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Abstract

Given an instance of TSP together with an optimal solution, we consider the scenario in which this instance is modified
locally, where a local modification consists in the alteration of the weight of a single edge. More generally, for a problem
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p(n)-approximation algorithm forLM -TSP for any polynomialp. Moreover, LM -TSP where inputs must satisfy the
β-triangle inequality (LM -∆β-TSP ) remains NP-hard for allβ > 1

2
. However, forLM -∆-TSP(i.e., metricLM -TSP),

we will present an efficient1.4-approximation algorithm. In other words, the additional information enables us to do
better than if we simply used Christofides’ algorithm for themodified input. Similarly, for all1 < β < 3.34899, we
achieve a better approximation ratio forLM -∆β-TSP than for ∆β -TSP. For 1

2
≤ β < 1, we show how to obtain an
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1. Introduction

Traditionally, optimization theory has been con-
cerned with the task of finding good feasible solutions
to (practically relevant) input instances, little or noth-
ing about which is known in advance. Many appli-
cations, however, demand good, sometimes optimal,
solutions to a limited set of input instances which
reflect a supposedly-constant environment (imagine,
e.g., an existing railway system or communications
network). When this environment does change, maybe
only slightly and maybe only locally, do we have no
choice but to recompute some good feasible solution,
effectively forgetting about the old one?

We will analyzelocalmodifications here. This means,
we do not consider small perturbations of many parts
of the input, but only one local change, which might on
the other hand be arbitrarily large. In a graph problem,
for example, the cost of a single edge might essentially
change, an edge might be removed or added, or some
other local parameter might be adjusted. Results related
to this work pertain to the question by how much a given
instance of an optimization problem may be varied if it
is desired that optimal solutions to the original instance
retain their optimality [10,16,17,19,12]. In contrast with
this so-called “postoptimality analysis” or “sensitivity
analysis,” our approach here is to ask, if we cannot
avoid to lose the optimality of a given solution when an
instance is varied arbitrarily, what can we do torestore
the quality of a solution, maybe in an approximative
sense?

Surely, for some problems, knowing an optimal solu-
tion to the original instance trivially makes their local-
modification variants easy to solve because the given
optimal solution is itself a very good solution to the
modified instance. For example, adding an edge in the
instance of a coloring problem will increase the cost of
an optimal solution by at most the amount of one—an
excellent approximation, but certainly not the object of
our interest.

Our goal is to show that whileLM -TSP is as hard as
TSP itself in terms of inapproximability,LM -TSP ad-
mits better approximation algorithms than TSP when-
ever input instances are either guaranteed to be metric
or to be near-metric at a certain (generous, but not ar-
bitrary) relaxation factor.

Let ∆-TSP denote metric TSP, and, for allβ ≥ 1
2 ,

let ∆β -TSP denote the special case of TSP where all
instances satisfy theβ-triangle inequality

c({x, z}) ≤ β ·
(
c({x, y}) + c({y, z})

)

for all verticesx, y, andz. If 1
2 ≤ β < 1, we call this

the strengthenedtriangle inequality; and ifβ > 1, we
call it the relaxedtriangle inequality.

For an optimization problemU , we denote our local-
modification variant ofU by LM -U . For the aforemen-
tioned special cases of TSP, we regard it as a local mod-
ification to change the cost of exactly one edge.

Our main results are as follows:
(i) It is well-known that TSP is not approximable in

polynomial time with a polynomial approximation
ratio (unlessP = NP ). We show that this holds
for LM -TSP, too. Thus, in terms of a worst-case
analysis,LM -TSP is as hard as TSP, and we do
not have anything to gain from knowing an opti-
mal solution to a close problem instance. By pa-
rameterizing TSP with respect to theβ-triangle
inequality [1–3,5,6] and by introducing the con-
cept of stability of approximation [14,6], it was
shown that TSP is not as hard as it may look like
in the light of worst-case analyses. For anyβ > 1

2 ,
we have a constant polynomial-time approxima-
tion ratio, depending onβ only. Böckenhauer and
Seibert [7] proved that∆β -TSP is APX-hard for
everyβ > 1

2 (note that forβ = 1
2 , the problem be-

comes trivially solvable in polynomial time). Here,
we prove thatLM -∆β -TSP is NP-hard for every
β > 1

2 . This implies in particular thatLM -∆-TSP,
too, is NP-hard. We conjecture that, forβ ≥ 1,
this problem is also APX-hard, which, so far, we
have been unable to prove and thus leave as an
open research problem.

(ii) For many years, Christofides’ algorithm [8] with
its approximation ratio of1.5 has been the best
known approximation algorithm for attacking
∆-TSP. It remains a grand challenge to improve
on Christofides’ algorithm. We will show that, in-
triguingly enough,LM -∆-TSP admits an efficient
1.4-approximation algorithm. This result can be
generalized toLM -∆β -TSP , and the resulting ap-
proximation guarantee beats all previously-known
approximation algorithms for∆β -TSP for all
1 < β < 3.34899, which includes the practically
most relevant TSP instances. Furthermore, for
1
2 ≤ β < 1, we show how to obtain an approxi-
mation ratio arbitrarily close to1, for sufficiently
large input graphs.

So, on the one hand, additional information about an
optimal solution to a related input instance may be use-
ful to some extent, and on the other hand, the local-
modification problem variant may remain exactly as
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hard as the original problem. Yet, the final aim of our
paper is to call forth the investigation of the hardness
of local-modification optimization problems in order to
develop approaches to handle situations where multiple
(and, potentially, dynamically determined) local modi-
fications may arise.

The paper is subdivided into four sections. In Sec-
tion 2, we will present our hardness results. In Section 3,
we will present a1.4-approximation algorithm for the
local-modification metric TSP, Section 4 is devoted to
approximability results for the case of the relaxed trian-
gle inequality, and Section 5 contains our approximation
results for the case of the sharpened triangle inequality.

2. Hardness Results

We start off with a formal definition of TSP and its
local-modification variants.

Definition 1. Let G = (V, E, c) be a weighted complete
graph, and letβ ≥ 1

2 be a real value. We say thatG

obeys the∆β-inequality iff for all verticesx, y, z ∈ V ,
we have

c({x, z}) ≤ β ·
(
c({x, y}) + c({y, z})

)
. (1)

By TSP, we denote the following optimization problem.
For a given weighted complete graphG = (V, E, c),
find a minimum cost Hamiltonian cycle,i.e., a tour on
all vertices of cost

OTG := min
{ ∑

e∈C′

c(e)

∣
∣
∣
∣
∣
(V, C′) is a Hamiltonian

cycle
}

.

Restricting, for some value ofβ, the set of admis-
sible input instances to those which obey the∆β-
inequality yields the problem∆β-TSP. Besides, we
define∆-TSP:= ∆1-TSP.

Definition 2. Let U ∈ {TSP, ∆-TSP, ∆β-TSP}. The
problemLM -U is defined as follows.
Input:
• two complete weighted graphsGO = (V, E, cO),

GN = (V, E, cN ) such thatGO and GN are both
admissible inputs forU and such thatcO andcN co-
incide, except for one edge;

• a Hamiltonian cycle(V, C) such that
∑

e∈C

cO(e) =

OTGO
.

Problem: Find a Hamiltonian cycle(V, C) that mini-
mizes

∑

e∈C

cN (e).

Before presenting approximation algorithms for
LM -∆-TSP, we start by proving some hardness results.

First, we will show thatLM -TSP is as hard to ap-
proximate as “normal” (i. e., unaltered) TSP.
Theorem 1 There is no polynomial-time p(n)-
approximation algorithm forLM -TSP for any polyno-
mial p (unlessP = NP ).

Proof: We will give a reduction from the Hamiltonian
cycle problem (HC): Given an undirected, unweighted
graphG, decide whetherG contains a Hamiltonian cy-
cle or not. LetG = (V, E) be an input instance for HC
whereV = {v1, . . . , vn}.

In order to construct an input instance(GO, GN , C)
for LM -TSP, we employ a graph construction due to
Papadimitriou and Steiglitz [18], who used the same
construction in order to give examples of TSP instances
which are hard for local search strategies: For each ver-
tex vi, we construct a so-called diamond graphDi as
shown in Figure 1 (a). We will refer to the corner ver-
ticesNi, Si, Wi, andEi of Di as to the north, south,
west, and east vertex ofDi, respectively.

The main property of the diamond graph, which we
will employ in our reduction, is the following. Assuming
that a path may only enter or leave a diamondDi at a
corner vertex, there are only two distinct possibilities to
traverse all vertices ofDi: either from west to east, as
shown in Figure 1 (b), or from north to south, as shown
in Figure 1 (c).

These diamonds are now connected as shown in Fig-

Si

EiWi

Ni

(a)

Si

Ei

Wi

Ni

(b)

Si

EiWi

Ni

(c)

S1

E1

W1

N1

S2

E2

W2

N2

Sn

En

Wn

Nn

(d)

Fig. 1. The diamond construction in the proof of Theorem 1.
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ure 1 (d). The edge costs inGO are set as follows. Let
M := n · 2n + 1. All diamond edges shown in Fig-
ure 1 (a) and the east-west-connections fromEi toWi+1

and fromEn toW1 as shown in Figure 1 (d) are assigned
a cost of1 each. The north-south-edges{Ni, Sj} are
assigned a cost of1 whenever{vi, vj} ∈ E and a cost
of M otherwise. All other edges receive a cost ofM

each. The choice of these edge costs assures that any
Hamiltonian path inG0 traverses the diamonds from
north to south (as shown in Figure 1 (b)) or from east
to west (as shown in Figure 1 (c)), unless it uses at least
one expensive edge.

In GN , the cost of the edge{En, W1} is changed
from 1 to M . The given optimal Hamiltonian cycleC
is the one shown in Figure 1 (d). This optimal solution
for GO has a cost of8n.

It is easy to see that if there is a Hamiltonian cycleH ′

in G, a corresponding Hamiltonian cycleH in G can
traverse all diamonds in north-south direction. Hence,
cN (H) = 8n. All Hamiltonian cycles inGN that do not
correspond (in this way) to Hamiltonian cycles inG cost
at leastM + 8n − 1. Thus, the approximation ratio of
any non-optimal solution is at least as bad as1+2n−3.
For the detailed description of similar diamond graph
constructions, also see, for example, [15].

Now, we will show thatLM -∆-TSP remains a hard
problem for anyβ > 1

2 .
Theorem 2 LM -∆β -TSP is NP-hard for anyβ > 1

2 .

Proof: We will use a reduction from the restricted
Hamiltonian cycle problem (RHC). The objective in
RHC is, given an unweighted, undirected graphG and
a Hamiltonian pathP in G which cannot be trivially
extended to a Hamiltonian cycle by joining its end-
points, to decide whether a Hamiltonian cycle inG

exists. This problem is well-known to be NP-complete
(see, for example, [15]).

The reduction uses an idea analogous to the standard
reduction from the Hamiltonian cycle problem to TSP:
Let (G, P ) be an instance of RHC whereG = (V, E),
V = {v1, . . . , vn}, andP = (v1, . . . , vn). From this,
we construct an instance(GO, GN , C) of LM -∆β -TSP
as follows: LetGO = (V, Ẽ, cO) andGN = (V, Ẽ, cN )
where(V, Ẽ) is a complete graph,cO(e) = 1 for all
e ∈ E ∪ {{vn, v1}} and cO(e) = 2β otherwise, and
cN ({vn, v1}) = 2β. Let C = (v1, v2, . . . , vn, v1).
Clearly, this reduction can be done in polynomial time,
and it is easy to see that there is a Hamiltonian cycle
in G iff there is a Hamiltonian cycle of costn in GN .

3. The Metric Case

In what follows, we will show thatLM -∆-TSP admits
a 7

5 -approximation, which beats the naı̈ve approach of
using Christofides’ algorithm (which would yield a32 -
approximation), whereby the input cycle(V, C) would
be ignored altogether.
Theorem 3 There is a1.4-approximation algorithm for
LM -∆-TSP.

In order to prove Theorem 3, we will need the fol-
lowing few lemmas. Our crucial observation is that in
a metric graph, all of the neighboring edges of short
edges can only be modified by small amounts.
Lemma 4 Let G1 = (V, E, c1) and G2 = (V, E, c2)
be metric graphs such thatc1 and c2 coincide, except
for one edgee ∈ E. Then, every edge adjacent toe has
a cost of at least12 |c1(e) − c2(e)|.

Proof: We set{a, a′} := {c1(e), c2(e)} such thata′ >

a and δ := a′ − a. Let f ∈ E be any edge adjacent
to e, and for any suchf , let f ′ ∈ E be the one edge
that is adjacent to bothe andf . Then, by the triangle
inequality, we have:

a′ ≤ c(f) + c(f ′) c(f ′) ≤ c(f) + a

and hencea′ − a ≤ 2c(f).

We will have to distinguish two cases. Either, an edge
becomes more expensive, or it becomes less expensive.
In either case, our strategy is to compare the input solu-
tion (to the old problem instance) with an approximate
solution (to the new problem instance).

Let us start with the latter case.
Lemma 5 Let (GO, GN , C) be an admissible input for
LM -∆-TSPsuch thatδ := cO(e) − cN (e) > 0 for the
edgee. If δ

OTGN

≤ 2
5 , it is a 7

5 -approximation to output

the feasible solutionC := C for LM -∆-TSP.

Proof:

cN (C)

OTGN

≤
cO(C)

OTGN

=
OTGO

OTGN

≤
OTGN

+ δ

OTGN

= 1 +
δ

OTGN

≤ 1 +
2

5
=

7

5

Lemma 6 Let (GO, GN , C) be an admissible input for
LM -∆-TSPsuch thatδ := cO(e) − cN (e) > 0 for the
edgee. If δ

OTGN

≥ 2
5 , there is a7

5 -approximation for

LM -∆-TSP.
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Proof: We may assume that optimal TSP tours inGN

use the edgee. For if they did not,C would already
constitute an optimal solution. Fix one such optimal tour
COPT in GN . In COPT , e is adjacent to two edgesf
andf ′. Let v be the vertex incident withf , but not with
e, and letv′ be the vertex incident withf ′, but not with
e. By P , denote the path fromv to v′ in COPT that
doesnot involve e.

Consider the following algorithm: For every pair̃f ,
f̃ ′ of disjoint edges, both of which are adjacent toe,
compute an approximate solution to the TSP path prob-
lem on the subgraph ofGN induced by the vertex set
V \ e (i.e., without two vertices) with start vertex̃v and
end vertex̃v′ where{ṽ} = f̃ \ e and{ṽ′} = f̃ ′ \ e. It is
known [11,13] that this can be done with an approxima-
tion guarantee of53 . Each of these paths is augmented
by f̃ , e, and f̃ ′ so as to yield a TSP tour. The algo-
rithm concludes by outputting the least expensive of all
of these tours.

Note that sinceall pairsf̃ , f̃ ′ are taken into account,
one of the considered tours uses exactly those edgesf̃ =
f , f̃ ′ = f ′ thatCOPT uses. This is why the algorithm
outputs a tour of cost at most

c(f) + c(f ′) + cN (e) +
5

3
c(P )

=
(
OTGN

− c(P )
)

+
5

3
c(P )

= OTGN
+

2

3
c(P )

(where c is short-hand notation forcN wherevercO

and cN coincide) and thus achieves an approximation
guarantee of

1 +
2

3
·

c(P )

OTGN

.

Since by Lemma 4,min{c(f), c(f ′)} ≥ δ
2 for i ∈

{1, 2}, we haveOTGN
− c(P ) ≥ δ and hence:

c(P )

OTGN

≤ 1 −
δ

OTGN

≤
3

5
.

So, we obtain an overall approximation guarantee of
1 + 2

5 = 7
5 .

Corollary 7 There is a7
5 -approximation algorithm for

the subproblem ofLM -∆-TSP where edges may only
become less expensive.

Proof: Compute, as laid out in Lemma 6, an approx-
imate solution toLM -∆-TSP and compare it with the

input solutionC. Output the less expensive of the two
solutions. Depending on whether the value ofδ

OTGN

(whereδ := cO(e)− cN (e) > 0) is less or greater than
2
5 (which we cannot necessarily tell), one of the con-
sidered two feasible solutions is a75 -approximation.

We will now turn to the case where an edge becomes
more expensive. We can state a lemma akin to Lemma 5,
but notice that by reusing a formerly optimal solution,
we incur a certain extra cost.
Lemma 8 Let (GO, GN , C) be an admissible input for
LM -∆-TSPsuch thatδ := cN (e) − cO(e) > 0 for the
edgee. If δ

OTGN

≤ 2
5 , it is a 7

5 -approximation to output

the feasible solutionC := C for LM -∆-TSP.

Proof:

cN (C)

OTGN

≤
cO(C) + δ

OTGN

=
OTGO

+ δ

OTGN

≤
OTGN

+ δ

OTGN

= 1 +
δ

OTGN

≤ 1 +
2

5
=

7

5

When computing an approximate solution, things be-
come slightly different from what they used to be like
in Lemma 6: We may assume thate usedto be a part of
C and that a new solution should no longer use it. In-
stead, it will use two edgesf andf ′ such thatf andf ′

are non-disjoint and both incident with the same vertex
of e. This pair may be chosen at either end-point ofe,
a choice which is completelyarbitrary.

We conjecture that, if an improvement of the approx-
imation guarantee is possible, this is precisely the point
where to start at.
Lemma 9 Let (GO, GN , C) be an admissible input for
LM -∆-TSPsuch thatδ := cN (e) − cO(e) > 0 for the
edgee. If δ

OTGN

≥ 2
5 , there is a7

5 -approximation for

LM -∆-TSP.

Proof: We may assume that optimal TSP tours inGN

do not use the edgee. For if they did,C would already
constitute an optimal solution. Fix one such optimal tour
COPT , and fix one vertexw incident withe. In COPT ,
w is incident with two edgesf and f ′. Let v be the
vertex incident withf , but not withe, and letv′ be the
vertex incident withf ′, but not withe. By P , denote
the path fromv to v′ in COPT that doesnot involvew.

Consider the following algorithm: For every pair̃f ,
f̃ ′ of edges incident withw, compute an approximate
solution to the TSP path problem on the subgraph of
G2 induced by the vertex setV \ {w} with start vertex
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ṽ and end vertex̃v′ where{ṽ} = f̃ \ e and {ṽ′} =
f̃ ′ \ e. It is known [11,13] that this can be done with an
approximation guarantee of53 . Each of these paths is
augmented bỹf and f̃ ′ so as to yield a TSP tour. The
algorithm concludes by outputting the least expensive
of all of these tours.

Note that sinceall pairsf̃ , f̃ ′ are taken into account,
one of the considered tours uses exactly those edgesf̃ =
f , f̃ ′ = f ′ thatCOPT uses. This is why the algorithm
outputs a tour of cost at most

c(f) + c(f ′) +
5

3
c(P ) =

(
OTGN

− c(P )
)

+
5

3
c(P )

= OTGN
+

2

3
c(P ),

just as in the proof of Lemma 6.

Using the same arguments as in the proof of Corol-
lary 7, the preceding lemma yields the following corol-
lary.
Corollary 10 There is a 7

5 -approximation algorithm
for the subproblem ofLM -∆-TSPwhere edges may only
become more expensive.

4. The Near-Metric Case

The algorithm outlined in Lemma 6 can be gener-
alized to graphs which are not necessarily metric, but
only near-metric,i.e., where the metricity constraint is
relaxed by a factor ofβ > 1. Since it will be useful
later, let us pay extra attention to the fact that input in-
stances for all the problems from Definition 2 contain
two distinct graphs, potentially obeying relaxed triangle
inequalities according to different values ofβ.

Notice that the parameterβ need not be greater for the
graph with the costlier edge. Under some circumstances,
it might even decrease when we modify the cost of a
single edge. In the following generalization of Lemma 4,
the convention is therefore thatc1 is the cost function of
the less expensive graph,c2 that of the more expensive
one, and bothci obey the∆βi

-inequality,i ∈ {1, 2}.
Lemma 11 Let G1 = (V, E, c1) andG2 = (V, E, c2)
be graphs such thatci obeys the∆βi

-inequality fori ∈
{1, 2} and some valuesβ1, β2 ≥ 1 and such thatc1 and
c2 coincide, except for one edgee ∈ E. By convention,
let c1(e) ≤ c2(e). Then, every edge adjacent toe has a
cost of at leastc2(e)−β1β2c1(e)

β1β2+β2

.

Proof: We seta := c1(e) anda′ := c2(e). Let f ∈ E

be any edge adjacent toe, and for any suchf , letf ′ ∈ E

be the one edge that is adjacent to bothe andf . Then,
by the relaxed triangle inequality, we have:

a′ ≤ β2 · (c(f) + c(f ′)) c(f ′) ≤ β1 · (a + c(f))

and hence

c(f) ≥
a′ − β1β2a

β2 + β1β2
.

Note that for relatively small changes, the value
c2(e)− β1β2c1(e) may well be non-positive, rendering
Lemma 11 trivial in such a case.

The algorithm from Lemmas 6 and 8 should be ad-
justed to accommodate for the relaxation of the trian-
gle inequality. More precisely, in order to find a Hamil-
tonian path between a given pair of vertices in aβ-
metric graph, we will employ the algorithm by Forlizzi
et al. [9], a variation of the path-matching Christofides
algorithm (PMCA, see [6]) for the path version of near-
metric TSP, which yields an approximation guarantee
of 5

3β2. This gives us Algorithm 1.
Algorithm 1

Input: An instance (GO, GN , C) of LM -∆β -TSP
where β > 1, GO = (V, E, cO) and GN =
(V, E, cN ).

(1) Lete ∈ E be the edge wherecO(e) 6= cN (e).
LetE be the set of all unordered pairs{f, f ′} ⊆ E

wheref 6= f ′ are edges adjacent toe such that
if cO(e) < cN (e): f ∩ f ′ ∩ e is a singleton;
and
if cO(e) > cN (e): f ∩ f ′ = ∅.

(2) For all {f, f ′} ∈ E , compute a Hamiltonian path
between the two vertices from(f ∪ f ′) \ e on the
graph G \ (e ∩ (f ∪ f ′)), using the PMCA path
variant by Forlizzi et al. [9]. Augment this path
by edgesf , f ′, and, if cO(e) > cN(e), edgee to
obtain the cycleC{f,f ′}.

(3) Let C be the least expensive of the cycles in the
set{C} ∪ {C{f,f ′} | {f, f ′} ∈ E}.

Output: The Hamiltonian cycleC.
Lemma 12 Algorithm 1 achieves an approximation
guarantee of

βLβH ·
15β2

L + 5βL − 6

10β2
L + 3βLβH + 3βH − 6

(2)

for input graph pairs (GO, GN ) such that GO

obeys the∆βO
-inequality andGN obeys the∆βN

-
inequality and whereβL := min{βO, βN} ≥ 1 and
βH := max{βO, βN} > 1.
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Proof: Adhering to the convention of Lemma 11, set
{c1, c2} = {cO, cN} such thatc1(e) ≤ c2(e) for all
edgese ∈ E. In other words, we havec2 = cN if an
edge becomes more expensive andc1 = cN otherwise.

We may assume that optimal TSP tours inGN =
(V, E, cN ) use the edgee iff cN = c1; otherwise,C
is an optimal solution, and we are done. Fix one such
optimal tourCOPT in GN , and let{f, f ′} ∈ E be such
that COPT uses bothf andf ′. By P , denote the path
that results fromCOPT by removing edgesf , f ′, and,
potentially,e. Set

α :=
C(P )

OTGN

and let, for brevity,

ϑ := βLβH ·
15β2

L + 5βL − 6

10β2
L + 3βLβH + 3βH − 6

denote the approximation guarantee claimed in (2). In
terms ofα, Algorithm 1 always achieves an approxi-
mation guarantee of

1 − α +
5

3
βL2α,

even if we did not haveC at our disposal. Here, the term
1 − α corresponds to the edgesf , f ′ and (potentially)
e, which are chosen optimally, and the term53βL2α

corresponds to the approximation of the pathP.

(Note that the strategy to approximateP may rely
on the∆βL inequality, i.e., the less relaxed one of the
two because this strategy removes the edgee from the
graph.) Hence, unless

α >
ϑ − 1

5
3β2

L − 1
, (3)

we are done. Let us therefore assume that (3) holds. By
Lemma 11, we have

min{c(f), c(f ′)} ≥
c2(e) − β1β2c1(e)

β1β2 + β2

≥
c2(e) − βLβHc1(e)

βLβH + βH

and hence

1 − α ≥
2 · (c2(e) − βLβHc1(e))

OTGN
· (βLβH + βH)

.

Putting this together with (3), we know that

ϑ − 1
5
3β2

L − 1
≤ 1 −

2 · (c2(e) − βLβHc1(e))

OTGN
· (βLβH + βH)

,

which yields

c2(e) − βLβHc1(e)

OTGN

≤
βLβH + βH

2

−
(ϑ − 1) · (βLβH + βH)

10
3 β2

L − 2
.

By adding(βLβH−1) c1(e)
OTGN

to both sides, we are given:

c2(e) − c1(e)

OTGN

≤
βLβH + βH

2

−
(ϑ − 1) · (βLβH + βH)

10
3 β2

L − 2

+ (βLβH − 1) ·
c1(e)

OTGN
︸ ︷︷ ︸

≤1

and thus, substituting the value (2) forϑ,

c2(e) − c1(e)

OTGN

≤
3

2
βLβH +

1

2
βH − 1

−
(ϑ − 1) · (βLβH + βH)

10
3 β2

L − 2

=
3

2
βLβH +

1

2
βH − 1

−
(βLβH ·

15β2

L +5βL−6

10β2

L +3βLβH+3βH−6
− 1)(βLβH + βH)

10
3 β2

L − 2

(tedious calculations)= · · ·

= βLβH ·
15β2

L + 5βL − 6

10β2
L + 3βLβH + 3βH − 6

− 1 = ϑ − 1.

Since, by the same reasoning as that of Lemmas 5 and 8,
reusing the input optimal solutionC inflicts a deviation
from the new optimum by at mostc2(e)−c1(e) ≤ (ϑ−
1)·OTGN

, Algorithm 1 is aϑ-approximation algorithm.

Hence, whenever theβ values ofGO andGN coin-
cide, we have Theorem 13.
Theorem 13 There is a (polynomial-time)

β2 ·
15β2 + 5β − 6

13β2 + 3β − 6
-approximation algorithm forLM -

∆β -TSP for β > 1.
Interestingly, Algorithm 1 achieves a better approxi-

mation guarantee not just than PMCA [6], but also than
Bender’s and Chekuri’s4β-approximation algorithm [3]
for the most practically relevant values ofβ. The turn-
ing point is about atβ∗ ≈ 3.34899. More to the point,
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4β

3
2
β2 β2 + β

Algorithm 1

β∗

Cor. 14
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guarantee

Fig. 2. Approximation guarantees of various algorithms, depending onβ

Andreae’s(β2 +β)-approximation [1], which performs
better than4β only whenβ < 3, always performs worse
than Algorithm 1 in the intervalβ ∈ (1, β∗). These ob-
servations are illustrated in Figure 2.

Another practical special case is that whereβL = 1,
i.e., where we start with a metric graph, but changing
the cost of an edge will violate the∆-inequality.
Corollary 14 LM -∆β -TSP for β > 1, restricted to
those inputs whereGO is metric, admits a 7β

2+3β
-

approximation.

5. The Super-Metric Case

We will now deal with the case ofsuper-metric
graphs, i. e. with graphs satisfying the∆β-inequality
for someβ < 1. Please note thatβ ≥ 1

2 holds in
any case whereβ = 1

2 corresponds to the trivial case
where all edge costs are equal. Thus, we will assume
1
2 < β < 1 for the remainder of this section. As it turns
out,LM -∆β -TSP is fairly easy for super-metric graphs.
In this section, we will show that even the conceivably
most naı̈ve algorithm forLM -∆β -TSP on super-metric
graphs is a PTAS.

First of all, we note that, for super-metric graphs,
there is a bound on the ratio of the maximal and minimal
edge costs.
Lemma 15 ([5]) LetG be a graph which obeys the∆β-
inequality for someβ < 1. Letcmax andcmin denote the
cost of its most and least expensive edge, respectively.

Then,
cmax

cmin
≤

2β2

1 − β
. (4)

Proof: To be found in [5], Lemma 2 (b).

Moreover, neighboring edges in super-metric graphs
never differ by a factor of more than11−β

[5]. Therefore,
the maximal edge costs in the two graphs of aLM -∆β -
TSP input instance are similarly related.
Lemma 16 Let GO and GN be two weighted graphs
such thatGO obeys the∆βO

-inequality andGN obeys
the∆βN

-inequality wheremax{βO, βN} < 1. For i ∈
{O, N}, let cmax,i and cmin,i denote the maximal and
minimal cost of an edge inGi, respectively. Let the edge
costs inGO andGN agree except for one edge. Then,

cmax,N ≤
1

1 − βN

cmax,O,

cmin,N ≤
1

1 − βO

cmin,O,

cmax,O ≤
1

1 − βO

cmax,N ,

and cmin,O ≤
1

1 − βN

cmin,N .

(5)

Proof: Let e be the edge such thatcO(e) 6= cN(e).
Since all the neighbors ofe have the same cost inGO

as inGN and since these costs are bounded bycmax,O,
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we havecN (e) ≤ 1
1−βN

cmax,O. Hence,

cmax,N ≤ max{cN(e), cmax,O} ≤
1

1 − βN

cmax,O.

Likewise,cO(e) ≥ (1 − βO)cmin,N , and hence,

cmin,O ≥ min{cO(e), cmin,N} ≥ (1 − βO)cmin,N .

The two remaining inequalities are symmetric.

Theorem 17 Let (GO, GN , C) be an input instance of
LM -∆β -TSP such thatGO obeys the∆βO

-inequality
and GN obeys the∆βN

-inequality and whereβL :=
min{βO, βN} and βH := max{βO, βN} < 1. Then, it

is a (1 +
2β2

L −(1−βL)(1−βH)

(1−βL)(1−βH)|V | )-approximation to simply

outputC.

Proof: It is straightforward to verify that

cmin,i ≤
OTGi

|V |
. (6)

Suppose thate is the edge whose cost is altered and
suppose thatcN (e) > cO(e). W. l. o. g., assume thate
is a part ofC. (If it is not, C is already an optimal tour
in GN .) Then,

OTGO
≤ OTGN

(7)

and

cN (C) = OTGO
+ cN (e) − cO(e)

≤ OTGO
+ cmax,N − cmin,O (8)

(4)

≤ OTGO
+

1

1 − βN

cmax,O − cmin,O

(3)

≤ OTGO
+

1

1 − βN

·
2β2

O

1 − βO

· cmin,O − cmin,O. (9)

But we also have

cN (C)
(7)

≤ OTGO
+ cmax,N − cmin,O

(3)

≤ OTGO
+

2β2
N

1 − βN

cmin,N − cmin,O

(4)

≤ OTGO
+

2β2
N

1 − βN

·
1

1 − βO

· cmin,O − cmin,O.

(10)

The combination of (9) and (10) yields

cN (C) ≤ OTGO
+

min{2β2
O, 2β2

N}

(1 − βN ) · (1 − βO)

· cmin,O − cmin,O

= OTGO
+

( 2β2
L

(1 − βL) · (1 − βH)
− 1

)

· cmin,O

(5)

≤ OTGO
+

( 2β2
L

(1 − βL)(1 − βH)
− 1

)

·
OTGO

|V |
(6)

≤ OTGN
+

(2β2
L − (1 − βL)(1 − βH)

(1 − βL)(1 − βH)

)

·
OTGN

|V |

=
(

1 +
2β2

L − (1 − βL)(1 − βH)

(1 − βL)(1 − βH)|V |

)

· OTGN
.

Now, suppose thatcN (e) < cO(e). W. l. o. g., assume
that e isnota part ofC. (If it is, C is already an optimal
tour in GN .) Then,

cN (C) = OTGO
≤ OTGN

+ cO(e) − cN (e)

≤ OTGN
+ cmax,O − cmin,N (11)

(4)

≤ OTGN
+

1

1 − βO

cmax,N − cmin,N

(3)

≤ OTGN
+

1

1 − βO

·
2β2

N

1 − βN

· cmin,N − cmin,N . (12)

But we also have

cN (C)
(10)

≤ OTGN
+ cmax,O − cmin,N

(3)

≤ OTGN
+

2β2
O

1 − βO

cmin,O − cmin,N

(4)

≤ OTGN
+

2β2
O

1 − βO

·
1

1 − βN

· cmin,N − cmin,N .

(13)
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The combination of (12) and (13) yields

cN (C) ≤ OTGN
+

min{2β2
N , 2β2

O}

(1 − βO) · (1 − βN )

· cmin,N − cmin,N

= OTGN
+

( 2β2
L

(1 − βL) · (1 − βH)
− 1

)

· cmin,N

(5)

≤ OTGN
+

( 2β2
L

(1 − βL)(1 − βH)
− 1

)

·
OTGN

|V |

=
(

1 +
2β2

L − (1 − βL)(1 − βH)

(1 − βL)(1 − βH)|V |

)

· OTGN
.

So, as|V | → ∞, the approximation guarantee of an
algorithm which simply outputsC approaches1. Since
we can also estimate this guarantee, the following sim-
ple strategy results in a PTAS forLM -∆β -TSP on super-
metric graphs: Count the number of vertices in the input
graphs, compute the approximation guarantee (given by
the formula of Theorem 17) and decide, whether it is
good enough. If so, outputC. If not, perform exhaus-
tive search for an optimal solution. Since this happens
for finitely many inputs only, this algorithm is a PTAS.

6. Conclusion

In this work, we have introduced and successfully ap-
plied the concept of reusing optimal solutions when in-
put instances are locally modified. In the case of metric
TSP, we are able to improve on the previously-known
upper bound of1.5, as achieved by Christofides’ algo-
rithm (applied to the new instance, ignoring the given
optimal solution). In the case of near-metric TSP, we
have shown how to non-trivially extend our approach
to the most practical values ofβ.

As an open problem, we state the question whether
the NP-hardLM -∆-TSP is also APX-hard.
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