
All rights reserved © Preeminent Academic Facets Inc., 2008 This document is protected by copyright law. Use of the services of Érudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.
https://apropos.erudit.org/en/users/policy-on-use/

This article is disseminated and preserved by Érudit.
Érudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec à Montréal. Its mission is to
promote and disseminate research.
https://www.erudit.org/en/

Document generated on 08/04/2025 9:50 a.m.

Algorithmic Operations Research

The Computational Efficiency of the Ji-Lee-Li Algorithm for the
Assignment Problem
Boris Goldengorin and Gerold Jäger

Volume 3, Number 1, Winter 2008

URI: https://id.erudit.org/iderudit/aor3_1sc01

See table of contents

Publisher(s)
Preeminent Academic Facets Inc.

ISSN
1718-3235 (digital)

Explore this journal

Cite this article
Goldengorin, B. & Jäger, G. (2008). The Computational Efficiency of the Ji-Lee-Li
Algorithm for the Assignment Problem. Algorithmic Operations Research, 3(1),
79–81.

Article abstract
Ji et al. have conjectured that using the matrix form (to represent a basic
solution) instead of the Simplex tableau in the dual Simplex method will lead to
an algorithm with the time complexity comparable to the Hungarian algorithm
for solving the Assignment Problem. In this note we show that both the time
complexity and the CPU times of the Ji et al. algorithm are far away from being
competitive to the Hungarian algorithm.

https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/aor/
https://id.erudit.org/iderudit/aor3_1sc01
https://www.erudit.org/en/journals/aor/2008-v3-n1-aor_3_1/
https://www.erudit.org/en/journals/aor/


Algorithmic Operations Research Vol.3 (2008) 79–81

The Computational Efficiency of the Ji-Lee-Li Algorithm for the Assignment
Problem

Boris Goldengorin

Faculty of Economics and Business, University of Groningen, 9700 AV Groningen, The Netherlands, and Department of
Mathematics and Informatics, Khmelnitsky University of Economics and Business, Ukraine

Gerold Jäger

Computer Science Institute, University of Halle-Wittenberg, D-06099 Halle (Saale), Germany

Abstract

Ji et al. have conjectured that using the matrix form (to represent a basic solution) instead of the Simplex tableau in
the dual Simplex method will lead to an algorithm with the time complexity comparable to the Hungarian algorithm for
solving the Assignment Problem. In this note we show that both the time complexity and the CPU times of the Ji et al.
algorithm are far away from being competitive to the Hungarian algorithm.

Key words: Assignment Problem, Hungarian Algorithm, Dual Simplex Algorithm.

1. Introduction

For a matrixC = (cij)1≤i,j≤n ∈ Z
n,n the Assign-

ment Problem (AP) is defined as follows:

min
{

n
∑

i=1

ci,π(i) : π ∈ Πn

}

whereΠn is the set of all permutations of{1, . . . , n}.
The approaches proposed for the solution of the As-

signment Problem can be classified into three classes:
primal-dual (shortest path) algorithms, pure primal al-
gorithms, and pure dual algorithms. An experimental
evaluation of a best representative algorithm from each
of these classes shows that the best algorithm is the
Hungarian algorithm based on the primal-dual (shortest
path) approach and König-Egervary’s theorem [2]. The
time complexity of the Hungarian algorithm isO(n3)
(see e.g., [2]).

Ji et al. [5] have suggested a reduction of an×n AP
instance to an equivalent2n × 2n instance for solving
the AP. Their algorithm (abbreviated by JLL-algorithm)
is a pure dual algorithm following to the dual Sim-
plex method. In conclusions, Ji et al. [5] conjecture that
since the JLL-algorithm adopts a compact matrix form

Email: Boris Goldengorin [B.Goldengorin@rug.nl], Gerold
Jäger [jaegerg@informatik.uni-halle.de].

instead of the Simplex tableau in the dual Simplex al-
gorithm and since it is not based on König-Egervary’s
theorem, it can be an alternative to the Hungarian algo-
rithm. In [2], eight codes are selected and compared on
a wide set of dense instances containing both randomly
generated and benchmark instances. These codes rep-
resent the most popular and efficient methods for solv-
ing the Assignment Problem (see [1,3,7]) as follows:
“four algorithms are pure shortest path methods, one is
a mixture of auction and shortest path technique, two
are implementations of a pure auction technique and
the last one is a pseudoflow-based algorithm” (see [2]).
Since the Jonker and Volgenant’s code (abbreviated by
JV-algorithm [7]) has a good and stable average per-
formance for all tested instances [2] and it is based on
the Hungarian algorithm, we have compared the JLL-
algorithm against the JV-algorithm.

In this note we show that the transformation of an
n× n AP instance into a2n× 2n AP instance and the
exclusion of an application of König-Egervary’s theo-
rem are fatal for the JLL-algorithm.

Our note is organized as follows. We consider a trivial
(all zeros) AP instance in Section 2.. In Section 3. we
present a comprehensive experimental evaluation of the
JLL-algorithm in comparison to the JV-Algorithm on a
wide set of small instances, because the average size
instances are intractable in reasonable PC times by the
JLL-algorithm. Our conclusions appear in Section 4..

c© 2008 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.



80 Goldengorin and Jäger – On Ji-Lee-Li Algorithm for Assignment problem

2. An Illustrative Example for the JLL-Algorithm

We consider the JLL-algorithm on an example of a
matrix with all zero entries. Since all entries are zeros,
any well-known algorithm, for example the Hungarian
algorithm, will skip the reduction steps and straight-
forward by application of the König-Egervary’s algo-
rithm will output an optimal matching, but – as a sim-
ple induction type reasoning shows – the JLL-algorithm
needs(n−1)n

2 loops for finding such a matching. Thus
the time complexity of JLL-algorithm is at leastO(n4)
and worse than the time complexityO(n3) of the Hun-
garian algorithm.

3. An Experimental Evaluation of the JLL-
algorithm

We have implemented the JLL-algorithm in C under
Linux on a GenuineIntel IntelR© XeonTM 2.66 machine
with 2 GB RAM and have compared it with the C imple-
mentation of the JV-algorithm by Jonker and Volgenant
[8].

We have conducted our experiments on the follow-
ing 8 classes of matrices, the first 6 of which are of
dimensions 50, 100, 150, 200.
• Class 1.Zero matrix, i.e. each matrix element equals

zero.
• Class 2.Machol-Wien-Class [9,10]: the matrix ele-

ment(i, j) equals(i − 1) · (j − 1).
• Class 3.Gutin-Yeo-Zverovich Class [4]: the matrix

element(i, j) equals














n3 for i = n, j = 1;
in for j = i + 1, i = 1, 2, . . . , n − 1;
n2 − 1 for i = 3, 4, . . . , n − 1; j = 1;
n min{i, j} + 1 otherwise.

• Class 4.Each matrix element equals 1 with proba-
bility 0.25 and106 otherwise (sparsity 0.25).

• Class 5.Each matrix element equals 1 with proba-
bility 0.5 and106 otherwise (sparsity 0.5).

• Class 6.Each matrix element equals 1 with proba-
bility 0.75 and106 otherwise (sparsity 0.75).

• Class 7.All 26 asymmetric instances from TSPLIB
[11].

• Class 8. 10 asymmetric problem generators from
Johnson et al. [6], calledamat, coin, crane disc, rect,
rtilt , shop, stilt, super, tmat, are considered as a sub-
class of our class 8. In [6], 10 instances of dimensions
100, and 10 of dimension 316 are chosen for each of
these generators.

The execution times in seconds of the algorithms for
all classes can be found in Tables 1-7. The results show
that for all instances the JV-algorithm is much faster
than the JLL-algorithm.

4. Conclusions

Ji et al. [5] have conjectured that using the matrix
form (to represent a basic solution) instead of the Sim-
plex tableau in the dual Simplex algorithm will lead
to a competitor to the Hungarian algorithm for solv-
ing the AP. They have not indicated the time complex-
ity of their JLL-algorithm for the AP. In section 2. we
have observed that even for a trivial zero matrix the
JLL-algorithm needs(n−1)n

2 complete loops. Thus the
time complexity of JLL-algorithm is at leastO(n4) and
worse than the time complexityO(n3) of the Hungar-
ian algorithm.

Our computational results, obtained for the JLL-
algorithm, show that the primal-dual (shortest path)
algorithm based on the König-Egervary’s theorem and
implemented by Jonker and Volgenant (JV-algorithm)
[7] outperforms the JLL-algorithm for a wide set of
classes with dimension from 17 to 443. For the largest
instances including the Machol-Wien instances [9,10]
(which are the most difficult instances for the Hungar-
ian algorithm), the JV-Algorithm is faster by a factor
of 1,000 for almost all cases.

Acknowledgement: The research of both authors was
supported by a DFG grant MO645/7-3, Germany.

References

[1] D.P. Bertsekas. A New Algorithm for the Assignment
Problem. Math. Program. 1981; 21: 152-171.

[2] M. Dell’Amico, P. Toth. Algorithms and Codes for
Dense Assignment Problems: the State of the Art.
Discrete Appl. Math. 2000; 100(1-2): 17-48.

[3] A.V. Goldberg, R. Kennedy. An Efficient Cost Scaling
Algorithm for the Assignment Problem. Math. Program.
1995; 71: 153-177.

[4] G. Gutin, A. Yeo, A. Zverovich. Traveling Salesman
Should Not Be Greedy: Domination Analysis of Greedy
Type Heuristics for the TSP. Discrete Appl. Math. 2002;
117: 81-86.

[5] P. Ji, W.B. Lee, H. Li. A New Algorithm for the
Assignment Problem: an Alternative to the Hungarian
Method. Computers Ops. Res. 1997; 24(11): 1017-1023.



Goldengorin and Jäger – Algorithmic Operations Research Vol.3 (2008) 79–81 81

Table 1

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
n JV JLL JV JLL JV JLL JV JLL JV JLL JV JLL

50 0.000 0.456 0.003 0.447 0.0000.055 0.000 0.107 0.000 0.218 0.000 0.321
100 0.001 9.627 0.013 9.463 0.0030.607 0.000 2.641 0.001 4.808 0.000 6.221
150 0.002 59.226 0.028 58.193 0.0082.542 0.00120.381 0.001 29.239 0.002 39.316
200 0.003203.971 0.064200.259 0.0186.445 0.00395.001 0.002100.483 0.003141.136

Comparison of JV-algorithm and JLL-algorithm for classes 1to 6

Table 2

Name JV JLL Name JV JLL Name JV JLL Name JV JLL

br17 0.000 0.001 p43 0.000 0.015 ry48p 0.000 0.015 ft53 0.000 0.036
ft70 0.001 0.152 ftv33 0.000 0.010 ftv35 0.000 0.013 ftv38 0.000 0.018
ftv44 0.000 0.023 ftv47 0.000 0.025 ftv55 0.001 0.031 ftv64 0.000 0.056
ftv70 0.001 0.060 ftv100 0.001 0.262 ftv110 0.001 0.333 ftv120 0.001 0.480
ftv130 0.001 0.601 ftv140 0.001 0.856 ftv150 0.001 1.049 ftv160 0.001 1.213
ftv170 0.002 1.605 kro124p0.001 0.259 rbg3230.016105.273 rbg3580.019338.208
rbg4030.021975.603 rbg443 0.0261652.237

Comparison of JV-algorithm and JLL-algorithm for class 7

Table 3

amat coin crane disk rect
n JV JLL JV JLL JV JLL JV JLL JV JLL

100 0.001 0.381 0.000 0.208 0.002 0.278 0.001 0.388 0.001 0.205
316 0.009 29.323 0.004 9.977 0.015 13.685 0.014 33.652 0.004 9.514

Table 4

rtilt shop stilt super tmat
n JV JLL JV JLL JV JLL JV JLL JV JLL

100 0.002 0.637 0.004 1.363 0.003 0.325 0.000 0.488 0.000 0.472
316 0.025 39.793 0.059 116.715 0.042 16.753 0.007 44.043 0.009 34.335

Comparison of JV-algorithm and JLL-algorithm for class 8, average over 10 instances for each subclass and each dimension

[6] D.S. Johnson, G. Gutin, L.A. McGeoch, A. Yeo,
W. Zhang, A. Zverovich. Experimental Analysis of
Heuristics for the ATSP. Chapter 10 in: The Traveling
Salesman Problem and Its Variations. G. Gutin, A.P.
Punnen (eds.). Kluwer, Dordrecht, 445-489, 2002.

[7] R. Jonker, A. Volgenant. A Shortest Augmenting Path
Algorithm for Dense and Sparse Linear Assignment

Received 29 March, 2007; revised 23 May 2007; accepted 29
May 2007

Problems. Computing 1987; 38: 325-340.
[8] R. Jonker, A. Volgenant. Source code of the JV-

algorithm. Available at
http://www.magiclogic.com/assignment.html.

[9] R.E. Machol, M. Wien. A ’hard’ Assignment Problem.
Oper. Res. 1976; 24: 190-192.

[10] R.E. Machol, M. Wien. Errata to [9]. Oper. Res. 1977;
25(2): 364.

[11] G. Reinelt. TSPLIB – a Traveling Salesman Problem
Library. ORSA J. Comput. 1991; 3: 376-384.


