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Theα-reliable shortest path problem

P. Beraldi and F. Guerriero

Department of Electronics, Informatics and Systems, University of Calabria, 87030 Rende (CS) - Italy

Abstract

Many real-life applications, arising in transportation and telecommunication systems, can be mathematically repre-
sented as shortest path problems. The deterministic version of the problem, where a deterministic cost is associated to
each arc and the configuration of the network (nodes and arcs)is assumed to be known in advance, is easy to solve and
has been extensively studied. However, in real applications, costs are typically not known a priori and may be subject
to significant uncertainty. In addition, due to failure, maintenance, natural disasters, weather conditions, etc., some arcs
could not be available causing a change of the network configuration. In this paper we introduce a variant of the shortest
path problem under uncertainty, that concerns the situation in which for each arc two different states are possible (i.e.
operating and failed states) and the aim is to find the path connecting a given pair of nodes with a sufficiently large
probability α and such that the total cost is minimized. The problem can be formulated as a large scale integer pro-
gramming model with knapsack constraints. For its solutiona heuristic approach has been designed and implemented.
Preliminary numerical experiments have been carried out ona set of randomly generated test problems.

Key words: Shortest path, stochastic programming, heuristic approach.

1. Introduction

Graphs and networks can be used to model many
important problems in engineering, business, physical
and social science ([1]).

Among the network optimization problems, the short-
est path problem plays a crucial role. Indeed, many
real applications arising in computer, telecommunica-
tion, urban traffic, logistic systems can be represented
and solved as shortest path problems.

The deterministic version of the problem is defined
on a directed graphG = (N , E), whereN = {1, . . . , n}
denotes the set of nodes, andE ⊆ N × N the set of
arcs. To each arc(i, j) ∈ E is associated a nonnegative
scalar costcij , representing either the traversal time of
the arc or the arc length. Given two distinct nodeso (re-
ferred to as origin node) andd (referred to as destina-
tion node), a path from nodeo to noded is a sequence
of nodesΠ(od)= {o = i1, . . . , il = d}, l ≥ 2 such that
(ik, ik+1) ∈ E for k = 1, . . . , l − 1.

The shortest path problem concerns finding the
cheapest way to connecto to d. From a mathematical
standpoint, the problem can be defined as follows:

Email: F. Guerriero [guerriero@deis.unical.it].

min cT x (1)

Ax = b (2)

x ∈ {0, 1}|E| (3)

whereA is the incidence matrix associated toG and the
vectorb is defined as follows:

bi =











1 if i=o

−1 if i=d

0 otherwise

It is well known that, because of the unimodularity prop-
erty of the constraint matrixA, the integer constraints
(3) can be relaxed.

In the formulation (1)–(3), the network configura-
tion (i.e. cost coefficients, nodes and arcs) is assumed
to be known in advance. It is evident that, even though
the deterministic version of the problem can be eas-
ily solved, the assumptions made are rather restrictive,
making model (1)–(3) not adequate to model real life
problems. In effect, uncertainty, either associated with
physical phenomena that are inherently random or with
predictions or estimations of reality, is pervasive in all
real applications ([6]). In particular, in the case of the
shortest path problem uncertainties could arise from a
variation of either the cost coefficients or the network
structure.

c© 2008 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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The shortest path problem under arc length uncertain-
ties has been studied by different authors [7,9,11,13–
15,19,21,22,25–27,30] and different models for dealing
with uncertainty in data have been proposed. In particu-
lar, in [13,21,22], data uncertainty is structured by tak-
ing arc length as interval ranges defined by known up-
per and lower bounds and without assuming any prob-
ability distribution, whereas in [9,15,30], uncertainty is
modelled by means of a discrete scenario set. In this
case, each scenario represents a potential realization of
the arc lengths which occurs with a given probability
level. Finally, in [7,11,14,19,25,26],and [27], possibil-
ity models, where arc lengths are represented by fuzzy
numbers, are used to deal with arc length uncertainties.

Uncertainties related to variations of the network
structure may be caused by different factors, which are
typically classified in abnormal events as serious disas-
ters, huge accidents, large-scale maintenance work, and
normal events as traffic accidents, adverse weather con-
ditions (see for example, [3,17,18]). Typically, uncer-
tainty in the network structure is led to the uncertainty
in the arc state, which is modelled by Bernoulli random
variables taking only to possible outcomes, represent-
ing either anoperating or afailed state ([17]).

Path problems under arc state uncertainties have been
addressed within the network connection reliability
framework ([8,17]). More specifically, given a network
where each arc is assumed to be operating or failed,
connectivity reliability is related to the probability that
nodes remain connected. A special case of connectivity
reliability is the terminal reliability, that concerns the
existence of a path between a specific pair of nodes
([3,8,17,18]). In this case, the objective is to find the
probability that a pair of nodes in the network remains
connected, when one or more arcs are obstructed or
unavailable. The terminal reliability problem has been
also analyzed in [16]. In particular, the paper considers
the general case of dependent probability failure and
proposes a solution approach to find the best possible
bounds on the probability of an operating path between
a given pair of nodes.

Another problem, somehow related to the connection
reliability issue and mainly addressed in the context of
the telecommunication systems, is the reliability con-
strained least-cost problem ([31]). Two different param-
eters, reliability and cost, are associated with each arc
of the network. The reliability of a path is defined as
the probability that all the arcs are available simultane-
ously, and it is equal to the product of the arc reliability,
whereas the cost is simply computed as the sum of the

costs of the arcs of the path. The aim is to find a path
between a given pair of nodes such that its reliability is
greater than a given value and the cost is minimized. To
solve such a NP-hard problem a heuristic approach has
been proposed by the authors in [31]. The basic idea
is to define, for each arc, a new parameter obtained as
weighted sum of the reliability value and the cost and to
compute the shortest path according to this new value
hoping that the resulting path satisfies the reliability re-
quirement and the cost is as little as possible.

In this paper we introduce a variant of the shortest
path problem under arc state uncertainty. We consider
a directed network and we assume that known cost co-
efficients are associated to arcs, whereas arc states are
uncertain. Given a pair of nodeso and d and a reli-
ability level α, the problem concerns determining the
shortest path which, despite the random state of net-
work, connectso to d with reliability α. In what fol-
lows, the problem under investigation will be referred
to asα-reliable shortest path problem (α- RSPP for
short). To model this problem, we adopt a scenario
based approach. We observe that, even though some-
how related to other shortest path problems under un-
certainty referred above, to the best of our knowledge,
the α-RSPP has not been addressed by the scientific
literature in the proposed form.

Theα-RSPP model can be viewed as an interesting
generalization of the shortest path problem under uncer-
tainty. In many problems of practical interest, arising in
the field of transportation and telecommunication, the
network’s structure can be uncertain and the proposed
model can be applied as useful modeling tool. For ex-
ample, in data routing problems, defined on telecom-
munication networks with randomly failing arcs, it is
of main concern to ensure that information is delivered
from some source node to some destination node with
a sufficiently large probabilityα ([29]). Other potential
applications in the telecommunication field may regard
the point to point network connectivity ([23]) and the
path selection in ad hoc networks ([28]).

In the transportation networks, the evaluation of the
travel time reliability plays a crucial role, in order to
provide drivers with accurate route guidance informa-
tion and to find the shortest paths, connecting origins
and destinations, especially under conditions of varying
demands and limited capacities ([4,?]). In this context,
the proposedα-RSPP model might be useful in the
evaluation of the operational reliability of the system,
since it allows to treat, by scenarios, the more general
case of dependent link failures.
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The rest of the paper is organized as follows. In Sec-
tion 2 we introduce theα-reliable shortest path problem.
The inherent complexity of the problem poses the cru-
cial issue of designing efficient solution approaches. In
Section 3 we present a heuristic solution strategy. Pre-
liminary computational results are reported in Section
4, while conclusions and future research directions are
drawn in Section 5.

2. Model definition

In order to model theα-reliable shortest path prob-
lem we adopt a scenario approach ([6]). We assume
that the state of each arc(i, j) ∈ E , is represented by a
Bernoulli random variableωi,j taking the value1 if the
corresponding arc is operating and0 otherwise. Thus, in
the formulation (1)–(3), the deterministic incidence ma-
trix A is replaced by its random counterpartA(ω). We
note that no assumption on independence of arc states
is made. We assume that the “random state” of the net-
work can be described by finitely many scenarios, each
of them representing a snapshot of the network situa-
tion. Representation by scenarios is frequently adopted
in strategic models where the knowledge of the possi-
ble uncertain outcomes in the future is obtained through
expert’s judgments and only a finite number of possible
realizations are considered in detail. In the following,
we shall denote byS = {1, . . . , S} the index set for
scenarios, each of them occurring with a given proba-
bility level ps, and byAs the corresponding incidence
matrix.

We shall assume that there always exists a feasible so-
lution (i.e., the destination can be reached starting from
the origin, whatever scenario will materialize). This is
a standard assumption in stochastic programming (i.e.,
the problem has complete recourse) and can be made
without loss of generality, since it is possible to ensure
complete recourse in any problem, by considering con-
straints violation penalty costs ([6]).

It is evident that requiring the satisfaction of the flow
conservation constraints

Asx = b (4)

for all the scenarioss ∈ S, corresponds to determine
the shortest path of reliability1. Such a solution would
result very expansive taking also into account scenarios
particularly unfavorable that could occur with a very
low probability. Since the determination of the shortest
path is typically a strategic decision, that should be taken
“here and now” without full information about the future

state of the network, it would result more appropriate
to operate in a reliability perspective by looking for
the shortest path with a given reliability levelα. The
choice of the valueα depends on the specific application
at hand. Eventually, it would be possible to find the
shortest paths for different reliability levels and choose
the one that guarantees the best cost-reliability trade off.

In the following, we illustrate as theα-RSPP can
be mathematically defined.
Let us consider the setK = {1, . . . , K} whose elements
k ∈ K are defined as

k ⊆ {1, . . . , S},
∑

s∈k

ps ≥ α (5)

Then, theα-RSPP can be formulated as follows:

min cT x (6)
⋃

k∈K

⋂

s∈k

{Asx = b} (7)

x ∈ {0, 1}|E| (8)

Problem (6)-(8) is clearly nonconvex. In effect, two
sources of nonconvexity are merged: the former related
to the binary restriction on the decision variables and
the latter to the disjunctive constraint (7). By adopting
a standard technique (Big-M approach) used in disjunc-
tive programming ([2]), (6) can be rewritten by intro-
ducing binary variables. In particular, once replaced the
equality constraintsAsx = b by two inequality con-
straintsAsx ≥ b andAsx ≤ b, we introduce a vector
M ∈ R|N | such that, for scenarioss = 1, . . . , S,

Asx + M ≥ b and Asx − M ≤ b.

In addition, we introduce a vectory of binary variables
whose componentsys, s = 1, . . . , S take value0 if the
corresponding set of constraints has to be fulfilled and
1 otherwise. Thus, problem (6)-(8) can be equivalently
rewritten as:

min cT x (9)

Asx + Mys ≥ b s = 1, . . . , S (10)

Asx − Mys ≤ b s = 1, . . . , S (11)
S

∑

s=1

psys ≤ (1 − α) (12)

ys ∈ {0, 1} s = 1, . . . , S (13)

x ∈ {0, 1}|E| (14)

We observe that (12)-(13) define a binary knapsack
constraint which assures the violation of the stochastic
constraints for a subset of scenarios whose cumulative
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probability is less than the complement of the imposed
reliability level.

It is evident that the full integer programming prob-
lem turns out to be very difficult to solve: the number of
flow conservation constraints is duplicated in the num-
ber of scenarios, which is typically a very large number
for real life applications. Nevertheless, the introduction
of the knapsack restriction causes the loss of the total
unimodularity property of the constraint matrix.

3. The solution approach

The inherent complexity of problem (9)-(14) poses
the crucial question of designing efficient solution ap-
proaches. It is worthwhile noting that the reformula-
tion (9)-(14) suggests a straightforward solution strat-
egy. Rather than attacking the full formulation of the
problem, we may divide the solution approach into two
phases. In the first one, we derive all the feasible solu-
tions of the knapsack constraint, whereas in the second
one we use such solutions to select different subprob-
lems to solve. The optimal solution of the original prob-
lem will be the best solution among those obtained by
solving the different subproblems.

This simple approach has the great advantage of al-
lowing the total unimodularity property of the constraint
matrix to be regained. On the contrary, it suffers from
the disadvantage imposed by the exact nature of the
method, i.e. requiring the determination of all the feasi-
ble solutions of the knapsack constraint. The number of
these solutions can be really huge for a reasonable num-
ber of scenarios, making prohibitive the application of
this approach. For example, in the case of equiprobable
scenarios the number of feasible solutions is given by:

(

S

V

)

,

whereV = ⌊(1 − α) ∗ S⌋.
The considerations introduced above show that the

complexity of the problem limits the applicability of ex-
act solution methods to problems of small size. Never-
theless, no known exact approach seems to be directly
applicable to efficiently solve the considered problem.
The definition of a specific approach which exploits the
particular structure of the problem is beyond the scope
of the paper and is the subject of ongoing research. In
the following we shall focus on heuristic strategies and
we present our proposal.

3.1. The two-stage heuristic strategy

The proposed heuristic strategy can be seen as a par-
ticularization of the approach introduced above. Rather
than enumerating all the feasible solutions of the knap-
sack constraint, we select one (or a limited number) of
such solutions according to some specific criteria.
The method is based on the solution of two problems
defined at two different stages.

In the first stage we solve the following knapsack
problem:

max

S
∑

s=1

γsys (15)

S
∑

s=1

psys ≤ (1 − α) (16)

ys ∈ {0, 1} s = 1, . . . , S (17)

Let us denote byy∗ the optimal solution of the problem.
On the basis of the values ofy∗, we define the set
S̄ = {s = 1, . . . , S | y∗

s = 0}, which is used to define
the second stage problem:

min cT x (18)

Asx = b ∀s ∈ S̄ (19)

x ∈ {0, 1}|E| (20)

We observe that different heuristic strategies may be
defined by specifying the values of the parametersγs

in (15). In the following, we present two strategies: the
simple strategy and the cost based one.

In the simple strategy (SS) the values ofγs are fixed
to 1 for all the scenarios. Thus, the aim of model (15)-
(17) is to find the solution of knapsack problem that
minimizes the cardinality of the set̄S. The main draw-
back of this simple strategy is that no information about
the different scenarios is used to perform the selection.
In effect, minimizing the number of flow conservation
constraints to satisfy, does not necessary lead to a good
choice. For example, if the probability value associated
to each scenario is the same, then the number of fea-
sible solutions with the same objective function value
can be really large.

The cost based strategy (CS) has been defined with
the aim to overcome the drawback of the simple ap-
proach. In particular, for each scenarios, the weightγs

is computed by taking into account the cost of the path
associated to that specific scenario. This choice of the
values ofγs is motivated by the following simple ob-
servation.
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Let us denote byzs the cost of the path associated
to the scenarios. It is evident that, given a subset of
scenariosS̄, z∗ ≥ max{zs, s ∈ S̄}, wherez∗ denote
the optimal solution over̄S.

Among all the feasible solutions of the knapsack
problem, the cost based approach provides the solution
associated to the subsetS̄ with minimal weight.

It is worthwhile observing that enlarging the search
space would greatly improve the quality of the sub-
optimal solution. In our case, this can be accomplished
by exploring multiple feasible solutions. To this aim,
we have defined the following basic scheme: once de-
termined the optimal solution of the knapsack problem,
starting from that solution we try to determine other
ones by performing a simple swap of one or more ob-
jects. Eventually, it is possible to define a threshold on
the number of solutions to generate.

More specifically, lety∗ be the optimal solution of
the knapsack problem and let̃S denote the subset of
scenarios such thaty∗

s = 1, ∀s ∈ S̃.
In the simple case in which the swap involves only

one object and equiprobable scenarios are considered,
starting fromy∗ another feasible solutioñy can be ob-
tained by executing the following operations:
• Select an index̃s ∈ S̃.
• Choose an index̄s ∈ S \ S̃.
• Set ỹs̃ = 0.
• Set ỹs̄ = 1.
• Set ỹs = y∗

s , ∀s ∈ S \ {s̃, s̄}.
Following the strategy described above, the total

number of different feasible solutions, that can be de-
termined starting fromy∗, is equal to(| S̃ | ∗ | S \S̃ |) .

In the case in which a different probability level is
associated to each scenario and only one object is con-
sidered for the swapping, in order to generate, starting
from the optimal solutiony∗, another feasible solution,
chosen the index̃s ∈ S̃, the indexs̄ ∈ S \ S̃ has to
be selected in such a way that the conditionps̄ ≤ ps̃ is
satisfied.

In the general case, in which the swap operation in-
volvesη ≤ min(| S̃ |, | S \ S̃ |) objects, starting from
y∗ a feasible solutioñy 6≡ y∗ is determined as follows.
(1) Select two subsets of scenariosS̄ andŜ, that sat-

isfy the following conditions:
• S̄ ⊆ S \ S̃ andŜ ⊆ S̃;
• | Ŝ |=| S̄ |= η;
•

∑

s̃∈S̃ ps̃ ≤
∑

ŝ∈Ŝ pŝ.

(2) Setỹŝ = 0, ∀ŝ ∈ Ŝ;
(3) Setỹs̄ = 1, ∀s̄ ∈ S̄;
(4) Setỹs = y∗

s , ∀s ∈ S \ {Ŝ ∪ S̄}.

4. Numerical illustration

In this section we report on preliminary computa-
tional experiments carried out on a set of test cases. We
observe that the lack of a library of problems to use as
benchmark has initially posed the problem of generat-
ing suitable instances. To this aim a scenario generator
has been designed and implemented. It takes as input
an initial network and generates a setS of scenarios
that satisfies the following conditions:
• the flow conservation constraints are satisfied for all

scenarios;
• the setS contains non-dominated scenarios.

For a detailed description of the scenario generator
the reader is referred to [5]. The characteristics of the
test problems are reported in Table 2. For each test prob-
lem, we indicate the number of nodes, arcs and sce-
narios. The initial networks have been generated with
the public-domain program Netgen ([24]). All arc costs
have been chosen according to an uniform distribution
from the range[1, 100]. For all the considered test prob-
lems, the probability levels have been randomly gener-
ated and normalized.

Table 1

Problem |N | |E| |S|
Test1 100 500 30
Test2 200 1000 40
Test3 300 6000 40
Test4 500 8000 50
Test5 1000 10000 60

Characteristics of the test problems

The state-of-the-art LINGO 8.0 ([20]) has been used
to solve integer programs. More efficient codes, based
for example on the Dijkstra method ([10]) could be used
to solve the shortest path problems within the heuristic
scheme. However, the choice of a general purpose solver
has been motivated by the aim of making the results
reproducible and of evaluating the speed-up provided by
the heuristic method over the exact counterpart. All the
experiments have been carried out on an Intel Pentium
Centrino 1.6 GHz, 1 GB RAM, under the Microsoft
Windows XP Professional operating system.

The numerical results have been collected for differ-
ent values of the reliability levelα, in particular for
α = 0.75, 0.80, 0.85, 0.90, 0.95, 0.99.

The following figure shows the optimal objective
function value versus the reliability level for the prob-
lem Test4.
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Fig. 1. Objective Function Value versus Reliability Level for
the problem Test4

As expected, the higher the value ofα the higher
the objective function value. We observe, however, that
even for high values ofα, a reduction in the objective
function value with respect to the case ofα = 1 may be
registered (similar behavior has been observed for the
other test problems). The choice of the reliability level
is up to the decision maker, who, on the basis on his/her
experience and the specific problem at hand, will decide
the appropriate value also evaluating the cost-reliability
trade-off.

In the evaluation of the performance of a heuristic
approach two different parameters are typically consid-
ered: the computational effort and the solution quality.
The first parameter is meant as the speed of computa-
tion of the heuristic approach over the exact counterpart.
Obviously, the solution of the full integer programming
problem is computationally demanding and the lack of
a specific exact method makes the comparison of little
value. For completeness, we note that the speed-up fac-
tor is about 15 % for Test1 and that larger savings are
achieved as the size of the instance is increased.

The solution quality has been evaluated by computing
the relative percentage errorǫ, defined as follows:

ǫ =
z̃ − z∗

z∗
∗ 100,

wherez∗ represents the cost of the optimal solution,
whereas̃z is the cost of an approximate solution deter-
mined by the heuristic method.

In Table 3, for each instance, we report the relative
percentage error of the best heuristic solution (between
theSS and theCS strategies) with respect to the optimal
solution.

The preliminary numerical results seem to be en-
couraging (see Table 3). They show that the cost of
the heuristic solution is higher than that of the optimal
one only in few cases and, in addition, the worsening

of solution quality is limited (i.e.,3.63, 8.55, 2.68 and
3.65%). Obviously further experiments are necessary to
confirm this favorable trend. This is beyond the scope
of this contribution whose main aim is the proposal of
a new model and its validation by a preliminary testing
phase.

A last consideration concerns the comparison of the
two heuristic strategies. Figures 2-6 show the objective
function values ofSS andCS strategy for the different
values ofα. The analysis of the results shows that, as
expected,CS always outperformsSS in terms of solu-
tion quality.
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5. Conclusion

In this paper we have addressed theα-reliable short-
est path problem, a variant of the shortest path problem
under arc uncertainty. Given a pair of nodes and a relia-
bility level α, the objective is to determine the shortest
path which, despite the random state of the network,
connects the selected nodes with reliabilityα.
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Table 2

Problem α = 0.75 α = 0.8 α = 0.85 α = 0.9 α = 0.95 α = 0.99

Test1 0.00% 0.00% 0.00% 3.63% 0.00% 0.00%
Test2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Test3 0.00% 8.55% 0.00% 0.00% 0.00% 0.00%
Test4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Test5 2.68% 0.00% 3.65% 0.00% 0.00% 0.00%

Percentage errorǫ of the best heuristic solution with respect to the optimal solution.
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The resulting model is a large scale integer program-
ming problem with knapsack constraints. For its solu-
tion a two-stage heuristic scheme, based on a partial
enumeration of the feasible solutions of the knapsack
constraint, has been designed and implemented. Prelim-
inary numerical experiments have been carried out on
a set of randomly generated test problems. The promis-
ing results prompt to enrich the computational phase
also considering larger size instances derived from real
applications.

Furthermore, to better evaluate the performance of
the heuristic method, the design of an exact approach,
which takes full advantage of the specific structure of the
problem, is required. Its implementation is the subject
of ongoing research.
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