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Abstract

In this paper we study the behavior of Convex Quadratic Gptition problems when variation occurs simultaneously
in the right-hand side vector of the constraints and in thefficient vector of the linear term in the objective functitin
is proven that the optimal value function is piecewise-gatic. The concepts of transition point and invariancy it
are generalized to the case of simultaneous perturbatiaiteta for convexity, concavity or linearity of the optiina
value function on invariancy intervals are derived. Furtinere, differentiability of the optimal value function isidied,
and linear optimization problems are given to calculate b and right derivatives. An algorithm, that is capable to
compute the transition points and optimal partitions on iallariancy intervals, is outlined. We specialize the mdtho
to Linear Optimization problems and provide a practical eyde of simultaneous perturbation parametric quadratic
optimization problem from electrical engineering.

Key words: Programming, quadratic: simultaneous perturbation seitgianalysis using IPMs. Programming, linear,
parametric: simultaneous perturbation.

1. Introduction optimal solutions vary linearly. Non-degeneracy was as-
sumed and a variant of the simplex method was used

In this paper we are concerned with the sensitivity for computations.
analysis of perturbed Convex Quadratic Optimization e . . .
y P Q P Difficulties that may occur in parametric analysis

(CQO) problems where the coefficient vector of the lin- hen th blem is d i tudied extensivel
ear term of the objective function and the right-hand side when the problem Is degenerate are studied extensively

(RHS) vector of the constraints are varied simultane- in the Linear Optlm!zatlon (I.‘O) literature. In case of

. L L degeneracy the optimal basis need not be unique and
ously. This type of sensitivity analysis is often referred multiple optimal solutions mav exist. While simplex
to as parametric programming. Research on the topic P P y ' P

: . . methods were used to perform the computations in ear-
was triggered when a variant of parametric CQO prob- . ) .
lems was considered by Markowitz (1956). He devel- lier studies (see e.g., Murty (1983) for a comprehensive

oped the critical line method to determine the optimal survey), recently research on parametric analysis was

. . . : revisited from the point of view of interior-point meth-
value function of his parametric problem and applied ods (IPMs). Eor degenerate LO problems. the avail
it to mean-variance portfolio analysis. The basic re- ( ): 9 P '

sult for parametric quadratic programming obtained by ability of strictly complementary SO.|U.tI0n.S produceq by
Markowitz is that the optimal value function (efficient IP.MS allows to overcome many d|ff|cult|_es assouatg d
frontier in financial terminology) is piecewise quadratic with the use of bases. A(_jler and Mo_ntelro (1992) pio-
and can be obtained by computing successive Cornerneered the use of IPMs in parametric analysis for LO
portfolios, while, in between these corner portfolios, the (see also Jansen et _al. (1997)). Be_rkelaar, R.OOS anq Ter-
laky (1997) emphasized shortcomings of using optimal
Email: Alireza Ghaffari Hadigheh [hadigheha@azaruniv.edu, bases in parametric LO showing by an example that
hadigheha@optlab.mcmaster.ca], Oleksandr Romanko different optimal bases computed by different LO pack-
[romanko@mcmaster.ca], T. Terlaky [terlaky@mcmastgr.ca ages give different optimality intervals.

(© 2007 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All righreserved.



G. H. Alireza, O. Romanko and T. Terlaky— Algorithmic Opéwat Research Vol.2 (2007) 94-111 95

Naturally, results obtained for parametric LO were plicit formula is presented to identify it on the subin-
extended to CQO. Berkelaar et al. (1997) showed that tervals. Criteria for convexity, concavity or linearity of
the optimal partition approach can be generalized to the the optimal value function on these subintervals are de-
guadratic case by introducing tripartition of variables rived. We investigate the first and second order deriva-
instead of bipartition. They performed sensitivity anal- tives of the optimal value function as well. Auxiliary
ysis for the cases when perturbation occurs either in LO problems can be used to compute the left and right
the coefficient vector of the linear term of the objective derivatives. It is shown that the optimal partition on the
function or in the RHS of the constraints. In this paper neighboring intervals can be identified by solving an
we show that the results obtained in Berkelaar, Roos auxiliary self-dual CQO problem. The results are sum-
and Terlaky (1997) and Berkelaar et al. (1997) can be marized in a computational algorithm for which imple-
generalized further to accommodate simultaneous per-mentation issues are discussed as well. Specialization
turbation of the data even in the presence of degeneracyof our method to LO problems is described in Section 5.

Considering simultaneous perturbation provides a For illustration, the results are tested on a simple prob-
unified approach to parametric LO and CQO problems lem in Section 6. A recent application of parametric
that includes perturbation of the linear term coeffi- CQO described in Section 7 arises from electrical engi-
cients in the objective function or the RHS vector of neering and it is based on recent developments in opti-
the constraints as its subcases. This approach makegnal multi-user spectrum management for Digital Sub-
the implementation easier and simplifies the explana- scriber Lines (DSL). We conclude the paper with some
tion of the methodology. Theoretical results allow us remarks and we sketch further research directions.
to present a universal computational algorithm for the
parametric analysis of LO/CQO problems. In many 5 praiminaries
parametric models, simultaneous perturbation can be
viewed as an underlying process where changes in the A primal CQO problem is defined as:
process influence the whole model. We describe such
practical example of the adaptive power allocation (QP)
between users of Digital Subscriber Lines (DSL).

Recall that CQO is a special case of Convex Conic
Optimization (CC_ZO). Recgr_ﬂly, Yildirim (2004) has in-_ matrix, A € R™*" ¢ ¢ R™, b ¢ R™ are fixed data and
trqduged an optimal partition con.cept for conic opt_l- r € R™ is an unknown vector.
m|zat|on. He took a pure geometnc approach in defin- The Wolfe-Dual of(QP) is given by
ing the optimal partition while we use the algebraic one.
Although, the geometric approach has the advantage of e 1
being independent from the representation of the under- (@D)  max{b’y — P Qu :
lying optimization problem, it has some deficiencies. ATy+s—Qu=c, s>0},
The major difficulty is extracting the optimal partition
from a high-dimensional geometric object and, conse- wheres,u € R™ andy € R™ are unknown vectors.
quently, it is inconvenient for numerical calculations. In  The feasible regions ¢f) P) and(Q D) are denoted by
cpntrast, the_ algebraic appr(_)ach_, used in th|§ paper, ISQ,P —{z: Az =b x>0},
directly applicable for numerical implementation. .

The principal novelty of our results is an algorithm <P = {(w,y,5): Ay +s - Qu=c, 5,u>0},
that allows to identify all invariancy intervals iteratlye and their associated optimal solutions sets@Ff& and
and thus differs significantly from all the work done in 9D*, respectively. It is well known that for any opti-
simultaneous perturbation analysis so far. mal solution of(QP) and (QD) we haveQzr = Qu

The paper is organized as follows. In Section 2, the ands”z = 0, see e.g., Dorn (1960). Having zero du-
CQO problem is introduced and some elementary con- ality gap, i.e.,s”«z = 0 is equivalent tos;z; = 0 for
cepts are reviewed. Simple properties of the optimal all i € {1,2,...,n}. This property of the nonnegative
value function are summarized in Section 3. Section 4 variablesz ands is called thecomplementarity prop-
is devoted to deriving more properties of the optimal erty. It is obvious that there are optimal solutions with
value function. It is shown that the optimal value func- x = wu. Since we are only interested in the solutions
tion is continuous and piecewise quadratic, and an ex- wherexz = u, u will henceforth be replaced hy in the

1
min{cT:C+§:vTQ:v cAr=b, x>0},

where@ € R™*™ is a symmetric positive semidefinite
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dual problem. It is easy to show, see e.g., Berkelaar et closed interval of the real line and the function is piece-

al. (1997) and Dorn (1960), that for any two optimal
solutions(z*, y*, s*) and (%, g, 5) of (QP) and(QD)

it holds thatQz* = Q% , ¢’'z* = Tz andbTy* = b"y
and consequently,

T =5Tz* = 0.

1)

The optimal partitionof the index set{1,2,...,n} is
defined as
B=/{i:x; >0 for an optimal solution z € QP*},
N ={i:s; >0 for an optimal solution

(z,y,s) € QD" },
T={1,2,...,n}\(BUN),

and denoted by = (B, N, 7). Berkelaar et al. (1997)

wise convex (concave) quadratic on its domain. The au-
thors presented an explicit formula for the optimal value
function on these subintervals and introduced the con-
cept of transition points that separate them. They proved
that the optimal partition is invariant on the subinter-
vals which are characterized by consecutive transition
points. The authors also studied the behavior of first
and second order derivatives of the optimal value func-
tion and proved that the transition points coincide with
the points where first or second order derivatives do not
exist. It was proven that by solving auxiliary self-dual
CQO problems, one can identify the optimal partitions
on the neighboring subintervals.
The results obtained by Yildirim (2004) for the si-

multaneous perturbation case in conic optimization and

and Berkelaar, Roos and Terlaky (1997) showed that by using the geometric definition of the optimal parti-

this partition is unique. Theupport sebf a vectorv is
defined asr(v) = {i : v; > 0} and is used extensively
in this paper. An optimal solutiorz,y, s) is called
maximally complementaif it possesses the following
properties:

x; >0 ifand onlyif i € B,

s; >0 ifand only if i € \V.

For any maximally complementary soluti¢n, y, s) the
relationso(z) = B ando(s) = A hold. The existence
of a maximally complementary solution is a direct con-
sequence of the convexity of the optimal s&®* and
QD*. Itis known that IPMs find a maximally comple-
mentary solution in the limit, see e.g., McLinden (1980)
and Guler and Ye (1993).

The general perturbed CQO problem is

(@Pya) min{ (c+ Aehe) T + 57 Qr
Az =b+ NAb, 2 >0},

whereAb € R™ and Ac € R™ are nonzero perturba-
tion vectors, and\, and \. are real parameters. The
optimal value functionp(\,, A\.) denotes the optimal
value of(Q P, ».) as the function of the parameteys
and\.. As we already mentioned, Berkelaar, Roos and
Terlaky (1997) and Berkelaar et al. (1997) were the first
to analyze parametric CQO by using the optimal parti-
tion approach when variation occurs either in the RHS
or the linear term of the objective function data, i.e., ei-
ther whenAc or Ab is zero. In these cases the domain
of the optimal value functiom (), 0) (or ¢(0, \.)) is a

tion may be linked to our findings. In his paper, Yildirim
introduced the concept of the invariancy interval and
presented auxiliary problems to identify the lower and
upper bounds of the invariancy interval that contains the
given parameter value. He also proved that the optimal
value function is quadratic on the current invariancy in-
terval. Although Yildirim’s results are very interesting
in the light of extending parametric optimization tech-
nigues to conic optimization problems, there are some
obstacles that prevent direct mapping of them to our
methodology as we will explain in Section 4. Gener-
ally speaking, the optimal partition is well-defined if
the primal and dual conic optimization problems have
nonempty optimal solution sets and the duality gap is
zero. Due to the more general setting Yildirim (2004)
presents optimization problems defined on relative in-
teriors of primal and dual sets. Those open set formula-
tions (relative interiors of feasible sets, see e.g. pmoble
(9) in Yildirim’s paper) are less appropriate to direct
calculations than the standard form problems defined in
this paper.

3.  TheOptimal ValueFunctionin Simultaneous
Perturbation Sensitivity Analysis

In this section, we introduce explicitly the perturbed
CQO problem when perturbation simultaneously oc-
curs in the RHS data and the linear term of the objec-
tive value function of QP). In the problemQP;, ».)
that was introduced in the pervious sectiop,and A,
are independent parameters. In this paper we are only
concerned with the case when they coincide, i.e., when
A = X. = A. Consequently, the perturbation takes
the form Ah, whereh = (AT, AcT)T € R™*" is a
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nonzero perturbing direction and € R is a parame-
ter. Thus, we define the following primal and dual per-
turbed problems corresponding(t@ P) and(QD), re-
spectively:

(QPy) min{ (c+ A \Ac) Tz + %xTQ:E :
Az =b+ AAb, 2 >0},

(QDy) max{ (b+AAD)Ty — %,TTQSC :
ATy+s—Qr=c+A\Ac, s>0}.

The solution methodology for the problef@Py) is

our primary interest here. LaDP, and 9D, denote
the feasible sets of the problend@P,) and (QD,),
respectively. Their optimal solution sets are analogously
denoted byOP; andQD5. The optimal value function

of (QP,) and(QD,) is

B = e+ ABTa* () + 20° ()T Qe (Y
ST Qa (),

where z*(\) € QP5 and (z*(\),y*(N),s*(N\) €
QD;. Further, we define

= (b+ Ay (N) —

d(\) = +oo if QPy =0,
d(\) = —oco if QP # 0 and(QPy) is unbounded

Let us denote the domain gi{\) by
A={\: 9P\ # 0 andQD, # 0}.

Since it is assumed th&f) P) and (Q D) have optimal
solutions, it follows thatA # (). We can easily prove
the following property ofA.

Lemmal A C Ris a closed interval.

Proof: First, we prove that the sét is connected and
so itis aninterval of the real line. L&k, A\» € A be two
arbitrary numbers. Lte(A1), y(A1), s(A1)) € QP2 x
QD)\I and (I()\Q),y()\Q),S(/\Q)) S QP)\2 X Q'D)\2 be

known. For any\ € (A1, \2) andf = /\A;_j\’\] we have

A=0M + (1 —0)).
Let us define
z(A) =0z(\1) + (1 — 0)z(N2),

y(A) =0y(A1) + (1 = 0)y(A2),
s(\) = 0s(\1) + (1 — 0)s(\a).

By construction(z(A), y(A), s(A\)) € QPxx 9Dy, thus
QP, # (0 and QD, # 0. This implies the set\ is
connected.

Second, we prove the closednessiofLet A ¢ A.
There are two cases: the primal problé@P, ) is fea-
sible but unbounded or it is infeasible. We only prove
the second case, the first one can be proved analogously.
If the primal problem(QPy) is infeasible then by the
Farkas Lemma (see e.g., Murty (1983) or Roos, Terlaky
and Vial (2006)) there is a vectgrsuch thatA”y < 0
and (b + AAb)Ty > 0. Fixing y and considering\ as
a variable, the sef(y) = {\: (b+ A ATy >0} is
an open half-line in\, thus the given vectay is a cer-
tificate of infeasibility of (QP,) for an open interval.
Thus, the uniottJ,, S(y), wherey is a Farkas certificate
for the infeasibility of(Q Py) for some € R, is open.
Consequently, the domain of the optimal value function
is closed. The proof is complete.

4. Properties of the Optimal Value Function

In this section we investigate the properties of the
optimal value function. These are generalizations of
the corresponding properties that have been proven in
Berkelaar et al. (1997) for the case whéwr = 0 or
Ab = 0. We also explain the relation of our results in
Section 4.1 to the ones obtained by Yildirim (2004). In
contrast, Sections 4.2 and 4.3 contain the new results
with respect to simultaneous perturbations in the CQO
case.

4.1. Basic Properties

For \* € A, let 7 = 7(\*) denote the optimal par-
tition and let(z*, y*, s*) be a maximally complemen-
tary solution at\*. We use the following notation that
generalizes the notation introduced in Berkelaar et al.
(2997):

O(m)={ e A:x()\) =7};
Sk(ﬂ') = {(ZC,y,S) SRS QP)\? (‘Tﬁyvs) € QD>\1
zp >0, xayur =0, sy >0, spur = 0};
Sa(m) ={(z,y,5) : x € QPx, (2,4, 5) € QDa,
x5 >0, zxur =0, sy >0, spur = 0}
A(m) ={X € A: Sx(m) # 0}
Am)={reA:Sx(m) #0};
D, ={(Lx, Ay, A\s) : ADx = b,
AT Ay + As — QAx = Ne, Axyur = 0,
ASBUT = 0}.
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HereO(7) denotes a set of parameter values for which  Let us assume thatz()),y(A), s(A)) is a maxi-
the optimal partitionr is constant. Furthe&, () is the mally complementary optimal solution with the op-
primal-dual optimal solution set of maximally comple- timal partition 7=(\) = (B(A\),N()\),7()\)). In this
mentary optimal solutions of the perturbed primal and case,o(z(")) C B(\) ando(z(?)) C B()\). Moreover,
dual CQO problems for the parameter value O(r). o(sM) € N(\) ando(s)) C N(N). Let us restrict
A(m) denotes the set of parameter values for which the our analysis to the characteristics of the optimal so-
perturbed primal and dual problems have an optimal lution (z(*),4() s(1)). Analogous reasoning applies
solution (z, y, s) such thato(z) = B ando(s) = N. for (22, y(?, s(2)). We might have three cases for the
Besides,D,. refers to the variation vector of the primal-  support sets of(!) ands(®).

dual optimal solution of the perturbed CQO problem for

any\ € O(r), when the vectoré\b andAc are given.  ® Case 1o(z(M)) = B()) ando(sM)) = N(A).
Finally, Sy (m) is the closure o5y (r) for all A € A(r) e Case 20(z()) = B()) ando(s')) C N(N).
andA(r) is the closure of\(x). e Case 3u(z(V) C B()) ando(s)) = N(N).

The following theorem resembles Theorem 3.1 from For Case 1, it is obvious that; € A(r()\)) and the

Berkelaar et al. (1997) and presents the basic relationsstatement is valid. We prove that in Cases 2 ank 3s
between the open interval where the optimal partition gne of the end points af(7r())). To the contrary, lek,

is invariant and its closure. The proof can be found in pe not one of the end points af(7())). Itis clear that
the Appendix. A1 ¢ A(m(N)). Without loss of generality, let us assume
Theorem 2 Let 7 = w(\*) = (B,N,7) denote the  that it belongs to the immediate (open) interval to the

optimal partition for some\* and (z*,y", s*) denote  right of A(xr()\)). Thus, some convex combination of
an associated maximally complementary solutioA*at (z*, s*,y*) and (=™, sy (1)) lie outside ofA(7()\))

Then, but with the same optimal partitiar(\) that contradicts
(i) A(m) = {A*} ifand only if D, = 0; the definition of A(7())). Thus, ), is one of the end
(i) A(m) is an open interval if and only D, # 0; points of A(r())) and the proof is complete.

(i) O(7) = A(w) andcl O(7) = el A(m) = A(n);
(V) Sa(m) = {(2,y,5) 1 @ € QP}, (z,y,s) € QD }

forall A € A(n).
The following two corollaries are direct conse-

quences of Theorem 2 Though Yildirim (2004) has stated a theorem to iden-

Coroallary 3 Let A2 > Ay be such thatr(A;) = 7(A2). t!fy the ibnlvarian(r:]y ig.terval for _gellner_al COPE optimiza-
Then,r(}) is constant for all € [Ar, As]. tion problems, the direct specialization of his results to
Corollary 4 Let (20,51, s0) and (z(, 42, 52)) the CQO case is not straightforward. It is easily seen

be maximally complementary solutions 9P, ) that having open sets in his Theorem 4.1, reduces to a
(QD,.) and (QPy.), (QD,.), respectively FurAthe:r- closed formulation that we present in the following the-
1 2/ 2/ )

- orem. However, the major obstacle of efficient use of
more, let(z(A), y(A), s(3)) be defined as his method came back to the fact that correctly iden-
2(\) = =X Az 2@ tifying the optimal partition from an approximate op-

A2 — N\ Az — A1 timal solution is almost impossible. Here, we provide
() = Az — A O A-X\ o) the following theorem that is based on standard equa-
Ao — A1’ Ao — A\ ’ tions and inequalities imposed on variablesand s.
A=A gy AN e Consequently, it allows us to compute the endpoints of
s(A) = Mo — AL o — N the intervalA(r) efficiently. The proof of Theorem 5

for any A € [A1, \o]. If there is an optimal partition is similar to the one of Theorem 48 of Berkelaar, Roos

7 such thath, A2 € A(r), then (z(A),y(N),s(\))  and Terlaky (1997).

is a maximally complementary solution @P,) and Theorem 5 Let\* € A and let(z*,y*, s*) be a maxi-

(QD,). Moreover, if(z()\),y()\), s(\)) is a maximally ~ mally complementary solution ¢€) Px-) and (QDx-)

complementary optimal solution, thew, Ay € A(r). with optimal partitionm = (B,N,7). Then the left
and right extreme points of the closed intervdlr) =

Proof: The first part of the statement is a direct conse- [\, \,] that contains\* can be obtained by minimiz-

guence of the convexity of the optimal solution set. ing and maximizing\ over S, (), respectively, i.e., by
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solving z(N) =2V + oAz,
_ 1
Ae= min {A: Az — AAb=b, y) =y + 04y,
Azy.s s(\) = s +0As,
zp 2 0,250 =0, where Az = 2 — 2z, Ay = y@ — ), As =
@) —sW and(z(A), y(\), s(\)) is a pair of primal-dual
AT _ — A\ \¢c = s 5 an (‘T( Y ’ p p
y+s-Qz €=6 optimal solution corresponding t9. Denoting A\ =
sy > 0,850 =01}, (2) A2 — A1, we also have
and ANz = ANNAD, (4)
AT ANy + As — QAz = AN/c. (5)

Ay = max {\: Ax — AAb = b,
\T,y,s The optimal value function aX is given by

T 0, zayur =0,
520 oot B(N) = (b+ AAD)TY(N) — Lr(N)TQx(N)

T —
Ay+s-Qz—Alc=c, = (b+ (M + 0ANADT (4D + 0Ay)

sy >0, spur =0} 3) —La® 4+ 0A2)TQaW + 0Az)
The open interval\ () is referred to asnvariancy = (b4+ M ATy £ o(ANADTyD) (6)
interval because the optimal partition is invariant on it.
The points\, and)\,, that separate neighboring invari- (b +AMAD) T Ay) + ANV Ay
ancy intervals, are calleiansition points _%x(l)TQI(l) — 020" QA
Remark 6 Note thatr represents either an optimal Lo T
partition at a transition point, when\, = \,, or on —30°Ax" QAw.

the interval between two consequent transition points

A¢e and \,. ThusA = |J,_ A(m) = U, A(r), wherer

runs throughout all possible partitions. Az QNAx = ANADT Ay — Act Ax), (7)

It is worth mentioning that Yildirim (2004) proved LT _ T, T.(1)

that the optimal value function is quadratic on any in- v QA =(b+MAb) Ay — AL (8)

variancy interval, and presented an example showing Substituting (7) and (8) into (6) we obtain

that this function might be neither convex nor concave.

His proof is based on a strictly complementary solu- $(A) = (A +042)

tion computed for the current parameter vale= 0. = d(A1) + OANAD YD + AT (D)

Here, we present an explicit representation of the opti- 19 T T

mal value function on an invariancy interval by utiliz- + 50 ANAe Lx + Ab Ay). ©)

ing primal-dual optimal solutions (not necessarily max-

imally complementary) for two arbitrarily chosen pa-

rameter values inside this interval. We also provide sim- ~; = Ap”y™) + AcT 2™, (10)

e cieta o deteine e COnUeAty, COnGaUty or -, — iy + 712 o
ity pti value functi invariancy e AT Az 4 AKT Ay

From equations (4) and (5), one gets

Using the notation

interval. We start with the following theorem. = = , (12)
Theorem 7 Let A\, < A, be obtained by solving (2) A2 — A1 A2 — M
and (3), respectively. The optimal value functiof) one can rewrite (9) as
is quadratic onO(7) = (Ag, Ay).
1 2

_ d(A) = (p(A1) — \im + 5/\17)
Proof: Let \; < A1 < A < A2 < A\, be given and let 1
(M, 4y sWyand(z?,y?, s()) be pairs of primal- + (71— M)A+ 57)\2. (13)

dual optimal solutions corresponding k¢ and Xz, re-
spectively. So, using = ;;f;l € (0,1) allows us Because\; and A\, are two arbitrary elements from
to give an explicit expression for the optimal solution the interval(As, A,,), the claim of the theorem follows

((A),y(A),s(N)) as directly from (13). The proof is complete.
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It should be mentioned that the sign ofc” Az +
AT Ayin (9)isindependent of; and),, because both
A1 and )\ are two arbitrary numbers it\, A,). The
following corollary is a straightforward consequence of
(13).

Corollary 8 For two arbitrary Ay < X2 € (Ag, A\y),
let (z(M, 4™, sM) and (2,43 52)) be pairs of
primal-dual optimal solutions corresponding ¥ and
X2, respectively. Moreover, lethz = z(2) — z(1) and
Ay = y@ —y(), Then, the optimal value function
¢(A) is quadratic onO(7) = (Ar, Ay) @and it is

(i) strictly convex ifAcT Ax + AbT Ay > 0;

(i) linear if AcT Az + AbT Ay = 0;

(iii) strictly concave ifAcT Az + AbT Ay < 0.
Corollary 9 The optimal value functiow()) is con-
tinuous and piecewise quadratic dn

Proof: The fact that the optimal value function is piece-
wise quadratic follows directly from Theorem 7. Re-
call that the feasible solution sets of problems (2) and
(3) are closed convex sets and for ahye (g, Ay)
there is a corresponding vectpr(\), y(A), s(A)) that

is an optimal solution of the perturbed proble(xP, )

and (QD,). Consider problem (2) and pick any se-
guence converging to an optimal solution of (2). Rely-
ing on the fact that any feasible solution correspond-
ing to aX € (As, Ay) is an optimal solution ofQPy)
and (QD,), it follows that the optimal value function
is continuous.

Two auxiliary LO problems were presented in Theo-
rem 5 to identify transition points and consequently to
determine invariancy intervals. A logical question that
appears here is how to proceed from the initial invari-
ancy interval to a neighboring one iteratively to cover
the whole domain of\. It turns out that we need to
compute the derivatives of the optimal value function
for that. It is done as described in the following theorem
that is the specialization of Corollary 5.1 in Yildirim
(2004) to quadratic problems.

Theorem 10 For a given A € A, the left and right
derivatives of the optimal value functigii)) at A sat-

isfy
¢ (\) = min{AbTy : (x,y,s) € QD5 }

x,Y,S

+max{Ac'z:z € QP}}, (14)
¢ (\) = max{AbTy : (z,y,5) € QD}}

T,Y,s

+min{AcTz : z € QP5}. (15)
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Remark 11 If X is not a transition point, then the op-
timal value function at\ is a differentiable quadratic
function and its first order derivative is

¢'(\) = AbTy(N) + AcTz(N).

Here, (z(X),y(X), s(A\)) is any pair of primal-dual op-
timal solution corresponding ta.

4.2. Relation between Derivatives, Invariancy Inter-
vals, and Transition Points

In this subsection, we use basic properties of the opti-
mal value function and its derivatives to investigate the
relationship between the invariancy intervals and neigh-
boring transition points where these derivatives may not
exist. We also show how we can proceed from one in-
variancy interval to another to cover the whole interval
A. These results allow us to develop our algorithm for
solving parametric CQO problems.

It is worthwhile to make some remarks about Theo-
rem 10 first. It seems that we need to solve two optimiza-
tion problems to find the right or left first-order deriva-
tives of the optimal value function at a transition point.
Actually we can combine these two problems into one.
We consider problem (15) only. Similar results hold for
problem (14). Let(z*, y*, s*) be a pair of primal-dual
optimal solutions of @ P,) and(QD)) and

QPD; ={(z,y,s) : Az = b+ AAb,
x>0, z's* =0, Qr = Quz*,
ATy 45— Qr =c+ M\,
$s>0, sTa* = 0}.

First, in the definition of the sea@P D} the constraints
x>0, 27s* =0, Qr = Qz* ands > 0, sT2* =0

are equivalent targ > 0, zaur = 0 and sy >

0, spur = 0, where(B, N, T) is the optimal partition

at the transition poinA. The fact thatcg > 0 directly
follows fromz > 0. On the other hand, singe, y, s) is

a primal-dual optimal solution and*, y*, s*) is a max-
imally complementary optimal solution, ther(z) C
o(z*), thuszyur = 0 is its immediate result. Analo-
gous reasoning is valid fatg,r = 0. Second, let us
consider the first and the second subproblems of (15).
Observe that the optimal solutions produced by each
subproblem are both optimal f6®) P, ) and(Q D)) and

so the vectof)x, appearing in the constraints, is always
identical for both subproblems (see, e.g., Dorn 1960).
This means that we can maximize the first subproblem
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over QP D3 and minimize the second subproblem over One can rearrange (19) as
QPD; simultaneously. In other words, instead of solv-

ing two subproblems in (15) separately, we can solve - . — (D)
the problem o) =\ _ 1 (M)

A—A* 2
min{Ac’z — AbTy : (z,y,5) € QPD5}  (16) o (T +yW
z,Y,8 + Ab T .
that produces the same optimal solutigh ¢, 5) as
a solution of problem (15). Then the right derivative | gt Y | A\*, then we have
¢', (\) can be computed by using the valugs g, §)
as¢/, (\) = AbTj + Ac’z. Consequently, we refer to _
the optimal solutions of problems (15) and (16) inter- ' (V) = Jim (N —9(\)
changeably. + AT A — A
The next lemma shows an important property of (1) + 4D
_ACT<£+I >—|—AbT<g i )

strictly complementary solutions of (14) and (15) and
will be used later on in the paper.

Lemma 12 Let \* be a transition point of the optimal
value function. Further, assume that the (open) invari-
ancy interval to the right of\* contains\ with the op-
timal partition7 = (B, N, 7). Let(x,y, s) be an opti-
mal solution of (15) with\ = A\*. Then,s(x) C B and
o(s) CN.

Since (z™M, y(M, s(M) is an arbitrary optimal solu-
tion atA* and¢’, (\*) is independent of the optimal so-
lution choice at\*, one may choosgr"), (), s(1)) =
(z,y,s) and(z™, 4D s1)) = (2,7, s). From (20) we
get

Proof: Let(7,7,5) be a maximally complementary so-
lution at A and let(\*,z,y,s) be an optimal solution ¢ (X*) = AT (2+ x) N (EJF y)

of (2) obtained for the optimal partition = 7. 2 2
i +
First, we want to prove that _ AT (w—i—x) AT (g y) @
T T T T 2 2
ANctx=Ac’z and Ab y=Aby, a7
e=c"z and bly= bTy. (18)

Equation (21) reduces ta\c? (”;”) = Az
For this purpose we use equation (9). In (9) and (10- from which it follows thatAcTz = AcTz. Further-
12) let\; = X, z®) =7, y® = 7. Continuity of the  more, let us considefz(, 3y, s = (z,y, s) and
optimal value function, that is proved in Corollary 9, (M, yM s1) = (z,y,5). From (20) we obtain
allows us to establish that equation (9) holds not only on ATy = AbT -
invariancy intervals, but also at their endpoints, i.e., at
the transition points. Thus, we are allowed to consider
the case when\; = \* and (z(V),y™ s() is any
optimal solution at the transition point:.

Computingg()) at the point\ (where = {=A- =

Now, since botHx, y, s) and(z, y, s) are optimal so-
lutions in QP%. x QD5., it holds thatc+\*Ac) Tz =
(c+X*Ac)Tzand(b+\*Ab)Ty = (b+A*Ab)Ty (see
e.g., Dorn (1960)). Consequently, it follows from (17)
thatc”x = "z andb”y = bTy.

X*)\* _ .
== 1) by (9) gives us

As a result we can establish that
6(N) = 6(\) + (X = A)(AbTyM + AcTzD)

FLE - M)A (@ - 2 ) 2’5 =al(c+ M+ QT — ATy
2

)
ABT( M)] =cTe+ AT+ 27QT — (b+ N Ab)TY
. _ _
y1 3_/ ) N =Tz + ATz +27QT — (Az)Ty
=N+ (A= \)[Ac" (T
o) + 5 (A= A)[AcT (@ + =) 2T (c+Xe+ QT — ATp) = 2"5 =0

AV (7 + 5. (19) (22)
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c+ N Ac+ Qr — ATy)

c+ N Ac+ Qx) — by — ANy

c+ X Ac+ Qz) — by — XAy (23)
=7 (c+ X Ac+ Qz — ATy)

=775 =0.

=77

=77

(
(
(
(

Forf € (0,1) and = (1 — #)\* + 62X, let us consider

z2=(1-0)x+ 6z,
y=01-0)y+0y, (24)
5=(1-0)s+0s.

Utilizing equations (24) and the complementarity prop-
erties (22) and (23), we obtain that and (z, g, 3)

are feasible and complementary, and thus optimal so-

lutions of (Q P5) and(QDy), respectively. Noting that
(B,N,T) is the optimal partition a{z, g, 3), it fol-
lows from (24) thatrz > 0, 25 = 0, 27 = 0 and
sg =0, s5r 2 0, s = 0. Then we can conclude that
o(r) CBando(s) CN.
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TN = max {Ac'¢: AE = Ab,
£,0,1,1m,p,0
§+o+ /L.’,E* =0, Oo(st) >0, Oo(xt) = 0,
AT+ p— Q€+ 65" = Ac,
Po(st) >0, Po(zt) = O}
+ min {AbTn: AE = Ab,
§,0,1,1,0,0

§+ o+ Mx* =0, Oo(s+) >0, Oo(xt) = 0,
AT+ p— Q6+ 65" = Ac,
Po(st) >0, Po(zt) = 0}1

where(z™t, y*, sT) is a strictly complementary optimal
solution of(15).

Proof: The proof follows by using a similar pattern of
reasoning as Lemma IV.61 in Roos, Terlaky and Vial
(2006) for the linear problems (14) and (15).

The following theorem summarizes the results we
got so far. It is a direct consequence of Theorem 4.1 in
Yildirim (2004) (equivalence of (i) and (ii)), the defini-
tion of a transition point (equivalence of (ii) and (iii)),
and Corollary 4 and Lemma 12 (equivalence of (iii) and
(iv)). The proofis identical to the proof of Theorem 3.10
in Berkelaar et al. (1997) and it also shows that in adja-

The next theorem presents two auxiliary linear opti- cent subintervalg()) is defined by different quadratic
mization problems to calculate the left and right second fynctions.

order derivatives of(\) and also gives a general result
concerning the transition points of the optimal value
function. Problem (16) can be used for finding optimal
solutions of problems (14) and (15).

Theorem 13 Let A € A, andz* be an optimal solution
of (QPy). Further, let(z*, y*, s*) be an optimal solu-
tion of (QD,). Then, the left and right second order
derivativesp” (\) and ¢’/ (\) are

#"(\)= min {AcT¢: AE = Ab,

£,0,1,1,p,6

E+o+pux” =0, 05s-) > 0,05-) =0,
ATy +p— Q€+ 65" = Ac,

Po(s—) = 0, Poe—) =0}

+ max {AbTn: A& = Ab,
§,0,14,m,p,0

§+o+ /L.’,E* =0, Oo(s™) >0, OQo(z—) = 0,
ATn+p— Q¢+ 05" = Ac,
Po(s—) >0, Po(z—) = 0}7

where(z—,y~, s7) is a strictly complementary optimal
solution of(14), and

Theorem 14 The following statements are equivalent:

() D=0

(i) A(m) = {x};

(iii) A* is a transition point;

(iv) ¢ or ¢" is discontinuous ah*.

By solving an auxiliary self-dual quadratic optimiza-
tion problem one can obtain the optimal partition in the
neighboring invariancy interval. The result is given by
the next theorem.

Theorem 15 Let \* be atransition point of the optimal
value function. Le{z*, y*, s*) be an optimal solution
of (15) for \*. Let us assume that the (open) invariancy
interval to the right of\* contains\ with optimal par-
tition @ = (B, N, 7).

Definel =7 (a*,s*) = {1,2,...,n}\(c(z*)Ua(s*)).
Consider the following self-dual quadratic problem

gnin {=AbTn+ AcTE+€TQE « A€ = Nb,
Ny
ATy +p—Qt = Ac,

ga'(s*) =0, Po(z*) = Ov&?(z*,s*) >0,
pE(z*,s*) Z 0}7

(25)
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and let(¢*, n*, p*) be a maximally complementary so-
lution of (25). ThenB = o(z*) U o (), N = o(s*) U

o(p*)andT = {1,...,n}\ (BUN).
Proof: For any feasible solution of (25) we have
— AT+ AcTE+€7Q¢
=(QE - AT+ Do) =€"p=Ehpr 2 0.
The dual of (25) is

max { AbTS — AcT¢—€7Q¢ -

8,67,

AC = Db, ATS + 4+ Q¢ — 2Q¢ = Ac,
Yo(@*) = 0,Co(s*) = 0,77 > 0,(r > 0}.
For a feasible solution it holds
AbTS — AT ¢ — €T Q¢
=0TAC— AT —€TQ¢
(M= (-9 -¢ <o0.

So, the optimal value of (25) is zero. Let us observe
that(z,7,3) is a maximally complementary solution at
A and assign

Tr—x
g_C_X—A*’

A=A

5 — s*
= :_—7 26
P=Y=5 0 (26)

that satisfy the first two linear constraints of (25).
Using the fact that by Lemma 12(z*) C B and
o(s*) C N, it follows that

- *
xU(S*) — T

ga'(s*) = X— It = O,
TT —:Z?} TT
S S ST
and
So(a*) Sz(m*)
pa(m*) = X— e =V,
ST — S;w ST
PPN 5 —a

Then, problem (25) is feasible and self-dual.
From the proof of Lemma 12 we have’s*
5'z* = 0, implying that (26) is an optimal solution.

So, (26) is definitely an optimal solution for (25) as
it satisfies all the constraints and gives zero optimal
value. On the other hand, sin€g,7,s) is maximally
complementary ah, we geté, () = 0, &+ > 0,

&r =T, Po(z*) = 0, Po(s*) > 0 and pr = 37 which
means that (26) is a maximally complementary solution
in (25) as well.

Using (26) and the fact thax > \*, we see that
B =0() =oc(x*)Uo(¢) andN = o(3) = o(s*) U
o(p). Further, we note that, n, p) defined in (26) is a
maximally complimentary solution of (25), and hence
o(¢) = o(¢*) ando(p) = o(p*). Thus,B = o(z*) U
o(€*) follows. Analogous arguments hold faf, which
completes the proof.

4.3. Computational Algorithm

In this subsection we summarize the results in a com-
putational algorithm. This algorithm is capable of find-
ing the transition points; the right first order derivatives
of the optimal value function at transition points; and
optimal partitions at all transition points and invariancy
intervals. Note that the algorithm computes all these
guantities to the right from the given initial value.
One can easily outline an analogous algorithm for the
transition points to the left from*. It is worthwhile to
mention that all the subproblems used in this algorithm
can be solved in polynomial time by IPMs.

The implementation of the computational algorithm
contains some complications that are worth to mention.
The interested reader can find more details about it in
Romanko (2004). First, due to numerical errors the de-
termination of the optimal partition and a maximally
complementary optimal solution, or the determination
of the support set for a given optimal solution is a trou-
blesome task. In contrast with the theoretical results,
the numerical solution produced by a CQO solver may
not allow to determine the optimal partition or support
set with 100% reliability. Introducing a zero tolerance
parameter and using some heuristics may improve the
situation. For problems with hundreds or thousands of
variables, the probability of getting one or more “prob-
lematic” coordinates is very high.
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Algorithm: Transition Points, First-Order
Derivatives of the Optimal Value Function and
Optimal Partitions at All Subintervals for CQO

I nput:
A nonzero direction of perturbation:= (Ab, Ac);
a maximally complementary solutiqn:*, y*, s*) of
(QPy) and(QD,) for A = \*;
70 = (B°,N°, TY), where
B =o(z*), N = o(s*);
k:=0; 20 := 2% 30 :=y*; s = 5%
ready:= false;

while not readydo

begin
solve

A = max {\: Az — AAb =,

A\x,Y,S

gk > 0, 2peu7re =0,
ATy + 5 —Qx — MAc=c,
sy 2 0, sprore = 0}

if this problem is unbounded: ready:= truese
let (A, 2%, y*, s*) be an optimal solution;
begin
Let z* := z*F ands* := s*;
solve
min, , {AcTz — AbTy @ (2,y,s) € QPD}}
if this problem is unbounded: ready:= trigkse
let (z*, 4", s*) be an optimal solution;
begin
Let z* := z* ands* := s*;
solve

?nn{_Aan + AcTe +£TQ¢ - A6 = b,
2]

ATU +p- Qg = AC, gd(s*) =0,
Po(x*) = 07§E(z*,s*) > Oapﬁ(z*,s*) > 0};

B = o(a*)Uo(£), N¥H1 = o(s) Ua (p"),
THEL = {1,...,n} \ (BFTUNFH):
k:=k+1;
end
end
end

Wrongly determined tri-partition may lead to an incor-
rect invariancy interval, if any. The situation can be im-
proved by resolving the problem for anotheparame-

ter value close to the current one. Another possibility to
overcome this difficulty in implementation is to resolve
the problem with fixed “non-problematic” coordinates
in order to obtain a more precise solution for the prob-
lematic ones.

Second, incorrectly determined optimal partition or
support sets, as well as numerical difficulties, may pre-
vent one of the auxiliary subproblems to be solved. In
this case, we can restart the algorithm from a parameter
value A sufficiently close to the current one in order to
get the solutions for the whole intervAl

Finally, the derivative subproblem (16) is more chal-
lenging than it seems. The difficulties here are caused
by the fact that we want to solve the derivative subprob-
lem without knowing the optimal partition at the current
transition point\;, but only by utilizing an optimal so-
lution (2, y*, s*) that is produced by solving (3). This
is actually the reason why we need to have the non-
negativity constraints; ,x vy > 0 andsqzx gxy > 0,
whereo (2%, s%) = {1,2,...,n} \ (o(zF) Ua(s¥)), in
the problem (16) that converts it to:

min{AcTz — AbTy : Az = b4 M\ Ab,

s
To(ak)uo(zk,sk) = 0,
Tos) =0, Qr = Qz",
ATy + s — Qr = c+ M\ /Ac,
So(sh)Ua(zk,sk) = 0, Sp(gry = 0}. (27)

Presence of these constraints speaks of the fact that
we do not actually know to which tri-partitiof”, A%

or 7% the indicess(z*, s*) will belong. It is the con-
sequence of not having a maximally complementary
solution at the current transition point;. This im-
plies that we need to enforce the hidden constraint
(.Ta.(zk_’sk))j (Sa(mk_’sk))j =0 Vjye O’(.I‘k,sk) for the
problem (16). Utilizing the hidden constraints becomes
unnecessary, if we know a maximally complementary
solution of the parametric problem foy, that pro-
vides the optimal partitiof3*, N'*, T*) at this param-
eter value. Our computational experience shows that if
(To(z,5))5 > 0and(sq(s,s)); > 0 for somej in the op-
timal solution of (27), theB = o (2*) and N = o(s)

in that transition point and we exploit this partition while
solving (16).
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5. Simultaneous Perturbation in Linear Optimiza- of the intervalA(7) = [\, \,] that contains\* are
tion N = max{)\p,z,/\pe} and Au = min{)\pu,/\pu},
where

The case, when perturbation occurs in the objective
function vector: or the RHS vectob of an LO problem Ap, =min{): Az —AAb =b, 25 20, ax =0},
was extensively studied. A comprehensive survey can ’
be found in the book of Roos, Terlaky and Vial (2006).
Qreenberg (ZQOQ) has studied simultaneous pertl_Jr- Ap, =min{\: ATy +s— AAc=c,
bation of the objective and RHS vectors when the pri- Ay,s
mal and dual LO problems are in canonical form. He sy >0, sg =0},
only investigated the invariancy interval which includes
the current parameter value He proved the convex-
ity of the invariancy interval and established that the sy >0, sg =0}.
optimal value function is quadratic on this interval for )
the simultaneous perturbation case and it is linear for Ve also state the following lemma that does not hold
non-simultaneous perturbation cases. However, for LO for CQO problems.
problems in canonical form it is necessary to define the Lemma 17 Let), and), be obtained from Theorem 16
optimal partition to separate not only active and inac- @nd Ar < A1 < X < A, with (2,41 s(1) and
tive variables, but also active and inactive constraints (z'?,4®,5(?)) being any strictly complementary so-
for all optimal solutions. In his approach to identify the lutions of (LPy) and (LD,) corresponding to\; and
optimal value function one needs to know the gener- Az, respectively. Then it holds that
alized inverse of the submatrix of, corresponding to
active variables and constraints, in addition to having MDAy = Acl A,
the optimal solutions at two parameter values.
We start this section by emphasizing the differences WhereAy = y® —yW and Az = &) — 2.
in the optimal partitions of the optimal value function in

LO and CQO problems and then proceed to specialize proof: Subtracting the constraints ofL.Py,) from
our results to the LO case. Let us define the simultane- (1, p, ) and the constraints ofLD,,) from (LD,,)

Ap, :HAlax{/\ Az — AAb=b, x > 0, zp = 0},

p, =max{\: ATy + s - AAc=c,
\Y,S

ous perturbation of an LO problem as results in

(LP3)  min{(ctAAc) w: Az =b+ AAb,z > 0}. Aba =AY, (28)
T p—

Its dual is AT Ay+ As=ANAc, (29)

. . whereAX = Ay — A\ andAs = s® — s, Premul-
(LDx) max{(b+AAb)"y : A"y+s = c+AAc,s 2 0}, tiplying (28) by Ay” and (29) byAzT, the result fol-

, lows from the fact that\z” As = 0, which completes
The LO problem can be derived from the CQO prob-

L : the proof.
lem by substituting the zero matrix f@p. As a result,
vectorz does not appear in the constraints of the dual
problem, and the séf in the optimal partition is always Utilizing Lemma 17 and using the same notation as
empty. in (10)—(12), we can state the following theorem that

The following theorem shows that to identify an in-  gives explicit expressions for computing the objective
variancy interval, we don't need to solve problems (2) value function. The theorem also gives the criteria to
and (3) as they are formulated for the CQO case. Its determine convexity, concavity and linearity of the ob-
proof is based on the fact that the constraints in these jective value function on its subintervals.
problems separate whéph = 0, and the proofis leftto ~ Theorem 18 Let\; < A andn(Ay) = 7(A2) = 7, let
the reader. (™ 4D sMW) and (2, y?), 5(2)) be strictly com-
Theorem 16 Let A* € A be given and lefx*, y*, s*) plementary optimal solutions of problenig Py) and
be a strictly complementary optimal solution of (LD,) at\; and )., respectively. The following state-
(LPy-) and (LD,-) with the optimal partition ments hold:

7 = (B,N). Then, the left and right extreme points (i) The optimal partition is invariant orfA;, \2).
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(i) The optimal value function is quadratic on this
interval and is given by

d(A) = (6(M1) — \im1 + 3AT)
+(71 = M)A+ A2
= ¢(A\1) + OANADTYD 4+ AcT2(D)
+02ANACT Az
= (M) + OANAL YD) + AcT2(M)
+O2ANADT Ay
(iii) On any subinterval, the objective value function
is
e strictly convex ifAcT Ax = AbT Ay > 0,
o linear if Ac”" Az = AbT Ay =0,
e strictly concave ifAc” Az = AbT Ay < 0.
Computation of derivatives can be done by solving
smaller LO problems than the problems introduced in
Theorem 10. The following theorem summarizes these
results.
Theorem 19 For a given\ € A, let (z*,y*,s*) be
a pair of primal-dual optimal solutions ofLP,) and

(LD)). Then, the left and right first order derivatives
of the optimal value function()\) at A are

(N = r;l.igl{AbTy ATy s =c+ M,
5>0, sTx* =0}
+max{AcTz : Az = b+ AAD,

x>0, 275 =0},

P (N) = rgix{AbTy ATy 4+ s =c+ M,
§>0, sTa* =0}
+ Ir;in{AcT:v s Az = b+ AAD,
x>0, 27s* =0}.

Yildirim (2003) showed that results similar to Theo-
rems 10 and 19 hold for parametric Convex Conic Op-
timization (CCO) problems.

6. Illustrative Example

Here we present some illustrative numerical results
by using the algorithm outlined in Section 4.3. Compu-
tations can be performed by using any IPM solver for
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LO and CQO problems. Let us consider the following
CQO problem withz, ¢ € R5, b € R?, Q € R>*® being

a positive semidefinite symmetric matri¥, € R3*°
with rank(4) = 3. The problem’s data are

(42000 [ _16] 7]
25000 —20 6
Q=100000]|, c= 0|, Ac=10
00000 0 0
100000 | 0 0
[22100] 11 1
A=121010|, b= 8|, Ab= |1
25001 20 1

With this data the perturbed CQO instance is

min (=16 + 7A\)x1 + (—20 + 6)\) 22

—|—2:c% + 2x1719 + %I%

St 2x1 + 220 + =114 X
1 2 3 (30)

2x1 + 2o + x4 = 8+ A

2I1+5I2 —|—ZC5:20+A

Ty, T2, T3, T4, T 2 0.

The results of our computations are presented in Ta-
ble 1. The set\ for the optimal value functiom()\) is
[—8,400). Figure 1 depicts the graph af\). Transi-
tion points and the optimal partitions at each transition
point and on the invariancy intervals are identified by
solving the problemsin Theorems 5 and 15. The optimal
value function on the invariancy intervals is computed
by using formula (13). Convexity, concavity or linearity
of the optimal value function can be determined by the
sign of the quadratic term of the optimal value function
(see Table 1). As shown in Figure 1, the optimal value
function is convex on the first two invariancy intervals,
concave on the third and fourth and linear on the last
one. The first order derivative does not exists at transi-
tion pointA = —5.

7. A Parametric CQO Model: The DSL Example
One of the recent examples of the use of CQO prob-

lems in practice is a model of optimal multi-user spec-
trum management for Digital Subscriber Lines (DSL)
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Table 1
B N T ()
A=-8.0 {3,5} {1,2,4 0
—80< A< =50 {2,358 {1,4 0 68.0\ + 8.5\
A= —50 {2} {1,343 0
—-50<A<0.0 {1,2 {3,4,5 ) —50.0 4 35.5) + 422
A=00 {1,2} 0 {3,4,5
00<A<1.739 | {1,2,3453 0 0 —50.0 + 35.5) — 6.9\2
A =1.739 {2,348 0 {1}
1.739 < A < 3.333 | {2,343 {1} 0 —40.0 + 24.0) — 3.6)\2
A =3.333 {3,4,5 {1} {2}
3.333 < A < +00 {3,4,5 {1,2 0 0

Transition Points, Invariancy Intervals and Optimal Paidns

20

—a0

80}

-100

-120

-140

Fig. 1. The Optimal Value Function

that appeared in Yamashita and Luo (2004) as well
as in Luo and Pang (2006). Considering the behavior
of this model under perturbations, we get a paramet-
ric quadratic problem (Romanko 2004). Moreover, the
DSL model can have simultaneous perturbation of the
coefficients in the objective function and in the right-
hand side of the constraints.

Let us consider a situation wheW users are con-
nected to one service provider via telephone line (DSL),
where M cables are bundled together into the single
one. The total bandwidth of the channel is divided into
N subcarriers (frequency tones) that are shared by all

users. Each usértries to allocate his total transmission
powerPt . to subcarriers to maximize his data transfer
rate

N

T 7
Zpk - Pmax'
k=1

The bundling causes interference between the user lines
at each subcarriet = 1,..., N, that is represented
by the matrixA, of cross-talk coefficients. In addition,
there is a background noisg at frequency toné. All
elements of matriced; are nonnegative with their di-
agonal elements;’ = 1. For many practical situations,
matricesAy, are positive semidefinite (see Luo and Pang
(2006) and subsequent references for more discussion
about such cases). For instance with weak cross talk in-
terference scenario, whén< a;’ < 1/n for all i # j

and all k, each matrixAy, is strictly diagonally domi-
nant and hence positive definite.

Current DSL systems use fixed power levels. In con-
trast, allocating each users’ total transmission power
among the subcarriers “intelligently” may result in
higher overall achievable data rates. In noncoopera-
tive environment user allocates his total poweP? ,
selfishly across the frequency tones to maximize his
own rate. The DSL power allocation problem can be
modelled as a multiuser noncooperative game. Nash
equilibrium points of the noncooperative rate maxi-
mization game correspond to optimal solutions of the
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following quadratic minimization problem: 8. Conclusions
N N . . . ..
. 1 In this paper we investigated the characteristics of the
T + T
mmz ke Pkt 2 Zpk Ay optimal value function of parametric convex quadratic

k=1 k=1 . . .. .
optimization problems when variation occurs in both

st ZN:Z’Z —P L i=1,..., M (31) the RHS vector_ of _the cons_traint;. and the coefficient
— vector of the objective function’s linear term. The rate
of variation, represented by the parametgs identical
for both perturbation vectorg\b and Ac. We proved
wherepy, = (pL,...,pM)T. th_at the optir_nal vaIL_Je function is a contingou_s piece-
The formulation in (31) provides a convex optimiza- Vi€ qu_adratlc fun_ctlon on the_ closed aéetCn_tena for
tion program that yields, for each user, optimum power CONVexity, concavity or linearity of the optimal value
allocations across the different subcarriers. However, function were derived. Auxiliary linear problems are
this formulation assumes that the noise power on each¢onstructed to find its first and second order left and
subcarrier is perfectly knowapriori. Perturbations in ~ fight derivatives. One of the main results is that the op-
the propagation environment due to excessive heat onfimal partitions on the left or right neighboring inter-
the line or neighboring bundles may violate this assump- V&!S 0f & given transition point can be determined by

tion. In order to account for these perturbations one can S0IVing an auxiliary self-dual quadratic problem. This
formulate the problem in (31) as (32): means that we do not need to guess the length of the

invariancy interval to the left or right from the current

pr >0, k=1,...,N,

N 1 transition point and should not worry about “missing”
min Z(ok + MAop)elp + 3 Zp{Akpk short-length invariancy intervals. We already mentioned

k=1 k=1 that all auxiliary problems can be solved in polynomial
ot Zpi _ pi i—1 M (32) tlm_e. Flnqlly, we outlined an algorlth.m to identify all in-

P k max: L variancy intervals and draw the optimal value function.

The algorithm is illustrated with a simple problem. In
the special cases, wheke or Ab is zero, our findings
specialize to the results of Berkelaar et al. (1997) and

whereg;, now represents_the nominal backgrounq noise Roos, Terlaky and Vial (2006). Simplification of some
poweron thek:-th subcarrier and&cr,? = the uncer_tamty results to LO problems is given, which coincide with
in the actual noise power. By varying one caninves- o findings of Greenberg (2000).
tigate the robustness of the power allocation under the
effect of uncertainty in the noise power. In order to mit-
igate the adverse effect of excessive noisejitieuser
may decide to increase the transmitted power in steps o .
size AP . Alternatively, if the actual noise is lower pr_esgnted N our paper allows to analyze not me the
original Markowitz model, but also some of its ex-

than the nominal, the user may decide to decrease the

transmitted power. To that end, we can formulate the Fensmns. The link we make to the portfolio problem

optimization problem as is based on the tradeoff formulation (see e.g., Stein-
bach 2001) with the risk aversion parametein the

kaOa kzla"'aNa

The most famous application of the CQO sensitiv-
ity analysis is the mean-variance portfolio optimization
fproblem introduced by Markowitz (1956). The method

N 1 N objective function. One possible extension of the trade-
min Z(ok + )\Aok)eTpk + 3 Zp;fAkpk off formulation that results in the simultaneous pertur-
k=1 k=1 bation model of type@QP,) is when the investors’s
N i i (33) risk aversion parameterinfluences not only risk-return
St Zpk = Prax + A8 Prax, preferences, but also budget constraints. However, we
k=1 have to stress that simultaneous perturbation in CQO is
i=1,...,Mpy 20, k=1,...,N, not solely restricted to portfolio models. There are nu-

. merous applications in various engineering areas as we
where the parametex is now used to express the un- i strated by the practical example of the adaptive mul-
certainty in noise power as well as power increment to yjser power allocation for Digital Subscriber Lines.

reduce the effect of noise. . .
As some encouraging results already exist for para-
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metric Convex Conic Optimization (CCO), we would
like to look at the possibility of extending our algo-
rithm to CCO case. As the content of the previous sen-
tence suggest, our further research directions also in-
clude generalizing the analysis of this paper to Second-
Order Cone Optimization problems and exploring its
applications to financial models.
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Appendix

Theorem4.1Letn = 7(\*) = (B, N, T) denote the
optimal partition for some\* and (z*, y*, s*) denote
an associated maximally complementary solutiokh*at
Then,

(i) A(m) = {)*} ifand only if D, = 0);

(i) A(r) is an open interval if and only iD,. # 0;

(i) O(r) = A(n) andel O(7) = el A7) = A(x);

(IV) 8>\(7T) = {(:C,y,s) HERS leia (x,y,s) € Q,DK}
forall A € A(m).

Proof: First let us recall the characteristics of a max-
imally complementary solution. Any maximally com-
plementary solutiofiz*, y*, s*) associated with a given
\* satisfiesAz* = b+ M Ab, ATy* + s* — Qu*
c+X*Ac, x>0, iy, =0, 83 > 0andsy - =0.
Let (Az, Ay, As) € D,, and define

T=a"+ (A —\*")Ax, (34)
7=y"+ (A= \)Ay, (35)
s=s"+ (A —\)As. (36)
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If X is in ane-neighborhood of\* for small enough,
then

AT = b+ AAb,
AT 45— QT = c+ N,

TNUT = 07 (37)
Spur = 0,
T >0, Sy >0.

() [=] : Let A(wr) = {A\*}, and assume to the
contrary that D, is not empty. Then, there ex-
ists (Ax,Ay,As) such that AAx Ab and
AT Ay + As — QAx Ac with Azpyur = 0
and Asgur 0. Let (z*,y*,s*) be a maxi-
mally complementary solution associated witt,
e, Az* = b+ MAb, ATy* + s* — Qz*
c+ NAc, iy = 0, sgur = 0, zg > 0 and
sj > 0. Let (7,7,5) be defined by (34)—(36). From
(37) one can conclude thate A(r), what contradicts
to the assumption (7) = {\*}.

() [«<] : Let D, = 0, and suppose to the contrary
that\, \* € A(n), with X\ # \* and (%, 7,3) is a max-
imally complementary solution at. Thus, from (34)-
(36) we can computéAz, Ay, As) and conclude that
(Ax, Ay, As) € D,. This contradicts to the fact that
D, =0 and thusA(7) = {\*}.

(i) [=] : Let A* € A(~). Then, there is a maximally
complementary solutiofiz*, y*, s*) at A*. Moreover,
since A(7) is an open interval, there exists)ain an
e-neighborhood of\* with A # \* and\ € A(r). Let
(z,v,5) denote a maximally complementary solution at
. From (34)—(36), we can computé.z, Ay, As) and
conclude that Az, Ay, As) € D, # 0.

(i) [«] : Suppose thab,, is non-empty. Then, there
exists (Az, Ay, As) such thatAAz = Ab, AT Ay +
As — QNAx = Ne, Nxzpyur = 0 and Asgur = 0.

On the other hand, a maximally complementary so-
lution (z*,y*,s*) at \* exists such thatdlz* = b +
NAb, ATy* + 5% — Qz* = ¢+ N Ac, Thur =
0,s5,7 =0, x5 > 0andsy, > 0. Considerz,7,3) as
defined in (34)—(36). For any € R, (7,7, 5) satisfies

AT =b+XAb, ATG+35-QT =c+ \Ac,
and

715 =N =\ (AzTs* + AsTz*).
From the definitions of and D, one can conclude that
715 = 0. Thus(z, 7, 5) is a pair of primal-dual optimal
solutions ofl @ P;) and(Q D) aslongag > 0 ands >
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0, that gives a closed interval around. Furthermore,
for an open interval\, Tz > 0 andsy > 0. Let \' <
A < X\, where)N, )\ € A If (2/,y/,s') and (Z,7,53)
are defined by (34)—(36), therk;, T > 0, 2k 7 =
Zpur = 0, s\, 58 > 0, shu7r = Saxur = 0. To
prove thath € A(w), we need to show thaiz,7,s)
is not only optimal for(QFPy) and (QD), but also
maximally complementary.

Let us assume that the optimal partitiah
(B,N,T) at X is not identical tor, i.e., there is a
solution(z(X), y(X), s(X)) such that

z5(A) >0, sy(X) >0,

and z7(\) + sz (N) #£ 0. (38)

Let us define

)\ * _ * )/
i:i A x(/\)—i—)\_i)\:c’,
A—N A—N
A=A A =N
~:_ )\ +_ /7
i=5— VN v
o)k _ * )/
E:i A s(/\)—i-/\_i/\s'.
A—N A—N

By definition (z, g, §) is optimal for A*, while by (38)
it has a positiver; + §; coordinate in7", contradicting
to the definition of the optimal partition at A*.

We still need to show that(r) is a connected inter-
val. The proof follows the same reasoning as the proof
of Lemma 1 and is omitted.

(iii) Let A € O(w), then by definitionr(\) = «, and
hence for\ € A there is a maximally complementary
solution(z, y, s) which satisfiesAz = b+ \Ab, ATy+
s—Qr=c+Ac, znyur = 0, sgur = 0, x5 >0
andsx > 0, from which we conclude that € A(w).
Analogously, one can prove that X € A(xw) then
A € O(wr). ConsequentlyD(w) = A(w) andclO(n) =
cIA(r). Let us prove that/A(m) = A(r). To the con-
trary, letA; & A(m) but\; € clA(7). As Ay € clA(7),

A1 Is a transition point and from the proof of Theorem
4.4, there is an optimal solutiofx™, 4™ (M) at A,
with the property;z:g) >0, :cj\lffﬂ =0, 55\1,) > 0 and
sﬁ\l,LT = 0. Thus,A; € A(w) which is a contradiction.
The opposite direction can be proved analogously.

(iv) Let z* € QP and(z*,y*, s*) € QD5 are arbi-
trary optimal solutions of @ P,) and(QD,) for some
A. Denote by(B, N, T) the optimal partition fo(Q Py )
and(@QD)). Now, the optimal sets of the problems are
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given by: s — Qr = ¢+ AAc¢, s > 0}. Having the property
. . . Qz = Qx* shows that(z, y, s) is an optimal solution
OPs ={x : x € QP), 275" =0, Qr = Qz*} for \ as well.
={z : 2 € QP\,znuT = 0}, The factzg > 0 directly follows fromz > 0.
On the other hand, sincér,y,s) is a primal-dual
oDy = {(z,y,s) : (z,y,s) € ODy, optimal solution andz*,y*, s*) can be chosen as a

T % - maximally complementary optimal solution implying

siat =0, Qu=Qr} o(z) C o(z*), thuszyur = 0 follows immediately.
= {(z,y,5) : (z,y,8) € QDy, spur = 0}. Analogous reasoningis valid fegur = 0.AsS,(n)is
defined byS\(7) = {(z,y,s) : x € QP., (z,y,s) €
9Dy, 25 >0, zxur =0, sy >0, spur = 0}, we
get the statement of the theorem.

The feasible sets used above &%, = {z : Az =
b+ AAb, z > 0} and QD) = {(x,y,s) : ATy +

Received 2 April, 2006; revised 20 October 2007; accepted 5
April 2007



