probabilistic models have
Sciences, Automatic Control and Operations Research.been proposed, essentially for the 2-stage case (see for
To handle such problems, a huge variety of models instance [17]) but, to the best of our knowledge, similar
and solution methods has been proposed in the pastproposals for the multistage case do not seem to have

including probabilistic models such as: been explored, up to now. In this context, the approach

e two-stage and multistage stochastic programming described in the present paper may be viewed as a step
(see [5], [20]); towards filling this gap (i.e. developing tools capable of

e chance-constrained programming (see [8]); handling risk in the context of multistage optimization

e stochastic dynamic programming (see e.g. [16]). problems).

A well-known limitation of all the approaches based o ) _ -
on probabilistic models is that, in many contexts of Once a set of scenarios is available, various defini-
application, the probability distributions which are tions of robustness for a solution (i.e. a sequence of
assumed to be known to run the solutions algorithms, decisions to be taken over a finite discretized period
are not available of time) can be considered. In the model proposed by

One way to bypass the lack of information about Kouvelis and Yu [12] which applies to combinatorial
probability distributions is the so-callettenario-based ~ OPtimization problems with uncertainty on the objective
approach. A complete set of values assigned to eachfunctlop coefficients onI_y, twq criteria for selectllng
of the uncertain parameters involved in the problem is @n optimal robust solution with respect to a given
called ascenario Scenarios can be obtained either by S€t Of scenarios are proposed: the Min-Max criterion
analyzing past data on the behavior of the system, or (Choose the solution leading to the best objective

by simulating how the system works, or by resortingto function value in the worst scenario possible); the
Min-Max regret criterion (for a given solution the

Email: Michel Minoux [Michel.Minoux@lip6.fr]. regret w.r.t. a given scenario is the difference between
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2 Michel Minoux— Multistage Robust Decision Problems

the solution cost for this scenario and the optimal be performed after some realization of uncertainty is
solution cost for this scenario; the Max-regret is the observed, sometimes called “wait and see” variables. As
maximum of the regret over all scenarios; we look a typical example of application of our 2-stage model
for the solution minimizing this value). Kouvelis and we mention robust PERT scheduling under uncertainty
Yu also investigate extensions of the above robustnesson the task durations: a robust earliest termination date
criteria to the case of infinite sets of scenaritefined for the whole project has to be determined, so that
by interval data However, even when applied to well- it is achievable for any possible combination of task
solved combinatorial problems (such as shortest paths,durations out of a given uncertainty set. (This problem
minimum spanning tree, assignment etc .. .), Kouvelis- turns out to be solvable in polynomial time when the
Yu'’s approach most often leads to difficulv (°-hard) uncertainty set for the task durations is of the Bertsimas-
optimization problems, and this eventually stimulated Sim type bunotby using Bertsimas and Sim’s approach
many subsequent research works, in particular along thewhich is shown not to be applicable in this case).

idea of approximation. The purpose of the present paper is to investigate

A different type of approach investigated by Bert- an extension of the 2-stage modelniltistagerobust

simas and Sim [3], [4], features a twofold interest decision problems. Since such an extensionis concerned
as compared with Kouvelis-Yu's namely: it preserves With howto take best sequences of decisions on dynamic

polynomial solvability of well-solved problems (such a Systems subject to uncertainty, it will be presented in
shortest paths, networks flows etc ...); and it applies the context of dynamic programming, assuming finite
more generally to linear programming problems with State-space and discrete-time finite horizon. Our model
uncertainty both in the objective functicand in the will handle uncertainties, both on the state transition
constraints. The Bertsimas-Sim approach is concernedfunctionandon the reward function.

with rowwise uncertainty.e. there is an uncertainty set Observe that some formally similar multistage robust
associated with each row of the problem (the objective decision problems have already been considered in
function itself being viewed as a row). For a given the literature, in particular in [11] and [15], where
row 4, this is defined by requiring that the number of extensions to the standard MDP model to handle
uncertain coefficients in row which are allowed to uncertainty (in the form of ambiguity in the transition
deviate from their nominal (="average") value should functions) are discussed. However, these works rely on
be less than a predetermined prescribed valugin the standard assumptions used in the context of Markov
applications, the valueB; associated with the various Decision Processes, in particular they require perfect
rows have to be specified by the decision-maker). A nice knowledge of the probability measures defining the
feature of the above uncertainty model is that the robust state transition functions. As will be shown below, the
version of an uncertain linear programming problem can model proposed here turns out to be far less exacting
be reduced to standard linear programming with just in terms of necessary input data. Moreover the analysis
moderate increase in size (a few additional variables carried outin [11], [15] heavily relies on an assumption,
and constraints). On the other hand, a limitation of which basically amounts to assuming independence of
the approach is that it does not handle uncertain the outcomes of uncertainty in different time periods.
linear programs with column-wise uncertainty, and, This independence assumption is explicitly stated and
in particular linear programs with uncertainty on the referred to as the “rectangularity assumption” in [11]
right handsides. Such problems were investigated by but turns out to be also implicit in [15]. In this respect,
Soyster [18], [19], but as observed by many authors, a distinctive feature of the present work is that it is
the solutions produced by Soyster's models tend to based on an uncertainty model which naturally and
be very "conservative”. As an alternative, we have appropriately handles some specific type of dependency
proposed in a previous paper (see [13]) the conceptvia a concept of uncertainty budget constraints. Our
of 2-stage robust decision model in which the set of work also appears to be closely related to the so-called
decision variables is partitioned into two subsets: the Minimax (or Maximin) control approacln Dynamic

set of variables correspondingitomediate or primary Programming, as described e.g. in [2]. However, the
decision(those to be taken prior to any realization of Minimax counterpart to the standard Dynamic pro-
uncertainty), sometimes also referred to as “here and gramming recursion stated in the above reference (see
now” variables; and the set of variables corresponding Chapt. 1,§1.6) again relies on the independence of
to subsidiary decisiongor adjustments) which can the uncertainty sets from one time instant to the next.
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From this perspective, our approach may be viewed e the decision:; taken at the beginning of the+1)*"
as an extension of the basic Minimax (or Maximin) time period.

DP model to handle more complicated uncertainty sets Moreover there is a reward associated with such a

(.W'th non ;pq?pgnfgienctj ogcur:jencesl?f gnc;ertalnty OVET transition which also depends on the statat timet
time), implicitly defined, based on a kind of state-space ,.4 on the decision,.

representation of uncertainty. _ o _

The paper is organized as follows. Section 2. provides ~ The setX (¢, ) of possible decisions starting from
a genera| Overview Of the prob|em addressed and StateS attimet Is Supposed to be a knOWn f|n|te dISCI’ete
introduces our notation. In Section 3. we describe the Set.

general model of uncertainty against which optimal  To define a robust version of such a problem we now
robust strategies will have to be determined, and which consider that both the state transition function and the
will be referred to as the (muItidimensionad}irsimo— reward function between andt + 1 depend on one
nious uncertainty modelThis model is based on a or several uncertain parameterstaken in some given
representation of the uncertainty set as the solution set offinite uncertainty set. (A more precise definition of the

a system of linear inequality constraints (referred to as yncertainty set will be given in Section 3. below).
'uncertainty budget constraints’) and leads to compact

(implicit) state-space representations of potentiallgdiu
scenario trees. A solution algorithm to determine an
optimal robust strategy (or: “closed-loop solution”) is
then described in Section 4.. It is based on a backwards
dynamic programming recursion, and its running time
is not proportional to the cardinality of the (implicitly
defined) set of scenarios, but to the cardinality of a
usually much smaller setrising from the definition of
the parsimonious uncertainty model, and referred to as
the uncertainty status spacdwo typical applications

of our model and algorithm are described in Section
5.: one concerning optimal inventory management un-
der uncertainty, the other, some robust shortest path
problems in directed circuitless graphs. Computational
results on series of randomly generated instances of the We will denote:
inventory management problem under uncertainty are
also presented and discussed.

In view of preserving the genericity of the model,
as much as possible, we will consider that eaghs
a g-component vector, some of the componentsupf
influencing the state transition function, and some of the
components influencing the reward function. Observe
that the set of components af influencing the state
transition function and the set of componentsugf
influencing the reward function are not assumed to be
disjoint, but they are not assumed to be identical either.
The model is thus capable of representing all kinds
of situations which may be viewed as intermediates
between full dependence and full independence of the
uncertainty factors acting on the state transition funrctio
and on the reward function.

SlZF(t,S,(Et,wt)ES (1)

2. Problem Statement: a robust dynamic program-

ming approach the state reached at time+ 1 when starting from

S € S at timet after taking the decisiom; € X (¢, S)
We consider a dynamic system evolving over a and for the valuew; of the uncertainty vector. The

discretized finite time period = 0,1,...,7. At each corresponding reward will be denoted
time instantt = 1,...,T, the system can be in any
possible state in a discrete finite set of stafs= R(t,S,z,,w;) € R. )

{1,..., N}. The stateS; of the system at time¢ = 0

is supposed to be known. In a classical (deterministic)

dynamic programming model, at each time instgnt  We assume that the decisienfor period[t, ¢t + 1] has
when the system is in statg at timet, its evolution to be taken prior to the occurrence (or: realization) of
over the(t + 1) time period (i.e. between timeand an uncertainty vectar,. Therefore it will be assumed
time ¢ 4+ 1) is described by atate transition equation  that the set of possible decisiorAg(¢, S) is defined in
providing the new stat&'1 of the system at time + 1 such a way that for any, € X (¢,.5) and anyw, in the

as a function of: uncertainty set, the valuB(t, S, z;,w;) is well defined

o the state at time; and leads to a feasible staté € S at timet + 1.
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3. The parsimonious uncertainty model: compact the occurrences of the varioug vectors has to be

representation of huge implicitly defined scenario included in the definition of the s&. Referring, once

trees more, to our example above, if we are in the process
of constructing a scenario of uncertainty, and if, at

We now discuss the way the uncertainty $ktis some stage (¢ = 30 say) , we know that the scenario

defined in our model. A first simple way of defining already include& extreme-low temperatures, we know
the uncertainty se@ containing all possible uncertain that (under the uncertainty model suggested above) only

vectorsw = (wop, w1, . . .,wr—1) would be to takd? as average and extreme-high temperatures will be allowed
a cartesian produé? = Qg x Qq X -+ X Qp_1. as the subsequent values of temperature in the scenario.
In such a model, for any € {0,...,T — 1}, any The definition of the uncertainty set which we are

w; € Q; can occur, irrespective of which occurrences going to propose below in connection with our robust
of the other uncertainty parametess, actually arise. ~ dynamic programming model certainly does not pretend
This is an independence assumption which, as alreadyto be appropriate for all kinds of applications; however
mentioned in the introduction, has been somewhat it does capture a wide variety of the time-dependence
systematically adopted so far in the literature (in [9] phenomena among uncertainties which one may wish
and [11] itis referred to as the "rectangularity” property to take into account in robust dynamic optimization
). Of course, under such an assumption, the analysisproblems. The various examples discussed at the end of
of the problem is simplified, but the resulting models the paper will illustrate this capability.

may not be very realistic in all situations. For instance, ~ ConsideringQ, ..., Q71 T finite subsets ofN¢,

if for eacht, somew; € ), represents a worst-case our proposal in to take the uncertainty detas an
situation, the model will tend to find the best possible implicitly defined subset of the cartesian prodigt x

solutions against the occurrence @f;,ws,...,wr) 0 x---x Q71 and, more specifically as the set of all
i.e. assuming that at every stepthe uncertainty —w = (wo,ws,...,wr_1) satisfying:
corresponding to the worst-case situation occurs. As a
result, the robust solutions proposed by the model will wt € U t=0,....,.T-1
tend to be very " conservative”. By contrast, we believe =1 (3)
that an uncertainty model capable of representing at Zwt <B

t=0

least some kinds of dependence among the possible
outcomes of uncertain events in various successive timec . <ome givenB = (By.Bs,...,B,)" € N. Thus

perll(.)dstlwould be of potential interest to a number of the uncertainty set corresponds to the solution set of an
applica _|ons. ) . associated system of linear inequalities which will be
Consider as an example the case of optimal daily yeferred to as thencertainty budget constraints

management of a power distribution system under  ap intitive explanation of the above definition is as
uncertainty, induced by weather conditions. A worst- ¢} ows.

case situation with respect to the uncertainty on weather Eachw; € ), corresponds to a possible outcome, at
conditions, would be to have every day in winter an ime 4 of an uncertain process influencing the values
extreme-low temperature. Past records show that this ¢ <ome parameters in the evolution of our dynamic

never occurs. Similarly, alternating between extreme- system, which correspond to some components afthe

low and extreme high t_emperature f_rom one day _to vectors (those components [1, ] such thatv, (i) #
the next during the 3 winter months is not a realistic 0).

scenario. More generally it is clear theaty reasonable
a priori knowledge on the structure of the uncertainty |,
set should be taken into accouatmake the model (and

Considering first the case where all; (¢t =
,...,T—1) are0 — 1 vectors, thei*” inequality (3)

: b which reads:
the solutions produced) more realistic. T—1
For instance, referring to our example above, over we(i) < By (4)
90 winter days, assuming that at masfe.g.k = 15) =0
feature extreme-low temperatures and at niése.g. essentially imposes a limitation on the number of
k' = 15) feature extreme-high temperatures would be occurrences of the uncertainty process corresponding to
certainly more realistic. the i** component, over the whole time perid@ 7'

This means thasome kind of dependen@anong under consideration. In other words, we have a global
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"uncertainty budget’B divided amongg "uncertainty
features” (B, Bo, . .., By), each possible outcome of

the underlying uncertain processes influencing the prob-

lem being characterized by an "uncertainty profile”
wt € {0,1}7 specifying which uncertainty features are
involved (those for whichw,(i) = 1) or not (those for
which w;(z) = 0).

Indeed, our model is still slightly more general
in that the w; vectors ("uncertainty profiles”) may

have general (nonnegative) integral components, thus

providing additional flexibility in the definition of the
uncertainty sef) (replacing the cardinality constraints
(4) by weighted sums with integral weights).

As will be shown in§4. below, for practical applica-
bility of the model and associated solution algorithm,
the main limitation will be that the components of the
vectors and thé3 vector be sufficiently small integers,
in order that the quantity

q

[IB:+1)

i=1

remains sufficiently small (typically less tha)® to

10%). In section 4 below, the above quantity will turn

out to be the cardinality of thencertainty status space
However, even with this restriction, it is worth

Suppose now we want to defifieby allowing at most
6 deviations from nominal value for each uncertainty
feature, i.e.B; = By, = 6.

In that case, for each we would represent the 9
combinations of uncertainty by the following vectors:

ADHOHODH O

Now, the number of distinct solutions to (3), i.e. the
total number of scenarios corresponding to the above
definition turns out to be greater than

C% x 99 ~ 491 x 105.

On the other hand, since the cardinality of the status
space is only(6 + 1) x (6 + 1) = 49 in this case,
using the dynamic programming recursion presented
in the next section, an exact optimal robust strategy
taking into account the uncertainty corresponding to
all the scenarios in the implicitly defined uncertainty
set Q2 defined above, can be computed a matter

pointing out that an attractive feature of the proposed of secondson a standard PC workstation (assuming

model is its capability of handling (implicitly) huge

that the cardinality of the state space representing the

scenario trees, much larger than those which can possible inventory levels is not too large, typically less
be used in scenario-based stochastic programmingthan103 to 10%).

problems (see e.g. [5], [6]). Consider, for instance, a

12 period (T = 12) optimal inventory management
problem (such as the one discussed in Section 5.
below) with uncertainty on procurement costs and
on requirements: at each time periodwe have: a
nominal valuea and two extreme value; anda;”

for the procurement cost; a nominal vald and
two extreme valueg, andd;" for the requirements.
We have here two uncertainty features = 2), one

corresponding to uncertainty on procurement costs,
the other corresponding to requirements. Assuming
independence of the two uncertain processes, we have

to consider at each time period 9 combinations of
uncertainty corresponding to the 9 possible outcomes:

(o) (i) (i) () (o) i) ()
(&) ()

1.4. A dynamic programming-type recursion to find

an optimal robust strategy

We now address the question of actually computing
an optimal robust strategy for a dynamic optimization
problem given by specifying:

(a) the uncertainty s&? implicitly defined by provid-
ing, Vt, the list of all possibles; € Q; together
with the "uncertainty budget” constraint (3):

T-1
Z wy < B;
t=0

(b) the state transition functiof' defined in (1);
(c) the reward functior? defined in (2).

In the same way as for the case of stochastic
multiperiod optimization problems, a solution to the
above stated problem does not correspond to some well-
defined sequence of decisiops , zo, . .., zr) leading
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to maximum reward (in the worst situation created by
uncertainty).

Indeed a solution corresponds tos#rategy (also
sometimes referred to as “closed loop” solution) which
is specified by associating with each stétat each time
instantt, the valuer; of an optimal decision to be taken
during period[t,t + 1] given the currenuncertainty
statusof stateS at timet.

Theuncertainty statusf a stateS at timet provides
the necessary and sufficient information concerning the
past occurrences of uncertainty, in view of properly
restricting the future possible scenarios to be considered
(from instantt to T") to only those in(.

To do so, it is easily seen that we only have to record
the g-component vectot = (o1,02,...,04) € N?
corresponding to the fraction of the uncertainty budget
which is still available to represent the uncertainties to
be taken into account between instantnd 7.

Therefore, for each stat§ at each time the total
number of possible vectors (each corresponding to an
uncertainty statuswill be:

K=(B1+1)x(Ba+1)x---x(Bg+1).

In the following, the set of all possible vectors will
be denoted (the uncertainty status space).

Now astrategy i.e. a solution to our robust dynamic
optimization problem, will be defined by associating a
decisionz,; € X (t,S) with each state5, at each time
and for each uncertainty statsThus, ifp is a strategy,
we will denoteyp(t, S,0) € X (t,.S) the decision to be
taken under strategy at timet when the system is in
stateS and for the uncertainty statuse .

An optimal robust strategy* is a strategy such that,
for each stateS at time¢ and each uncertainty status
o, ©*(t,S,0) is the decision leading to the maximum
reward over the periodt,T] in the worst possible
scenario in the seﬂz(’t,T] of all (wt, wit1,...,wr—1) €
Qp X Qypg X oo0 X sJ2 _1 such that:

T-1
E we < 0.
6=t

We denotez*(¢, S, o) the maximum reward which can
be obtained using the optimal strategywhen starting
from stateS at timet with the uncertainty status.

We now show that thez* and ¢* values can
be determined via the following backward dynamic
programming recursion:

Robust Decision Problems

2" (t, S, 0) :Ité\/)l(zgs) {Y(t, S, 0,2¢)} (5)
where:
U(t, S, 0,4) :U}Yg& {R(t, S, w4, wi)+ (6)
wi<o
ZX(t+1,51,0—wi)]  (7)
and S1=F(t,S, x,w:)
©*(t,S,0) = argmax {Y(t, S, 0, 2:)}. (8)

z€X(t,5)

We assume of course that for= T the z*(T, S, o)
values are known and given (they can be interpreted as
"end of game” rewards. Of course, since the uncertain
phenomena occurring during the peri@d 7] do not
influence what possibly takes place after tiffigit is
legitimate to assume that, for alle X, thez*(T, S, 0)
values are equal to a single reference valti€T’, S, 0),
which is the unique "end of game” value for steteat
time T
Proposition 1 The z*(¢,.5,0) and ¢*(t, S, o) values
computed from the backward recursi(s)-(8), starting
with givenz*(T, S,0) for all S € S, define the reward
and decision functions associated with an optimal
robust strategy over[0,7]. In particular, the best
(robust) decision to be taken in the first stage, starting
with the system in stat&, at time 0, isp* (0, So, B) €
X (0,5p), and the corresponding optimal worst-case
reward (against the proposed uncertainty madet Q)
is 2*(0, So, B).

Proof: The result is obtained by induction, along the

same lines as for the case of Minimax (or Maximin)

Dynamic Programing (see [2]). The main difference lies
in the fact that the uncertainty sets involved at each
step of the recursion now depend (via the uncertainty
statuso) on the various possible past occurrences of
uncertainty. O

The following result shows that the recursion (5)-(8)
is a pseudopolynomial algorithm for solving the robust
multistage decision problem.

Proposition 2 Let us denoté),,. = t_OMa>;_1{|Qt|}

the maximum number of possible realizations of uncer-
tain events which can occur at timeThe computational
complexity of the recursiofb)-(8) is O(T x |S| x | X | x

|¥| X Qmax) Where|S| is the state space cardinality,

| X | the cardinality of the set of possible decisions and
X = (Bi+1) x (Ba+1) x--- x (Bg+1) is the
cardinality of the uncertainty status space.
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Proof: At each stage = 1,...,T, for each state
S € &, for each uncertainty status € X, and
for each decisionr;, we have to compute the value
¥(t, S, o,2¢) given by (7). Each such value is obtained
as the minimum of at mosf,,., terms. Assuming
(which is realistic for many applications) that each
term can be computed in tim@(1), the result follows.

O

It is of interest to compare the above result with
the complexity of the standard dynamic programing
algorithm when applied to a problem of a comparable
size but without uncertainty, namety(7 x |S| x | X|).

e can be sold at unit pricg;.

We also have to satisfy the requirements of the cus-
tomers over time. The product quantity required in the
t*" time period (i.e. between the time instants 1 and

t) is denotedi,.

In the standard deterministic version of the problem,
all the quantitiesy;, 5; andd, are supposed to be exactly
known. By contrast, we will consider an extended
version of the problem where some of (or all) the
quantitiesay, 5, d; are subject to uncertainty. Indeed,
since the pricess, at which the product is sold to
customers are in control of the decision-makers, it
is legitimate to assume that they are not subject to

It is seen that the approach proposed here for handlinguncertainty. Therefore we will only consider uncertainty

uncertainty increases complexity by a fadf x Q,ax
which is typically much smaller than the number of

on thed; anda; values.
To illustrate the flexibility of our model, two different

scenarios implicitly represented by the parsimonious ways of describing uncertainty on tide anda; values

uncertainty model introduced here (for the example will be successively described: the first one will assume
given at the end of Section 3., this factor is onfyx 9, independence of the sources of uncertainty influencing
whereas the total number of scenarios is greater thanthe requirements and the prices ; the second one will
400 millions ). get rid of this independence assumption.

It is also interesting to compare the above result

with the complexity of the dynamic programming-based 5.1.1. A first uncertainty model: the independent case
approach to the robust 0-1 knapsack problem proposed

in [21], which features a computational effort growing
exponentially with the cardinality of the set of scenarios.
By contrast, the complexity of our procedunely grows
linearly with the cardinality of the uncertainty status

spacewhich, as already mentioned, can be considerably
smaller than the number of scenarios (again refer to

the example given at the end of Section 3. for typical
figures).

5. Some applications

We describe in this section two typical applications of

our robust dynamic programming model, one concern-

Consistent with our general model, the uncertainty
domain®D for the d; values will typically be defined as
follows.

For eacht a set of possible values faj

D, = {d,},df,...,d;’}

is considered. (This set includes, but is not necessarily
limited to a nominal value and one or two extreme
values ford,). Note that, for the sake of notational
simplicity, we assume the cardinality of the sbBt
equal to the same integer for all ¢, but the model
would readily accommodate time-varying cardinalities.
To eachd} € D, we attach a-component vectos €

ing optimal inventory management under uncertainties N? corresponding to thencertainty profileassociated
(§5.1.) the other concerning some new variants of the with the occurrence of the valu& of d;. Given ap-

robust shortest path problen§5(2.). Computational

component vectoB; € NP (uncertainty budget for

results on the optimal robust inventory management requirements) the uncertainty §ets then defined as the

problem will be presented and discussed%nl.3..

5.1. Robust optimal inventory management

We consider a multiperiod inventory problem for a

single product, assuming discretized time over a finite

horizon [0,T]. At each time period [t-1,t]
1,...,T) the product under consideration:
e can be bought at unit price; ;

(t =

set of T-vectors of the formd = {d’fl v d?T}

such that:
T

vaj < By

Jj=1

(9)

(in the abovek; € [1,v] Vj).
In a similar way, the uncertainty domaj# for the
pricesa; would be defined by considering for each
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set of possible values ef;, namely:
1 .2 !
At = {atvatv"'ao‘;} }

and by associating g@-component vectorwf € N¢
(uncertainty profile) with each possible occurrende
of oy (again, the assumptio;| = v/, Vt is just for
notational simplicity). Then the uncertainty sétis the
set of T-vectors of the form:

k1 ko

_ kT
a—(al , O ,...,aT)

satisfying

T
> wi’ < B, (10)
j=1
where B, € N¢? is the given "uncertainty budget” for
prices.

To subsume, in this way of representing uncertainty,
we have at each steép v x v/ combinations of values
for oy andd; and two independent sets of uncertainty
budget constraints: (9) for the requirements, involving
p-componentvectors® andB, ; and (10) for the prices,
involving g-component vectorsf and B,,.

In order to illustrate the above model and the
application of the solution procedure describegdnwe
will consider the following small numerical example. In
this example there arE = 4 time periods, the product

can be bought or sold only by integer amounts and the

maximum capacity of the inventory is = 10 units.

of an extreme value fodl; (resp.:«y) over the period
[0, 4] under consideration. Finally we note that, due to
uncertainty, we have to take into account the possibility
of stockout We will therefore consider that, at each
time periodt¢, each missing unit of the product will
incur a penalty costr,. The following table provides
the numerical values fat,, 5;, d; andn, fort =1 to

T = 4. Note that we have taken a constant unit penalty
costm; = 20 (big enough so that the model will tend to
produce an optimal strategy avoiding stockout as much
as possible).

t= t=2 t=3 t=
a;=2 [ ai=5 | a3 =3 | aj =4
at=4 | a3 = ai=8 | ai=6
5}24 5526 5?26 @1127
i 23| B6 | da | b
1= 2= 3= 1=
#=5| d=8 | di=6 | di=
m | T =20 | m=20| 73 =20 | my =20

The initial inventory level is assumed to b& =

0. Moreover each unit of product remaining in the
inventory at the end of the laét"*) period is supposed
to have an "end of game” value equal to 3. So we can
start the application of the recursion (5)-(8) $f by
taking:

2*(4,8,0) = 3.9, forall o = <Z;> € [0,2]2.

(So, at each time instant, the set of possible states forA detailed account of all the calculations resulting from

the inventory isS = {0,1,...,10}).2; (t =1,...,T)

the recursion (5)-(8) would take too much room, so we

denoting the number of units purchased at the beginning only provide part of the intermediate results obtained.

of periodt, the objective is to find an optimal robust
strategy in terms of the, variables to maximize profit

Table 1 below provides the values(0,0,0) and
©*(0,0,0) obtained at the end of the recursion for

(selling returns -procurement costs-stockout penalties + the first stage, and for an initial inventory level O.

end-of-game value).

At each time period, we assume thal, can take only
3 values, one "nominal valuel?, and two "extreme
values” an extreme low-valug¢ < d?, and an extreme-
high valued? > d? (thus,v = 3). Similarly, a; can
take either a "nominal valued; or an “extreme-high
value” a? > o (thusv’ = 2).

The vF andwF vectors ("uncertainty profiles”) are
just 1-dimensional (scalars) with 0-1 values: = 1,
v2 =0,v =1, andw; = 0, w? = 1 (thusp = 1
and ¢ = 1). The uncertainty budget for requirements
is: By = 2, and for prices:B, = 2. In other words,
in this example, the uncertainty budget constraint on
d; (resp.: onay) simply allows at most 2 occurrences

©*(0,0,0) is the optimal decision to be taken (the
amount of the product to be bought) in the first stage for
each uncertainty status, to achieve the correspongding
value.

It is seen from this table that, following the optimal
strategy*, the worst-case optimal return which can be
expected is 15 corresponding 40= (Ba) = (2)

By 2
Also the valuez* (0,0, (0,0)) = 67 indicates the
optimal solution value for the deterministic problem
with all prices and requirements equal to their nominal
values (the corresponding solutioriis = 10, z2 = 0,
x3 =9, x4 = 0, with an inventory level O at the end of
last period).
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Table 1

o=(01,02) | (0,0) ]| (1,0) | (20)| (01) | (1.1) | (21) ]| (02) | (1.2) | (22)
27(0,0,0) | 67 | 47 | 28 | 58 | 37 | 17 | 55 | 35 15
©(0,0,0) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 10

The 2*(0,0,0) and ¢*(0,0,0) values as obtained from the recursigf)-(8) on the
inventory problemo, (resp.o2) denotes the uncertainty status w.r.t. the prices (resp. th
requirements).

Indeed an uncertainty statu 0 at time O cor- uncertainty model is flexible enough to take into account

0 such phenomena.
responds to a problem for which no deviation from

nominal value is allowed for the prices and for the
requirements. The difference between the two values
67 and 15 can thus be interpreted as tipeice of
robustness

Now, suppose that after taking the decision= 10 oy _ al\ /a2 aV
corresponding to the optimal strategy (see Table 1) we Pair (dt> which we denote<dt{) (d%) (dtltj)
are informed that an extreme-high requirement value (Again, for notational simplicity, we assume that the
d, = 5 and anominal price; = 2 occurredinstage 1. jists for¢ = 1,2,...,T have the same cardinality).
So, atthe end of stage 1, the state of the inventafy-s In practice, these pairs should be chosen so as to

5, and, moreover, 1 unit of the uncertainty budget for |efiect the type of dependencies observed in reality (e.g.
requirements has been consumed, therefore the optlmalaiC will be high whend?

- : _ % is high, and low wheni? is
decision to be taken for stage 2 is the one correspondlng|ow)_

The idea is the following. Instead of considering
independently, at each stagepossible realizations of
the prices and possible realizations of the requirements,
we will consider a list of possible realizations of the

. 2 k
to the uncertainty statug |. Associated with each pai<§,§) in the above list,
t

From Table 2, it is thus seen that the optimal decision

; we will also consider g-component integer vector
to be taken is

vF > 0 (uncertainty profile), the uncertainty set defining

2 all the possible realizations for the sequences of pairs
IQZ@* <1757( >) :57 a1 (6% aT . .
1 being specified as the set of
dy ) \ ds dr
the corresponding* value being k1 ko kr T
all (3,11) (3,%2) (3]@) such thaty “v* < B
* 2\\ _ 1 2 T i1
z <1’ 5, (1)> =24 where B > 0 is a givenp-component integer vector
("uncertainty budget”).
These values® (1,5, 2 ands* (1,5, 2 can .Illustratm_g this on our 4-stage mventpry problem,_we
1 1 might consider for instance the numerical values given
easily be deduced, using the recursion (5)-(8), from the . B B (2
valuesz*(2, S, o) displayed in Table 3 below. in Table 5 (heres = 4 andp = 2) and B = 2) As

compared with the model considered gk 1.1. for the

5.1.2. A possibly more realistic model: the dependent independent case, it is seen that such a representation

case . e

In order to make the uncertainty model even closer essentially excludes pai Cd

to reality, it may be desirable to take into account some on an extreme-high (resp. an extreme-low) value when

dependencies among the various sources of uncertaintyd; takes an extreme-low (resp. an extreme-high) value.

which may be observed in practice. In the context of This is consistent with the above-mentioned observed
inventory management, it is frequently the case that correlation between; andd;.

demands and prices are correlated: prices tend to rise We observe that taking dependencies into account

as a result of demand growth, and tend to fall down as amounts to excluding some outcomes of uncertainty

demand is reduced. We now show that our parsimonious from the list of possible outcomes considered under the

*) wherea; would take
t
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Table 2
(01,02) 0,01 (10| (20| @©1| 1D 2D (02 ] (1,2 (2,2)
z*(1,5,0) 67 46 40 56 35 24 53 34 20
»*(1,5,0) 1 4 5 3 4 5 3 5 5

The 2*(1,5,0) and ¢*(1,5,0) values as obtained from the recursigf)-(8) on the
inventory problemo, (resp.o2) denotes the uncertainty status w.r.t. the prices (resp. th

requirements).

Table 3

g (1,02) 0,0 ] @€0) | 20| 01| 11| (21] 02| 12| 22
0 36 | 10 | -2 | 29 | =5 | —19 | 27 | —7 | —19
(10) | 4) | 4 | (10) | (6) | (6) | (10) | (6) | (6)

. 39 | 18 6 32 3 | —11 | 30 1 11
9 1 & 1 G 1 O] 6) 606G | 6

5 42 | 24 | 14 | 35 11 | -3 | 33 9 —3
® 1 @16 | 6| W6 | @ | @

3 45 | 30 | 22 | 38 19 5 36 | 17 5
M1l Ol O ]16 161 m]6 | 6

4 48 | 34 | 30 | 41 | 23 | 13 | 39 | 23 13
6 | (2 O |6 | @] @6 @] ©

c 51 | 39 | 36 | 44 | 29 | 21 | 42 | 29 21
G OO 6 | 0n 6 @] W

5 54 | 45 | 42 | 47 | 35 | 29 | 45 | 33 29
@ 1 OO0 @ |0 @] @] 0

; 57 | 50 | 48 | 50 | 39 | 35 | 48 | 38 35
B 1O 01 610G [ O]

g 60 | 54 | 54 | 53 | 44 | 41 | 51 | 44 41
2 O 0| @ | OO @00

° 63 | 60 | 60 | 56 | 50 | 47 | 54 | 49 47
W] OO0 O] OO0 ]0O] 0

10 66 | 66 | 66 | 59 | 53 | 53 | 57 | 53 53
(0) ] (0) | (00 ] (00 ] (0 | (0 | (0) | (0) | (0)

The z*(2,S,0) values (and thep* (2, 5, o) values in parenthesis) as obtained from the
recursion (5)-(8) on the inventory problemr; (resp.o2) denotes the uncertainty status
w.r.t. the prices (resp. the requirements).
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previous model§5.1.1.). The resulting robust strategies offered in the specification of the uncertainty sets via
can thus only be less conservative, leading to higher the choice of thevf vectors (uncertainty profiles) ;
worst-case returns. This will be confirmed by the indeed the numbey of components and the values of
computational experiments reported in Section 5.1.3. the components themselves may be given all kinds of
interpretations and consequently "modulated” to fit the
Also we note that there is much modeling flexibility needs of the application under consideration in the best

below.
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way possible. procurement costs. Their precise values are defined as:
k| gk
5.1.3. Computational experiments v = ’dtk o (1)
We present here various computational experiments wi = [af — anom(t)] -
illustrating and vghdatmg the flexibility of the.proposed It is seen that, in the above, occurrences of demands
approach on series of randomly generated instances of

the i ¢ ¢ probl d taint (resp. of procurement costs) and their weights in the
€ inventory management probiem under uncertainty. - o ssociated budget constraint do not depend on the values

taken by procurement costs (resp. by demands). Also,
a) The independent case k

t
The first series of experiments concerns the indepen-which both coefficients} andw} are zero, namely the
dent case§b.1.1.), the correspondinginstance involving pair corresponding to nominal values, both for demands
10 period problemgT = 10) with an inventory of and for procurement costs.
maximum capacity: = 30 units and initial inventory Table 5 displays the results obtained on a series of
level Sy = 0. 12 instances (numbered P1 to P12). For each instance,

Each instance has been generated as follows. Forg gitferent values of3 — (Bd the right hand side
each time period = 1,...,T, the extreme values Ba

dumin (t) ANdiax (¢) for demandsgmin (¢) andeumax () of the budget constraints are considered. Each entry in
for procurement costs, are obtained by drawing at ran- the table provides: _ _

dom uniformly distributed independent integer valued ® the value of the optimal robust strategy resulting
random variables € [5,15], § € [3,9], 6 € [10,20], from the application of the dynamic programming
n € [2,8] and setting recursion (5),'(8); . . L
e in parenthesis, the corresponding optimal decision in

the first time period (the amount of product to be

onin () = 7 ; dimax () = dynin(t) + 0 ; purchased in the first time period according to the

. —9- _ . optimal strategy).
@in(t) = 65 Amax(t) = Gmin(t) + 7 We first observe that the figures displayed in the

observe that, for each there is a single pai(i@) for

) ; 4 . 0
at random integer valued independent uniformly dis- {he geterministic casewhere theré is no uncertainty

tributed variables in the intervi0, 30]. _ (demands and procurement cost taking their nominal
Two uncertainty budget constraints are considered ya|ye at each time instant).

(¢ = 2), the first one corresponding to demands e also note that the figures in the last column for
and the second one to procurement costs. For any 00 ] ]
given time period, the various possible combinations Which B = | ) correspond to optimal strategies

d of a demand value and a procurement under the classical Max-Min d.ynamic programmiqg
o _ ) ) approach. Indeed, the uncertainty budget constraints
cost value are all pairs of integers belonging to gare inactive in this case, therefore at each step of the

[dmnin (t), dmax(t)] X [0min(t), amax(t)]. These pairs  pp recursion, the worst case situation to be considered

. . 0
Finally, the selling priceg, are obtained by drawing ~ first column, for whichB = ( ) correspond to

are indexed byk = 1,...,K; (where K; = is independent of the past occurrences of uncertainty
(dmax(t) = dmin(t) + 1}2 (Otmax(t) — amin(t) + 1)) (this contrasts with what occurs in our parsimonious
With each such pai i‘}c we associate the coefficients uncertainty model for smaller values &f = gd ,

t a

vF € R andwf € R in the two uncertainty budget  when the uncertainty budget constraints become active).

constraints. The value of each of these coefficients The figures shown in columns 2-8 of Table 5 corre-
depends on how mucf (resp.a’) deviates from the  spond to cases where the uncertainty budget constraints
rmax(t) + dmin(t)J for tend to become more and more effective asiyeand
2 B, values are decreased. They properly illustrate the
Lamax(t) + amin(t)J tor significance of the impact of the size of the budget set
2 on the quality of the resulting optimal strategies. For

nominal valued,om(t) = {

demands and auom(t) =
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each column in Table 5 (for each valueBf= <Bd>) the linear functiony for which O‘max(l.f) —v (dmax (t))
B, and amin(t) = ¢ (dmin(t)), and this is the case of

the difference in maximum rewards as compared with perfect correlation. On the other hand, for= 1, any
the figures in the first column can be interpreted asthe . /¢, .
“price of robustness pair <at> n [dmin(t)vdmax(t)] x [amin(t)aamax(t)]

Big differences are observed, in terms of maximum  satisfies (11), therefore this corresponds to the case
profit, between the optimal deterministic solutions (first where there is no dependence between demands and
column) and the optimal Max-Min strategies, confirm- procurement costs.
ing the commonly accepted idea that the latter tendsto 7o petter understand the role of the paramater
produce fairly conservative solutions. in controlling the amount of dependency, let us con-

In this respect, an interesting feature of the new sider the example (illustrated in Figure 1) where:
uncertainty model proposed in the present paper is t0 (g, . (1), duax (t)] = [2, 8], [@min (£); max(t)] = [5, 9],
provide a systematic way of exploring “intermediate” gndy = 0.2.
and less conservative robust strategies between these ) , d i
tWo extremes. The points corresponding to the 11 p rs satis-
fying (11) are shown as bold dots. If we interpret this
set of pairs in terms of a standard probabilistic model,
assuming each pair can occur with equal probability

The second series of test problems concerns the(1/11), then the corresponding correlation coefficient
case where, at each time peritdprocurement costs  has value 0.943. More generally, there is a direct
and demands appear to be correlated. The intensity ofrelationship between the value afand the correlation
the correlation will be controlled by means of a real coefficientp as shown in Table 6 below (columns 1

b) The dependent case

parameter. € [0, 1], the previously described repre-
sentation of uncertainty being modified accordingly. In
the new resulting uncertainty model for demands and
procurement costs, the value= 0 corresponds (for
fixed t) to totally correlated values off anda¥; the
valueu = 1 corresponds to uncorrelated values, in other
words, foru = 1, we find again the uncertainty model
considered for the independent case.

Foranyu € [0,1],andt = 1,...,T, the definition of

the set of allowed occurrences of pa(rgt) is changed
t

as follows. Instead of allowing all the pai(sit) in
t
[dmin (1), dmax(t)] X [@min(t), amax(t)] we only allow
those pairs which satisfy the conditions:
dt - Jt .
dmax(t) - dmin(t)

o — Q¢
Omax (t) - amin(t)

’Su

(11)

where:
n dmin(t) + dmax(t)
dy =
2
min t max t
s = Q0]+ o)

Observe that: = 0 in the above amounts to requiring
that the only allowed it pairs are those which
t

correspond through a linear function (more precisely,

and 2). (The third column in Table 6 also provides
the values ofp as a function ofu in the case of
infinitely many points uniformly distributed in a box

of R? of the form [d,d] x [a,a] with d < d, & <

@; interestingly this function does not depend on the
ratio (d — d) / (& — «)). This confirms that. is indeed

a relevant parameter to control the intensity of the
dependence between demands and procurement costs in
our robust dynamic programming model for inventory
management.

Table 7 displays the results obtained on some of the
instances taken from the previous series of experiments
for 3 distinct choices foiB (the right handside of the
budget constraints) and 6 distinct valuesuofanging
from 0.1 to 1.

For each instance considered, the intervals of varia-
tion of demands and procurement costs are not influ-
enced by the parameteythey are therefore the same as
for the independent case (which corresponds te 1).

However it is seen that, if an a priori knowledge about
possible dependence between demands and procure-
ment costs is available, it can be appropriately taken into
account by our model, possibly leading to significantly
improved optimal strategies. More precisely, Table
9 summarizes the average relative improvements (in
terms of optimal worst-case benefits) over the standard
Maximin DP model (columnu = 1) obtained for
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Table 5
0 1 3 5 8 10 12 20 00
B —
) | 6) 166 6) ] Go) | (o) | Go) | ()
P1 980 908 803 713 608 558 508 379 320
(28) (29) (28) (27) (16) (16) (16) (16) (16)
P2 1630 | 1560 | 1435 | 1358 | 1259 1206 1159 1013 956
(30) (30) | (22) (21) (16) (16) (16) (21) (26)
P3 1357 | 1297 | 1177 | 1081 989 940 896 765 668
(12) (12) | (12) (13) (14) (14) (14) (15) (15)
P4 1289 | 1219 | 1116 | 1029 911 850 796 660 626
(30) (30) | (29) (28) (22) (21) (21) (29) (30)
P5 737 674 581 491 415 376 337 209 100
9 | (9 | (10) | (10) | (12) | (12) | (12) | (12) | (11)
P6 1583 | 1527 | 1433 | 1352 | 1252 1188 1124 977 943
(12) (12) | (16) (16) (20) (20) (13) (13) (13)
p7 1266 | 1217 | 1128 | 1058 965 909 858 704 630
(29) (29) (20) (18) (16) (15) (16) (16) (16)
P8 1403 | 1343 | 1229 | 1133 | 1004 934 877 701 610
(30) (30) | (29) (29) (27) (19) (19) (21) (27)
P9 1142 | 1072 974 908 814 754 702 547 478
(9) | (10) | (18) | (I7) | (18) | (17) 17) (12) | (12)
P10 1185 | 1115 | 1007 | 923 817 762 716 598 523
(10) (10) | (11) (12) (16) (13) (13) (14) (14)
P11 1027 | 957 847 744 644 592 545 396 366
(14) (14) | (15) (16) (17) 17) (17) 17) (17)
P12 1244 | 1174 | 1063 | 968 849 787 733 579 546
(29) (29) | (29) (26) (21) (19) (18) (30) (30)

Impact of the size of the uncertainty set on the values ofr@btiobust strategies.

Correspondence between the values of the parameter

u and the correlation coefficient under the standard
probabilistic interpretation

the various values o3 and ofwu. It is observed that

Table 6 values of B, can be as large as 15 % far= 0.2, and
12
0 — —
Correlation coefficienp close to 20 % forn, = 0.1 whenB = <12).
Values ofu integer points | continuous uniform dist-
in [2,8] x [5,9] | ribution in a box ofR? Table 8
0 1 1 Py 01 02 | 04 06 081
0.05 1 0.994 5
01 0987 0978 B= <O> 97% | 57% | 1.4% 0.15 010
0.2 0.943 0.911 B= <8) 14% | 98% | 35 036 |01]o0
0.3 0.872 0.801 8
0.4 0.783 0.658 B= G§> 198% | 155 | 7.5 15 05/ 0
0.5 0.565 0.5
0.6 0.466 0.344 Average improvements over the Maximin DP model as
0.7 0.368 0.207 deduced from the results of Table 7.
0.8 0.254 0.098
0.9 0.138 0.027 The above results illustrate well the possible impact
1 0 0 of dependence among the various sources of uncertainty

in a multistage robust decision model.

5.2. Some robust shortest path models on circuitless
graphs

We consider a circuitless directed graph= [N, U]

these improvements, while relatively modest for smaller with n = |A/| nodes andn = |U| arcs, in which
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Fig. 1. The 11 integer points if5, 9] x [2, 8] satisfying condition (11) for = 0.2. This is a case featuring a significant amount
of correlation between demands and procurement costs ¢f@gtands tend to correspond to rather high procurement, dosats
demands to rather low procurement costs).

we distinguish a root node (a node having zero in- a global nonnegative-component vecto3 is given
degree) and a target node. We assume that the nodeg’uncertainty budget”), the uncertainty set for the arc
are numbered according to a topological ordering (i.e. lengths being defined as the setlof: (lu)uecv Of the
(i,7) € U = i < j), and without loss of generality,
that the root node is indexed 1, and the target note is
indexedn.

form (1%, 152 .. 1km) WhereZwi < B.

=1

We note that such a model is sufficiently general to

Each arcu = (4, j) € U has an associated length handle situations for which a given realization =
whichis not exactly known but which can take any value % is the result of joint influences of several distinct
from a given finite set of valued:, = {1}, %3, .., 1} sources of uncertainty: the correspondirfgvector will
(for the sake of notational SlmpIICIty, we assume that all have several Components equa| tol (Or, more genera”y’
L., have equal cardinality, but of course the proposed  non zero). Also we note that in most applications, the
model is more general and readily extends to the case|argest among thé&® values inL,, (those related to the

of nonuniform cardinalities). most unfavorable situations with respect to finding the
Associated with eaclf value inL,, we assume that  shortest path solution) will tend to correspond to e
we are given @-component integer vectar® > 0 rep- vectors of largest "weight” (as measured e.g. in terms

resenting the "uncertainty profile” of the corresponding of number of non zero components, or in termslgf
realizationl,, = lfj for the length of ara:. The various norm).

components of thev* vectors may be interpreted for Also worth mentioning is another special case of
instance as corresponding to various possible sources othe above general model, potentially useful in ap-
uncertainty (weather conditions, measure of congestion plications, where there are sever@l) independent
of arc u on a transportation network, etc) and, for a sources of uncertainty acting odisjoint subsets of
given realization® of 1, in L,, thei® component of arcs U1,Us,...,Up. Then, for eachu € U, the
wk is 1 (or more generally a positive integer) if the correspondingu® vectors will have all components 0

i*" source of uncertainty is a factor contributing to the except thei** component which can be non zero. In
outcomel,, = I*, 0 otherwise. In addition to the above, such a case the global uncertainty budget constraint just
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Table 7

U — 0.1 0.2 0.4 0.6 0.8 1
B— 5 1584 1423 1376 1358 1358 1358
=(3) | o) | a0 | on | oo (21) (21)
P2 B— (8) 1482 1362 1300 | 1259 1259 1259
8) | @3) | (30) | 19) | (16) (16) (16)
B— (12) 1400 1306 1225 1161 1159 1159
—\12 (20) (18) (21) (16) (16) (16)
B = 5 1473 1406 | 1368 | 1352 1352 1352
=) a3 | 22 | 19) | a6 (16) (16)
P6 B— (8) 1412 1345 1279 1252 1252 1252
“\8) | a3) | 22 | 22) | (20) (20) (20)
B— 12 1358 1301 1203 1132 1125 1124
- (12) (18) (20) (17) (13) (13) (13)
B— 5 1162 1128 | 1071 1059 1058 1058
=) | an | @ | ae) | a7 (18) (18)

p7 B— (8) 1122 1077 | 1000 969 966 965
8) | a8 | an | (22) | (16) (16) (16)

B— (12) 1082 1029 935 874 864 858
12 (17) (17) (16) (16) (16) (16)

B— 5 986 958 910 909 908 908
—\5 (141) (16) (18) (18) 17) (11)

8 945 902 832 816 815 81
P P= (8) 12) | (15 | (16) | (8) (13) (13)
B— (12) 889 844 761 716 708 702
“\12) | a5 | a9) | 6) | (16) (16) (17)

B— 5 1037 | 1017 955 923 923 923
—\5 (13) (143) (12) (12) (12) (127)

8 985 948 883 822 820 81
P10 B = (8) (14) | (13) | (13) | (16) (17) (16)
B— (12) 938 886 806 739 727 716
12 (14) (14) (14) (14) (14) (13)

B— 5 1052 1025 980 975 968 968
el L | o) | | o b b
P12 B= (8) 30) | 30) | 20) | 21) (21) (21)
5 (12) 904 | 868 | 784 | 745 735 733
“\u2) | a9) | @5 | @1 | (18) (18) (18)

Results obtained for various values of the parameteontrolling the intensity of the dependence
between demands and procurement costs.

amounts to imposing one uncertainty budget constraint presented in Sections 2. to 4. above ; indeed, identifying
for each subset of arcs separately. the nodes of the circuitless graghwith the states of

Once defined the uncertainty set on the arc lengths asa dynamic system, this corresponds to the case where
explained above, the problem consists in determining there is no uncertainty on the state transition function
a best possible (robust) strategy for choosing paths in (uncertainty only influences the "return” function).
the graph from each nodeto the terminal node: in From this, we deduce that the robust shortest path
such a way that the worst possible lengths of these problem can be solved by the following recursion in
paths (over the set of all possible eventual realizations which the nodes of the graph are examined according
of uncertainty) is minimized. This problem is easily to a reverse topological ordering, starting by assigning
recognized as a special case of the general modelshortest path values equal to O, to nede
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(whatever its uncertainty status) and then assigning followed (1 — 3 — 7) has worst case length 26. The

shortest path values to nodes- 1,n — 2, ... etc., for figure* <1 — 98 shown in Table 5 corresponds
each possible uncertainty statws< B. "\ 1
to the worst case between the two alternatives (since,
z*(n,0) =0, forallo < B (12)  when starting at node 1 we do not know in advance,
and then, for =n—1,n—2,...,1: which length will actually be realized on arc (1,3)).

This example thus illustrates the fact that the solution
produced by recursion (12)-(14) is not a well-defined

. ) . . . path between origin and destination in the graph, but
2(i,0) = (Z. j%\g}ﬁ @ ,Mﬁ??u {i; + 2" (G0 —wij)} a set of optimal paths definingsirategy(closed-loop
" =y solution).

e (13) It also illustrates the fact that the robust shortest

path model investigated here appears to be significantly
different from the one proposed in [3], since in the latter
¢*(i,0) = argmin { Max {I% +2*(j,o —wl)}p. casean “open-loop” solution is looked for instead of a
(i,j)ewt (i) | F=Lv 'closed-loop’ solution.

g.t.
w; <o

According to such a strategy the optimal path to be
followed depends on the information about uncertainty

At each step of the recursiony*(i,o) denotes collected during the graph traversal process itself.
the best arc to take to leave nodegiven that the

(14)

corresponding uncertainty status of nodées o (due 6. Conclusions
to the observed realizations of uncertainty on the path
from node 1 tai). A class of multistage robust decision problems has

Let us illustrate the recursion (12)-(14) on the simple been myestlgated in connection with sp_eC|aI .type of
uncertainty model referred to here as fr@rsimonious

example graph shown on Figure 2 below (note that . .
the nl(o)deg a?e numbered ac?:ording 0 a t(opological uncertainty modelTo the best of our knowledge, this

1 is the first time such a way of modeling uncertainty is
order). We takeB = (1) Therefore, there are  proposed in the context of robust dynamic programming
4 possible distinct values for in this example: problems. In particular, it has been shown that a

o\ /1\ /0\ /1 key interest of such a model is to provide com-
(O) (O) (1) (1) pact representations of potentially huge scenario trees,

o _ ) leading to an efficient (pseudopolynomial) dynamic-
The application of recursion (12)-(14) then provides programming-based algorithm for computing optimal
the 2*(i,0) values and corresponding'(i, o) values  strategies (“closed-loop” solutions). From the point-of-

displayed in Table 9. view of applications, the uncertainty model proposed

Itis seen that, under the given uncertainty model, the Nere has been shown to offer modelling flexibility
optimal strategy leads to the decision of leaving node N various ways: (a) it is capable of representing,
1 via arc (1,3). Now, in node 3, the decision to take N @ny given time period, dependence among several
depends on which realization of uncertainty is actually Parameters influenced by uncertainty (refer to the
observed while traversing arc (1,3). If the nominal example of prices and requirements as discussed in

length 8 was observed, we are in node 3 with uncertainty §°-1.2.); (b) it is designed to take into account, via
the uncertainty budget constraints, dependence among

status i and the optimal decision which should be | ,ncertain events occurring ififferent time periods(c)
taken then is to use arc (3,4). If the extreme-high value by varying the components of the right hand side of
the uncertainty budget constraints, and by exploiting
the intermediate results of the dynamic programming
and then we should leave node 3 using arc (3,7). In the recursion, it can be used to generate a variety of more or
former case the path followed -3 -4 — 5 —7) less conservative solutions featuring various robustness
has worst-case length 28 ; in the latter case the pathlevels.

11 was observed, we are at node 3 with st Lés
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(11,12,14)

&
(10,15,16)
(1,3,6)
(5,8,11)

(13,15,22)

(35%
o™

(8,9,11)

/

(6,7,9)

Fig. 2. A 7-node graph to illustrate the robust shortest gatmputation. On each arc there are 3 possible values of tigghle

(11,12,13) corresponding to the uncertainty profiles, = (8) w2 = (é) wd = (?) The uncertainty budget iB = G)

Table 9
(o) [= (o) = () | = (- ()
"\ 0 "\ 0 "\ 1 "\ 1
i=7 0 () 0 () 0 () 0 ()
i=6 7 (6,7) 8 (6,7) 9 (6,7) 9 (6,7)
i=5h 6 (57) 7 (57) 9 (57) 9 (57)
i=4 | 11 (45 14  (4,5) 17 (4,5 18 (4,5)
1=3 12 (3,4) 15 (3,7) 18 (3,4) 20 (3,4)
1=2 16 (2,5) 19 (2,6) 21 (2,6) 22 (2,6)
i=1] 19 (1.2) 22 (1,2 26 (1,3) 28 (1,3)

The optimal decision rules obtained for the example in Féglr For each
pair (i,0) the valuez* (i, o) is displayed, followed by the arc corresponding
to ¢* (4, 0).
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As an additional interesting aspect of our model, we Applications”. INFORMS J. on Computing, 9, 2, pp.
mention the fact thait is by no means exacting in 111-133.
terms of input dataFor instance it does not require [7] Birge J.R., Louveaux F.V. (1997). " Introduction to
from the decision maker a precise knowledge of a Stochastic Programming ”. Springer Verlag, New York.

huge number of (possibly multidimensional) probability [8] Charnes A., CHOOPef W.W. (1959). "Chance Constrained
distributions (such information is rarely at hand when - Erzgtgé;ml-mlGngéC“I:igzigein;ﬂer};(?glle)n’(’:;z;rsisleYI\ijt?'|e
dealing with applications involving uncertainty). On P?iors” Joumal Econom 'i'heory 113 1 op. 1.31 P
the contrary, it only requires much coarser and sparser X ' P S FE :

. ) . . 7 [10] Iniguchi M., Sakawa M. (1995). "Minimax Regret
information on the uncertain parameters, typically: Solution to Linear Programming Problems with Interval

maximum and minimum observable value, maximum Objective Function”. EJOR, 86, 3, pp. 526-536.
number of occurrences of extreme (worst-case) values[11] lyengar G.N. (2005). "Robust Dynamic Programming”
over the period of study. Clearly, assuming availability Maths. of Operations Research, 30, 2, pp. 257-280.

of such information appears to be much more realistic [12] Kouvelis P., Yu G. (1997). "Robust Discrete
in many situations. For all the above reasons, the variety ~ Optimization and its Applications”. Kluwer Academic
of applications which might be addressed via the model Publisher, Boston.

and solution approach proposed here appears to bel13] Minoux M. (2007). "Duality, Robustness and 2-Stage

potentially huge and this will be the subject of future Robust LP Decision Models’. Annales du Lamsade,
research work. Université Paris-Dauphine, France.

[14] Mulvey J.M., Vanderbei R.J., Zenios S.A. (1995).
"Robust Optimization of Large Scale Systems”. Oper.
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