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Abstract

High-throughput technology has enabled molecular biologists to study genes and gene products of living organisms on
a systems level: nowadays, it is possible to measure the activity of thousands of genes in a single experiment. With this
type of measurement, one aims at revealing the structure andthe dynamics of the underlying genetic regulatory network.
In particular, one is interested in identifying groups of genes with shared functions or shared regulatory mechanisms
which leads to various challenging optimization problems.

Here, we consider the problem of finding multiple, diverse modules of genes that exhibit similar trends regarding
one or several gene expression data sets. We present a hybridevolutionary algorithm for this task that distinguishes
itself from previous approaches in three aspects: (i) a set of diverse modules can be found in a single optimization run,
(ii) multiple data sets can be considered simultaneously without mixing the corresponding data, and (iii) the trade-off
between available runtime and quality of the generated solution can be set by the user.
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1. Introduction

A fundamental goal in systems biology is to under-
stand how genes control cellular processes. Colloqui-
ally speaking, genes are the blueprints for proteins, and
mRNA is the first intermediate during the production
of a protein from the genetically encoded information.
Theexpression levelof a gene denotes the concentration
of the corresponding mRNA molecule and is an indica-
tor for gene activity, or more precisely: for the amount
of protein that is currently being produced. Nowadays,
the expression levels of thousands of genes, possibly
all genes in an organism, can be measured simultane-

Email: Stefan Bleuler [e-mailxxxx], Philip Zimmermann [e-
mailXXXX], Markus Friberg [e-mailXXXX], Eckart Zitzler
[e-mailxxxx].

ously in a single experiment using microarrays. By per-
forming series of microarray measurements under dif-
ferent conditions and treatments, one obtains a matrix
of gene expression values. Related experiments are usu-
ally pooled in one data set, while measurements stem-
ming from diverse environmental settings or different
technology platforms, laboratories, etc. are summarized
in terms of separate data sets.

Def. 1 A gene expression data set is a real-valued
m × n matrix E := (ei,j)m×n where the elementei,j

represents the gene expression value of genei under ex-
perimental conditionj. A collection E of l gene expres-
sion data sets is a vectorE = (E1, E2, . . . , El) where
Ek := (ek

i,j)m×nk
. Thecombined gene expression data

set of a collectionE is the matrixEE := (eE

i,j)m×nE
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with nE :=
∑

1≤k≤l nk where theith row is defined as

(e1
i,1, . . . , e

1
i,n1

, e2
i,1, . . . , e

2
i,n2

, . . . , el
i,1, . . . , e

l
i,nl

).

The identification of groups of genes that participate
in similar cellular processes is one of the key issues
in analyzing genome wide gene expression measure-
ments. To this end, biologists are looking for a subset
of genes which are similarly expressed over a subset
of conditions—under the assumption that genes with
shared functions or regulatory mechanisms exhibit, in
specific situations, similar expression levels. Such a
combination of selected genesG and conditionsC is
denoted asbicluster; usually, not a single bicluster, but
a diverse set of ideally non-overlapping biclusters, abi-
clustering, is sought.

Def. 2 Let E be a collection ofl gene expression data
sets. Abicluster B is a vectorB = (G, C1, C2, . . . , Cl)
whereG is a subset of genesG ⊆ {1, . . . , m} andCk a
subset of conditions in data setk Ck ⊆ {1, . . . , nk} for
1 ≤ k ≤ l; the set of all possible biclusters is denoted
asB. A biclustering D is a multi-set of biclusters; the
set of all possible biclusterings is denoted asD.

The task of finding biclusters in a collection of gene
expression data sets can be formalized as an optimiza-
tion problem in different ways—depending on the spe-
cific biological question and scenario. Here, we con-
sider the discovery of gene groups that representtrends:
only the order of the expression values matters, but the
absolute differences between expression values are not
taken into account. Trends are a useful concept espe-
cially with the analysis of time course data sets where
each matrix column corresponds to a specific point in
time under the same environmental conditions and for
the same organism. For instance, suppose the expres-
sion values of three genes are constantly increasing over
the course of time, i.e., they follow the same trend. In
this case, the order of the expression levels is the same
for all three genes: the first condition represent rank
1, while the last condition stands for the highest rank.
Nevertheless, the absolute expression values among the
three genes can differ strongly: the values for one gene
may drastically go up, while another gene leads to small
changes in expression only. That means the similarity
of the three genes may be low regarding the absolute
expression levels, but perfect with respect to the order
of their expression values.

In this paper, we propose an evolutionary algorithm
in combination with a greedy heuristic in order to de-
termine a biclustering that is based on the order of the

expression values. In contrast to existing approaches,
the proposed module identification method
• is capable of identifying a set of diverse biclusters,

each following a trend, in a single optimization run;
• allows to operate on multiple data sets simultane-

ously without the need of mixing data from different
experiments;
• enables the user to individually set the trade-off be-

tween run-time and solution quality.
This analysis of multiple input data sets leads to prob-

lem formulations which are clearly different from ex-
isting biclustering approaches based on evolutionary al-
gorithms which all work on a single input matrix only
[4,1,8,23,22,2,10,21]. The present work is in part based
on a preliminary study reported in [5]. While the basic
algorithm is similar, it has been adapted to identify also
biclusters which do not extend over all columns and it
uses a new variant of the environmental selection. Ad-
ditionally, the present paper provides an extensive al-
gorithmic Al comparison to two alternative techniques,
validates the biological relevance by means of a pro-
moter motif analysis which also allows to determine the
effects of mixing multiple data sets and it provides a
detailed discussion of exemplary biclusters.

2. Related Work

In the literature, a variety of methods has been pro-
posed and employed for gene module identification.
Classical clustering methods such as hierarchical clus-
tering [27] andk-means clustering [17] partition the set
of genes into disjoint groups according to the similar-
ity of their expression patterns overall conditions of a
single data set; that means every gene is contained in
exactly one (bi)cluster:

∀i ∈ {1, . . . , m} : |{(G, C) ; (G, C) ∈ D ∧ i ∈ G}|=1

and every (bi)cluster includes all conditions:

∀(G, C) ∈ D : C = {1, . . . , n}

Although these approaches have been successfully ap-
plied to gene expression data analysis [11], some un-
derlying assumptions do not reflect biological reality:
(i) genes may have several functions and therefore may
be contained in multiple biclusters, and (ii) certain pro-
cesses may be active only over some but not all condi-
tions.

In contrast, the concept of biclustering, which goes
back to the work of Hartigan [16], overcomes these lim-
itations and focuses on local subpatterns in an arbitrary
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data matrix: a bicluster is defined as a subset of the
rows and a subset of the columns. Cheng and Church
[9] were the first to transfer this concept to the analysis
of gene expression data sets, and meanwhile various bi-
clustering methods have been presented in this context,
e.g., [18,3,29]. An extensive comparative study demon-
strated on both synthetic and real data that popular bi-
clustering approaches do find gene modules that could
not be identified by a hierarchical clustering algorithm
[24]. Biclustering problems in general are highly com-
plex optimization problems and most approaches use
heuristics for identifying good biclusters. Following the
first EA for biclustering in [4], a number of studies have
demonstrated the usefulness of EAs for solving such
problems [1,8,23,22,2,10,21].

Despite the recent advances, there are several open
issues. Firstly, most biclustering methods are based on
greedy strategies that can be considered as local search
methods which are fast but often yield suboptimal re-
sults. However, the computation resources needed are
often less critical than the quality of the outcome: in
comparison to the amount of lab work required to per-
form the measurements, run-times of several minutes
up to a couple of hours may be still acceptable if it
can be justified by a substantial improvement in quality.
Secondly, many biclustering techniques are designed to
find a single bicluster, and they need to be applied it-
eratively in order to obtain a biclustering. For instance,
in [9] found biclusters are simply replaced by randomly
chosen values which hinders overlapping biclusters to
be identified. Thirdly, existing clustering and bicluster-
ing algorithms can only operate on a single data matrix,
which implies that multiple data sets need to be mixed
(EE) for a combined analysis [11,13,26]. However, of-
ten the measured values can be compared more reli-
ably within one data set than between data sets; signifi-
cant differences have been found in measurements per-
formed by different labs or with different technologies
[19,15]. An alternative approach would be to perform a
cluster analysis on each data set separately, thus avoid-
ing the problem of mixing. Nevertheless, it is unclear
how to combine such results to find groups of genes that
are similarly expressed over all data sets since looking
for the intersections of the clustering results is usually
too restrictive.

3. Optimization Framework

In the following, the proposed approach for discover-
ing trends is detailed. We start with a formal description

of the underlying optimization model, before dealing
with the algorithms.

3.1. Model

The problem of finding one or several biclusters is
inherently multi-objective. On the one hand, one is in-
terested in finding large biclusters, i.e., modules con-
taining many genes exhibiting a similar behavior over
many experimental conditions. On the other hand, the
similarity among the chosen matrix elements is to be
maximized, i.e., the biclusters should behomogeneous.
These criteria are naturally conflicting as the latter is
usually the higher the less genes and conditions are in-
volved. We will first formally define these criteria be-
fore discussing how to combine them.

As to the size criterion, we simply consider the num-
ber of matrix cells associated with a given bicluster.

Def. 3 Given a data set collectionE, thesize score fsize

of a biclusterB is defined as the number of contained
matrix elements, i.e.,

fsize(B) := |G| ·
∑

1≤k≤l

|Ck|

Since the focus is on trends, the homogeneity crite-
rion is based on the order of the expression values for
the selected conditions. In a first step, the expression
values are transformed into ranks—for each data set and
gene separately. In principle, the rank of a value corre-
sponds to its position in the sorted list of all values for
the conditions under consideration; however, here we
normalize the ranks to the interval[0, 1] to make data
sets with different number of columns comparable.

Def. 4 Let E be a collection of data sets. The rank of
genei at conditionj for data setk and the selectionC
of conditions is given by

rk(i, j, k, C) := 1 + s< + (s= + 1)/2

with s< := |{ek
i,j′ ; ek

i,j′ < ek
i,j ∧ j′ ∈ C}| ands= :=

|{ek
i,j′ ; ek

i,j′ = ek
i,j ∧ j′ ∈ C}|. The normalized rank

is defined as

nrk(i, j, k, C) :=
rk(i, j, k, C)− 1

nk − 1

To quantify differences in the order of the expression
values for a given bicluster, the rank variance over the
selected genes is computed for each selected condition
in a second step. Finally, the average rank variance over
the conditions gives therank-homogeneity score.
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Fig. 1. a) On the left hand side, a collectionE = (E1, E2)
of two gene expression data sets is shown, on the right hand
side, the corresponding expression levels are replaced by their
(unnormalized) ranks within each row; the shaded area marks
the largest bicluster withf1

hom = f2

hom = 0. b) The same
is shown for the combined gene expression data set of the
collection E; here, the resulting largest bicluster contains
fewer genes as an effect of mixingE1 andE2.

Def. 5 Therank-homogeneity score fk
hom of a bicluster

B for thekth data set in a collectionE is defined as

fk
hom(B) :=

1

|Ck|

∑

j∈Ck

(

1

|G|

∑

i∈G

rd(i, j, k, G, Ck)2

)

where the rank deviation rd is

rd(i, j, k, G, C) :=nrk(i, j, k, C)−

∑

i′∈G

nrk(i′, j, k, C)

|G|

It can be easily seen thatfk
hom = 0 if and only if the

ranks for each selected conditions are the same for all
selected genes, i.e.,rk(i1, j, k, C) = rk(i2, j, k, C) for
any two genesi1, i2 in the bicluster; this is illustrated
in Fig. 1 for a collection of two data sets. Furthermore,
the score is related to the scoring schemes proposed in
[9] and [3]. On the one side, it equals the mean residue
score [9] when the ranks and not the absolute expression
values are considered. On the other side, it represents
a relaxation of the strict order preserving criterion [3]
where all genes are required to induce the same order
on the expression values over the selected conditions.
In [3], it was also shown that the decision problem of
whether a data matrix contains a bicluster of given size
with rank-homogeneity score of0 is NP-complete.

Similarly to [9,3,18], the sizefsizeis taken as an objec-
tive function and the homogeneityfk

hom is transformed
into a constraint in order to resolve the conflicts between
the two criteria. In the case of a collection of data sets,

for each data setk a separate thresholdδk can be speci-
fied, but due to the normalization of the ranks the same
threshold can be used for allk. In addition, we consider
a constraint on the number of contained conditions per
data set; the reason is that it is usually much harder to
find biclusters with a large number of conditions and a
few genes only in comparison to biclusters with many
genes but only a few conditions.

Def. 6 Thewidth fk
width of a biclusterB gives the por-

tion of conditions thatB comprises for each distinct
data setEk in a collectionE:

fk
width(B) :=

|Ck|

nk

Thus, when focusing on a single bicluster, the prob-
lem is to find a biclusterB ∈ B such thatfsize(B) is
maximum whilefk

hom(B) ≤ δk andfk
width(B) ≥ γk for

k ∈ {1, . . . , l} with 0 ≤ δk, γk ≤ 1. To extend this
model to multiple biclusters, a further criterion comes
into play that quantifies the distribution of the biclus-
ters found. This is important because largely overlap-
ping biclusters only provide little information, while a
diverse set of biclusters is biologically more interest-
ing. Ideally, a biclustering covers a wide range of genes
which can be formalized in terms of acoverage score.

Def. 7 Thecoverage score fcov of a biclusteringD de-
notes the overall number of different matrix cells cov-
ered by the union of the biclusters contained inD, for-
mally:

fcov(D) := |{ (i, j, k) ;
∃(G, C1, . . . , Cl) ∈ D ∧ 1 ≤ k′ ≤ l :
i ∈ G ∧ j ∈ Ck′ ∧ k = k′ }|

Now, given the two objectives of bicluster size and
biclustering coverage, we formulate the overall opti-
mization problem as finding a biclustering that maxi-
mizes coverage and the average size of the biclusters
included. Again, these objectives are conflicting as the
largest average bicluster size is achieved by filling the
multisetD with copies of the largest bicluster which in
turn leads to low coverage. This conflict is resolved in
the following by ranking the objectives: first,fcov is to
be maximized, and thenfsize is considered.

Def. 8 Let d be the maximum number of biclusters to
be found andγk the minimum portion of conditions
that each bicluster should comprise with regard to data
setk, andδk the corresponding homogeneity threshold;
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Algorithm 1 Multiple Gene Deletion

1: ⊲ Input: B,E, δk, tG, α
2: ⊲ Output: B

3: ⊲ Iterate the following as long as|G| is large and
the homogeneity threshold is not reached.

4: while |G| > tG and fk
hom(B) > δk ∀ 1 ≤ k ≤ l do

5: r← FALSE ⊲ Gene removed?
6: ⊲ Remove each gene with highly dissimilar pat-

tern, i. e.,pk
i > αfk

hom(B).
7: for all i ∈ G do
8: pk

i ←
1
|C|

∑

j∈C(ek
ij − ek

Gj)
2 ∀ 1 ≤ k ≤ l

9: if pk
i > αfk

hom(B) then
10: G← G \ {i} ⊲ Remove gene.
11: r ← TRUE
12: end if
13: end for
14: if r = FALSE then
15: switch to Single Node Deletion
16: end if
17: end while

then, therank-based biclustering problem is defined as
follows:

lex max (f1, f2)
with f1 = fcov(D)

f2 =
∑

B∈D fsize(B)
subject to∀B ∈ D : ∀1 ≤ k ≤ l : fk

hom(B) ≤ δk

∀B ∈ D : ∀1 ≤ k ≤ l : fk
width(B) ≥ γk

D ∈ D
|D| ≤ d

Note that this model assumes that the number of bi-
clusters sought is small compared to the number of mea-
surements, i.e.,d ≪ m · nE; otherwise, the coverage
and size objectives need to be combined differently.

3.2. Multi-Matrix Greedy Algorithm

As a first step towards solving the rank-based biclus-
tering problem (Def. 8), this section describes a greedy
strategy for finding one bicluster that satisfies the ho-
mogeneity constraintfk

hom(B) ≤ δk. The method con-
sists of three parts described in Algorithm 1–3 which
are based on the general procedure proposed in [9]:
Starting with a given matrix, the rows and columns that
contribute most to the inhomogeneity of the bicluster
are iteratively removed until the constraint is satisfied
(cf. Algorithm 2). Then, the algorithm adds all rows and
columns that can be included without increasing the in-

Algorithm 2 Single Node Deletion

1: ⊲ Input: B,E, δk, γk

2: ⊲ Output: B

3: ⊲ While any homogeneity constraints are violated
do the following.

4: while ∃fk
hom(B) > δk for any data setk do

5: ⊲ Find the gene which fits worst.
6: for all i ∈ G do
7: pk

i ←
1

|Ck|

∑

j∈Ck
(eij − eGj)

2 ∀1≤ k≤ l

8: si ←
1
l

∑

k pk
i

9: end for
10: imax← argmax(si)
11: ⊲ Find the condition which fits worst.
12: for k ← 1 to l do
13: if |Ck|−1

nk

≥ γk then
14: for all j ∈ Ck do
15: C∗j

k ← Ck \ {j}

16: B
∗ ← {G, C1,C2,. . . ,C

∗j
k ,. . . ,Cl}

17: qk
j ← fk

hom(B)− fk
hom(B∗)

18: end for
19: else
20: qk

j ← −∞ ∀j ∈ Ck

21: end if
22: end for
23: ⊲ Decide whether to remove a gene or a condi-

tion.
24: (kmax, jmax)← arg max(qk

j )

25: if max(si) ≥ max(qk
j ) then

26: G← G \ {imax} ⊲ Remove gene.
27: else
28: Ckmax← C∗jmax

kmax
⊲ Remove condition.

29: end if
30: end while
31: continue with Node Addition

homogeneity (cf. Algorithm 3). For large input matri-
ces removing rows or columns one by one and recal-
culating the current inhomogeneity is computationally
expensive. To reduce the running time, multiple rows
or columns can be removed in one iteration as long as
the number of rows and columns is still comparatively
high with respect to the target size. Algorithm 1 details
this procedure for the removal of multiple genes as this
is the more common case than the removal of multiple
conditions which is done correspondingly. The inten-
sity of multiple gene deletion is controlled by the two
thresholding parametersα and tG (cf. Algorithm 1).
Note that all three algorithms calculate an intermediate
measurepk

i which determines how well a row fits into
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Algorithm 3 Node Addition

1: ⊲ Input: B,E, δk

2: ⊲ Output: B

3: repeat
4: a← FALSE ⊲ Gene or condition added?
5: ⊲ Add any condition which can be added with-

out increasingfk
hom.

6: for k← 1 to l do
7: for all j /∈ Ck, 1 ≤ j ≤ nk do
8: C∗

k ← Ck ∪ {j}
9: B

∗ ← {G, C1, C2, . . . , C
∗
k , . . . , Cl}

10: if fk
hom(B∗) < δk then

11: B← B
∗ ⊲ Add conditionj.

12: a← TRUE
13: end if
14: end for
15: end for
16: ⊲ Add any gene which can be added without

increasingfk
hom.

17: for all i /∈ G, 1 ≤ i ≤ m do
18: pk

i ←
1

|Ck|

∑

j∈Ck
(eij − eGj)

2 ∀1≤ k≤ l

19: if pk
i < fk

hom(B) ∀ 1 ≤ k ≤ l then
20: G← G ∪ {i} ⊲ Add genei.
21: a← TRUE
22: end if
23: end for
24: until a = FALSE

the bicluster.

The proposed procedure differs from the original al-
gorithm in two central aspects: First, the adaptation to
the rank-based problem formulation requires to calcu-
late the exact inhomogeneity for each candidate when
removing conditions. As opposed to removing genes,
this requires a re-ranking of the expression values (com-
pare Step 14 to Step 5 in Algorithm 2). Second, the al-
gorithms were extended work on collections of gene ex-
pression data sets. Additionally, we have limited the re-
moval of columns to enforce the constraintfk

width(B) ≥
γk given that the input bicluster satisfied the same con-
straint as well. Note that the proposed procedure also
guarantees that the resulting bicluster satisfies the ho-
mogeneity constraintfk

hom(B) ≤ δk for any δk ≥ 0 as
it is always possible to reduce the bicluster to one gene
and thereby reducingfk

hom(B) to zero.

3.3. Hybrid Evolutionary Algorithm

The heuristics described in the previous section iden-
tifies a single feasible bicluster. In order to optimize a
whole biclustering we employ a combination of a global
search method, namely an evolutionary algorithm (EA),
with the greedy strategy (Algorithms 1–3). The latter is
used to improve each bicluster generated by the global
search while the EA optimizes a whole population of
biclusters simultaneously. This is done by applying the
greedy strategy to each individual before its evaluation.
Thanks to this combination, not only the size of each
individual bicluster is improved, thereby optimizingf2,
but the population is also distributed over the space of
possible biclusters in order to optimizef1. To this end,
we propose a special kind of environmental selection
which favors diverse biclusters. In essence, the algo-
rithm switches between optimizingf2 in the mating se-
lection based on the objective function and optimizing
f1 in the environmental selection. The greedy strategy
consisting of Algorithms 1–3 guarantees that the ho-
mogeneity constraint is met for each bicluster while bi-
cluster size is increased as much as possible.

Besides the optimization of a whole biclustering, the
EA can also improve the performance of the greedy
strategy with respect to the optimization of a single
cluster. The greedy strategy is likely to get stuck in
local optima and can thus profit from the global search
which chooses suitable biclusters for the greedy method
to start with. In the following, we discuss the details of
the hybrid evolutionary algorithm.

3.3.0.1 Representation Each individual represents
one bicluster. For reasons of simplicity we have chosen
to use a binary representation with two bit strings: one
of lengthm for the genes and a second one of lengthnE

for the conditions. A bit is set to 1 if the corresponding
gene or condition is included in the bicluster.

3.3.0.2 Initialization The initial population should
be generated such that a high diversity of biclusters
is attained. A simple strategy for example which sets
each bit to 1 with a probability of 0.5 produces a set
of biclusters containing different genes and conditions
but all biclusters will have similar sizes as shown in
Figure 2. To avoid this problem, the proposed proce-
dure deterministically chooses the number of genes and
conditions to include in each bicluster such that the bi-
clusters are uniformly distributed in the plane spanned
by the number of genes and the number of conditions
contained in a bicluster (see Figure 3). Which of the
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genes or conditions are included is then randomly cho-
sen. This strategy also assures that the full matrix is
always part of the initial population.

3.3.0.3 Variation The mutation operator flips each
bit in both bit strings with probabilitypmut and we ap-
ply uniform crossover which for each bit picks the value
of either of the parents with equal probability.

3.3.0.4 Selection For mating selection, a tournament
selection is used, i. e.,τ individuals are chosen from
the population with replacement and the fittest one is
copied to the pool of parents. In choosing the value of
τ the selection pressure can be influenced: A higherτ
results in more pressure towards fit solutions.

As described, we introduce a specific environmental
selection to maintain diversity in the population. While
the objective function and the constraints relate to the
bicluster size and homogeneity, respectively, the goal
of the environmental search is to maximize the cover-
age. The general idea of the algorithm is to select those
biclusters which add most to the coverage of the ma-
trix. This iterative process works as follows: First the
biggest bicluster is selected and the elements which are
contained in this bicluster are marked. In each follow-
ing step the algorithm selects the bicluster which con-
tains the largest number of unmarked cells. These steps
are iterated until enough individuals have been selected
(cf. Algorithm 4). If even more diverse biclusters are
sought, a variant of this algorithm can be applied which
minimizes the overlap instead of minimizing the num-
ber of remaining cells. This modification is achieved
easily by replacing line 24 in Algorithm 4 with “if
levelBr < levelbest

r then”. In the results section we will
refer to the former variant as EA R for and the latter as
EA O.

3.3.0.5 Fitness Assignment Before the evaluation of
an individual it is subjected to greedy heuristic described
in the previous section. An individual is evaluated based
on the size of the resulting bicluster, i. e., the fitness is
calculated as the inverse of its size

F (i) =
1

fsize(B)

which leads to a minimization problem. The result of the
greedy strategy can either replace the original individual
or be just used to determine the fitness of the original
individual while the latter one remains unchanged. In
this study we use the second strategy called Baldwinian

Algorithm 4 Environmental Selection

1: ⊲ Input:
2: P : Population of biclusters.
3: nsel: number of individuals to select (nsel < |P |).
4: m, nk, l: dimensions of the input data set.
5: ⊲ Output:
6: S: Set of selected individuals.
7: takenk

i,j ← 0 ∀ (i, j, k), 1 ≤ i ≤ m, 1 ≤ j ≤
nk, 1 ≤ k ≤ l

8: S ← arg maxP fsize(B) ⊲ Select largest bicluster.
9: while |S| < nsel do

10: for all B ∈ P do
11: ⊲ Count how many elements of each biclus-

ter are already covered by 1, 2, 3,... selected biclus-
ters.

12: levelBr ← 0 ∀ 0 ≤ r ≤ nsel

13: for all i ∈ G, j ∈ Ck, 1 ≤ k ≤ l do
14: temp← takenk

i,j

15: levelBtemp ← levelBtemp + 1
16: end for
17: end for
18: T ← P \ S ⊲ Biclusters not yet selected.
19: best← first element ofT
20: ⊲ Find the bicluster with the highest number of

uncovered or lightly covered elements.
21: for all B ∈ T do
22: r← 0
23: ⊲ As long as both biclusters are equal go to

the next level.
24: while levelBr = levelbest

r and r ≤ nsel do
25: r ← r + 1
26: end while
27: if fsize(B)− levelBr > fsize(best)− levelbest

r

then
28: best← B

29: end if
30: end for
31: S ← S ∪ {best} ⊲ Select the best bicluster.
32: takenk

i,j ← takenk
i,j + 1 ∀ (i, j, k), i ∈

Gbest, j ∈ Cbest
k , 1 ≤ k ≤ l

33: end while

evolution, since it is able to generate a more diverse set
of solutions.

4. Experimental Results

The experimental validation serves two main goals:
(i) to assess the performance of the hybrid evolutionary
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Fig. 2. Histograms of the number of genes in the biclusters of
the initial population with standard initialization (setting each
bit to 1 with probability 0.5) and with uniform initialization.

Fig. 3. Schematic drawing of the distribution of an initial popu-
lation of nine biclusters.m andn are the total number of genes
and conditions, respectively.|G| and |C| are the numbers of
genes and conditions included in the bicluster.

algorithm by comparing it to two alternative methods
and (ii) to compare our strategy for the analysis of a
collection of gene expression data sets to the standard
approach of combining multiple data sets. Based on
these results, a detailed discussion of some exemplary
biclusters demonstrates that the proposed method can
extract interesting biological information. Additionally,
we highlight the flexibility of the optimization frame-
work by solving a related problem where biclusters are
sought that exhibit co-expression in one data set but
differential expression in other data sets.

4.1. Experimental Setup

4.1.1. Alternative Algorithms included in the Empirical
Comparison

4.1.1.1 OPSM The goal of the strategy proposed in
[3] is to identify the largest order preserving submatrix
(OPSM) containing a given number of columns. Note
that an OPSM is equivalent to a bicluster with a rank
homogeneity score of zero (fhom(B) = 0). The algo-
rithm in [3] is run iteratively to search for OPSMs with
increasing number of columns. As this approach does
not allow to relax the strict order preserving criterion,
one can only compare it to our method for the cases
where we search for biclusters withfhom(B) = 0. Ad-
ditionally, it is not targeted to identify a well distributed
set of biclusters. Thus, we will compare it to the other
methods with respect to the goal of finding one maxi-
mal bicluster with perfect ordering.

4.1.1.2 Adapted Cheng and Church Method In [9]
Cheng and Church proposed a method for finding a
biclustering with multiple diverse biclusters by identi-

fying single biclusters iteratively and removing them
from the data set by replacing the corresponding expres-
sion values with random data. As mentioned, the multi-
matrix greedy algorithm is an adaptation of the greedy
strategy used in [9]. We adapted the Cheng and Church
method to the case of multiple input matrices by apply-
ing the multi-matrix greedy strategy iteratively and af-
ter each run replacing the expression values within the
identified bicluster with random values.

ek
i,j ← uniform(min(ek), max(ek)) ∀ i, j ∈ B

This replacement ensures that in consecutive runs of the
greedy algorithm different biclusters are identified.

4.1.2. Algorithm Parameters
The EA parameter settings used in the following

simulations are described in Table 2.α influences the
amount of multiple gene deletion. It should be above
1 and values closer to one lead to more multiple gene
deletions. The crossover rate refers to the percentage of
parents involved in crossover. The mutation rate is the
probability for bit flips in the independent bit mutation.
The tournament size can be used to influence the im-
portance off2: higher values lead to more pressure to-
wards large biclusters but can affect the diversity nega-
tively. Unless stated otherwise, 11 replicates with differ-
ent random number generator seeds were performed for
each run of the evolutionary algorithm and the adapted
Cheng and Church method.

The OPSM algorithm takes a parameterl describing
how many candidate solutions should be further inves-
tigated during the greedy search for OPSMs, see [3] for
the details. Consistent with the value used in [3] we set
l to 100.
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Table 1

α 1.2

probability of 1 in initialization 0.001
mutation rate 0.001
crossover rate 0.1
tournament size 3
population size 100
number of generations 100

Default parameter settings for this study.

4.1.3. Data Set Preparation
The simulation runs were performed on gene ex-

pression data from a small plant namedArabidopsis
thaliana. Two collections of genes expression data
sets are used: a first collection in which all data sets
stem from similar experimental setups and a second
one which is more diverse. All data sets measure
gene expression in time course experiments using the
Affymetrix GeneChip platform.

4.1.3.1 Homogeneous Data Sets The first collection
investigates the response of Arabidopsis to different
kinds of stresses (cold, salt, osmotic, drought). For
each stress experiment gene expression was measured
in leaves and roots. The data was provided by the At-
GenExpress consortium1 and consists of 8 time series
with 6 time points each. The total expression matrix
thus contains 22746 genes and 48 conditions. This data
set represents a case where the expression values are
well comparable across the different time courses; the
experimental setup was identical for all different kind
of stresses, all measurements were performed by the
same laboratory using the same microarray technology
and the expression values were normalized with RMA
[6] a state-of-the-art method and logratios were cal-
culated using measurements from an untreated control
plant. This reference time course was the same for all
stress experiments.

4.1.3.2 Diverse Data Sets The second collection con-
tains time courses of Arabidopsis that are much more
diverse than those in the first data set. Like the first data
set it consists of 8 time courses with a total of 48 con-
ditions but the number of time points varies. The exper-
iments include different type of treatments such as heat

1 See http://web.uni-frankfurt.de/fb15/botanik/
mcb/AFGN/atgenex.htm

stress, infection with Pseudomonas syringae, and mea-
surements of diurnal changes. These experiments were
performed by different labs using different organs such
as roots, leaves, and cell cultures. All measurements
were performed using Affymetrix GeneChips and all
expression values were normalized using RMA. In con-
trast to the first data set absolute expression values are
used.

4.2. Comparison to Alternative Algorithms

The following simulation runs determine the relative
performance of the proposed hybrid EA, the OPSM
method and adapted Cheng and Church algorithm and
additionally they compare the two variants of the en-
vironmental selection. We evaluate the algorithms with
respect to finding one bicluster and with respect to the
problem of identifying diverse sets of biclusters. Since
all algorithms are subject to the same homogeneity
threshold we measure performance in the former case
by comparing the size of the largest bicluster and in the
latter scenario by comparing both the average bicluster
size and the coverage of the input matrix.

For the special case of OPSMs that extend over all
columns, i. e.,δ = 0 andγk = 1 ∀ 1 ≤ k ≤ l, the
problem of finding the largest OPSM becomes tractable
with a time complexity ofO(m2). Thus, the results of
the EA and the OPSM algorithm can be compared to
the true optimum. In the first experiment we ran both
algorithms on each of the eight time courses of the
homogeneous data sets (cf. Section 4.1.3.) separately.
The largest bicluster found by both the EA and the
OPSM algorithm equaled the optimal one in all cases2 .
Often this optimal bicluster was found by the EA after
only a few generations.

In a second set of experiments, we reduced the min-
imum number of columns in a bicluster, now searching
for “real” biclusters. The data set used consisted of the
concatenation of the two “cold stress” time courses re-
sulting in a matrix with 12 conditions. The largest bi-
cluster found by the EA equaled the size of those found
by the OPSM algorithm for all tested settings (cf. Ta-
ble 3) and they were substantially better than results of
the adapted Cheng and Church methods. Figures 4 and
5 summarize the quality of the biclusterings. The first

2 For seven of the eight data sets the EA found the optimal
bicluster in all of 30 replicate runs. For the “osmotic roots”
data set 5 of the 11 EA runs identified only the second largest
bicluster.
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Table 2

δ γ OPSM CC EA R EA O

0 6/12 3888 2142 (1.8) 3888 (0) 3888 (0)
0 7/12 1295 861 (0) 1295 (0) 1295 (8.5)
0 8/12 512 352 (0) 512 (0) 512 (0)
0 9/12 216 162 (0) 216 (0) 216 (0)

Size of the largest bicluster (max(fsize(B))) found in the
combined “cold stress” data set by the OPSM, the adapted
Cheng and Church method (CC) and the EA using the two
variants of the environmental selection. For the randomized
methods, values denote median and (standard deviations).

version of the environmental selection which maximizes
coverage is better suited to achieve high values for the
average size of the biclusters as well as high coverage
than the version focusing on small overlaps. The for-
mer clearly outperforms the alternative methods while
the latter one is in some cases inferior to the adapted
Cheng and Church method.

A more difficult problem setting consists in searching
the concatenation of all eight homogeneous data sets
resulting in a matrix with 48 conditions. When requir-
ing perfectly ordered biclusters (δ = 0) the EA vari-
ants were in some cases able to identify larger biclus-
ters than the OPSM method while in general the per-
formance was similar (cf. Table 4). The comparison of
the biclusterings identified by the two EA variants and
the adapted Cheng and Church method reveals a simi-
lar situation as for the smaller data set: the overlap ver-
sion of the environmental search performs similarly as
the adapted Cheng and Church method while the cov-
erage version clearly outperforms both other methods
(cf. Figures 6 and 7).

So far, we have only considered perfectly ordered bi-
clusters (δ = 0). In two experiments on the same data
set, the restrictions on perfect order were removed by
settingδ to 0.001 and 0.005, respectively. As expected,
the size of the biclusters increases when increasingδ
from 0 to 0.001 for the same value ofγ. However, the
relation between the performance of the different meth-
ods basically remains the same (cf. Table 4 and Fig-
ures 6 and 7). A typical bicluster is shown in Figure 14
where it can be seen that the expression patterns all fol-
low similar trends in all data sets.

A considerable advantage of the EA optimization
framework is that it can analyze multiple data sets simul-
taneously. We compared the adapted Cheng and Church
method to the two EA variants on four pairs of expres-
sion data sets by searching for perfectly ordered biclus-
ters (δ = 0) which extend over all six columns of each

data set (γk = 1). The results are summarized in Fig-
ures 8 and 9. As for the single data sets, the EA results
show substantially larger average sizes and coverages
than the adapted Cheng and Church method. However,
for this setup both variants of the environmental search
lead to similar results.

The comparison of the results for the two variants of
the environmental selection in Tables 3, 4 and Figures 4–
9 show that the version which minimizes the remaining
uncovered area (EA R) almost always performs better
than the version which minimizes overlap (EA O) both
with respect to the bicluster size as well as the coverage.
Correspondingly, it is recommended to use the former
unless the resulting biclusterings clearly lack diversity.
In such a case, the latter method can help to better
distribute the biclusters.

As an additional advantage, the iterative scheme of
the EA allows to explicitly choose the trade-off between
running time and solution quality while most alterna-
tive methods have fixed running times. Figures 10 and
11 show how the size of the largest bicluster and the
coverage evolves over a typical run. The user can stop
the algorithm when the desired quality is achieved or
after a given amount of time.

4.3. Effects of Combining Data Sets

As discussed in Section 2. it is often not desirable or
not possible to concatenate several data sets into one
expression matrix. However, existing clustering and bi-
clustering algorithms require this and thereby the in-
formation about which measurements belonged to the
same experiment and which did not is lost. In the fol-
lowing we investigate the effects of mixing different
data sets in the context of the rank-based biclustering
problem. A first part of the following analysis is based
on the assumption that a difference between two ex-
pression values stemming from two different time data
sets need not be relevant and contrarily differences be-
tween values within one data set always are meaningful.
A second part does not use this assumption but inves-
tigates the biological significance of the biclusters for
both the combined and the separate data sets.

In a first set of analyses we searched for perfect or-
der preserving biclusters (δ = 0) which extend over all
columns in the matrix. The EA was run on 4 pairs of
time courses: first with the data combined into one ma-
trix and then with keeping the two time courses sepa-
rately. As expected (cf. Table 5) the resulting biclusters
are much larger when the time courses are kept sep-
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Fig. 4. Analysis of the combination of the two “cold” data
sets. Average size of the biclusters for the adapted Cheng and
Church method (CC), the EA using the two variants of the
environmental selection..

Fig. 5. Analysis of the combination of the two “cold” data
sets. Coverage of the biclusters for the adapted Cheng and
Church method (CC), the EA using the two variants of the
environmental selection.

Table 3

δ γ OPSM CC EA R EA O

0 8/48 1992 1528 (183) 2144 (2.4) 1984 (82.7)
0 10/48 520 400 (0) 630 (22.1) 550 (52.0)

0.001 10/48 - 670 (42.0) 1140 (71.0) 920 (91.4)
0.005 20/48 - 4980 (0) 4980 (18.1) 4980 (36.2)

Size of the largest bicluster (max(fsize(B))) found in the combined
homogeneous data set by the OPSM, the adapted Cheng and Church
method (CC) and the EA using the two variants of the environmental
selection. For the randomized methods, values denote median and
(standard deviations).

arate. Often it is not possible to find a bicluster with
more than a minimal number of genes when mixing the
time courses but keeping them separate results in use-
ful biclusters. A characteristic example is the pair of the
two “cold stress” experiments where the largest biclus-
ter for the concatenated matrix consists of 2 genes and
32 genes for the simultaneous biclustering of the two
data sets.

The same comparison can be made for relaxed con-
straints on the ordering (δ > 0). However, setting a cer-
tain value forδ is not equally restrictive for two time
courses with ranks 1–6 as for one combined data set
with ranks 1–12. To ensure a fair comparison, we trans-
formed the analysis of the two separate data sets into
the analysis of one data set by ranking the expression
values in the first time course experiment with ranks
1–6 and those in the second experiment with ranks 7–

Table 4

stress combined separate overlap independent

cold 2 32 20
osmotic 6 118 65
salt 4 12 3
drought 2 6 0

Number of genes in the largest biclusters for two time courses
with δ = 0 which corresponds to searching for OPSMs.
Results for mixing of the data sets, joint analysis, and separate
analysis with intersection of the best biclusters found.

12. This corresponds a version of the simultaneous bi-
clustering where the constraint is put on the sum of the
δ values for both data sets. For the same pair of time
courses (“osmotic”) andδ = 1 the number genes in the
largest bicluster was 21 on average for the concatenated
data sets and 474 for the separate time courses. This
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Fig. 7. Analysis of the combination of all eight homogeneous
data sets. Coverage of the biclusters for the adapted Cheng and
Church method (CC) and Church method (CC) and the EA
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Fig. 9. Analysis of four pairs of data sets. Coverage of the
biclusters for the adapted Cheng and Church method (CC) and
the EA using the two variants of the environmental selection.

demonstrates that mixing the time courses results in an
unnecessarily restrictive optimization problem and most
large biclusters are missed.

An alternative strategy to mixing multiple data sets
is to perform the bicluster analysis separately on each
data set and then combine the results by looking for
overlaps. The third column of Table 5 shows the size
of the overlap of the optimal biclusters in each data set.
For none of the four pairs of data sets the best bicluster
from the joint analysis could be recovered by this proce-
dure. For the special case ofδ = 0 the largest bicluster
could theoretically be recovered by determining the set

of all biclusters for each data set and then calculating
the intersection of all combination of biclusters. How-
ever, this is only practical in the case ofγ = 1. Corre-
spondingly, a separate bicluster analysis combined with
the search for overlaps is not a valid alternative to avoid
mixing of data sets.

So far we have investigated the effects of mixing
data sets on the level of the bicluster size and homo-
geneity score. This analysis was based on the assump-
tion that comparing measurement values across differ-
ent data sets is not meaningful. We now drop this as-
sumption and compare the two strategies with respect
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Fig. 10. Size of the largest cluster during the optimizationrun.
(Data from 30 runs)

Fig. 11. Total number of genes covered by clusters during the
optimization run. (Data from 30 runs)
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different similarity thresholds delta. Biclusters for lowvalues
of δ) are too small to contain significant motifs while biclusters
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Fig. 13. Number of biclusters found in the diverse data set with
promoter motifs that have a scores > 3. Biclusters for low
values ofδ) are too small to contain significant motifs while
biclusters for high values ofδ are too big and too diverse. Data
from 5 runs per setting. The line represents the mean and the
error-bars have a length of 2 standard deviations.

to the biological relevance of the resulting biclusters.
To this end we searched for 100 biclusters that extend
over all eight time courses for a range of differentδ val-
ues. In each module we then searched for new promoter
motifs using the method described in [12]. A highly
significant motif is an indicator of a functional relation-
ship between the genes in the bicluster. Many highly
significant promoter motifs were discovered in the re-
sulting biclusters. Figures 12 and 13 show the sum of

motif scores of the modules with a score3 above 3. For
the homogeneous data sets (Figure 12) both mixing of
the time courses and keeping the time courses separate
in the analysis result in biclusters with highly signif-
icant motifs. Mixing leads to slightly more biclusters

3 The score is calculated as the distance (measured in stan-
dard deviations) from the mean of the distribution of ran-
domly chosen biclusters.
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with significant motifs. For the diverse data sets (Fig-
ure 13) mixing of the time course prevents the detection
of more then few motifs that have scores just above the
threshold. However, keeping the time courses separate
leads to the identification of many modules with highly
significant motifs. In the case of combined analysis of
diverse data sets, it is thus detrimental to mix data sets
into one matrix while in the case of highly homoge-
neous data sets mixing of the time courses has a slightly
positive effect on the results. However, for many bio-
logical studies it is desirable or even necessary to in-
clude data from different experiments, different labs or
even different technologies.

4.4. Differential Coexpression

As mentioned above, with the proposed framework
one can not only search for co-expression but also look
for differential co-expression, i. e., groups of genes that
are similarly expressed in some data sets but show di-
verging expression patterns in others. This problem for-
mulation is actually a special case of a joint analysis
of separate data sets. The goal of finding differences in
co-regulation is far less often pursued than looking for
co-regulation but has some potentially interesting ap-
plications since it allows to investigate condition spe-
cific co-regulation. This type of analysis was first pro-
posed in [20] in the context of cancer studies where a
break-down in the co-regulation of specific genes can
be observed in tumor tissue. While the method in [20]
was specifically designed for the case of two data sets
our approach can more generally be applied to multiple
data sets.

Using this problem formulation, we identified groups
of genes that are co-expressed in one type of stress but
show inhomogeneous expression patterns in response
to the other stresses. This was done by maximizing the
dissimiliarities for some data sets(Sinhom) instead of the
bicluster size while maintaining the homogeneity con-
straints for other data sets:f2 =

∑

B∈D fk
hom(B)fork ∈

Sinhom.

A typical example is shown in Figure 15 where the
cluster was conditioned on similarity in osmotic stress
(third and fourth data set) and dissimilarities in all other
treatments. All genes included in the bicluster exhibit
perfectly ordered expression profiles for the two osmotic
stress data sets while their profiles in the other data sets
are much more diverse.

4.5. Biological Content of Exemplary Biclusters

The identification of significant promoter motifs is a
good indicator for the general biological relevance of
the clustering results. In order to further confirm the
validity of the approach, we have analyzed two typical
biclusters in more detail. For both, it was found that
many of the genes included were known to be involved
with in the same processes and for some genes a more
detailed annotation could be suggested based on the
clustering results. For details of this analysis the reader
is referred to the Appendix.

5. Conclusions

Current clustering and biclustering algorithms gener-
ally operate on one data matrix. In contrast many stud-
ies of gene expression involve multiple sets of exper-
iments between which measurements cannot be com-
pared reliably, e. g., the measurements were performed
in different laboratories or even using different microar-
ray technologies. With respect to this discrepancy, this
paper proposed a flexible biclustering framework that
can jointly analyze multiple expression data sets with-
out comparing measurement values between the differ-
ent data sets and compared this approach to the standard
method of mixing different data sets.

While the proposed framework is flexible with re-
spect to the exact problem formulation in this study we
have focused on a specific one, namely the rank based
biclustering problem. To this end we have introduced a
new scoring scheme that allows to arbitrarily scale the
degree of orderedness required for a bicluster and inte-
grated it into the biclustering framework which allows
to address the aforementioned questions.

In general the framework provides the following main
benefits:
• It allows a simultaneous bicluster analysis of separate

data sets.
• Multiple well distributed biclusters can be found in

a single optimization run.
• The method can be easily adapted to address more

specific questions such as differential co-expression
or different problem formulations in general.
In an empirical comparison on various data sets the

proposed hybrid EA showed similar performance to the
OPSM algorithm [3] when considering the largest bi-
cluster. To verify the EAs ability to find diverse biclus-
terings, we have compared the coverage and the average
bicluster size of the results for two variants of EA to an
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Fig. 14. Expression profiles of the 106 genes in cluster 1 in the
cold, osmotic, salt and drought stress time courses. For each
stress green tissue is displayed first and roots as second.
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Fig. 15. Expression profiles of the 35 genes from cluster 2 in
the cold, osmotic, salt, and drought stress time courses. For
each stress green tissue is displayed first and roots as second.
The cluster was conditioned on similarity in osmotic stressand
dissimilarity in the other treatments.

adaptation of the Cheng and Church method [9]. With
the first variant of the environmental search which op-
timizes for high coverage the EA clearly outperformed
the adapted Cheng and Church method over a range of
different problem setting. The alternative environmental
search which minimizes overlap of the biclusters is able
to produce even more diverse sets of biclusters. How-
ever, thereby also the average size and the coverage are
reduced.

In a second set of experiments, we have investigated
the effects of combining different time courses into one
data matrix for bicluster analysis. To this end we have
analyzed two different expression data sets forAra-
bidopsis thaliana, each one including 8 time course
measurements. The biological relevance of the biclus-
tering results has been assessed by an analysis of the
promoter motifs common to the genes in the biclusters.
This analysis showed that combining different data sets
into one matrix is feasible or even advantageous in a
setting where all time courses measurements are highly
homogeneous but can be detrimental to the results when
the data sets are more diverse. The proposed method of
a combined analysis does not suffer from this problem.

The proposed strategy is not restricted to the analy-
sis of multiple gene expression data sets. As interest-
ing direction for further research, our method could be
used to integrate other types of genome data with gene
expression for a combined cluster analysis.

Appendix

In this section we look at two typical biclusters in
more detail and discuss their biological implications.

The first bicluster was identified in the stress data
set by mixing the time courses but similar biclusters
containing the same promoter motifs were identified
in the second data set when keeping the time courses
separate.

The first module (cf. Figure 14) comprises 106 genes,
of which 63 have been annotated as encoding 40S and
60S ribosomal proteins. 16 of the remaining genes are
related to RNA metabolism, protein synthesis and pro-
tein folding (nascent polypeptide associated complex
alpha chain protein, nuclear RNA-binding protein, eu-
karyotic translation initiation factor, phenylalanyl-tRNA
synthetase, and chaperonins). This module comprises
genes that are strongly downregulated in response to salt
and osmotic stress. Results from Genevestigator [33,32]
show that it is additionally downregulated in senesc-
ing cell culture, genotoxic stress, and cycloheximide. In
contrast, it is consistently upregulated by isoxaben, lo-
vastatin and norflurazon. A similar cluster with strong
downregulation in response to stress was described in
Eisen et al. (1998). Clusters enriched with ribosomal
proteins have also previously been described in yeast
and were generally associated with environmental stress
responses [13,14]. An analysis of promoter sequences
using the MAP scoring function [12] applied to the data
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Fig. 16. Expression profiles of the cluster from Figure 15 in response to different stimuli and in several organs/tissues(data
from Genevestigator). There is a conditional co-expression both at the response as well as the organ level. The heat-mapin the
center shows the same dataset as the one used for clustering.The treatments discussed in the paper are indicated (o, osmotic;
s, salt; c, cold; and d, drought).

set of interest and to 100 random data sets (z-score),
revealed a highly significant sequence motif (AAAC-
CCT). [30] show that the ACCCTA motif (telo-box) is
found in the majority of Arabidopsis genes encoding
ribosomal proteins and is related to their expression.
Additionally, this motif often appears together with a
second motif TGGGCC or TGGGCT.

As mentioned, the proposed framework is able not
only to look for co-expression but also to look for differ-
ential co-expression, i. e., groups of genes that are sim-
ilarly expressed in some time courses but show diverg-
ing expression patterns in others. Using this problem
formulation, we identified groups of genes that are co-
expressed in one type of stress but show inhomogeneous
expression patterns in response to the other stresses.

The module shown in Figure 15 contains several
genes that have previously been associated with os-
motic, drought, and pathogen stress responses:
(1) microtubule associated protein (MAP65/ASE1)

family protein [28]
(2) drought-responsive protein / drought-induced pro-

tein (Di21)
(3) dehydrin, putative similar to dehydrin Xero 1 [25]
(4) strictosidine synthase genes [31]
Osmotic stress is a common component of drought,

salt and cold stress and coordinates cross-talk in the reg-
ulatory network between these stresses [7]. Both ABA-
dependant and ABA-independent pathways have been
associated with osmotic stress. In compliance with this
model, most genes of this module, which was con-
ditioned for co-expression in the osmotic stress treat-
ment, are upregulated strongly in response to osmotic
stress, but also (with lower intensity) in the salt stress
and ABA treatments, as well as partially in the cold
stress treatments cf. Figure 15. To further investigate
the expression regulation of genes from this module,
stimulus response and anatomy profiles were retrieved
from Genevestigator [33] (see Figure 16). As obtained
in the biclustering approach, genes were consistently
upregulated in osmotic and salt stress, but also to ni-
trogen deficiency, treatment with ABA, with the elic-
itor syringolin, and with Pseudomonas syringae. The
responses to other treatments were not similar for all
genes, revealing that these genes are conditionally co-
regulated and could only be identified using an ap-
proach that specifically searches for differences in co-
expression. This differential pattern of expression is also
seen at the organ-level: two larger modules appear, one
with genes preferentially expressed in senescent leaves,
and the other with seed-specific gene expression. The
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remaining genes show strong expression in tissues with
reduced or no photosynthetic activity (silique, seed, sta-
men, sepal, petal, roots). It is known that ABA signalling
pathways, which are regulated in response to osmotic
changes, are also particularly active in these responses
and tissues, where they regulate several metabolic and
developmental processes.

The cytoskeleton has previously been implicated in
abiotic stress responses such as in osmotic regulation
and is known to modulate the activity of ion chan-
nels. Additionally, both plant-pathogen and symbiotic
interactions involve changes in cell polarity and cellu-
lar trafficking in plants and thus are intimately associ-
ated with the reorganization of the cytoskeleton. The
dehydrin gene Xero2 from Arabidopsis has been shown
to respond to ABA, wounding, cold and dehydration.
Promoter-GUS studies revealed the presence of several
motifs involved in theses responses [25].

Interestingly, although several genes within this mod-
ule have been annotated as drought-related, the effects
of the stresses considered on genes from this module are
most intense in osmotic stress, followed by salt and cold
stresses, whereas the effect of drought is minimal. This
result suggests that these genes are controlled rather
by osmotic stress, which is a subcomponent of drought
stress, and less by drought-specific signaling pathways.
The use of this clustering technique therefore allows to
allocate genes much more precisely to subnetworks of
signaling pathways, especially when cross-talk exists
between those pathways.
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[24] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille,
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