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1. Introduction

Traditionally, optimization theory has been con-
cerned with the task of finding good feasible solutions
to (practically relevant) input instances, little or noth-
ing about which is known in advance. Many appli-
cations, however, demand good, sometimes optimal,
solutions to a limited set of input instances which
reflect a supposedly-constant environment (imagine,
e.g., an existing railway system or communications
network). When this environment does change, maybe
only slightly and maybe only locally, do we have no
choice but to recompute some good feasible solution,
effectively forgetting about the old one?

We will analyzeocal modifications here. This means,
we do not consider small perturbations of many parts
of the input, but only one local change, which might on
the other hand be arbitrarily large. In a graph problem,
for example, the cost of a single edge might essentially

change, an edge might be removed or added, or some

other local parameter might be adjusted. Results related
to this work pertain to the question by how much a given
instance of an optimization problem may be varied if it
is desired that optimal solutions to the original instance
retain their optimality [10,16,17,19,12]. In contrasthvit
this so-called “postoptimality analysis” or “sensitivity
analysis,” our approach here is to ask, if we cannot
avoid to lose the optimality of a given solution when an
instance is varied arbitrarily, what can we doréstore
the quality of a solution, maybe in an approximative
sense?

Surely, for some problems, knowing an optimal solu-
tion to the original instance trivially makes their local-
modification variants easy to solve because the given
optimal solution is itself a very good solution to the
modified instance. For example, adding an edge in the
instance of a coloring problem will increase the cost of
an optimal solution by at most the amount of one—an
excellent approximation, but certainly not the object of
our interest.

Our goal is to show that whilem-TSP is as hard as
TSP itself in terms of inapproximabilitym-TSP ad-
mits better approximation algorithms than TSP when-
ever input instances are either guaranteed to be metric
or to be near-metric at a certain (generous, but not ar-
bitrary) relaxation factor.

Let A-TSP denote metric TSP, and, for all> %
let Ag-TSP denote the special case of TSP where all
instances satisfy thg-triangle inequality

c({z,2}) < B (c({z y}) + c({y, 2}))
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for all verticesz, y, andz. If % < B < 1, we call this

the strengthenedriangle inequality; and if3 > 1, we
call it the relaxedtriangle inequality.

For an optimization probler®/, we denote our local-
modification variant ol by LM-U. For the aforemen-
tioned special cases of TSP, we regard it as a local mod-
ification to change the cost of exactly one edge.

Our main results are as follows:

() Itis well-known that TSP is not approximable in
polynomial time with a polynomial approximation
ratio (unlessP = N P). We show that this holds
for LM-TSP, too. Thus, in terms of a worst-case
analysis,LM-TSP is as hard as TSP, and we do
not have anything to gain from knowing an opti-
mal solution to a close problem instance. By pa-
rameterizing TSP with respect to thetriangle
inequality [1-3,5,6] and by introducing the con-
cept of stability of approximation [14,6], it was
shown that TSP is not as hard as it may look like
in the light of worst-case analyses. For ahy- %
we have a constant polynomial-time approxima-
tion ratio, depending op¥ only. Bockenhauer and
Seibert [7] proved that\g-TSP is APX-hard for
every3 > 1 (note that for3 = 1, the problem be-
comes trivially solvable in polynomial time). Here,
we prove that.M-Ag-TSP is NP-hard for every
B> % This implies in particular thatm-A-TSP,
too, is NP-hard. We conjecture that, for> 1,
this problem is also APX-hard, which, so far, we
have been unable to prove and thus leave as an
open research problem.

(i) For many years, Christofides’ algorithm [8] with
its approximation ratio ofi..5 has been the best
known approximation algorithm for attacking
A-TSP. It remains a grand challenge to improve
on Christofides’ algorithm. We will show that, in-
triguingly enoughiM-A-TSP admits an efficient
1.4-approximation algorithm. This result can be
generalized tam-Ag-TSP , and the resulting ap-
proximation guarantee beats all previously-known
approximation algorithms forAg-TSP for all
1 < B < 3.34899, which includes the practically
most relevant TSP instances. Furthermore, for
% < B < 1, we show how to obtain an approxi-
mation ratio arbitrarily close ta, for sufficiently
large input graphs.

So, on the one hand, additional information about an
optimal solution to a related input instance may be use-
ful to some extent, and on the other hand, the local-
modification problem variant may remain exactly as
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hard as the original problem. Yet, the final aim of our
paper is to call forth the investigation of the hardness
of local-modification optimization problems in order to

develop approaches to handle situations where multiple

(and, potentially, dynamically determined) local modi-
fications may arise.
The paper is subdivided into four sections. In Sec-

tion 2, we will present our hardness results. In Section 3,

we will present al.4-approximation algorithm for the

local-modification metric TSP, Section 4 is devoted to
approximability results for the case of the relaxed trian-
gle inequality, and Section 5 contains our approximation
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Problem: Find a Hamiltonian cyclgV, C) that mini-
mizes Y cn(e).
ecC

Before presenting approximation algorithms for
LM-A-TSP, we start by proving some hardness results.

First, we will show thattm-TSP is as hard to ap-
proximate as “normal” (i. ., unaltered) TSP.
Theorem 1 There is no polynomial-time p(n)-
approximation algorithm for.m-TSP for any polyno-
mial p (unlessP = N P).

Proof: We will give a reduction from the Hamiltonian

results for the case of the sharpened triangle inequality. cycle problem (HC): Given an undirected, unweighted

2. Hardness Results

We start off with a formal definition of TSP and its
local-modification variants.

Definition 1. Let G = (V, E, ¢) be a weighted complete
graph, and let3 > % be a real value. We say thét
obeys theA s-inequality iff for all verticesr, y, z € V,
we have

c({z,2}) < B (c({z,y}) + c({y, 2})) 1)

By TSP, we denote the following optimization problem.
For a given weighted complete gragh= (V, E, ¢),
find a minimum cost Hamiltonian cyclég., a tour on
all vertices of cost

(V,C") is a Hamiltonian

Olg = min{ Z c(e)

ecC’

cycle}.

Restricting, for some value of, the set of admis-
sible input instances to those which obey the;-
inequality yields the problem\s-TSP. Besides, we
defineA-TSP:= A;-TSP.

Definition 2. Let U € {TSP, A-TSP, Ag-TSP}. The

problemLm-U is defined as follows.

Input:

e two complete weighted graphGo = (V, E,co),
Gy = (V,E,cn) such thatGo and Gy are both
admissible inputs fot/ and such thato andcy co-
incide, except for one edge;

e a Hamiltonian cyclg(V, C) such that>" co(e)

ecC

0T,

graphG, decide whethe€ contains a Hamiltonian cy-
cle or not. LetG = (V, E)) be an input instance for HC
whereV = {vy,..., v, }.

In order to construct an input instane@o, Gy, C)
for LM-TSP, we employ a graph construction due to
Papadimitriou and Steiglitz [18], who used the same
construction in order to give examples of TSP instances
which are hard for local search strategies: For each ver-
tex v;, we construct a so-called diamond graph as
shown in Figure 1 (a). We will refer to the corner ver-
tices N;, S;, W;, and E; of D; as to the north, south,
west, and east vertex dd;, respectively.

The main property of the diamond graph, which we
will employ in our reduction, is the following. Assuming
that a path may only enter or leave a diamdndat a
corner vertex, there are only two distinct possibilities to
traverse all vertices ab;: either from west to east, as
shown in Figure 1 (b), or from north to south, as shown
in Figure 1 (c).

These diamonds are now connected as shown in Fig-

N;

Fig. 1. The diamond construction in the proof of Theorem 1.
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ure 1 (d). The edge costs (Hp are set as follows. Let
M = n-2" + 1. All diamond edges shown in Fig-
ure 1 (a) and the east-west-connections fignto W; 4
and fromE,, to W, as shown in Figure 1 (d) are assigned
a cost ofl each. The north-south-edgéd’;, S;} are
assigned a cost df whenever{v;,v;} € E and a cost
of M otherwise. All other edges receive a costidf

Bockenhaueet al. —On the Approximability of TSP on- -

3. The Metric Case

In what follows, we will show thatm - A-TSP admits
a %—approximation, which beats the naive approach of
using Christofides’ algorithm (which would yield%
approximation), whereby the input cyd#, C) would
be ignored altogether.

each. The choice of these edge costs assures that anfrheorem 3 There is al .4-approximation algorithm for

Hamiltonian path inG, traverses the diamonds from
north to south (as shown in Figure 1 (b)) or from east

LM-A-TSP.
In order to prove Theorem 3, we will need the fol-

to west (as shown in Figure 1 (c)), unless it uses at leastlowing few lemmas. Our crucial observation is that in

one expensive edge.

In Gy, the cost of the edgéF,,, W;} is changed
from 1 to M. The given optimal Hamiltonian cycl€'
is the one shown in Figure 1 (d). This optimal solution
for Go has a cost o&n.

Itis easy to see that if there is a Hamiltonian cyHle
in G, a corresponding Hamiltonian cyck in G can
traverse all diamonds in north-south direction. Hence,
en (H) = 8n. All Hamiltonian cycles inG that do not
correspond (in this way) to Hamiltonian cyclegjiicost
at leastM + 8n — 1. Thus, the approximation ratio of
any non-optimal solution is at least as badlas2™ 3.
For the detailed description of similar diamond graph
constructions, also see, for example, [15].

Now, we will show thattm-A-TSP remains a hard
problem for anys > 3.
Theorem 2 LM-Ag-TSPis NP-hard for any3 > 1.

Proof: We will use a reduction from the restricted
Hamiltonian cycle problem (RHC). The objective in
RHC is, given an unweighted, undirected grapland

a Hamiltonian pathP in G which cannot be trivially
extended to a Hamiltonian cycle by joining its end-
points, to decide whether a Hamiltonian cycle Gh
exists. This problem is well-known to be NP-complete
(see, for example, [15]).

a metric graph, all of the neighboring edges of short
edges can only be modified by small amounts.
Lemma4 LetG, = (V,E,¢1) and Gy = (V, E, ¢2)

be metric graphs such that and ¢, coincide, except
for one edge € E. Then, every edge adjacentddnas

a cost of at least|ci(e) — ca(e)|.

Proof: We set{a,a’} := {c1(e), ca(e)} such that’ >

a andd := o’ — a. Let f € F be any edge adjacent
to e, and for any sucly, let f/ € E be the one edge
that is adjacent to both and f. Then, by the triangle
inequality, we have:

a' < c(f) +ce(f')

and hence’’ — a < 2¢(f).

o(f) <elf) +a

We will have to distinguish two cases. Either, an edge
becomes more expensive, or it becomes less expensive.
In either case, our strategy is to compare the input solu-
tion (to the old problem instance) with an approximate
solution (to the new problem instance).

Let us start with the latter case.

Lemma 5 Let(Go, Gy, C) be an admissible input for
LM-A-TSPsuch thatd := co(e) — en(e) > 0 for the

edgee. If 07§GN < % itis a g—approximation to output

the feasible solutiol’ := C for LM-A-TSP.

The reduction uses an idea analogous to the standard

reduction from the Hamiltonian cycle problem to TSP:
Let (G, P) be an instance of RHC wherg = (V, E),

V ={v1,...,von}, and P = (vq,...,v,). From this,
we construct an instandé/o, G, C) of LM-Az-TSP
as follows: LetGp = (V, E, co) andGy = (V, E, cy)
where (V, E) is a complete graph;o(e) = 1 for all

e € EU {{vp,v1}} andcp(e) = 20 otherwise, and
exn({vn,v1}) = 26. Let C = (vi,va,...,0,,01).
Clearly, this reduction can be done in polynomial time,

Proof:
CN(a) < Co(a) _ OTq, < Olg, +6
OTGN - OTGN OTGN - OTGN
=1+ <1421
 OTgy — 5 5

Lemma 6 Let(Go, Gy, C) be an admissible input for
LM-A-TSPsuch thatd := co(e) — en(e) > 0 for the

and it is easy to see that there is a Hamiltonian cycle edgee. If ﬁ > % there is a%-approximation for
N

in G iff there is a Hamiltonian cycle of costin Gy.

LM-A-TSP.
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Proof: We may assume that optimal TSP tourGr,
use the edge. For if they did not,C would already
constitute an optimal solution. Fix one such optimal tour
Copr In Gy. In Copr, ¢ is adjacent to two edges
andjf’. Letv be the vertex incident witlf, but not with
e, and letv’ be the vertex incident withf’, but not with
e. By P, denote the path from to v’ in Copr that
doesnot involve e.

Consider the following algorithm: For every pafr
f' of disjoint edges, both of which are adjacenteto
compute an approximate solution to the TSP path prob-
lem on the subgraph af x induced by the vertex set
V'\ e (i.e, withouttwo vertices) with start vertek and
end vertexi’ where{t} = f\ eand{#'} = f'\e. Itis
known [11,13] that this can be done with an approxima-
tion guarantee og. Each of these paths is augmented
by f, e, and f’ so as to yield a TSP tour. The algo-
rithm concludes by outputting the least expensive of all
of these tours.

Note that sincall pairs f, f’ are taken into account,
one of the considered tours uses exactly those eflges
f, f' = f’ thatCopr uses. This is why the algorithm
outputs a tour of cost at most

() + ') +enfe) + 2e(P)
= (0T, —c(P)) + gc(P)
=0Tg, + %C(P)

(where ¢ is short-hand notation foey whereverco
and cy coincide) and thus achieves an approximation
guarantee of
2 P
142, dP)
3 OTg,

Since by Lemma 4min{c(f),c(f")} for i €
{1, 2}, we haveOT¢, — ¢(P) > § and hence:

o(P) _
OTGN -

So, we obtain an overall approximation guarantee of
1+2=1
Corollary 7 There is ag—approximation algorithm for
the subproblem ofM-A-TSP where edges may only
become less expensive.

Proof: Compute, as laid out in Lemma 6, an approx-
imate solution to.M-A-TSP and compare it with the
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input solutionC'. Output the less expensive of the two
solutions. Depending on whether the value&%
GN

(whereé := co(e) — en(e) > 0) is less or greater than
% (which we cannot necessarily tell), one of the con-
sidered two feasible solutions isgaapproximation.

We will now turn to the case where an edge becomes
more expensive. We can state a lemma akin to Lemma 5,
but notice that by reusing a formerly optimal solution,
we incur a certain extra cost.

Lemma 8 Let(Go, Gy, C) be an admissible input for
LM-A-TSPsuch thaty := cy(e) — co(e) > 0 for the

edgee. If 52— < £, itis a £-approximation to output
N

the feasible solutiod := C for LM-A-TSP.

Proof:
CN(U) < Co(a) + 6 . OTGO +6 < OTGN +6
OTGN - OTGN - OTGN OTGN
2
+ OTGN S+ 5 5

When computing an approximate solution, things be-
come slightly different from what they used to be like
in Lemma 6: We may assume thatisedto be a part of
C and that a new solution should no longer use it. In-
stead, it will use two edgesand f’ such thatf and f’
are non-disjoint and both incident with the same vertex
of e. This pair may be chosen at either end-pointof
a choice which is completelgrbitrary.

We conjecture that, if an improvement of the approx-
imation guarantee is possible, this is precisely the point
where to start at.

Lemma 9 Let(Go, Gy, C) be an admissible input for

LM-A-TSPsuch thatd := cy(e) — co(e) > 0 for the

edgee. If ﬁ > 2, there is aZ-approximation for
N

LM-A-TSP.

Proof: We may assume that optimal TSP toursir,

do not use the edge For if they did,C would already

constitute an optimal solution. Fix one such optimal tour

Copt, and fix one vertexv incident withe. In Copr,

w is incident with two edgeg and f’. Let v be the

vertex incident withf, but not withe, and letv’ be the

vertex incident withf’, but not withe. By P, denote

the path fromw to v’ in Co pr that doesiotinvolve w.
Consider the following algorithm: For every pafit

f' of edges incident withu, compute an approximate

solution to the TSP path problem on the subgraph of

G- induced by the vertex séf \ {w} with start vertex
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o and end vertex’’ where {3} = f\ e and{?'} =
f’\ e. Itis known [11,13] that this can be done with an
approximation guarantee o}‘ Each of these paths is
augmented by and f’ so as to yield a TSP tour. The
algorithm concludes by outputting the least expensive
of all of these tours.

Note that sincall pairs f, f’ are taken into account,
one of the considered tours uses exactly those eflges
f, f' = f’ thatCopr uses. This is why the algorithm
outputs a tour of cost at most

o(f) + e(f') + gc(P) — (OTey — c(P)) + 2e(P)

[SV e

2
= OTGN + gC(P),
just as in the proof of Lemma 6.

Using the same arguments as in the proof of Corol-
lary 7, the preceding lemma yields the following corol-
lary.

Corollary 10 There is a%-approximation algorithm
for the subproblem afm-A-TSPwhere edges may only
become more expensive.

4. The Near-Metric Case

The algorithm outlined in Lemma 6 can be gener-
alized to graphs which are not necessarily metric, but
only near-metricj.e., where the metricity constraint is
relaxed by a factor ofs > 1. Since it will be useful
later, let us pay extra attention to the fact that input in-
stances for all the problems from Definition 2 contain
two distinct graphs, potentially obeying relaxed triangle
inequalities according to different values @f

Notice that the parametémeed not be greater for the
graph with the costlier edge. Under some circumstances,
it might even decrease when we modify the cost of a
single edge. In the following generalization of Lemma 4,
the convention is therefore that is the cost function of
the less expensive grapty, that of the more expensive
one, and botf; obey theAgs, -inequality,i € {1, 2}.
Lemma 11 LetG; = (V,E,c1) andGse = (V, E, c2)
be graphs such that; obeys theA 5, -inequality fori €
{1, 2} and some values;, 5, > 1 and such that; and
co coincide, except for one edge= E. By convention,
let ¢1(e) < ea(e). Then, every edge adjacentddas a

2(e)—B162c1(e) )
cost of at Ieaslciﬁ1 5ot s

Proof: We seta := c¢1(e) anda’ := ca(e). Letf € E
be any edge adjacent¢pand for any suclf, let /' € E

Bockenhaueet al. —On the Approximability of TSP on- -

be the one edge that is adjacent to betind f. Then,
by the relaxed triangle inequality, we have:

a' < Bo-(c(f) +e(f)) olf') <P (a+e(f)

and hence
a’ — p1B2a
of) = B2+ 152

Note that for relatively small changes, the value
co(e) — B182¢1 (e) may well be non-positive, rendering
Lemma 11 trivial in such a case.

The algorithm from Lemmas 6 and 8 should be ad-
justed to accommodate for the relaxation of the trian-
gle inequality. More precisely, in order to find a Hamil-
tonian path between a given pair of vertices isa
metric graph, we will employ the algorithm by Forlizzi
et al. [9], a variation of the path-matching Christofides
algorithm (PMCA, see [6]) for the path version of near-
metric TSP, which yields an approximation guarantee
of 232, This gives us Algorithm 1.

Algorithm 1

Input: An instance (Go,Gn,C) of LM-Ag-TSP
where 8 > 1, Go = (V,E,co) and Gy =
(V, E, CN).

(1) Lete € E be the edge wherey(e) # cn(e).
Let& be the set of all unordered paify, f/'} C E
where f # f’ are edges adjacent te such that
if co(e) <en(e): fNf Neisasingleton;
and
if co(e) >en(e): fNf

) Forall {f, f’} € £ compute a Hamiltonian path
between the two vertices froff U f’) \ e on the
graph G \ (e n (f U f")), using the PMCA path
variant by Forlizzi et al. [9]. Augment this path
by edgesf, f/, and, ifco(e) > cn(e), edgee to
obtain the cycleCy ¢/y.

(3) LetC be the least expensive of the cycles in the

set{T} U{Cispn | {£. 1} € &)

Output: The Hamiltonian cycle.

Lemma 12 Algorithm 1 achieves an approximation

guarantee of

@

156% + 56, — 6
1062 + 38,64 + 384 — 6

ﬁLﬁH ) (2)

for input graph pairs (Go,GxN) such that Go
obeys theAg,-inequality andGy obeys theAg, -

inequality and where3, := min{3p,08x} > 1 and
By := max{fo, Bn} > 1.
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Proof: Adhering to the convention of Lemma 11, set which yields
{c1,¢e2} = {co,cn} such thatei(e) < eq(e) for all

edgese € E. In other words, we have, = cy if an ca(e) = BBuci(e) _ Bbu+ Ba
edge becomes more expensive and- cy otherwise. OTcy N 2

We may assume that optimal TSP toursGy = (0 —1) - (BB + Bu)
(V,E,cn) use the edge iff ¢y = c;; otherwise,C B D52 -2 '

is an optimal solution, and we are done. Fix one such

optimal tourCopr in Gy, and let{ f, f'} € £ be such By adding(5, 5 — 1)% to both sides, we are given:
that Copr uses bothf and f’. By P, denote the path N

that results fromCo pr by removing edgeg, f’, and, cae) —ci(e) _ B+ B
potentially,e. Set OTe < 5
N
(¥ —1) - (BB +B)
= c(P) and let, for brevity, - 1032 L_H2 :
OTcy 20
2 - + LMH T 1)
19 = ﬁLﬁH . 215ﬁL + SBL 6 (6 ﬁ ) OTGN
1062 +36.8: + 306, — 6 ~

denote the approximation guarantee claimed in (2). In
terms ofa, Algorithm 1 always achieves an approxi- and thus, substituting the value (2) féy

ation guarantee of ( ) — ( ) 3 1
m g cole ci(€e
2\ —9\e) < —2ﬁLﬁH + 5@1 -1

l—a+ §5L204, OTcy
s CW—1) (BB +B)

even if we did not havé’ at our disposal. Here, the term %53 -2
1 — « corresponds to the edgés f' and (potentially) _ §ﬁ B, + 15 1
e, which are chosen optimally, and the tefy,2a gt T g
corresponds to the approximation of the p&th (B - 1562 +56—6 (BB + B)

(Note that the strategy to approximakemay rely R 1063+3BL6$35”_6 S
on theAg, inequality,i.e, the less relaxed one of the T -2

two because this strategy removes the ed@r@m the

graph.) Hence, unless (tedious calculations)- - - -

1532 + 58, — 6
1062 + 36,84+ 36, — 6

9—1

- - —-1=9-1
a > )
T

(3) = BB

Since, by the same reasoning as that of Lemmas 5 and 8,
reusing the input optimal solutiod inflicts a deviation
from the new optimum by at most(e) — ¢ (e) < (9 —

we are done. Let us therefore assume that (3) holds. By
Lemma 11, we have

. , ca(e) — B Baci(e) 1)-OTg, , Algorithm 1 is aw-approximation algorithm.
min{e(/), e(f)} = =522
ea(e) — BBuci(e) . Hence, whenever thé values ofGp and Gy coin-
2 BB+ cide, we have Theorem 13.
e Theoren; 13 There is a (polynomial-time)
and hence 2 156°+56—-6 N -
6% - 1357 137 —6 approximation algorithm forLm
l—a> 2 (cae) = ﬁLﬁHcl(e))' Ag-TSPfor 3 > 1.
OTy - (BB + Bu) Interestingly, Algorithm 1 achieves a better approxi-
Putting this together with (3), we know that mation guarantee not just than PMCA [6], but also than
Bender’s and Chekuri$3-approximation algorithm [3]
V-1 2 (cle) = Bbule)) for the most practically relevant values 6f The turn-

o OTcy - (BBa+ ) ing point is about aB* ~ 3.34899. More to the point,
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3 52
Approximation 2
guarantee

13 —
11 —

Algorithm 1

5 ]
37 Cor. 14
1 | | | | |

1 15 9 2.5 3 3.5

Parameter 8
Fig. 2. Approximation guarantees of various algorithmgeteling ong

Andreae’s(3? + 3)-approximation [1], which performs ~ Then,
better thanl only wheng < 3, always performs worse Crmax 232

than Algorithm 1 in the intervab € (1, 3*). These ob- Cimin < 1-53 )
servations are illustrated in Figure 2.
Another practical special case is that whére= 1, Proof: To be found in [5], Lemma 2 (b).

i.e., where we start with a metric graph, but changing
the cost of an edge will violate th&-inequality. ) ) ) )
Corollary 14 LM-A4-TSP for § > 1, restricted to More_over, neighboring edges in super-metric graphs
those inputs wheraGo is metric, admits a72-- neverdlf_'ferbyafactorof_more thafﬁﬂ—ﬁ [5]. Therefore,

' 2+38 the maximal edge costs in the two graphs afaAg-

approximation. . : o
P TSP input instance are similarly related.

Lemma 16 Let Gp and G be two weighted graphs
5. The Super-Metric Case such thatGGp obeys theA g, -inequality andG' ' obeys
the A g, -inequality wheremax{30, 8y} < 1. Fori €

We will now deal with the case osuper-metric ~ {O; N}, Iet cmaxi @and cmin,; denote the maximal and
graphs, i.e. with graphs satisfying th®s-inequality minimal cost of an edge i@¥;, respectively. Let the edge

for some 3 < 1. Please note that > 1 holds in costs inGp and G y agree except for one edge. Then,

any case wherg = % corresponds to the trivial case

where all edge costs are equal. Thus, we will assume Cmax N < ;Cmaxoa
1 3 < 1 for the remainder of this section. As it turns ST 1-0n 7

2 S . 1
out,LM-Ag-TSP is fairly easy for super-metric graphs. Cmin N < ——— Cimin. O

In this section, we will show that even the conceivably 1 —150 (5)

most naive algorithm forM-Ag-TSP on super-metric Cma.0 < Conax. N
graphs is a PTAS. ’ 1-0o
First of all, we note that, for super-metric graphs, and cuino 1 Conin N -
there is a bound on the ratio of the maximal and minimal I e/
edge costs.
Lemma 15 ([5]) LetG be a graph which obeys tiks- Proof: Let e be the edge such thab(e) # cn(e).

inequality for some¥ < 1. Letcyax andeni, denote the Since all the neighbors af have the same cost iip
cost of its most and least expensive edge, respectivelyas inGx and since these costs are bounded,Qy o.
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we havecy (e) < ﬁcmax,o- Hence,

Cmax,0-

1
1-08n

Cmax,N < maX{CN(e)a Cmax,O} <
Likewise,co(e) > (1 — Bo)cmin, N, @and hence,

Cmin,0 > min{co(e), cmin,n} > (1 — B0)Cmin,N-

The two remaining inequalities are symmetric.

Theorem 17 Let (Go, Gy, C) be an input instance of
LM-Ag-TSP such thatGo obeys theAg, -inequality
and Gy obeys theAg, -inequality and wheres, :=
min{So, Bn} and By := max{fo, On} < 1. Then, it

: 2652~ (1—BL) (1—fn) imati i

is a (1_+ WM)-appmxmaﬂon to simply
outputC.

Proof: It is straightforward to verify that

0T,
vl

(6)

Cmin,i S

The combination of (9) and (10) yields

min{?ﬁ%, 2033}
(1-8n)-(1-0B0o)

* Cmin,O — Cmin,O

_ 261 B
_OTGO—"_((l—ﬁL)'(l—ﬁH) 1)
* Cmin,O
(5) 242
< OTeo + ((1 —Br)(1—Bu) 1)
OTg,
\4
©) 267 — (1—6L)(1 — Br)
< 0T + (S =g )
OTg,
\4

267 — (1 —6)(1 — Bu)
(1 =B)(1 = Bu)|V|

- (1+

) OTe,.

Suppose that is the edge whose cost is altered and Now, suppose thaty (e) < co(e). W.1.0.g., assume

suppose thaty(e) > co(e). W.1.0.g., assume that
is a part ofC. (If itis not, C is already an optimal tour
in Gy.) Then,

Olg, < OTgy (7)
and

en(C) = OTg, +cn(e) — cole)

S OTGO + Cmax,N - Cmin,O (8)
(4) 1
< OTGO + mcmax,O — Cmin,O
3) 1 2032
< OTgy + ——— —2
“o T By 1-Fo
* Cmin,O — Cmin,O- (9)

But we also have

—. (M
CN(C) < OTGO + Cmax,N — Cmin,O
3) 232
< OTg, + ﬂcmin,]\/ — Cmin,O
1— BN

26, 1
1-8y 1-00

* Cmin,O — Cmin,O-

(10)
4)
< OTg, +

that e isnota part ofC. (If itis, C is already an optimal
tour in Gy.) Then,

CN(U) = OTGO < OTGN + Co(e) — CN(G)

S OTGN + Cmax,0 — Cmin,N (11)

(4)
< OTg, +

Cmax,N — Cmin,N
2
28%
1-Bo 1-p0Nn
* Cmin,N — Cmin,N -

b
1- 5o
(3) 1

< OTGN +

(12)

But we also have

__ (10
CN (C) < OTGN + Cmax,0 — Cmin,N
(3) 2032
< OTGN + &Cmin,O — Cmin,N
1—Po

255 1
1-6o 1-p0n

* Cmin,N — Cmin,N -

(13)
4)
< OTg, +
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The combination of (12) and (13) yields

min{243%;, 25(2)}
(1—=Po)-(1-5n)

* Cmin,N — Cmin,N

[1]

(2]

_ 261 B
=0T+ (=g (= )
: Cmin,N
(5) 252 (3]
< 0Ty + (=g =5 ~ 1)
OTg,y [4]
\4

267 — (1 —B)(1 - Br)
(1=8L)1 = Bu)|V|

- (1+

So, as|V| — oo, the approximation guarantee of an
algorithm which simply outputé’ approaches. Since
we can also estimate this guarantee, the following sim-
ple strategy results in a PTAS fom -Az-TSP on super-
metric graphs: Count the number of vertices in the input [6]
graphs, compute the approximation guarantee (given by
the formula of Theorem 17) and decide, whether it is
good enough. If so, output. If not, perform exhaus-
tive search for an optimal solution. Since this happens
for finitely many inputs only, this algorithm is a PTAS.

) OTe,.

(5]

[7]

6. Conclusion
(8]

In this work, we have introduced and successfully ap-
plied the concept of reusing optimal solutions when in-
put instances are locally modified. In the case of metric
TSP, we are able to improve on the previously-known
upper bound of..5, as achieved by Christofides’ algo-
rithm (applied to the new instance, ignoring the given
optimal solution). In the case of near-metric TSP, we
have shown how to non-trivially extend our approach
to the most practical values ¢f

As an open problem, we state the question whether
the NP-hard.M-A-TSP is also APX-hard.

9]
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