
All rights reserved © Preeminent Academic Facets Inc., 2007 This document is protected by copyright law. Use of the services of Érudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.
https://apropos.erudit.org/en/users/policy-on-use/

This article is disseminated and preserved by Érudit.
Érudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec à Montréal. Its mission is to
promote and disseminate research.
https://www.erudit.org/en/

Document generated on 08/03/2025 10:22 p.m.

Algorithmic Operations Research

Alternative Decomposition Based Approaches for Assigning
Disjunctive Tasks
Salim Haddadi and Omar Slimani

Volume 2, Number 2, Summer 2007

URI: https://id.erudit.org/iderudit/aor2_2art05

See table of contents

Publisher(s)
Preeminent Academic Facets Inc.

ISSN
1718-3235 (digital)

Explore this journal

Cite this article
Haddadi, S. & Slimani, O. (2007). Alternative Decomposition Based Approaches
for Assigning Disjunctive Tasks. Algorithmic Operations Research, 2(2), 129–136.

Article abstract
We consider a special linear assignment problem where some tasks are
grouped, and in each group the tasks are ‘disjunctive’ (in the sense that at most
one of them could be performed). We show this problem NP-hard. Then we
present and compare two alternative decomposition based algorithms on
randomly generated instances.

https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/aor/
https://id.erudit.org/iderudit/aor2_2art05
https://www.erudit.org/en/journals/aor/2007-v2-n2-aor_2_2/
https://www.erudit.org/en/journals/aor/

Algorithmic Operations Research Vol.2 (2007) 129–136

Alternative Decomposition Based Approaches for AssigningDisjunctive
Tasks

Salim Haddadia

aUniversity of the 8th of May, 1945, Department of Computer Science, Guelma, Algeria

Omar Slimanib

bBadji Mokhtar University, Applied Mathematics Department, Annaba, Algeria

Abstract

We consider a special linear assignment problem where some tasks are grouped, and in each group the tasks are
‘disjunctive’ (in the sense that at most one of them could be performed). We show this problem NP-hard. Then we present
and compare two alternative decomposition based algorithms on randomly generated instances.

Key words: Assignment, Benders decomposition, Branch-and-Bound, heuristic, lagrangian decomposition.

1. Introduction

We consider a special linear assignment problem. An in-
stance of this problem consists of a setI = {i1, . . . , im}
of m agents, a setJ = {j1, . . . , jn} of n tasks,p sub-
setsS1, . . . , Sp of J , and anm× n-matrix (pij) which
gives the profit of assigning taskj to agenti. The tasks
grouped in each subsetSk ⊂ J are ‘disjunctive’ or con-
flicting in the sense that at most one of them could be
performed. A task can be realized by at most one agent,
and an agent can perform at most one task. Now, the
goal is to assign the tasks to the agents so as to maxi-
mize the total profit. LetK = {k1, . . . , kp} be the set
of the indices of the groups of disjunctive tasks. The
mathematical model of our problem, called assignment
problem of disjunctive tasks (APDT), is

max
∑

i∈I

∑

j∈J

pijxij (1)

∑

j∈J

xij ≤ 1 i ∈ I (2)

⋆ This paper is part of a doctoral dissertation prepared by
the second author.
Email: Salim Haddadi [shaddadi@hotmail.com], Omar Sli-
mani [Slimaniomar 2005@hotmail.com].

∑

j∈Sk

∑

i∈I

xij ≤ 1 k ∈ K (3)

xij ∈ {0, 1} i ∈ I, j ∈ J (4)

wherexij , as usual, is a binary variable that indicates
whether taskj is assigned to agenti. Constraints (2)
ensure that each agent can perform at most one task,
and constraints (3) specify that, in each subsetSk ⊂ J ,
at most one task can be performed. Problem APDT
is thus an integer programming problem withm × n

binary variables andm + p linear inequalities. Since
xij = 0, i ∈ I, j ∈ J, is a trivial feasible assignment,
and since the objective function value is bounded from
above by

∑

i∈I

∑

j∈J pij , problem APDT has always
an optimal solution.

Note that if the subsetsSk, k ∈ K, were disjoint, or
if their pairwise intersection was restricted to one task,
problem APDT would be easy. However, as we shall
see, the problem is NP-hard for general instances.

Claim 1 Problem APDT is NP-hard.

Proof: Setyj =
∑

i∈I xij andpij = 1, i ∈ I, j ∈ J . It
follows from (3) and (4) thatyj ∈ {0, 1}. So, problem

c© 2007 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.

130 S. Haddadi and O. Slimani – Alternative decomposition basedapproaches for. . .

APDT restricted to (1), (3) and (4) reads

max
∑

j∈J

yj

∑

j∈Sk

yj ≤ 1 k ∈ K

yj ∈ {0, 1} j ∈ J

a maximum cardinality set packing problem which is
NP-hard. Thence problem APDT is at least as hard.

The problem APDT has a very interesting application
since it also models a real-life practical problem, the
combinatorial auction problem (CAP) (see [9]). There-
fore, any algorithm for APDT should solve the CAP.
Furthermoore, the APDT might be interesting from the-
oretical as well as from algorithmic point of view (see
references [1,2] for analogous extensions of the stan-
dard linear assignment problem). Nevertheless, our sole
purpose here is to use it as a tool for: 1) designing two
alternative (Branch-and-Bound and Benders like) algo-
rithms; 2) comparing them from computing time point
of view; 3) showing they have completely reverse be-
havior according to the density of the instance (which
will be defined later).

In fact, the simple trick used in the proof above per-
mits to transform APDT into a mixed binary linear pro-
gram withm× n continue variables and onlyn binary
ones. Let us rewrite problem APDT as follows (call R
the resulting problem)

max
∑

i∈I

∑

j∈J

pijxij

∑

j∈J

xij ≤ 1 i ∈ I (5)

∑

i∈I

xij = yj j ∈ J (6)

∑

j∈Sk

yj ≤ 1 k ∈ K (7)

xij ≥ 0 i ∈ I, j ∈ J (8)

yj ∈ {0, 1} j ∈ J (9)

For fixed binaryyj ’s, constraints (5) and (6) become
flow constraints on the bipartite graph with node set
I∪J . Therefore, we can relax the integrality constraints
on variablesxij . Furthermore, from the constraints (5)
we have thatxij ≤ 1 are always valid. Problems R and
APDT are thus equivalent.

Now, consider a third problem, called P, which is
problem R with constraints (6) replaced by

∑

i∈I

xij ≤ yj j ∈ J

Claim 2 Problems P and R are equivalent.

Proof: Let FP andFR be respectively the sets of fea-
sible solutions of problems P and R. Clearly, problem
P is a weaker formulation sinceFR ⊂ FP. Therefore it
suffices to show that from any optimal solution of prob-
lem P we can extract an optimal solution of problem R.
Assume(x, y) is an optimal solution of problem P and
set zj =

∑

i∈I xij , j ∈ J . Clearly (x, z) is a feasible
solution for problem R with the same objective function
value as(x, y). Therefore(x, z) is optimal.

2. An heuristic for APDT

Another way to describe the relationship between
the disjunctive tasks, is to define the setsEj =
{k ∈ K |Sk ∋ j } , j ∈ J . We havej ∈ Sk ⇐⇒ k ∈ Ej

and
∑p

k=1 |Sk| =
∑n

j=1 |Ej | (|.| stands for set car-
dinality). For convenience, assume|Ej | 6= ∅, j ∈ J

(it is easy to deal with a task which does not belong
to any group of disjunctive tasks). In fact, problem
APDT consists of seeking for a maximum weight
matching in the bipartite graph(I, J) (the weights are
the pij ’s) with the additional requirement that the set
J ′ ⊂ J of the vertices of the matching must satisfy
Ei ∩ Ej = ∅, i, j ∈ J ′, i 6= j. This observation leads
to the ‘natural’ heuristic described in what follows.
Obviously, this heuristic guarantees the achievement
of a feasible assignment for problem APDT but not an
optimal one. Set

dj = max
i∈I

pij

Algorithm 1 (1) Solve the set packing problem

max
∑

j∈J

djyj

∑

j∈Sk

yj ≤ 1 k ∈ K

yj ∈ {0, 1} j ∈ J

Let J ′ = {j ∈ J |yj = 1}.

(2) Solve the maximum weight matching on the bi-
partite graph with node set(I ∪ J ′).

S. Haddadi and O. Slimani – Algorithmic Operations ResearchVol.2 (2007) 129–136 131

Example Consider the following instance of APDT:
m = 3, n = 5, p = 3, S1 = {1, 2, 5}, S2 =
{1, 2, 4}, S3 = {2, 3, 4} and the matrix of thepij ’s





13 3 39 75 39
71 66 3 62 74
63 47 47 97 90





First, we have to solve the set packing problem

max 71y1 +66y2 +47y3 +97y4 +90y5

y1 +y2 +y5 ≤ 1
y1 +y2 +y4 ≤ 1

y2 +y3 +y4 ≤ 1
y1, y2, y3, y4, y5 ∈ {0, 1}

whose optimal solution isy1 = y2 = y3 = 0 and
y4 = y5 = 1. So J ′ = {4, 5}. Solving the maximum
weight matching on the bipartite graph with node set
(I, J ′) results in assigning task 4 to agent 3 and task 5
to agent 2 with a total profit of97 + 74 = 171.

3. Benders decomposition algorithm

Benders decomposition is a natural way to tackle our
mixed binary linear problem P. This method is well
presented in [7] in a more general framework. So, we
shall merely present the algorithm.

For fixedyj ’s, consider the problem (SP)

max
∑

i∈I

∑

j∈J

pijxij

∑

j∈J

xij ≤ 1 i ∈ I

∑

i∈I

xij ≤ yj j ∈ J

xij ≥ 0 i ∈ I, j ∈ J

(which can be seen as a ‘maximum profit’ flow problem
on the bipartite graph with node set(I, J)) whose dual
problem is

min
∑

i∈I

ui +
∑

j∈J

yjvj

ui + vj ≥ pij i ∈ I, j ∈ J

ui, vj ≥ 0 i ∈ I, j ∈ J

each of which having an optimal solution. Since the
feasible region of problem SP is nonempty and bounded,
it follows that the feasible region of its dual has no
extreme rays. So we need only consider extreme points
of the dual of SP.

Algorithm 2 Benders decomposition algorithm
Input Integersm, n, p, setsS1, . . . , Sp and matrix

(pij)

Output optimal assignmentx and profitp
s←− 0

{Let y(0) be the optimal (or approximated) solution
of the set packing problem obtained by the heuristic}

Repeat
Solve the problem SP

max
∑

i∈I

∑

j∈J

pijxij

∑

j∈J

xij ≤ 1, i ∈ I

∑

i∈I

xij ≤ y
(s)
j , j ∈ J

xij ≥ 0 i ∈ I, j ∈ J

{Letx be the optimal solution,u(s+1), v(s+1) be
the optimal dual solution andp be the optimal function
value}

Add to the master problem (MP)

max z
∑

j∈Sk

yj ≤ 1 k ∈ K

z −
∑

j∈J

v
(t)
j yj ≤

∑

i∈I

u
(t)
i t = 1, . . . , s

z ≥ 0

yj ∈ {0, 1} j ∈ J

the cut

z −
∑

j∈J

v
(s+1)
j yj ≤

∑

i∈I

u
(s+1)
i

Solve problem MP
{Let y(s+1) be the optimal solution andz the

corresponding objective function value}
s←− s + 1

until p = z

Example (continued)Recall thaty(0)
1 = y

(0)
2 = y

(0)
3 =

0 andy
(0)
4 = y

(0)
5 = 1 was the optimal solution of the

set packing problem corresponding to the instance of
this example obtained by the heuristic. Solving problem
SP gives the optimal dual solutionu(1)

1 = 0, u
(1)
2 = 6,

u
(1)
3 = 22, v

(1)
1 = 65, v

(1)
2 = 60, v

(1)
3 = 39, v

(1)
4 = 75,

v
(1)
5 = 68 andp = 171. The problem MP to be solved

132 S. Haddadi and O. Slimani – Alternative decomposition basedapproaches for. . .

(after adding the Benders cut) is

max z

y1 + y2 + y5 ≤ 1

y1 + y2 + y4 ≤ 1

y2 + y3 + y4 ≤ 1

z − 65y1 − 60y2 − 39y3 − 75y4 − 68y5 ≤ 28

y1, y2, y3, y4, y5 ∈ {0, 1}

z ≥ 0

whose optimal solution isy(1)
1 = y

(1)
2 = y

(1)
3 = 0 and

y
(1)
4 = y

(1)
5 = 1 with z = 171. Since both the optimal

function values of problems SP and MP are equal, the
algorithm terminates. The optimal solution of APDT, as
discovered by the heuristic, is thus to assign task 4 to
the third agent and task 5 to the second.

4. Lagrangian decomposition and Branch-and-
Bound

It is tempting to try to reduce problem P to a flow prob-
lem, of course by adding some kind of side constraints,
since problem P is NP-hard. Having this objective in
mind, we go to split every variableyj, j ∈ J, of problem
P into|Ej | copies with one special representative, noted

y
δj

j , as we shall see. Setδj = min{k |k ∈ Ej }, j ∈ J .
Now, let us rewrite problem P as follows (call Q the
resulting problem)

max
∑

i∈I

∑

j∈J

pijxij

∑

j∈J

xij ≤ 1 i ∈ I

∑

i∈i

xij ≤ y
δj

j j ∈ J

∑

j∈Sk|k=δj

y
δj

j +
∑

j∈Sk|k 6=δj

yk
j ≤ 1 k ∈ K

y
δj

j = yk
j k ∈ Ej , |Ej | ≥ 2, k 6= δj , j ∈ J (10)

xij ≥ 0 i ∈ I, j ∈ J

yk
j ∈ {0, 1} k ∈ Ej , j ∈ J

For each taskj ∈ J , there are|Ej | − 1 ‘coupling’
constraints (10). Though problem Q is another weaker
representation of problem APDT, it is easy to see that
problems Q and APDT are equivalent.

It is not at all obvious, but problem Q is an integer
flow problem with homologous arcs which is known to

be NP-hard (see [4]). To be convinced, let us construct
the corresponding network. The node set isI ∪J ∪K∪
{s1, s2}, wheres1, s2 are the source and sink of the net-
work. There arem+n+p+2 nodes altogether. The arc
set isU = U1 ∪U2 ∪U3 ∪U4 ∪U5 ∪ {(s2, s1)} where
U1 = {(s1, i)|i ∈ I}, U2 = {(i, j)|i ∈ I, j ∈ J},
U3 = {(k, s2)|k ∈ K}, U4 = {(j, δj)|j ∈ J} (δj is
an element ofK) andU5 = {(s1, k)|k ∈ Ej , |Ej | ≥
2, k 6= δj , j ∈ J}. Let us count the number of arcs.
Since|U1| = m, |U2| = m × n, |U3| = p, |U4| = n,

|U5| =
∑n

j=1 |Ej | − n =
∑p

k=1 |Sk| − n (which de-
pends on the groups of disjunctive tasks), there are
m× n + m + p +

∑p

k=1 |Sk|+ 1 arcs. This is a multi-
graph since there are repeated arcs inU5. Let us call
au, bu, cu, u ∈ U , respectively the lower and upper
bound on the capacity of arcu, and the unit cost to go
over it, which are defined as followsau = 0, u ∈ U,

bu =

{

1 u ∈ U\{(s2, s1)}
∞ u = (s2, s1)

and

cu =

{

0 u ∈ U\U2

pij u ∈ U2

Provided that|Ej | ≥ 2, an arc of the form(j, δj) in U4

has|Ej | − 1 homologous arcs inU5 which are of the
form (s1, k), k ∈ Ej , k 6= δj. The arcs are homologous
in the sense that they must carry the same value of the
flow (either all0’s or all 1’s). Before going any further,
let us return to our previous example.

Example (continued) We haveE1 = {1, 2}, E2 =
{1, 2, 3}, E3 = {3}, E4 = {2, 3}, E5 = {1}, δ1 =
δ2 = δ5 = 1, δ3 = 3 and δ4 = 2. Here, task 3 (and
5) belongs to only one group, so there are no coupling
constraints corresponding to these two tasks, and there-
fore no corresponding homologous arcs in the network.
Solving APDT amounts to seeking for a maximum
profit integer flowϕ in the network of figure 1 (a triple
in front of each arcu gives the valuesau, bu, cu)) with
the requirementsϕu1

= ϕu4
, ϕu2

= ϕu5
, ϕu2

= ϕu6
,

ϕu3
= ϕu7

.

We use Branch-and-Bound (see [5]) with ‘largest-
upper-bound-next’ strategy to solve problem Q. At each
node of the decision tree, a local upper bound is com-
puted by solving the relaxed problem, which is a flow

S. Haddadi and O. Slimani – Algorithmic Operations ResearchVol.2 (2007) 129–136 133

s
1

i

i

i

j

j

j

j

j

k

k

k

s

1

2

3

1

2

3

4

5

1

2

3

2

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,13)

(0,1,3)

(0,1,90)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0) (0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0, ,0)8

u

u

u

u

u
u

u

1

2

3

4

5
6

7

Fig. 1. Network of the example. Multiple arcs are labeled.

problem as already shown,

max
∑

i∈I

∑

j∈J

pijxij

∑

j∈J

xij ≤ 1 i ∈ I

∑

i∈i

xij ≤ y
δj

j j ∈ J

∑

j∈Sk|k=δj

y
δj

j +
∑

j∈Sk|k 6=δj

yk
j ≤ 1 k ∈ K

xij ≥ 0 i ∈ I, j ∈ J

αj ≤ yk
j ≤ βj k ∈ Ej , j ∈ J

where the values ofαj , βj, j ∈ J , are decided by the
branching procedure as we shall see, with0 ≤ αj ≤
βj ≤ 1. At the root node we begin withαj = 0, βj =
1, j ∈ J.

The heuristic provides a first lower bound with which
we begin. Then at each node, after solving the relaxed
problem, we consider the restriction of the flowϕ on
the arc setU2. If it constitutes a feasible assignment for
problem APDT and improves the current lower bound,
then we update.

It hardly happens that the relaxed coupling constraints
(10) are satisfied while solving the relaxed problem.
When it does not, we select the bundle of homologous
arcs (which are then neither all 0’s nor all 1’s) for which

the sum of the values of the flow through the homolo-
gous arcs is maximum. Letj∗ be the label of this bun-
dle, we compute

j∗ = arg max
j∈J,|Ej |≥2



ϕ(j,δj) +
∑

k∈Ej ,k 6=δj

ϕ(s1,k)





The current node is separated into two nodes and we
set in the firstαj∗ = 1 and in the secondβj∗ = 0,
to enforce the satisfaction of the coupling constraints
relative to taskj∗.

A node is fathomed either because all the coupling
constraints are satisfied, or because the flow is infeasible
(recall the changes in the bounds of the capacity of the
homologous arcs), or because the local upper bound is
not greater than the lower bound.
Example (finished)At the root node, we solve the max-
imum profit flow on the network of figure 1. The optimal
profit is 210 since the flow is null on all of the edges of
the bipartite subgraph (I, J) butϕ(i1, j3) = ϕ(i2, j5) =
ϕ(i3, j4) = 1. Let us consider the relaxed constraints
of the homologous arcs. We haveϕu1

= ϕu4
= 0,

ϕu2
= ϕu5

= ϕu6
= 0, but ϕu3

= 1 and ϕu7
= 0.

To enforce the satisfaction of the constraintϕu3
= ϕu7

we act as in figure 2. Recall that a lower bound (171)
is provided by the heuristic. So, the two children of the
root node are fathomed, and the optimality of the fea-
sible assignment obtained by the heuristic is proven.

134 S. Haddadi and O. Slimani – Alternative decomposition basedapproaches for. . .

Fig. 2. Decision tree of the example

5. Computational experience

Both of the two algorithms were coded in C (with the
‘gcc’ compiler of Linux) and run on a compatible PC
with a Pentium IV (2.4 GHz) processor. We used a
Network Simplex algorithm to solve problem SP (see
[3]), the Out-of-Kilter algorithm to solve the relaxed
problem in the BaB algorithm (see [6]), and the ‘opbdp’
software [8] to solve the master problem MP.

The algorithms were tested on a set of 45 randomly
generated instances. We fixed, once for all, the number
of agents (m = 20) and the number of tasks (n = 50).
The reason of this choice (ofn) is that the ‘opbdp’
software we used to solve the master problem MP slows
down for larger values ofn. On the other hand, since it
is natural that the amount of time spent by any of the two
algorithms will depend on a lot of parameters (at least
onm, n, p, the subsetsSk, the coefficientspij), it would
be interesting to fix some of the parameters and compare
the algorithms from the point of view of the crucial ones.
Here, two parameters are important: the numberp of
groups of disjunctive tasks and their ‘density’. Observe
that the subsetsS1, · · · , Sp can be described by giving
a binaryp × n-matrix whose rows are the incidence
vectors of the subsets. The term density should then be
understand as the density of this binary matrix, which
is expressed in percentage as

p
∑

k=1

|Sk| ÷ (n× p)× 100

The coefficientspij are randomly generated in the range
[1,10]. In the first set of experiments, we fixedp = 15
and generated and run five instances for each value of
the density from 5, 10, 15, 20, 25%. In the second, the
density is fixed to 15% andp varies in{5, 10, 15, 20,

25}. The experimental results are recorded respectively
in tables 1 and 2, and summarized in figures 2 and 3. In
each of the two tables, the second column refers to the
profit realized by the approximated solution obtained by
the heuristic, while the third column gives the optimal
profit. The three following columns concern the BaB
algorithm and the last two, the Benders algorithm. They
refer respectively to the number of coupling constraints
(10), the size of the decision tree, the time (in seconds)
spent by the BaB algorithm, the number of generated
cuts, and the computing time of the Benders algorithm.

The heuristic seems to be very effective since it fails
only four times to discover the optimal solution. In our
implementation, we solved the set packing problem us-
ing ‘opbdp’, but instead, we may approximate it in or-
der to make the heuristic polynomial time.

For fixedp (see figure 3), we notice that the BaB algo-
rithm generates larger decision trees and, consequently,
spends more computing time as the density increases,
while the Benders algorithm has a complete reverse be-
havior. This is easily interpreted regarding the BaB al-
gorithm. The more the density increases, the more the
groups of disjunctive tasks overlap, the more the number
of coupling constraints (10) increases. But the question
to know why the Benders algorithm converges quickly
when the density of thep × n-matrix (which is a sub-
matrix of the master problem MP) increases is rather
puzzling. The integral feasible domain (call it D) of the
master problem is included in the unit hypercube ofR

n.
Does the binary matrix contain much ‘more informa-
tion’ when its density increases to the point where the
domain D is cut deeply off. An open question ?

When the density is fixed (see figure 4), the BaB
algorithm continue to behave as before, the previous
interpretation remaining valid. What is surprising is that
the Benders algorithm seems to be insensitive to the
variation of the numberp.

Fine tuning the two algorithms (by improving the
bounding procedure, the branching strategy, using com-
mercial software to solve the master problem, and so
on), will certainly result in speeding each of them up.
However, we think it cannot go to the point where the
form of the observed curves overturns.

6. Conclusion

We posed a combinatorial optimisation problem and
proved its NP-hardness. Then we proposed a heuristic
and two exact solution procedures from alternative de-
compositions. The computational experience performed

S. Haddadi and O. Slimani – Algorithmic Operations ResearchVol.2 (2007) 129–136 135

Table 2

Comparison of the two algorithms by increased density

BaB Benders
Density Heu Opt Const. Nodes Time Cuts Time

5% 135 135 9 1 0.01 8 76.47
135 135 16 1 0.02 19 181.86
134 135 12 7 0.08 14 105.96
126 126 14 7 0.08 9 45.87
133 135 9 3 0.04 7 65.97

10% 108 108 42 63 0.72 23 27.03
126 126 33 35 0.45 4 1.86
108 108 42 97 0.90 15 10.96
99 99 38 99 0.88 7 4.11

107 107 36 163 1.64 13 18.92
15% 98 98 62 149 1.67 1 0.34

99 99 62 91 0.93 6 1.93
99 99 66 439 4.22 7 2.19

108 108 62 201 2.11 3 0.96
97 98 76 1201 12.58 5 1.56

20% 81 81 104 649 6.78 2 0.54
80 80 101 4185 37.85 6 1.61
72 72 121 709 6.29 3 0.74
79 79 99 1137 11.94 2 0.52
81 81 111 537 5.75 3 0.80

25% 45 45 166 1981 21.21 1 0.25
63 63 141 385 3.69 3 0.74
62 62 129 3213 31.36 3 0.88
71 71 139 865 8.90 1 0.24
54 54 150 8455 78.83 3 0.75

Fig. 3. Summary of table 1 (mean values)

on a set of randomly generated instances points out that
the Benders algorithm should be preferred unless the
numberp of groups of disjunctive tasks is small enough
in relation to the number of agentsn and the density is
sufficiently small (≤ 15%).

Fig. 4. Summary of table 2 (mean values)

Acknowledgements

The authors would like to thank Peter Barth, Max Planck
Institut für Informatik, Saarbrüken, Germany, for letting
the software ‘opbdp’ freely available.

136 S. Haddadi and O. Slimani – Alternative decomposition basedapproaches for. . .

Table 4

Comparison of the two algorithms by increased number of groups of disjunctive tasks

BaB Benders
p Heu Opt Const. Nodes Time Cuts Time
5 45 45 8 1 0.01 1 0.39

45 45 11 1 0.01 3 1.32
42 42 7 1 0.01 2 0.97
44 44 13 1 0.01 3 1.24
45 45 7 1 0.01 2 0.77

10 81 81 36 19 0.22 5 2.30
90 90 37 1 0.01 6 2.26
82 83 36 21 0.19 1 0.38
90 90 40 1 0.01 5 2.18
89 89 42 1 0.01 1 0.31

20 108 108 99 2155 25.21 2 0.66
99 99 95 5317 53.52 7 2.30
90 90 105 6043 65.14 2 0.63
98 99 85 1991 19.55 2 0.58
90 90 104 2439 24.48 1 0.32

25 81 81 136 24567 234.86 3 0.87
81 81 143 9665 93.37 1 0.26
71 71 139 20257 193.74 1 0.27
80 81 133 12217 116.74 7 1.82
80 80 159 8131 85.75 7 1.75

References

[1] Aboudi, R., and G.L. Nemhauser,Some Facets for an
Assignment Problem with Side Constraints. Operations
Research 39 (1981) 244-250.

[2] Aggarwal, V., A Lagrangian-Relaxation Method for
the Constrained Assignment Problem. Computers and
Operations Research 12 (1985) 97-106.

[3] Chvátal, V.,Linear Programming. Freeman (1983).
[4] Garey, M.R., and D.S. Johnson, Computers and

Received 16 January, 2007; revised 29 March 2007; ac-
cepted 4 May 2007

intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Co. (1979).

[5] Garfinkel, R.S., and G.L. Nemhauser, Integer
Programming. Wiley (1972).

[6] Gondran, M., and M. Minoux, Graphes et Algorithmes.
Eyrolles (1979).

[7] Lasdon, L. S., Optimization Theory for Large Systems.
MacMillan (1970).

[8] opbdp, free software available from ftp.mpi-
sb.mpg.de:/pub/ guide/ staff/ barth/ opbdp/ opbdp.tar.Z.

[9] Vries de, S., and R. Vohra, Combinatorial Auctions: A
Survey, INFORMS Journal on Computing 15 (2003) 284-
309.

