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Abstract

Many recent convergence results obtained for primal-dumérior-point methods for nonlinear programming, use
assumptions of the boundedness of generated iteratesislpdper we replace such assumptions by new assumptions
on the NLP problem, develop a modification of a primal-duaéiiior-point method implemented in software package
LOQO and analyze convergence of the new method from any initeégu
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1. Introduction algorithm combining features of the previously men-
tioned versions of 0Qo. This is done under assump-

The primal-dual interior-point algorithm imple- tions made only on the problem under consideration,

mented inLoQo proved to be efficient for solving rather than assumptions about the performance of the

nonlinear optimization problems ([1-3,15,18]). The algorithm. The latter appear in many convergence anal-

algorithm applies Newton’s method to the perturbed Yses (see e.g. [5,6,9,12,16,19]). The full implementa-

Karush-Kuhn-Tucker system of equations on each step tion of the studied algorithm in theoQo framework

to find the next primal-dual approximation of the solu- remains for future work. An implemented preliminary

tion. The original algorithm [18] implemented ir0Qo version of the algorithm converges to a minimum of

at each step minimized a penalty barrier merit function some problems, on whichoQo previously failed.

to attempt to ensure that the algorithm converged to a

local minimum. A more recent version @foQo [2] 2. Problem formulation

utilizes a memoryless filter to attempt to achieve the

same goal. Neither method has been proven convergent The paper considers a method for solving the follow-

under general conditions. ing optimization problem
In this paper, we analyze convergence to a first-order min f ()
KKT point from an arbitrary initial guess for a general ’ )
s.t. xz €,

! Research of the first and the third authors was supported ] ] ]
by NSF grant DMS-9870317 and ONR grant N00014-98-1- Where the feasible set is defined @s= {z € R" :
0036. Research of the second author was supported by NSFh(z) > 0}, andh(z) = (hi(x),. .., hn(z)) is a vec-
grant DMS-0107450 tor function. We assume that : R* — RR' and all

(© 2008 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All rigreserved.
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h; : IR* - R', i = 1,...,m are twice continuously  for all 2 € IR", where0 < C' < oo depends only on the
differentiable functions. To simplify the presentation we problem’s data.
do not consider the equality constraints in this paper. A3. The minima (local and global) of problem (1)

This will be done in the subsequent paper. satisfy the standard second order optimality conditions.
After adding nonnegative slack variables = A4. For eachu > 0 the minima (local and global) of
(w1, ..., wy), we obtain an equivalent formulation of  problem (3), satisfy the standard second order optimal-

the problem (1): ity conditions.

A5. Hessiansv?f(x) and V2h;(z), i = 1,...,m

min f(z), satisfy Lipschitz conditions olR".
(2) Several comments about the assumptions: assump-
st. h(x) —w=0, . X .
w> 0. tion (Al) does not restrict the generality. In fact, one

can always transform functigf{z) using monotone in-
The interior-point method places the slacks in a bar- creasing transformatiofi(x) := log(1 + e/(*)), which

rier term leading to the following problem is bounded from below.
. Assumption (A2) not only implies that the feasible
min f(z) —p Y. logw;, set() is bounded, but also implies some growth condi-
i=1 (3) tions for the function&; (). In fact, it tells us that there

is no functionh;, (z) that grows significantly faster than
s.t. h(z) —w =0, some other functions;(z), i # 4o, decrease on any un-
wherey > 0 is a barrier parameter. The solution to this  bounded sequence. The cases when functigas) do

problem satisfies the following primal-dual system not satisfy assumption (A2) may involve exponentially
v — A(2)Ty = 0, growing fUﬂCtiOﬂg”Li.(I). Let us consider the following
f(i)ue +(ZCW)YZ =0 ) example. The feasible s€t; = [—1,1] C R! can be
h(z) —w = O’ defined using two inequalitie#; () =z + 1 > 0 and
’ ha(x) = 1 — 2 > 0. In this case function#; (z) and
wherey = (y1,...,ym) iS @ vector of the Lagrange  h,(x) satisfy assumption (A2). However, the same set
multipliers or dual variables for problem (3}(z) is Q; can be defined differentlyi; (z) = ¢* —e™! > 0

the Jacobian of vector functioh(z), Y and W are andhy(x) = e~ —e~1 > 0. In this case, for exam-
diagonal matrices with elemengs andw; respectively ple, if = increases unboundedly functidén () grows
ande = (1,...,1)T e R". exponentially, but functioh, (z) stays always bounded
from below and does not decrease fast enough. There-
fore functionsh; (x) andhq(x) do not satisfy assump-
tion (A2).
We endowlR" with thel> norm||z|| = maxi<i<y | ], Most practical problems, including problems with
and we endow the spad®™" with the associated linearand quadratic constraints, convex problems (when
n functionsh;(x) are concave), nonconvex quadratic and
operator normj|Q|| = wax > aisl | - many others satisfy assumption (A2). We believe that
==mAI=1 this assumption does not greatly restrict the generality.
The assumption is critical for the convergence analysis

3. Assumptions

We invoke the following assumptions throughout the

paper. because the interior-point algorithm decreases a value
Al. The objective function is bounded from below: of a penalty-barrier merit function and we need assump-
f(z) > fforall z € IR" tion (A2) to ensure that the merit function has bounded
A2. The constraint$;(z) satisfy the following con-  level sets.
ditions Let us assume that the active constraint set*ais
lim min h;(z) = —oo. (5) I* = {i: hi(z*) = 0} = {1,...,7}. We consider the

[|z|| =00 1<i<m

vectors functiong{,, (v) = (h1(2), ..., h.(z)), and its

and JacobianA,(z). The sufficient regularity conditions

I

+1) < — min h;(z)+C rankA(T)(x*):r, y; >0,iel”

max i) 1<i<m

1<i<m
(6) together with the sufficient condition for the minimum
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z* to be isolated

sUH(2z*,y*)s > psTs, p>0,Vs #£0: Ay (x*)s =0,

whereH (x, y) is a Hessian of the Lagrangian for prob-

lem (1), comprise the standard second order optimality

conditions, or Assumption (A3).
Assumption (A4) is equivalent to the following con-
dition to holdVy > 0 :

ST(H (20, 1O (2)¢) + AT (2,)C (@) A(2,))9
> PMST&
pu >0, Vs #0,

where(z,,, w,,) is the solution of the barrier subproblem
(3), H(z,y) is a Hessian of the Lagrangian for problem
(1) andC(z) is a diagonal matrix with the elements
ci(z) =hi(x),i=1,...,m.
Remark 1 It follows from Assumption A3 that the
Slater’s condition holds: there exisise IR" such that
hl(d_?) >O,i: 1,...,m.

All the assumptions (Al)-(A5) are imposed on the

Griva et al. —convergence of a primal-dual interior-poirdthod

v=puWle—y,
p=w— h(z).
b(z) = (o7, (WYe)T, —p")T,
bu(z) = (0", (WYe)" — pe”, —p")",

To control the convergence we need the following
merit functions:

v(2) = [1b(2)]| = max {[|a |, [[o], [WYel}

vu(2) = [|bu(2) ]| = max {[lo[], o, W},

Lpu(z) = fx) —p) logw; +y"p+ ngp-

=1
The functionv(z) measures the distance between the
current approximation and a KKT point of the problem
(1). The functiorv,,(z) measures the distance between
the current approximation and a KKT point of the bar-
rier problem (3). The penalty-barrier functiady,,,(z)
is the augmented Lagrangian for the barrier problem (3).

We show later that the primal direction decreases the

problem, not on the sequence generated by the a|go_value of £s,,.(z), which makes the algorithm descend

rithm. Our intention is to identify a class of noncon-
vex problems for which the interior-point algorithm is
convergent. The following lemma follows from the as-
sumptions.
Lemma 1 Under assumptions (A1)-(A3) a global solu-
tion (x,,w,) to the problem (3) exists for any > 0.
Proof. Problem (3) is equivalent to the following

problem:

min B(x, )

z e R,

whereB(z, 1) = f(z) — >, log hi(x). It follows
from assumption (A2) that the feasible §kis bounded.
Let z be the point that exists by Remark 1 and a con-
stantM,, = 2B(Z, u). It is easy to show that the set
Q, = {z€Q:B(z,n) < M,} is a closed bounded
set. Therefore due to continuity &f(x, 1) there exists

a global minimizerz,, such thatB(z, 1) > B(z,, 1)

on the set?,, and consequently on the feasible Skt
Lemma 1 is proven.

4. Interior-point algorithm
In the following we use the following notations.
p=(z,w), 2=y =(z,wy),

o = V() - A@)Ty,

to a minimum rather than another first order optimality
point.

Newton’s method applied to the system (4) leads to
the following linear system for the Newton directions

H(z,y) 0 —A(x)T] [Az
oY W Aw @)
A(z) -I 0 Ay

~Vf(@)+ A(2)"y
pe —WVYe
—h(z)+w

whereH (z,y) is the Hessian of the Lagrangian of prob-
lem (1). Using the notations introduced at the beginning
of this section, the system (7) can be rewritten as

D(2)Az = —=b,(2),

where
H(z,y) 0 —A(z)T
D= o Y W ] .
A(x) -I 0

After eliminating Aw from this system we obtain the
following reduced system

(457 W) (8] it
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After finding Ay, we can obtaimAw by the following
formula
Aw = WYy — Ay).

The explicit formulas for the solution to the primal-
dual system (8) are given in [18] (Theorem 1):

Az = N7 (—o+ ATW 1Y p+17)),
Aw = —p+ AAz,

Ay = v+ WY (p — AAx),

(9)

whereN = N(z,w,y) = H(z,y)+A(z)TW-1Y A(x)
andA = A(x).

If the matrix N (z,w, y) is not positive definite the
algorithm replaces it with the regularized matrix

N(z,w,y) = N(z,w,y) + X\pI, A>0, (10)

where I is the identity matrix inIR*" to guarantee
that the smallest eigenvalue 8f is greater than some
Ao > 0. The parameten, is chosen big enough to
guarantee thal (z, w, y) is positive definite.

Together with the primal regularization we consider
also the dual regularization of system (7)

H(x,y) 0 —A(x)T] [Az
oY W Aw| = (11)
A(x) -1 Al | Ay
[=Vf(@)+ A(2)"y
e —WVYe ,
—h(z) +w

where\; > 0 is a regularizing parameter. Clearly, for

A¢ = 0 the system is the original one. Using the no-
tations introduced at the beginning of this section, we
can rewrite (11) as follows

Dy, (2)Az = —b,(2),
where
H(z,y) 0 —A(x)”
Dy,(z) = 0 Y %
A(:c) —1 )\dl

The explicit formulas for finding primal and dual di-
rections are similar to (9)

Az = N/\iil(—a—i—

AT WY=L+ 00] 7 (p+ WY~ 1y)),
(WY 0] (p+ WY1y — AAz)
—p+ AAz + M\iAy,

Ay
Aw

(12)

15

where,

Ny, (z,y,w)=H(z,y)+A(x)T WY~ 4+ A\ “A(z).
Again, if the matrixVy, (z, w, y) is not positive definite
the algorithm replaces it with the regularized matrix

]\Af,\d(x,w,y) = Ny, (z,w,y) + I, A>0, (13)
wherel is the identity matrix inR™" to guarantee that
the smallest eigenvalue dffkd is greater than some
Ao > 0.

As it will be shown later the primal and the dual reg-
ularizations ensure that the primal directions is descent
for the penalty-barrier merit function.

One pure step of the interior-point method (IPM) al-

gorithm (z, w, y) — (&,,9) is as follows

T =+ apAz, (14)
W =w + apAw, (15)
¥ =y+aaly, (16)

wherea, andag are primal and dual steplengths. The
primal and dual steplengths are chosen to keep slack
and dual variables strictly positive:

w;

a, =min< 1; —xk :
P { ' Awl

Aw; < o} . @

Yi
Ay;

g = min {1; —K Ay < O} , (18)
where0 < k < 1.

As we show later the pure interior point method con-
verges to the primal-dual solution only locally in the
neighborhood of the solution. However, far away from
the solution the algorithm does not update dual vari-
ables at each step and often uses only primal direction
(Az, Aw) to find the next approximation.

Let us describe the algorithm in more detail. The
algorithm starts each iteration by computing the merit
functionv(z), the barrier parameter by the following
formula

p = min{ov(z), v(2)?}, (19)

where0 < ¢ < 1. Then the algorithm calculates the
merit functionv, (z) and the dual regularization param-
eter as follows:

Ad = min{Admaxa vy (Z)}a (20)
where ;... IS a fixed largest dual regularization pa-
rameter chosen by considerations following from con-
vergence analysis (Lemma 2 and 3). Such a choice of
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the dual regularization is needed to guarantee that it
vanishes in the neighborhood of the solution of problem
(3), where due to Assumption A4 the dual regularization
is not required. Then the algorithm solves the primal-
dual system (11) for the primal-dual Newton directions
(Az, Aw, Ay). To solve the system (11) the algorithm
uses a sparse Cholesky factorization developed in [17].
It is possible that while performing the factorization
the algorithm learns that the matriX, , (z, w, y) is not
positive definite. In this case the algorithm regularizes
the matrixVy, (z, w, y) by formula (13) and begins the
factorization again. It keeps increasing the paramiger

in formula (13) until a positive definite factorization is
completed.

The algorithm then selects primal and dual steplengths
ap andag by formulas (17)-(18) for the parameter
chosen by formula

Kk =max{0.95, 1 — v(2)} (21)
and finds the next primal-dual candidate:= = +
apAz, W = w + apAw andy := y + agAy.

The fundamental difference between this algorithm
and basic interior-point algorithms is we require the
candidatez = (&, w, §) to satisfy two criteria. First?
must reduce the merit functior{z) by a chosei priori
desired factof < ¢ < 1. If it succeeds in obtaining this
reduction, after that the factorization &fy ,(Z, w, 9),
which will be used to calculate the search direction
at z, is done. If Ny, (&,, ¢) is positive definitez is
accepted and the algorithm continuesNX, (£, ¥, §)
is not positive definite? fails as it does if a sufficient
reduction of the merit function(z) is not obtained. In
both of these cases, the Lagrange multipligiere not
changed. The primal directiofp = (Az, Aw), which
will be shown to be a descent direction 16p,,,(p, y),
is used to update the primal iterates, where the primal
steplengthy, is backtracked to satisfy the Armijo rule

Lsu(p+ apAp,y)—Lsu(p,y) < (22)
nap <VP‘C57#(pa y)v Ap> ’

where0 < n < 1.

The convergence analysis of the algorithm shows that
under the assumptions (A1)-(A5) in the neighborhood
of the solution the candidaté never fails the tests
(Lemma 8) and the algorithm always uses the primal-
dual directionAz to find the next approximation. On
the other hand, to ensure convergence, the algorithm
changes the dual variablg®nly when the next dual ap-
proximationy is closer to the dual solution either to the

Griva et al. —convergence of a primal-dual interior-poirdthod

original problem (1) or to the barrier problem (3). The
motivation for such careful treatment of the dual vari-
ables lies in the fact that in nonlinear programming in
nonconvex regions, poor dual approximations may re-
sult from the solution of the primal-dual equation. These
approximations can hamper convergence and even pre-
vent it, which happens often in practice when they be-
come unbounded. If the algorithm reaches an approx-
imationp = (&,) of the first order optimality point

of the unconstrained minimization of the merit func-
tion L3 ,.(p,y), it then changes the dual variables by
the formula

g::y'i_ﬁp(‘%vw)a (23)

wherep(z,w) = w — h(x), to obtain a better dual ap-
proximation. If 2 reduces the merit function, (z), the
algorithm accepts as new primal-dual approximation.
Otherwise, the algorithm keeps the Lagrange multipli-
ers unchanged and increases the penalty pararfieter

It is appropriate to say several words about the
choice of the dual regularization parameigrand the
penalty paramete. These parameters are chosen to
satisfy two conditions: a) the primal Newton direction
(Az, Aw) must be a descent direction for the merit
function £3,,,(z) and b) the regularization parameter
Ad > 0 must become zero when the trajectory of the
algorithm approaches the primal-dual solution of the
barrier subproblem (3).

To prove global convergence of the algorithm we use
the following choice of the parameters at each iteration:
)‘d = min{)‘dmaxayu(z)}? 6 = 1/)\d1 )‘dmax = Bo?
wheref, is the smallest value of the penalty parameter
estimated in Lemma 2. It will be shown later that such
choice of the parameters satisfies the conditions (a) and
(b) and allows us to prove global convergence of the
algorithm.

The formal description of the algorithm is in Figure
1.

5. Convergence analysis

We need the following auxiliary lemmas for the con-
vergence analysis.
Lemma?2 For anyy € R", 8 > By = 2mu and
> 0, there exists a global minimum

Sa.u(y) = min

- Lg(z,w,y) > —oc0. (24)

Proof. Let us fix anyw € R, and setM
2Ls,,.(Z,w,y), where z exists by Slater’s condition
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Initialization:
An initial primal-dual approximationz® = (p°, y°) = (2%, w°, y") is given
An accuracye > 0 and largest tolerance for the penalty parameBaiG are given
Parameterd < < 0.5, 0<d < g <1, 7 >0, 6 >0 are given
Setz := 2%, 7 := v(2%), p = min{dr,r?}, 7, = v, (2°), B := Bo > 2mu, Mg := min{v(z°), ﬁ_o}’
Iterations countes := 0, Dual iterates update countér:= 0, primal := 0.
Computations:
Whiler > ¢ and 8 < BIG do
BOL (Beginning of the loop)
Factorize the system (11), Start witty, = 0, Increase\, until the factorization of (11) is successful
Find directions:Az := PrimalDualDirection(z, Aq)
Sets:=s+1
Setk := max{0.95, 1 — r}
Choose primal and dual steplengths; and ay by the formulas (17)-(18)
Setp :=p+ apAp, §:=y + agAy

0

11: If primal = 0, v(2) < gr and the Cholesky factorization of (11) is successful with = 0 and then
Setz := 2, r:= v(2), p:= min{dr, 7%}, r, 1= v, (2), Ag := min{v,(2), %}, k:=k+1
Else
12 Setprimal :=1, B =1/\qg

Backtrackoy, until Lg ,,(p + apAp,y) — L, (P, y) < nay (VpLlp (P, y), Ap)
Setp :=p+ a,Ap

13: 11V Lo,u(B,y)ll < min{r|p®)l, B/k}, andy + Bp(p) > suW ~'e, then
14: 9 :=y + Bp(p)
15: If v,(2) <gqrp,, then

Setz:= 2z, v, = vu(2), k:=k+1, primal :=0
If v(2) < gr, then
Setr := v(2), p := min{dr, r?}, A\g := min{v, (%), %}, Ty =vu(2)

Else
16: Setp :=p, B:= 208, A\qg := %
Else
Setp :=p
EOL (End of the loop)

OUTPUT z

Fig. 1. IPM algorithm.

(Remark 1). The functios ,(z,w,y) is continuous enough to show that
on (z,w) € R" x RY, therefore to prove the lemma

it is enough to show the following set m
llim Z @l = oo. (26)
R ={(z,w) e R* x R} | : L (x,w,y) < M} =
is a bounded and closed set. Let us first consider the simpler case when the

First we show that the s@; is bounded. Let us as-  sequence{z'} corresponding to the sequende is
sume thatR 3 is unbounded. Then there exists an un- bounded. In this case, the corresponding sequence

bounded sequend®'} = {(z!,w')} defined onR" x {w'} is unbounded. We can assume that there exists
IRY', such that a nonempty index set of constraints such that for
@z =2z, w =w, any indexi € I, we havelim;_, ., w! = oo (otherwise
(b) lim; o [|p* — p°|| = oo, we consider the corresponding subsequences). Since
(€) limy—oo L (2!, wl,y) < M. for any indexi = 1,...,m the sequencéh,(z!)} is
We are going to show that for any sequence satisfying bounded, we havém; .., p! = oo for i € I, and
(a) and (b) we have hence
. 1,1
Jm Lo, w,y) = oo, @Dt gl = tim 2 4yt~ plog(hula!) + 1)

which contradicts (c). =00, t€ly,

Let P = {p'} = {(2',w")} be a sequence sat-
isfying conditions (a) and (b). Let us introduce and (26) holds true.
sequences{p}} = {w] — hi(a')} and {g}} = Now we study the case when the sequefice {x'}
{%pﬁz + yipt — plog(hi(ah) + pH)}, i = 1,...,m. corresponding to the sequenPeis unbounded. Let us
Since f(z) is bounded from below, to prove (25) it is first estimate separately. for any1 < i < m. In case
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hi(z') <1, then

B
o= 2o 4 yipl -

5 plog(hi(a') + p})

2
> O 4yt — plog(1 4+ ) > ~By  (27)
for someB; > 0 large enough.
If h;(x') > 1then, keeping in mind that; (2*)+p! >

0, we have

l

6 2
oh = =pl +yip, — plog(hi(a') + pl)

2
B 2 l Pl‘
= ’ log h; —ul 14
=3P i pi — ploghi(z') — plog ( 1+ (o)
.8 P
> St 4 yiph — plog hi(at) —

B 2 ] 1 !
> §|pz—| — |yillpi| — plog hi(2') — p — plp;
—plogh;(a') — Bo,

where B, is large enough. Invoking inequality (6) we
obtain

—plog hi(z!) — By > ulog<max hi(z )>—B2

> —pulog < max hi(x")| + 1) — By
> —u(C — 1£r11i<nm hi(z'))? — By

—(C = hiy(2'))* = Be
i g (1) > 0

—/LCQ —BQ,
—u(C + pl,)? = Bo, if hiy(z!) <0
—pmax {C?, (C + p)*} — Bz,

Y

whereiy(z) € Argmin, _,,,hi(z) andio = ig(z!).
Keeping in mind thatwﬁo > 0, it follows from (5)
that
: l
Jim = oo
Hence for all sequence numbétarge enough we have
¢ > —u(C + p,)? = Ba. (28)

Combining (27) and (28), we obtain fdr large
enough (thah;, (z!) < 0)

Z% ot D

i#£i0:hi(zt)<1

ot > ol

ithi(zt)>1

—convergence of a primal-dual interior-poirgthod

6 2
> Spl, Hyipl, —plog pl, —mBi—(u(C + pl)* + Ba) m
The inequalitys > 2um guarantees that for such
condition (26) holds. Thus, condition (25) also holds,
and we have the contradiction. Therefore the78gtis
bounded.

It is easy to see that the SR is closed. Therefore
Ls (2!, w! y) reaches its global minimum of* x
RY, . _

Lemma 2 is proven.

Remark 2 Following the proof of Lemma 2 we can
show that there exists a global minimum
Soo = (29)

min ”p(wi)HQ > —00,

zGIR?”‘,wGIRZL
and that any set
Reo = {(z,w) € R* x R} : ||p(z,w)|* < M}

is bounded.

Lemma 3 For any 8 > 0, there existsa > 0 such
that for any primal-dual approximatiofw, w, y) such
thatw € RY,, y € R, the primal directionAp =
(Az, Aw), obtained as the solution of the system (11)
with the primal regularization rule (13) and the dual
regularization parametek,; = =, is a descent direction
for £s,,.(p,y) and

(VpLsu(py), Ap) < —al|Ap|?.

Proof. For the regularization parametay = 1/8,
the primal-dual system (11) is as follows

Bv

H(x,y) 0 —A(2)T] [Az
0 Yy w Aw| = (30)
A(x) -1 %I Ay
=V (@) + Vh(z)Ty
pe —WVYe
—h(z)+w

After solving the third equation fofAy and eliminating
Ay from the first two equations we obtain the following
reduced system for the primal directions

H+BATA  —pAT Azl
—BA W WY 4Bl |Aw]|T

On the other hand the gradient8g ,,(z, w, y) with
respect tar andw is as follows

—o+ BATp}
¥—0Bp
(31

vmﬁﬁ,;t(wiay) =0 = ﬁATpa
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vwﬁﬁyﬂ('rv w, y) == + ﬁp
Therefore, assuming that matrix

Ny=H+AT [ I +y'W] ™ 4

is positive definite ( otherwise the algorithm always in-
creases\, such that the smallest eigenvalue of matrix
Ny exceeds parametey > 0. ), we have by Lemma
Al from the Appendix

Vils, "TAz

Vuls, Aw

_[Az]" [H +pATA
Aw -BA

< —amax{| Az, | Aw]}?,

—BAT Ax
WY + 81| |Aw
(32)

wherea depends only on parameteyg 3 and| A(z)|.
Lemma 3 is proven.

We will need also several lemmas about local con-
vergence properties of the algorithm.
Lemmad4 If z* = (z*,w*,y*) is a solution to the
problem (2) then the matrix

H(xz*,y*) 0 —A(z*)T
0 Y™ w
A(z*) -1 0

is nonsingular and hence there exidts* > 0 such that

ID7H )] < M*. (33)
Proof. The proof is straightforward (see e.g. [8]).
Let Q.(2*) = {2z : ||z — z*|] < ¢} be thee-

neighborhood of the solution to the problem (2).

Lemma5 There existgg > 0 and0 < L; < Lo such

that for any primal-dual pairz € Q. (z*) the merit

functionv(z) satisfies

Lilz = 2| <v(z) < Laoflz = 27 (34)
Proof. Keeping in mind that/(z*) = 0 the right in-
equality (34) follows from Lipschitz continuity of(z)
on the bounded sé?.,. Therefore there existé, > 0
such that
v(z) < Lao||z — 27|

Let us prove the left inequality. From the definition of
the merit functionv(z) we obtain

ol < v(z), (35)
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WYe <v(z),

ol < v(2).

Let us linearizes, WYe andp at the solutiorz* =
(", 0", ).

(36)

(37)

o(2) =o(z*) + H(z",y")(z — 2*) = AT(=")(y — y")
+ Oz —2*|?
WYe=W*"Y"e+Y"(w—w*)+W*"(y —y")
+Ofw —w*llly = y*
— () + AT (@) — 2%) — (w — w')
+ 0|z — =*|*

—p(2)

By Lemma 4 the matrix

H(xz*,y*) 0 —A(z*)T
A(z*) -1 0

is nonsingular and there is a constavt* such that

| D~1(z*)|| < M*. Therefore we have

Iz = 2%l < M*v(2) + Oz — 2*||*.

ChoosingL; = 1/(2M*), we obtain the left inequality
(34), i.e.
Li|lz = 2*|| < v(2).

Lemma 5 is proven.

Also, we need the following Banach Lemma (see e.g.
[10] for a proof).
Lemma 6 Let matrix A € IR*"™ be nonsingular and
|A=L|| < M. Then there exists > 0 small enough
such that any matriB € IR™" satisfying|A— B|| < e
is nonsingular and the following bound holds

B~ < 2M.

Lemma 7 There existg, > 0 and M5 > 0 such that
for any primal-dual pairz = (z,w,y) € Q,(z*) and
Mg < g¢ the matrix

0 Y w
A(:c) -1 )\dl

H(z,y) 0 —Az)" ]
D, (Z)

has an inverse and its norm satisfies

1D} (2)]| < Ma. (38)
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Proof. It follows from the Lipschitz conditions and
boundedness di., (z*) that we have

1D, (2) = D(z")]| < Chreo,

for someC; > 0. Therefore, by Lemmas 4 and 6 there
existsMs > 0 such that

D2, (2) 7| < M.

for g > 0 small enough. Lemma 7 is proven.
The following assertion is a slight modification of the
Debreu theorem [7].

Assertion 1. Let H be a symmetric matrix4 € IR™*",

A = diag(\;);_; with A\; > 0, and 6§ > 0 such that
ETHE > 067¢, Ve - A¢ = 0. Then there existéy > 0

large enough that for ang < ¢, < 6 the inequality

" (H+KkATAA) E > 0,67¢, YEeR  (39)

holds for anyk > k.

The next lemma follows from Assertion 1.
Lemma 8 There existg, > 0 small enough that for
any approximation of the primal-dual solution =
(T, w,y) € Qe (27), 2 # 27, A = vu(z) and p =
min{év(z), v(z)?}, the matrix\Vy, (z, y, w) is positive
definite.

Proof. Let us assume that the active constraint
set atz* is I* = {i : hi(z*) = 0} = {1,...,7}.
Also, we consider the vector functioh(TT)(a:) =
(h1(z), ..., h.(x)) and its Jacobiam,(x). The suf-
ficient regularity conditions

rank Ayy(x*) =r,yf >0,ieI”

together with the sufficient conditions for the minimum
x* to be isolated

ETH (2", y")E > 067€, 0> 0,6 # 02 Ay (2)€ = 0

comprise the standard second order optimality condi-
tions.

It follows from Assertion 1 and the second order
optimality conditions that the matrid/ (z*, y*)
H(z*,y*) + kA (z*)T Ay (a*) is positive definite
for somek > ko and therefore the matrid/ (x,y)
remains positive definite in som® neighborhood of
the solution(z*, y*).
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The matrix Ny, (x, y, w) can be written as follows

Ny, (z,y,w) = H(z,y)+ (40)
-1
Ay @) WY +2al | A (@)
-1
+A(m_r)(I)T|:W(m—r)}/(;n1,T)+/\d1] A(m_r)(I),

where the second and the third terms correspond to
active and inactive constraints. Keeping in mind (34),
we have

)\d = V#(Z) < (1 + 5)1/(2) < Lg(l + 5)60.

Also, due to the standard second order optimality con-
ditions for the active constraints, we haug| < ¢; and

To <y < 274,41 =1,...,r for somer, > 0. There-
fore, we obtain

—1 T

> e I
C 14 2m(1+0)Ly 0 10
(41)

—1
[W(T) }/(r) + Xal

wherel, is the identity matrix.

The third term of (40) corresponding to the inac-
tive constraints is positive semi-definite. Therefore, by
choosingey > 0 small enough we can 1make the ele-
ments of the diagone{r[/V(T)Y(;)1 + )\dl} as large as
necessary. Therefore the positive definiteness of the ma-
trix Ny, (z,y,w) follows from the result thaf\/ (x, y)
and Ny, (x,y,w) — M(z,y) are positive definite pro-
vided thatz is sufficiently small.

Remark 3 It follows from Lemma 8 that in the neigh-
borhood of the solution the interior-point algorithm
does not perform the primal regularization of the Hes-
sian H(x, y) when solve the system (11) for finding the
primal-dual directions.

Lemma 9 There existg, > 0 such that if any approx-
imation of the primal-dual solution = (z,w,y) €
Q.. (2*), with the barrier, dual regularization and
steplength obtained by the formulas (17)-(21) and the
primal-dual directionAz = (Az, Aw,Az) obtained
from the system (11) then

12 = 2|l < cllz — 2*]1%,

wherez is the next primal-dual approximation obtained
by formulas (14)-(16) and > 0.

Proof. Letey > 0 be small enough that the conditions
of Lemmas 5-8 hold true. Let = (z, w,y) € Q,(z*).
Let us denotd|z — z*|| = ¢ < 9. Foreg small enough
and using (34), we have

p=wv(2)* < L3 (42)
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It follows from formulas (34), (38) and (42) that
1bu(2)]| = vu(z) S w(2) + 1 < cre,

for somec¢; > 0. Since the algorithm computes
the primal-dual direction by the formula\z =
—Dy,(2)7tb,(2), then keeping in mind (38), we have

|Az]] < Maeqe. (43)

First we prove an estimation for the primal and dual
steplengths obtained by formulas (17), (18) and (21).
The second equation of the system (11) can be rewritten

as follows

yiAw; + w;Ay; = p—wiyi, i=1,...,m.

Therefore, keeping in mind that > 0 andw;y; > 0,
we have
yidw; +w;Ay; > —wiy;, =1

N

or
— <1+ ==, i=1,..
Ws Yi
By Assumption (A3) for the set of active constraints we
have|w;| < ¢ andy; > 7, > 0. Therefore keeping in
mind (43) for the indices : Aw; < 0 we have

'7m7

w; 1

>
Awi_l—i-%

> 1— cae,

> s 2 (44)

wherec, = M%:l By formulas (21) and (34) we have

k>1—v(z)>1— Loe. (45)
Therefore combining formulas (17), (44) and (45) we
obtain

1—cze<a,<1. (46)
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wherecs = max{cs, ¢4 }. Now we estimate the distance
between the next primal-dual approximatidmnd the
solution. We have

F—z2t=2- AD;dl (2)bu(z) — z*
= A(z = 2%) = AD3; (2)bu(2) + (I = A)(z = 27)
= AD;(2)(Day () (5= %) — b))+ (I — A) (5= =7)

= AD;[(2)[D(2)(z — 2*) — b(2)+

(D, (2) = D(2))(z = 27) + b(2) = bu(2)]
+ (I - A)(z—=2").

Using the Taylor expansion éfz*) aroundz we obtain
0=0b(2*) = b(z) + D(2)(* — 2) + Ol|z — *|]%,

or
D(2)(z — 2") = b(z) = Ol|z — ="||>.

Therefore, using formulas (19), (20), (34), (42) and (48),
we have

[2=2"| < Ma[|| DE)(z—2") —b(2) |+ || Da.(2) —DE) |
Iz = 2" + [1bu(2) = b(2)[1] + 5|2 — 2*[|
= Malcee® + v, (2)e + p] + cse?
< Mo[cee® 4 Log? + L3e® + L3e?] + c5e?

<cg?,

wherec = My (cg + 3L2) + ¢5. Lemma 9 is proven.

Now we are ready to prove the main theorem about
convergence properties of the IPM algorithm.

Theorem 1 Under assumptions (Al)-(A5), the
IPM algorithm generates a primal-dual sequence
{z* = (z°,w?*,y*)} such that any limit point of the
primal sequencez*} is a first-order optimality point
for the minimization of thé, norm of the vector of the
constraint violationv(x) = (vi(x),...,vm(x)), where

Following the same scheme we establish a similar esti- v;(x) = min{h;(x), 0} :

mate for the dual steplength
1—cpe <ag<1. 47

Let us denoted € IR*™?™ the diagonal matrix with
the elementsy;, = o, i =1,...,n+m anda; = ag,
i=n+m+1,...,n+2m. Using.A, the next primal-
dual approximatiort is computed by the formula

Z=2z+4+ AAz.
Combining formulas (46) and (47) we obtain

(I — Al < ese, (48)

V() = ||o(x)]2-
If, in particular, V(Z) = 0 thenZ = z* is a a first order
optimality point of problem (1).

Proof. We considere several possible cases.

Case 1.The approximation:® is such that the con-
ditions in line 11 of the algorithm (see Figure 1) hold
for all & > s. Such possibility exists due to Lemmas
5, 9 and Remark 3 in some neighborhood of a local or
global minimizer. In this case

lim v(z*) = 0.

k—o0
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The trajectory of the algorithm corresponds to the pure estimation hold
interior-point method. cn(l47)
Case 2 Either of the last two conditions in line 11 of 29640 — 2, < ——+=
the algorithm does not hold for some approximatién B
In this case, the algorithm switches to the unconstrained wherer > 0 is used in condition (49) (line 13) of the
minimization mode grimal = 1.) The penalty param-  algorithm, and:,, > 0 is a constant depending only on
eter3 > 0 is chosen by the rule given in line 12 of the  the characteristics of the barrier subproblem (3) at the
algorithm description (see Figure 1) so that the primal solutionz,,. The inequality (50) and Lipschitz continu-
direction Ap is a descent direction for the augmented ity of v, (z) on the bounded sé?. , (z,,) implies that
Lagrangian by Lemma 3, therefore the algorithm de-
scends to an approximation of the first order optimality vu(2°1) < qup(2°) (51)
point of the minimization of the augmented Lagrangian
Ls,u(p,y®) inp.
Indeed, for any primal-dual point°’s and fixedg >
0 from Lemma 2 follows the boundedness of the set
Py, =A{p : Loulp,y™) < Lpu(p®™,y° )} Let p
be a starting point of an unconstrained minimization of
Ls..(p,y°*) in p. By Lemma 3 the condition number
of the matrix in equation (31) is uniformly bounded
with respect top € Ps, for any fixed Lagrange mul-
tipliers y*+ and the penalty parametér This bound-
edness of the condition number and bactracking with
the Armijo rule (22) guarantee that the algorithm even-
tually descends to the approximatigrof the first or-

%er optlnl?lilrt]y pgg; zf th?ﬁ’”;%“;;?&giﬁ”;r;mc])'rz?fg]n rem 5 of [14] for the condition (50) to hold, the penalty
ﬁ’“.(p’ y p g-12], P R . parameters > 0 must be large enough. The algorithm
Sections 3.1, 3.2). Therefore there exists the iteration : . .
number such that increases3, adjusts the dual regularization parameter
s (line 16 of the algorithm) and continues the minimiza-

i . tion of Lg,,.(p, y**) in p. Eventually when3 becomes
IVaLo.u(Pasir - y™)I| < min {THp(pS’f“)”’ ﬁ/k}479 large enough and (50) implies (51). Therefore the up-

( J o
. . ate of the Lagrange multipliers reduces the value of
The gradient of the augmented Lagrangian then be- the merit functionv,.(=) by a chosen factd < ¢ < 1.

comes small enough so the conditions in line I3 of the In this case, the minimization of the merit function

algorith h0|d.true'. . o L3 .(p,y®) in p for a largers followed by the La-
In the following discussion, we assume that this first ." . _
imali g ciscs - grange multipliers update attracts the trajectory to the
order optimality point is a minimum (local or global). - go)tion to the barrier problem (3). For the value of the

T_he case if it is not a min_imgm is left for t.he I_ater merit functionv(z) the following estimation holds
discussion(Case 2b) After finding an approximation

1% = zull,  (50)

for 8 large enough. This can be shown using the con-
siderations similar to those in Lemma 5. Therefore vio-
lation of the inequality (51) (line 15) can be due to any
of the following reasonsz®* € €2 (z,), p*+* is an
approximation a minimizer, but is not large enough
(Case 23, 2°* ¢ Q. (z,) (Case 2p. The latter case
includes also the situationif’= is an approximation of
some other than a minimum first order optimality point
of the unconstrained minimization of the augmented
Lagrangian. According to the algorithm, the ca2é)(
leads to an unbounded increase of the penalty parame-
ter G.

Case 2aletz* € ()., (z,). Therefore by the Theo-

of an unconstrained minimizer ofg ., (p,y°*) in p, v(2541) < v, (2555 ) - p = v, (2% ) Fmin{or, 7},
the algorithm changes the Lagrange multipliers (line (52)
14 of the algorithm) by the formula (23). Let** and wherer is the previous best value of the merit function

z*k+1 be two subsequent iterates of the augmented La- »(z) and0 < § < 1. The value of the barrier parameter
grangian method with the updated Lagrange multipli- ;; is smaller than the previous best value of the merit
ersiyshtl =y + Bp(att wiktt), yt =y, s = function v(z) before the parameter was decreased.
Sky-- -y Sk41 — L Therefore the reduction of the merit functiop(z) will
Theorem 5 from [14] implies that under Assumptions guarantee the reduction of the merit functigr). Thus
A4 and A5 there exists a neighborhood of the mini- the reduction of the merit function(z), finding the
mum of the barrier subproblefa. , (z,) and the num- approximation of a minimizer,, followed by the further
ber 3, > 0 such that ify** € Q. (z,) and3 > 3,,, for reduction of the barrier parametgreventually brings
the new primal-dual approximatiosi=+! the following its trajectory to the neighborhood of some minimizer
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Q.. (z*). Then the algorithm converges to the solution = Suppose that the primal sequedgé} is unbounded.
by Case 1lwith an asymptotic quadratic rate. Sincep® = (z*,w®) € R" xR, , by Remark 1 follow-
Case 2bln this case, there is no guarantee that (50) ing Lemma 2, the sequenges}, wheregs = g2(p®, )

holds and the new approximatiari*+* is close to the is unbounded and

minimizer of the barrier subproblemy,, i.e the inequal-

ity (51) (line 15) may not hold an infinite number of Jim Oiuglgz +00. (53)
times while the penalty parametéincreases unbound- *

edly. In this case, the algorithm does not change the we will show that (53) implies that

Lagrange multiplierg; by formula (23) since this up-

date does not reduce the value of the merit function lim inf g7 = —o0 (54)
vu(z). Therefore, the algorithm doubles penalty pa- f00 0=

rameter (line 16 of the algorithm) and eventually turns
into the sequence of unconstrained minimizations of the
merit functionLs . (p, y) in p followed by an increase

with g5 = ¢1(p®, y), which contradicts again Lemma 2.
First, we renumber the sequengge} as follows

of the penalty parametet. The vector of the Lagrange )0 — pso ot psotdo — ps1 skl ppsitds
multipliers y does not change according to the algo-
rithm. In this case, we show that any limit point of the ==t pse L psetde
primal sequencéz®} is actually a first order optimality s
point for the minimization of thé, norm of the vector solallpf, i _FS’“ e ’k‘s’} + dﬁ correspond to tze salme
of the constraint violation(z) = (vy(),...,vm(x), va uhe of¢™r. Foranyk, forall s = s, ..., s, +di —
wherev;(z) = min{h,(x),0} : we have

V(z) = [v(@)]2- Ergi+ (1 —€7)gs ™ <€gi + (1-€")gs,

. . ) , or, equivalently
First we establish that the primal sequergé} is

bounded. Consider the monotone increasing sequence s sp1 o L—&%
. — > (95
2mp < §% < 51 < .. < @5 < ....We can rewrite D= T

a merit functionCs ,(p, y) as follows

— 93)- (55)

After the summation of the inequality (55) over al=
Sky...,Sk +dr — 1, we obtain

5
LouPy) = Lu(p,y) + 50" p

sp+dy 1— £Sk sp+dp Sk
97" — gy 2 £ —— (95 - 95"). (56)

After the summation of the inequality (56) for &ll=
0,1,...7 and keeping in mind that}* ™ = ¢7*** and

0 1 ﬁO T
=Q1+8-p) [m (Lu(p,y)Jr?p p) +

ﬁ B 50 T Sk+dg Sk41 . .
_ = fork=0,1,....,7—1 bt
2(1 +6_ﬁo)p P 92 92 or F] ) J , We obtain
1 1 Sj+d] » d; Si
=z [€91(p,y) + (1 = &)ga(p,y)] = 595(1?7 Y), 9 - 2 Z 551 g5 —g5). (57

where L, (p,y) = f(z) — n)>2 logwi + y"p,  Assuming that = s; + d; we recall that

6 = 1/(1 + 6 - ﬁo)v gl(pay) = L,u(pv y) + O'5ﬁ0pr7

92(p,y) = 0.50"p and be(p,y) = Eqi1(p,y) + (1 — J

2(957” —g5') = +o0.

€)g2(p,y). Therefore the sequence of unconstrained lim sup g5 = lim sup
o =00 <5< =00 p<s<i

minimizations of the merit functionLgs\ . (p,y)

in p for the monotone nondecreasing sequence _. P . .

B < g1 < ... < g% < .. is equivalent to the Since the sequendg }Els monotonically decreasing

sequence of unconstrained minimizations of function to zero, the Sequen({eg—} is monotone, increasing

0¢(p,y) in p for the monotone nonincreasing sequence and unbounded and greater than or equal to one starting

1=60>¢1 >, . >¢6%...>0. with k& = kq. Without restricting the generality, we can



24 Griva et al. —convergence of a primal-dual interior-poirdthod

assume thaky, = s;. Therefore by Lemma (A3) from If the primal sequencér®*  w*) satisfy the system
the Appendix we have (59), then it satisfies the following system
Iq e V(%)) 3% — Al )Ty /8% + A(e™)p(a®, w))
. 5 si+d; Si\
lim sup = (95 —g5') = +oo. — TSk
l_’OOOSSSZ Py g i n
— /B + Wy /3% + W p(z°F, w)
Therefore using (57) we obtain = WeeYsk, (60)
lim sup (g‘f —g;7) = +o0, Therefore keeping in mind the boundedness of the

l—
0 0<s<! sequencd (z°+, w)}, we have

or equivalently

klim Az ) p(z®*, w™) = 0, (61)
lim inf ¢7 = —o0,
Imo00sssl Jim (] — hi(e*))wi* =0, i=1,...,m. (62)
which contradicts Lemma 2. Therefore our assumption and

of unboundedness of the sequefip&} was not correct . o _
and we conclude that the primal sequeripg} gener- Jim wit >0, i=1...,m. (63)
ated by the algorithm is bounded.

Now we show that any limit point of the primal se-
quence{z®} generated by the algorithm is actually the
first order optimality point for minimization of thé

It is easy to verify that conditions (61)-(63) are also
the first-order optimality conditions for the problem

min [|w — h(z)[[3,

norm of the vector of the constraint violatiariz) = (64)
(v1(x),...,vm(x)), wherev;(z) = min{h;(x),0} : st w > 0.
V(x) = [Jv()]]2. and, in turn, for the problem
The necessary conditions for the primal pgair= min [V (z)]*, =z € R
(&,w) to be a minimizer of merit functio s . (p, v)
in p is the following system The theorem is proven.

V(&) — A@@)" (y + Bp(p)) = 0, (58)

—uW’le+y+ﬂp(f)) - 0. 6. Numerical testing

Therefore the only reason that the merit functigiz) As it follows from Theorem 1, in the worst case, the
is not zero for the triplez = (&,1,), whereg = algorithm minimizes the constrain violation of the non-
y + fBp, is infeasibility: p(Z, ) # 0. linear problem. However, we believe that in most cases
Let us consider the sequenge'}, z° = (2°, w®, y*) the algorithm finds the first order optimality point. To
generated by the algorithm. The dual sequefigg} demonstrate this, we implemented the algorithm within

does not change from some point on. We assume thatLOQO software package and tested the code using the
y* =y for s > 5. Also, the asymptotic infeasibility =~ Hock and Schittkowski [11] problems.

takes placelim;_ .. p;(2*, w®) # 0 for some index. We consider differentiable problems only with in-
We denotel_ the index set of all the indices such that equality constraints and bounds. The results are shown
limg o0 pi(2®,w®) # 0 forie I_. in the Tables 1 and 2. In the tables for each problem

According to the algorithm, for the sequence of the we show the name of the problem, the number of vari-

primal approximations of exact minimizers, we have ables, the number of constraints, the number of itera-
tions, running time on IBM Laptop with Red Hat Linux

V() — A(x*)T (y + 8% p(zs ,w*)) = 355k, Fedora Core 2.0, 1GB of main memory and 1.3GHz

—uW, e +y + B p(z®r, w*) = BTk, clock speed, optimal objective value, and if the problem
(59) convex or not. The iteration limit was set to 1,000,000
wherelimy_,o, T3¢ = 0 andlimy_,o, T3k = 0. iterations. All the problems were formulated in AMPL.
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Out of 65 differentiable problems with inequality only a primal regularization. Therefore in the future we
constraints the algorithm solved 61 including all 20 con- will modify LOQO to include new features of the algo-
vex problems. It follows from the proof of Theorem 1 rithm studied in this paper such as the dual regulariza-
that in case of solving convex problems with bounded tion and more careful updating of the dual variables. We
feasible sets the algorithm is guaranteed to find a global believe that such modifications can potentially improve
minimum of the problem becausgase 2kin the proof the robustness of the solver.
of Theorem 1 is not possible under the imposed as-
sumptions. Further, the algorithm solved 41 out of 45 )
nonconvex optimization problems. 8. Appendix

We would like to mention that among the unsolved ) —
problems hs013 violates the assumption A3. For prob- LemmaA;L Let .rr?atrlces.N. = A,_B ¢—'B andQ
lems hs097, hs098 and hs116 the iterates of the al-Pe symmetric positive definite with the smallest eigen-
gorithm are attracted to the areas where infeasibility valuesiy > 0 andAc > 0. Then the matrix
is around10~—%. Such behavior of the algorithms is in A BT
agreement with Theorem 1. M = [B C }

is also positive definite with the lower bound for the
smallest eigenvalug;; > 0 depending or\y, A\¢c and
Bl

Proof. Let the size ofA and N ben x n, the sizes
of B andC bem x n andm x m respectively. Let us
show that for any. = (x, %) # 0 quadratic forme” M 2
is positive. Since matrixV is positive definite, we have

7. Concluding remarks

In this paper we analyzed convergence of the primal- I
dual interior-point algorithm for nonlinear optimization
problems with inequality constraints. The important fea-
tures of the algorithm are the primal and dual regular-
izations, which guarantee that the algorithm decreases
the merit functionls ,,(z,w,y) in (z,w) in order to 2T(A— BTC'B)z > Ayala.
drive the trajectory of the algorithm down to the neigh- -
borhood of a first order optimality point. Therefore

Another important feature of the algorithm is that it -
stabilizes a sequence of primal iterates in the sense that [Ty [A B
at the worst case the algorithm finds a first order opti- B C
mality point of thel;-norm of the constraint violation _
without any assumptions on the sequence of primaland = Avz'z+a"BYCT By +y Cy+2y' Bz
dual iterates. Such assumptions have been commonin = AyaTz + (C7'Bz +y)"C(C~'Bx + )
recent convergence proofs. T 1 T/ 1

In the worst case the algorithm can be “trapped” in Z Avziz+Ac(CT Br +y) (C7 Bz +y)
areas of where the constraints of the problem are in- > Awin (272 + (C™*Bz +y)" (C~'Bz +y))
consistent. For example, the constraimts— 2 > 0, _ _
x> 107° are inconsisR[ent around = 0. Therefore if = Amin (xT ((I +(C lB)T(C 13)) T+y'y

} {i} = 2T Az + yT'Cy + 2y" Bz

an initial guess: = 0 the algorithm stays in the neigh- +2yT((jle)x)
borhood of 0 and never converges to a feasible point. [ (OB (C-1B) (C—1B\T

We believe that in similar situation, most of interior- — )\min[xTyT][ +( C—)l ( ) ( ) Hx}
point algorithms will generate a sequence of unbounded B I Yy

Lagrange multipliers. Having an assumption of bound-
edness of iterates simply eliminates such cases. By drop- = Amin [+"y"]Q [;C] > AminAg[e” "] [ﬂ :
ping the assumption of the boundedness of the iterates ) _
in this paper we bring these cases into consideration andWhere Awin = min{Ay, Ac} and Aq is the _slmall-
guarantee that the sequence of primal iterates does nofSt eigenvalue ofy. Keeping in mind that\," =
diverge. Q7 2 < Vn+mlQ!|, we estimaté|Q " :

The next important step is to generalize the theory
for equality constraints and to work on numerical per- Q7Y = ‘

formance of the algorithm. CurrentiypQo implements

{I—F (C~'B)T(C~'B) (C‘lB)T]l
C-'B I
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Table

1

Hock and Schittkowski nonlinear problems with inequalitygtraints

B H {—CllB I+ (5(?B;@T13)T] H

<1+[(CTIB)TI+ICTIB) |+ I(C T B)(CT'B)|
=L < +oo, if |B|| < +o0.

Therefore, we have

[y M [ﬂ > [z y"] [z] :

wherely; > min{\y, Ac¢}(Ly/n +m)~t. The lemma

is proven.

and

the numbers$y, ..

Name | Variables| Constraints| Iterations | Runtime f(x*) Type
hs001 2 0 34 0.003 1.03E-20 convex
hs002 2 0 21 0.002 4.941229318 convex
hs003 2 0 6 0.001 4.46E-09 convex
hs004 2 0 7 0 2.666666668 | nonconvex
hs005 2 0 8 0 -1.913222955| nonconvex
hs010 2 1 9 0.001 -1 convex
hs011 2 1 8 0.001 -8.498464222| convex
hs012 2 1 11 0.001 -30 convex
hs013 2 1 (IL) nonconvex
hs015 2 2 38 0.003 306.5000015| nonconvex
hs016 2 2 17 0.001 0.25 nonconvex
hs017 2 2 28 0.002 1.00000001 | nonconvex
hs018 2 2 19 0.002 5 nonconvex
hs019 2 2 19 0.002 -6961.814063| nonconvex
hs020 2 3 16 0.001 40.19872981 | nonconvex
hs021 2 1 11 0.001 -99.96 convex
hs022 2 2 7 0.001 1.000000035 convex
hs023 2 5 17 0.002 2 nonconvex
hs024 2 2 11 0.001 -1 nonconvex
hs025 3 0 34 0.015 1.15E-18 nonconvex
hs029 3 1 10 0.001 -22.62741655| nonconvex
hs030 3 1 8 0.001 1 convex
hs031 3 1 10 0.001 5.999999375 | nonconvex
hs033 3 2 21 0.002 2 nonconvex
hs034 3 2 13 0.001 -0.834032445| convex
hs035 3 1 8 0.001 0.111111117 convex
hs036 3 1 134 0.027 -3300.000002| nonconvex
hs037 3 1 17 0.002 -3456 nonconvex
hs038 4 0 40 0.004 7.26E-24 nonconvex
hs043 4 3 9 0.001 -44 convex
hs044 4 6 13 0.002 -13 nonconvex
hs045 5 0 28 0.003 1 nonconvex
hs057 2 1 2365 1.335 0.030647619 | nonconvex
Lemma A2. Let the numbers, ..
such that

n
Z a; >0,
=1

.,an, n > 2 be

!
Zaigo for [=1,....,n—1 (65)
i=1

(66)

b, n>2suchthatl < b < by <

-+ < b, then the following estimation holds

i=1 i=1
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Table 2

Hock and Schittkowski nonlinear problems with inequalitytraints

Name | Variables| Constraints| Iterations | Runtime f(x*) Type

hs059 2 3 53 0.012 -6.749505274| nonconvex
hs064 3 1 19 0.001 6299.84205 convex

hs065 3 1 13 0.001 0.953528857 convex

hs066 3 2 12 0.001 0.518163274 convex

hs070 4 1 22 0.011 0.17517448 | nonconvex
hs072 4 2 267 0.028 727.6793469 convex

hs076 4 3 9 0.001 -4.681818182| convex

hs083 5 3 22 0.002 -30665.53897| nonconvex
hs084 5 3 29332 40.357 | -5280335.069| nonconvex
hs085 5 36 16748 24.066 | -1.905155258| nonconvex
hs086 5 6 13 0.001 -32.3486783 | nonconvex
hs088 2 1 810 0.598 1.362656814 | nonconvex
hs089 3 1 393 0.633 1.362656814 | nonconvex
hs090 4 1 1109 2.257 1.362656814 | nonconvex
hs091 5 1 1075 4.408 1.362656777 | nonconvex
hs092 6 1 1106 4.846 1.362656767 | nonconvex
hs093 6 2 20 0.002 135.0759628 | nonconvex
hs095 6 4 3128 3.908 0.01561953 | nonconvex
hs096 6 4 2809 1.087 0.01561953 | nonconvex
hs097 6 4 (IL) nonconvex
hs098 6 4 (IL) nonconvex
hs100 7 4 10 0.001 680.6300599 convex

hs101 7 6 239 0.223 1809.764762 | nonconvex
hs102 7 6 222 0.215 911.8805717 | nonconvex
hs103 7 6 309 0.225 543.6679738 | nonconvex
hs105 8 0 23 0.216 1136.360984 | nonconvex
hs106 8 6 44 0.009 7049.248019 | nonconvex
hs108 9 13 38 0.007 -0.866025404| nonconvex
hs110 10 0 7 0.001 -45.77846971| convex

hs113 10 8 12 0.001 24.30620911 convex

hs116 13 15 (IL) nonconvex
hs117 15 5 16 0.003 32.34867896 | nonconvex

Proof. First, we notice that for the given numbers (68), we have

ai,...,a,, we have
k k—2
n Zaibi = Z a;b; + (ar—1br—1 + arby)
Zai >0 for [= 1,...,TL, (68) i=1 i=1
i=1
_ o k—2
otherwise we come to contradiction to (65) and (66). > S asbi + (an—1 + ar)be1
Also, we notice the specifics of the trivial case: if I
the numbers; anda, are such thati; + a2 > 0 and
as > 0, (a1 can be either negative or nonnegative) then kiQ
=) aibi +ag—1bk—1
C_lel “+ C_LQbQ > (C_ll + (_12)1)1 > O, (69) i=1
k-3
if 1< b1 <bs. = Zaibi + ap—2bg—2 + Ap—1bk—1

Using inequality (69) recursively and keeping in mind P
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k—3

> aibi + (ak—2 + r—1)bp2
i—1

k—3
= Z aib; + ap_obg_2 > - -
i=1

k
> a1by + a2bz > (a1 + a2)by = (Z ai) by >0,
=1
wherea; = a;+---+ar >0,l=1,...,k Thelemma
is proven.
Lemma A3. Let seriestiO a; be such that the se-
qguence of the largest partial surhs, }, where

l
S = sup g a;

0<i<k ;=
is unbounded monotone and increasing, i.e.

klim Sk = +o0. (70)
Also let a sequencéb,} with b, > 1 be monotone
increasing and such théing_. ., by = +o0o. Then for
the seriesy .~ a;b; the sequence of the largest partial
sums{py }, where

!
Dk = sup E aib;
0<i<k =

is also unbounded monotone increasing, i.e.

klim P = +o0.

Proof. To prove the lemma we are going to show that
pr > s, fork =0,1,2,.... Without loss of generality
we assume thaty = ag are positive, otherwise we can
add any positive number in the seri®$:” , a; as the
first term without changing the property (70). Thus the
sequence s, } has the following property

0< 80 =8go " = Sq—-1 < S¢1 = Sqi+1

...:Sq2_1<....

In other words, the sequende;} is segmented into
an infinite number of groups where all the elements of
each individual groups are equal.

Since there is one to one correspondence between thgy,

sequence$s } and{ay}, whereay, is thek-th term of
the seriei;’i0 a;, We can use the same enumeration for
{ay} described above and based on the sequésngce

Griva et al. —convergence of a primal-dual interior-poirdthod

Consequently, we will the same introduced enumeration
of all the rest sequencd$y.}, {arbr} and{py}.

Such enumeration helps us to understand some useful
properties of the elements of considered sequences. First
of all, itis easy to see that,, ;| <0, if ag, 11 # aq,,,,
anda,, > 0,7 =0,1,2,.... Moreover, we have

li
Z aj§0, liZQi+1,---,Qi+1_1, 221,2,
Jj=qi+1

and
qi+1

> a;>0, i

Jj=aq;+1

Therefore using Lemma A2, we have

1,2,...

qi+1 qi+1
> aihi = Y ajbyn
J=qi+1 J=qi+1
qi+1
= bg;+1 E: a;
Jj=qi+1
qi+1
> E aj

Jj=aq;+1

Sincesy = sq, iS positive then we havg,, > sq,.
Assuming thap,, > s,,, we obtain

qi+1 qi+1
Paces 2P+ D, ajby 2 pg+ Y, a; >
Jj=qi+1 Jj=qi+1
qit1
S¢; + E : a; Sqit1
Jj=q:+1

Therefore by induction we have, > s; for k =
0,1,2,...and
klim pr = +00.

The lemma is proven.
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