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Abstract

In a graphG = (V, E), an identifying code of7 (resp. a locating-dominating code 6f) is a subset of vertice§ C V'
such thatN[v]NC # @ forall v € V, and N[u] N C # Nv]NC for all u # v, u,v € V (resp.u,v € V \ C), where

N[u] denotes the closed neighbourhoodvothat is N[u] =

N(u) U {u}. These codes model fault-detection problems

in multiprocessor systems and are also used for designiogtiin-detection schemes in wireless sensor networks. We
give here simple reductions which improve results of theepdip Charon, O. Hudry, A. LobsteirMinimizing the Size

of an Identifying or Locating-Dominating Code in a Graph i®{Hard Theoretical Computer Science 290(3) (2003),
2109-2120], and we show that minimizing the size of an ifléng code or a locating-dominating code in a graph is
APX-hard, even when restricted to graphs of bounded degdvdditionally, we give approximation algorithms for both
problems with approximation rati®(In |V'|) for general graphs and(1) in the case where the degree of the graph is

bounded by a constant.

Key words: approximation algorithms, approximation hardness, ifigng codes, locating-dominating codes, fault
tolerance, domination problems, combinatorial optimaatgraph algorithms.

1. Introduction

Let G = (V,E) be a simple, non-oriented graph,
and for allv € V' let N(v) denote the neighbourhood
of v, and letN[v] denote theclosed neighbourhoodf
v, that is : N[v] = N(v) U {v}. A subset of vertices
D C V is called adominating setof G if and only
if we have N[v] N D # () for all v € V. A subset of
verticesDy C V is called atotal dominating sebf G
if and only if we haveN (v) N Dt # O forallv € V. A
subset of vertice§’ C V is called anidentifying code
of G if and only if it is a dominating set off such that
NulnC # Nw]nC forall u # v, u,v € V. A subset
of verticesD, C V is called docating-dominating code
of G if and only if it is a dominating set off such that

Email: Sylvain Gravier [Sylvain.Gravier@ujf-grenoble.fr],
Ralf Klasing [ralf.klasing@labri.fr], Julien Moncel
[julien.moncel@inpg.fr].

NlulN Dy # Nv]N D, forall uw # v, u,v € V ~\ Dy.

If X is a locating-dominating or an identifying code
of G, we usually denoté(v, X) = N[v]N X, which is
called theidentifying sebf vertexv. Two vertices: and
v such thatl (u, X') # I(v, X) are said to beeparated
by X, and a vertex such that/ (v, X) # () is said to
be coveredby X.

Let us calltwinstwo verticesu # v such thatV[u] =
N[v]. A dominating set and a locating-dominating code
always exist (take simplyp = D, = V), but an iden-
tifying code exists inGG if and only if G has no twins.
Indeed, ifu andv are twins thelV[u]NC = N[v]NC
for any subset of vertice§' C V, andG has no iden-
tifying code; and ifG has no twins ther’ = V' is a
(trivial) identifying code ofG. A total dominating set
exists if and only if the graph has no isolated vertices,
that is to say every vertex has at least one neighbour.

(© 2008 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All righreserved.
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The usual optimization problem associated with 2. Preliminaries

dominating sets (resp. total dominating sets, identifying
codes, locating-dominating codes) is that of minimizing
the cardinality of the respective set in a given graph.
In this paper, we are interested in identifying codes
and locating-dominating codes in twin-free graphs. It
is known [3] that finding the minimum cardinality of
an identifying code or a locating-dominating code in a
graph is NP-hard.

In this paper, we derive approximation algorithms for
identifying codes (Theorem 5) and locating-dominating
codes (see Theorem 9). We also show that minimizing
the size of a locating-dominating code is APX-hard,
even when restricted to graphs of bounded degree (The-
orems 6 and 7). We also derive similar results for iden-
tifying codes (see Theorems 3 and 4), and, as interme-
diate results, for total dominating sets (see Theorems 1
and 2). For graphs of bounded degree, we show that
both problems are in APX.

Identifying and locating-dominating codes model
fault-detection problems in multiprocessor systems
[4,6]. Identifying codes are also used to devise indoor
location-detection schemes using wireless sensor net-
works [7,8]. In this last application, mobile entities have
to be located in an environment equipped with a net-
work of sensors. Each entity permanently emits a signal
which identifies it uniquely. The sensors are considered
to deliver a binary information: a given entity is either
inside or outside the range of a given sensor. Thus, each
sensor dynamically knows which entities are inside its
range (but no information is delivered about, say, its
Euclidean distance to the sensor). The set of sensors
induces then a partition of the environment into a (fi-
nite) number of subregions, according to places where
ranges of sensors overlap. If the sensors are arranged
so that they form an identifying code of the underlying
graph, then each entity can be uniquely located in the
(discretized) environment at any time. The precision of
such a system is greater than the one consisting of just
arranging the sensors into a dominating set.

Let us define formally the optimization problems we
will consider in the rest of the paper.

MIN SET COVER

Input : A family F of subsets of a ground
setsS.

Output : The minimum cardinality of a
subsetC C F such that every point of
is contained in at least one set©f

MIN k-SET COVER

Input : A family F of subsets of a ground
set.S such that each element & is of
cardinality at mosk.

Output : The minimum cardinality of a
subsetC C F such that every point of
is contained in at least one set@f

MIN DOM SET

Input : A graphG.
Output : The minimum cardinality of a
dominating setD of G.

MIN ToT DoM SET

Input : A graphG having no isolated ver-
tices.

Output : The minimum cardinality of a
total dominating seDy of G.

MIN ID CODE

Input : A graphG having no twins.
Output : The minimum cardinality of an
identifying codeC of G.

MIN Loc Dom CoDE

Input : A graphG.
Output : The minimum cardinality of a
locating-dominating cod®, of G.

We will also consider versions of these problems
where the grapld/ will have a bounded degre® > 1,
which will be denoted MME-OF-THE-PROBLEM-B,

The paper is structured as follows: the next section for instance:

fixes some notations, Section 3. discusses the approx-
imability of minimizing the size of an identifying code

in a graph, Section 4. discusses the approximability of
minimizing the size of a locating-dominating code in a
graph, and we conclude this paper in Section 5.

MIN DoM SET-B

Input : A graphG having maximum de-
gree bounded bys.

Output : The minimum cardinality of a
dominating setD of G.
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In a graph having no twins and no isolated vertices,

D will denote a dominating set @, D, will denote a
locating-dominating code aff, Dt will denote a total
dominating set of7, andC will denote an identifying

code ofG. We usually denote an optimal set with the

superscript’, e.g.C* will denote an identifying code
of G' of minimum cardinality.

We recall the notion of L-reduction (see e.g. [2]).
Given two optimization problems8’ andG and a poly-
nomial transformationf from instances ofF’ to in-
stances o7, we say thaf is anL-reductionif there are
positive constantsa and 3 such that for every instance
x of F

(1) optg(f(x)) < a-optp(a),

(2) for every feasible solutionof f(x) with objective
value mg(f(x),y) = ¢ we can in polynomial
time find a solutiory’ of « with mp(z,vy’) = ¢1

such thafopt z(x) — c1] < B |opta(f(z)) — cal-
To show the APX-hardness of a probleR it is

45

Fig. 1. Construction of3’ from G. To each vertex: corre-
sponds a path,b,c,d, whose endpoints, andd, are both
connected tac.

o for any vertexz of G which is not inD, the vertices
b, andc, belong toD¢ (see Figure 2),

e for any vertexx of D, the vertices:, andd, belong
to Dy (see Figure 3),

e no other vertices belong tb.

Itis straightforward to check that P is a dominating
set of G, then Dy is a total dominating set of?’, of

enough to show that there is an L-reduction from some Cardinality| D[ + 2n. Hence

APX-hard problem taP (see e.qg. [2]).

3. ldentifying codes

3.1. APX-hardness of minimizing the size of an iden-
tifying code

We use an L-reduction from M DomM SET-3 to-
wards MN ToT Dom SET-5, and then an L-reduction
from MIN ToT DoM SET-5 towards MN ID CODE-8.

Theorem 1 The problemMIN ToT DomM SET-B is
APX-hard for all B > 5.

Proof : We describe an L-reduction from IM Dom
SET-3 to MIN TOT DoM SET-5. LetG be a graph on

n vertices having maximum degree less than or equal b. andc,

to 3. Without loss of generality, we may assume tat

[Dt] < |Dy| = D[+ 2n,

and since this is true for any dominating detof G,
then we have

D{| < D] +2n. )

OR

Fig. 2. For any vertex: of G which is not inD, the vertices
belong toDy.

Conversely, letD; be a total dominating set af’.

has no isolated vertices, that is to say, each vertex haswe claim that we can assume that, for each vertex

at least one neighbour. Frothwe constructa graphon ¢, exactly two vertices among,, b,, ¢., d, belong to

5n verticesG’ by connecting the endpoints of a path  py. Indeed, it is easy to see that at least two of these
azbyc,d, 1o each vertex: of G (see Figure 1). vertices belong td, else one of them (at least) is not
covered byD;. Now, if at least three of them belong to
Dy, then we can assume that omnly, b, andc, belong

to Dy (straightforward case study : if;, b, ¢, andd,,
belong toDy thend,, can be removed, and if, say,, b,
andd, belong toD; thenb, can be removed). In this

Note thatG’ has maximum degree bounded by 5.
Given a dominating seD of G, we construct a total
dominating setD; of G’ as follows:

e Dt containsD,
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o=

Fig. 3. For any vertex of D, the vertices:,, andd, belong
to Dy.

case, we can projeat, onto a neighbour of in G —
that is to say we replace, by a vertex ofG essentially
playing the same role as, — and hence assume that
b, andc, only belong toD; (see Figure 4).

Fig. 4. If az, bs, ¢, belong toDy (andd, does not), then we
projecta, onto a neighbouy of x in G. Indeed, ifDy is a
total dominating set ofy’, then D¢ \ {a,} U {y} is a total
dominating set of’ too, of cardinality less than or equal to
that of Dy.

Now, assume thab; contains exactly two vertices
among a, b,, c;,d, for each vertexx of G. It is
straightforward to check that the intersection Bf
with G is then a dominating set @f. Indeed, for every
vertexz in G which does not belong t®¢, we know
that b, andc, belong toDt (anda, andd, do not),
because:, andd, must be covered iD;. But in this
case, sincé) is a total dominating set, then there ex-
ists inG a neighbour of: which belongs td), and we
are done. Thus, frombt, we get a dominating set @¥
of cardinality less than or equal t®t| — 2n, hence

|D*| < [Dy] - 2n.

Since this is true for any total dominating gef, then
in particular we have

D*| < |Df| - 2n. 2

Putting (1) and (2) together, we get
|Df| = |D*| + 2n.
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Now, we are ready to prove the L-reduction. On the one
hand, since&s has maximum degree bounded by 3, then

n
> =

D
B

for any dominating seb of G, hence
D] = |D*|+2n < 9|D"].

On the other hand, we have described a procedure
which, given a total dominating sé& of G’, constructs
a dominating seD of G such that

which implies
|D| - |D*| < [Dt| - |Dgl.

Hence, we have an L-reduction fromiMDoOM SET-3
to MIN ToT Dom SET-5 with parameterss = 9 and
£ = 1. Since MN Dom SET-3 is APX-hard [1], then
MIN ToT Dom SET-5 is APX-hard, hence Mi ToT
Dom SET-B is APX-hard for allB > 5. O

As a corollary, we get:

Theorem 2 The problenMIN TOT DOM SET is APX-
hard.

Now, we show an L-reduction from M ToT Dom
SET-5 towards MN ID CODE-8.

Theorem 3 The problemMIN ID CODE-B is APX-
hard for all B > 8.

Proof : We describe an L-reduction from M ToT
DoM SET-5 to MIN ID CODE-8. LetG be a graph on

n vertices having maximum degree less than or equal
to 5. Without loss of generality, we may assume tf3at
has no isolated vertices. Frof we construct a graph
on4n verticesG’ by connecting each vertexto all the
vertices of a pathu,.b.c, (see Figure 5).

Note thatG’ has maximum degree bounded by 8.
Given a total dominating seb; of GG, we construct an
identifying codeC of G’ as follows:C' is composed of
the union ofD¢ with all the vertices of the form,, and
¢ in G’ (see Figure 6). It is straightforward to check
that if Dy is a total dominating set af7, thenC' is an
identifying code ofG’. Hence

7] < [C] = |Dt| +2n,
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Fig. 5. Construction ofy’ from G. To each vertex: of G,
we connect the three vertices of a patib.c..

Fig. 6. C is composed of the union dp with all the vertices
of the forma, andc, in G’.

and since this is true for any total dominating $gtof
G, then we have

C*| < |Df| +2n. 3)

Conversely, lel” be an identifying code ofs’. We
claim that we may assume that for each vertet G,
a; ande, belong toC, andb, does not. Indeed, since
a; must be separated frofy,, thenc, belongs toC';
and, similarly,a,, must belong ta”. Now, if b, belongs
to C, then we can simply remove it frod: C ~ {b,}
is still an identifying code ofy’, of smaller cardinality
thanC.

Now, assume thaf' containsa,, andc, for each ver-
texz of GG, and does not contain.. It is straightforward
to check that the intersection 6fwith G is a total dom-
inating set ofG (becauser andb, must be separated
in G'). Thus, fromC, we get a total dominating set of
G of cardinality less than or equal t6¢'| — 2n, hence

IDf| < |C] —2n.

Since this is true for any identifying codg, then in
particular we have

|Df| < |C*| —2n. 4
Putting (3) and (4) together, we get
|C*| = |Dg|+ 2n.

Now, we are ready to prove the L-reduction. On the one
hand, since&z has maximum degree bounded by 5, then

|Dt| >

o 3

for any total dominating seb; of GG, hence

|IC*| = |Df|+2n <

11|Df|.

On the other hand, we have described a procedure
which, given an identifying cod€' of G/, constructs a
total dominating seD; of G such that

Dyl < |C] = 2n,
which implies
[ Dtl = [Dg| < €] = 1C7.

Hence, we have an L-reduction fromiM ToT Dom
SET-5 to MIN ID CODE-8 with parametersx = 11
andg3 = 1. Since MN ToT Dom SET-5 is APX-hard
(from Theorem 1), then Mt ID CoDE-8 is APX-hard,
hence MN ID CobE-B is APX-hard for allB > 8. O

As a corollary, we get:

Theorem 4 The problemMIN ID CoDE is APX-hard.

3.2. Positive approximation results

Theorem 5 MIN ID CoDEis (2 In[VH-1)approximable,
and MIN ID CoDE-B is (31n B + 1)-approximable.

Proof: LetG = (V, E) be a graph, and let ttdistance
between two vertices andv, denoted byd(u,v), be
the minimum number of edges of a path betweeand
v (if such a path does not exist &, v) = oo, and for
allv € V setd(v,v) = 0). LetS be the disjoint union of
S1 andSs, whereS is the set of vertices aff, andSs
is the set of all pairs of vertices @f at distance 1 or 2
from each other. Let us construct a famifyof subsets
of S as follows. Each element of corresponds to a
vertexz € V' ; it contains every vertex € S; such that
z € N[v], and it contains all pairg, v) € Sz such that
z € Nu]ANv] (where AAB denotes the symmetric
difference ofA and B). It follows from the definitions
thatC C V is an identifying code of5 if and only if C
is a solution of the NN SET COVER problem associated
with F. Indeed, the fact thaf’ covers all the vertices
of Sy is equivalent to the fact that’ is a dominating
set of G. Now, the fact thaCC moreover covers all the
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pairs of vertices inS, is equivalent to the fact that is
an identifying code of5. Indeed, any identifying code
clearly covers all pairs of vertices ifi;. Conversely,
given a dominating se€ of G, two verticesu,v at
distance at least 3 are necessarily such that

NulnC # NpunC

since their closed neighbourhoods are disjoi{u] N
N[v] = 0 for all w,v such thatd(u,v) > 3. Hence, a
dominating seC of G is an identifying code of> if
and only if N[u]|NC # N[v]NC for all pairs of vertices
u, v at distance 1 or 2 from each other.

Since MN SET COVER s (In|S|+ 1)-approximable
[5], then MiIN ID CoDE s (2In |[V| 4 1)-approximable
(using the rough boun| < |V |?). Furthermore, it
has bounded degrédg, then each element &f contains
at mostB + 1 elements of5; and at most3?(B — 1)
elements ofS,. Indeed, each vertexclearly covers at
mostB + 1 vertices ofS; (note that any vertex covers
itself), andz separates itself from at mo&(B — 1)
vertices (all at distance 2 fror), it separates also at
most B(B — 1) pairs of vertices at distance 1 (both
distinct fromz), and it finally separates at moB{ B —

1)(B — 2) pairs of vertices at distance 2 (both distinct

from z). Hence ifG has bounded degré®, then(.S, F)
is an instance of My (B® — B*+ B+1)—SET COVER.
Since MN k—SeT CoveR is (Ink + 1)-approximable
[5], then MIN ID CODE-B is (3 In B+1)-approximable
(using the rough boun#® — B? + B + 1 < B3, valid
for all B > 2). ]

4. Locating-dominating codes

4.1. APX-hardness of minimizing the size of a locat-
ing dominating code

Theorem 6 The problemMIN Loc Dom CODE-B is
APX-hard for all B > 5.

Proof : We describe an L-reduction from iIM Dom
SET-3 to MIN Loc DoM CoDE-5. LetG be a graph

Fig. 7. Construction ofy’ from G. To each vertex: of G,
we connect two adjacent vertices andb,,.

of the union of D with all the vertices of the form
a; in G'. It is straightforward to check that ib is a
dominating set of~, thenD, is a locating-dominating
code ofG’. Hence

|Di| < [De| = |D|+mn,

and since this is true for any dominating detof G,
then we have

|Dg| < |D*[+n. (5)
Conversely, leD, be a locating-dominating set 6f .
We claim that we can assume that for each vestef
G, there is exactly one vertes, or b, which belongs to
Dy. Indeed, if neither, norb, belongs taD, for some
x, then they are not separated by, which contradicts
the fact thatDy is a locating-dominating code. Hence,
at least one of them belongs . Now, if both vertices
az, b, belong toDy, then we can either remowg from
D, (if Dy~ {a,} remains a locating-dominating code
of G'), or replace it byz in D,. Indeed, ifD,; \ {a,}
is no longer a locating-dominating code Gf, then it
means that is not dominated it (hencexr anda, are
not separated), and in this case we can prajeainto
x and Dy \ {a,} U {z} is a locating-dominating code
of G’ (see Figure 8).

Now, assume thab, contains exactly one vertex,
or b, for each vertext of G. Without loss of generality,
let us assume that, belongs toD, for all z in G. It
is straightforward to check that the intersection/af
with G is a dominating set aff (because: anda, must

onn vertices having maximum degree less than or equal be separated). Thus, frof,, we get a dominating set

to 3. FromG we construct a graph dn verticesG’ by
connecting two adjacent vertices, b, to each vertex
x of G (see Figure 7).

Note thatG’ has maximum degree bounded by 5.

Given a dominating sdb of G, we construct a locating-
dominating codeD, of G’ as follows:D, is composed

of G of cardinality less than or equal t&;| — n, hence
ID*| < |Dy| —n.

Since this is true for any locating-dominating det,
then in particular we have

|D*| < |Dg| —n. (6)
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Theorem 8 Let G be a graph having no twins, l€d;

be a locating-dominating code 6f of minimum cardi-
nality, and letC* be an identifying code aff of mini-
mum cardinality. Then we have

* 1 *
D] = 51C7]

Proof : Let D, be a locating-dominating code ¢f.
. . . We show that there exists an identifying codeof G
Fig. 8. For everyx in G, we can assume that there is only  g,ch thatD, C C and|C| < 2|D,|. If D, is already an
one vertexa.; Of b, in any locating-dominating code @¥'. e niifving code of7, then we are done. If not, it means
Indeed, both verticea, andb, are necessary if and only if . .
S ; . C that some vertices d@F are not separated by,. Define
the corresponding: is not dominated i, and in this case val lati Vi(C h thaty if
we can projeck, ontoz to get a locating-dominating code ¢ an equivalence relation o (G) suc aw a vl
of G’ of the same cardinality. gnd onI.y. ifu andv are .not geparated byg_. Clear_ly,a
. is transitive, and: « v impliesu andv adjacent inG.
Putting (5) and (6) together, we get Hence, every equivalence classooihduces a complete
D — |D* subgraph ofz. Let K be an equivalence class afof
|D;| = [D*[+n. - . )
_ cardinalityk. We prove by induction ok that one can
Now, we are ready to prove the L-reduction. On the one add at most — 1 vertices toD; to separate each pair of
hand, sinc&r has maximum degree bounded by 3, then vertices of K. If k = 1, then we are done. Now, let us
assume that > 2, and letu andv be two vertices ofs.
SinceG has no twins, then we may assume that there
exists a vertex € N[u]~ N[v]. This vertex: separates
all pairsu/,v" such thatz € N[u'] andz ¢ N[v'].
|Di| = [D*|+n < 5D Therefore, adding to K splits K into two smaller (non-
empty) complete graphs, and we conclude by induction.
To conclude the proof, it is enough to observe that any
equivalence class af contains at most one element of

n
D| > —
DI > 7
for any dominating seb of G, hence
On the other hand, we have described a procedure

which, given a locating-dominating codB, of G’,
constructs a dominating sét of G such that

V(G) ~ Dy. O
|D| < |De| —m, . .

Given anintegen > 1, letG,, be the complete graph

which implies on2n+1 vertices minus a maximum matching. One can
\D| — |D*| < |Di| - |D}|. zhow that a minimum ide_nt_ifying code_(ﬂn has_car_—

inality 2n, whereas a minimum locating-dominating
Hence, we have an L-reduction fromiMDom SET- code ofG,, has cardinality». Indeed, both endpoints
3 to MiN Loc Dom CoDE-5 with parameters: = 5 of any edge of the subtracted matching must belong to
and$ = 1. Since MN Dom SET-3 is APX-hard [1],  any identifying code, for if not one of the endpoints
then MIN Loc Dom CoDE-5 is APX-hard, hence Mi would not be separated from the vertex of degtee
Loc Dom CoDE-B is APX-hard for allB > 5. O of G,,. Similarly, at least one endpoint of any edge of

the subtracted matching must belong to any locating-

As a corollary, we have: L . X
y dominating code, for if not the two endpoints would not

Theorem 7 The problemMIN Loc Dom CODE is be separated from each other. It is easy to find an iden-
APX-hard. tifying code (resp. a locating-dominating code)®@f,
of cardinality2n (resp.n). Hence, the bound of Theo-
rem 8 is tight.

4.2. Positive approximation results
Since an identifying code a is always a locating-

We start by a result giving a relation between the sizes dominating code o, then we have

of locating-dominating codes and identifying codes in 1 . i i}
a graph. loT < IDF] < |e, @)
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hence we deduce approximability results for locating- Acknowledgments
dominating codes:

Theorem 9 The problemMIN Loc Dom CODE is The authors wish to thank the anonymous referee for
2(21In|V| + 1)-approximable, and the problerviN valuable remarks.
Loc Dom CobE-B is 2(31n B + 1)-approximable.

Proof : Straightforward from (7) and Theorem 50
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