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Abstract

One of the most celebrated polynomially solvable caseseoT 8P is the Gilmore-Gomory TSP. The patching scheme
for the problem developed by Gilmore and Gomory has sevatatésting features. Its generalization, called the GG-
scheme, has been studied by several researchers and paifiyotastable sufficiency conditions for its validity have
been given, leading to polynomial schemes for large subel®f the TSP. A good characterization of the subclass of
the TSP for which the GG-scheme produces an optimal soluiaan outstanding open problem of both theoretical and
practical significance. We give some necessary conditioisaanew, polynomially testable sufficiency condition fa th
validity of the GG-scheme that properly includes all prexgly known such conditions.
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1. Introduction special cases of it [8,14]. One of the most celebrated
polynomially solvable cases of the TSP is the Gilmore-
Gomory TSP [7], which can be stated as follows:

A set ofn given jobs are to be heat-treated in a fur-
nace and only one job can be treated in the furnace at
any given time. The treatment of th& job involves

Given ann x n cost matrixC, the traveling sales-
man problem (TSP) requires finding a tour (cyclic per-
mutation)T" on N = {1,2,...,n} such that its cost
c(T)=>", ¢;,r(iy IS minimum. (Though diagonal el- A :
ements of the cost matri€’ do not play any role in mtroducmg it mtq the_ fgrnace at a given temperamre
the definition of the TSP, interestingly, many of the al- &nd heating/cooling it in the furnace to a given temper-
gorithms for polynomially solvable cases of the TSP ature_bl-. The cost_s of heating and coollng the furnace
require the diagonal elements to be finite and to sat- &€ 9'Ven by functiong(.) andg(.), respectively. Thus,
isfy specific properties. The subclass of the TSP con- O @nyu, v in R, u < v, the cost of heating the fur-
sidered in this paper is of this type.) If the cost matrix nace from temperatureto temperature is [, f(z)dz,
C'is symmetric, then the instance of the TSP is called While the cost of cooling the furnace fromto u is
asymmetric TSRSTSP). To distinguish from this spe- [, 9(x)dx. Gilmore and Gomory impose the realistic
cial case, the general case of the TSP is often referregcondition that
to as anasymmetric TSRPATSP). Throughout this pa-
per, we deal with the general case, which we shall, for
the most part, refer to as the TSP. For each ordered paii, j) of jobs, if we decide to
¢ heat-treatjoly immediately after joli, then the furnace
temperature has to be changed frono a ;. This cost,
which we call the change-over cost and denote:py
is given by

foranyz e R, f(z)+ g(x) > 0. 1)

The TSP is a well known NP-hard problem [6] an
significant literature exists on polynomially solvable
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Starting with the furnace at temperatureand process-  paper, we give some necessary conditions and a new,
ing job 1 first, we want to sequentially heat-treat all the more general polynomially testable sufficiency condi-
jobs and in the end return the furnace temperature totion for the validity of the GG-scheme. What makes
a1. The problem is to decide the order in which the jobs this result more interesting is the fairly small gap be-
should be treated in the furnace so as to minimize the tween the necessary and the sufficiency conditions. We
total change-over cost. also provide classes of the TSP which satisfy the new

Subsequent to the Gilmore-Gomory paper [7], an al- sufficiency conditions, but do not satisfy any of the pre-
ternate, simple, strongly polynomial time algorithm for viously known polynomially testable sufficiency condi-
this special case of the TSP, with a simple proof of its va- tlons.
lidity, is given in [3] and is further extended in [12]toa  After giving our notations, definitions and some ba-
|arger class of prob'ems' However, the patching Schemesic results in SeCtiOﬂ, we describe the GG-scheme in
for the problem developed by Gilmore and Gomory in Section3. Current results on the validity of the GG-
[7]is more efficient and has several interesting features; Scheme are discussed in SectibiThe main results of
it has been further generalized to larger subclasses ofthis paper are given in sectiosand6.
the TSP in [8,14]. The most general known results in ~ Most of the results in this paper were first reported
this direction are the ones in [2,15] where a generaliza- iN [13].
tion of the Gilmore-Gomory patching scheme, called
theGG-schemgs considered while fairly general poly- 5 - Notations, Definitions and Some basic results
nomially testable sufficiency conditions for its validity
are given, leading to polynomial schemes for large sub-  Throughout, we assume a familiarity with the existing
classes of the TSP. (See also [14].) results on the Gilmore-Gomory TSP and its extensions.

The GG-scheme has two main steps: (These will be We direct the reader to [14] for details. We present in
described in further detail later.) (i) Choose a suitable this section the main notations, definitions and the basic

permutatiol” on N = {1,2,...,n}. (ii) If " is a tour results that we are seeking. Additional notations used
(cyclic permutation), then stop with as the optimal  are standard ones as in [9,14].

tour. Otherwise, ifl' has/ > 1 subtours, then obtain We associate with any permutatieron N a digraph
the best possible tour using a patching scheme of theG, = [N, E;|, whereE, = {(i,n(i)) : i € N}. Let
following type: starting with", perform a succession of G4,Gs,...,G, be the connected components @Gf:

(¢ — 1) patching operations, where each patching oper- with node setsVy, N, ..., Ny, respectively. Then each
ation involves choosing ane N such that and(:+1) G; defines a subtou€; on the node sefv;. We call

lie in two different subtours, breaking the two subtours ¢;,¢,, ..., &, the subtours of. If £ = 1 thenx defines

by deleting the arcs, leaving nodéesand (i + 1), and a tour onN and such a permutation is called a tour.
linking together the two resulting directed paths. Hence- If |NV;| > 1 then the subtou€; is called a non-trivial
forth, we shall call a patching scheme of this typ&- subtour ofr. Otherwise, we call it a trivial subtour. A
patching It is shown in [8] that the problem of choosing permutation with a single non-trivial subtour (and with
an optimal GG-patching is NP-hard. However, many of all other subtours trivial) is called a circuit. A circuit
the well-known heuristics for the ATSP, such as those with its only non-trivial subtour of the forn(, j, i) is
named Patch, COP in [10], which perform well in prac- called a transposition and is denoteddyy. A transpo-
tice, can be looked upon as approximations to the GG- sition of the forme; ;11 = a;+1,; is called an adjacent
scheme, in which a polynomial heuristic is used to find transposition and is denoted By. We denote by the

a good GG-patching. Study of the class of the TSP for identity permutation (that is§(¢) = ¢ for all 7 in N).
which the GG-scheme gives an optimal solution, be- For any two permutations andy on N, we define
sides being an interesting theoretical issue, also pro-m o« (product ofr with ), asm o (i) = w(¢(¢)) for
vides greater insight into the subclass of the TSP on all i € N.

which these heuristics perform well. As shown in [14],

testing if the GG-scheme produces an optimal solution Observation 1 [7] Let 7 be an arbitrary permutation
to a given instance of the TSP is an NP-hard prob- on N and let{i, j} C N.

lem. Hence, it seems unlikely that one will be able to (i) If 7 andj both belong to the same subto@rof =
develop polynomially testable necessary and sufficient then inm o «;;, the subtour is decomposed into two
conditions for the validity of the GG-scheme. In this subtours, one containingand the other containing,
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while all other subtours ofr o «;; are precisely the
same as those af.
(ii) If 7 and j belong to two different subtours; and
¢, of 7, then in7 o ay;, the two subtour®; and €,
are combined into a single subtodr while all other
subtours ofroa;; are precisely the same as thoserof

In case (ii) of Observation, we say that subtout
is obtained by patching the subtowgs and @. If, in
addition,j = i + 1, then we call it an adjacent patch-
ing scheme. Starting with a permutatibron N with ¢

M. F. Baki and S. N. Kabadi— Some Necessary Conditions andreex@aeSufficiency

of S such thaty = 3;, o B, 0+~ 0 f3;,.
Definition 3. ForanyN D X = {iy, i2,..
1< <ip < < <,

(i) [¢1,ir — 1] is the range ofX .

(i) For eachl < u < k, {y,tu + 1,... 9041 — 1} IS

a region of X .

(ii) If X is the node set of a subtodr then we call the
range and the regions of as, respectively, the range
and the regions of.

., ik}, where

subtours, the GG-patchings in the GG-scheme is a se-Definition 4. Suppose digrapli/, associated with a

quence of(¢ — 1) adjacent patchings, which result in a
tour.

The following concept of pyramidal tours introduced
in [1] plays an important role in the study of a GG-
scheme.

Definition 1. [1] A path in a digraphG = [N, E] is said

to be a pyramidal path if and only if it is of the form
(il,ig,...,iu,jl,jg,...,jv) With i1 < dg < -+ < iy
andj; > jo > --- > j,. A closed, pyramidal path is
called a pyramidal subtour. A permutation is said to be
pyramidal if and only if all its non-trivial subtours are
pyramidal. An instance of the TSP, TSP( is said to

be pyramidally solvable if and only if it has an optimal
tour which is pyramidal.

It may be noted that whether a path is pyramidal de-

pends on the numbering of the nodes. For a given node
numbering, an optimal pyramidal tour can be computed

in O(n?) time [17]. However, testing if, for a given

permutationr, has? connected components with node

setsNy, Na, ..., N,. ThenG7 = [N, ET], the patch-
ing pseudograph of, is defined asV]’ = {1,2,..., ¢}
andE] = {e; = (u,v) : i € {1,2,...,n—1},i €

Ny, (i+1) € N,}. ForanyS C {1,2,...,n— 1} we
denote byET[S] the set{e; € E :i € S}.

It is observed in [7] that for a permutation on
N with ¢ > 1 connected components, and a Set
{il,ig, ce ,i(g,l)} CN, Woﬁil Oﬁiz o--- Oﬁi(zfl)) is
a tour if and only if ET[S] is the edge set of a spanning
tree of G7;.

For ann x n cost matrixC, we denote itgi, j)"
element byc; ; and for any permutatiogy on N, we
define the cost of) as

n

c(¥) = ZCi,w(i)

i=1

The traveling salesman problem is then to find a idur

node numbering, the given instance of the TSP is pyra- on N = {1,2,...,n} such that(T') is minimum.

midally solvable is an NP-hard problem [14] and var-
ious polynomially testable sufficiency conditions for it
are reported in relevant literature [14].

Definition 2. [5] A permutation is said to be dense
if and only if the node set of each of its non-trivial
subtours is of the form{i,i + 1,...,j}. Let = be a
dense permutation with its non-trivial subtouts, ¢-
, ..., € onnode set{iy, iy +1,...,51}, {iz, iz +

1,...,d2}, -ov, {ie,ie+1,..., ¢}, respectively. Then
we say thatr is dense on node sét;, i1 +1,...,j1 —
DY U{ig,ia+1, ..., jo—1 0. . .U{ig, ig+1,...,jo—1}.

The relationship between GG-patchings and pyrami-
dal tours is established by the following lemma.
Lemma 1l For any setS = {u,u + 1,...,v} C
{1,2,...,n — 1}, k |S| and any ordering
(i1,19,...,1;) of elements ofS, permutationy =
Bi, © Biy 0+ -+ 0 [3;, is a pyramidal circuit dense on set
S. Conversely, for any pyramidal circuit, dense on
S, there exists an orderingiy, o, ..., i) Of elements

Definition 5. For anyn x n cost matrixC' with finite
entries (including the diagonal entries), the density ma-
trix D of C'isan(n — 1) x (n — 1) matrix defined as

dij = Cijj41 + Cig1,j — Cij — Cir1,5+1 V1 <4, j<n.
For example, the density matrix of
241
-1 -2
365 9 1 ] .
Definition 6. For any cost matrixC and any two per-

453
mutationsr andi) on N, we define the permuted cost
matrix C™¥ as

C = SDz[

Y = Cagiyy) ¥ isJ

We denoteC$¥ by C¥. (It may be recalled thag
denotes the identity permutation.) Thugsr o ¢) =

(W) = Xien Ty
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We define the cost af relative tor as
c(movp) —c(m) = () — " (§).

As shownin [2,15], the cost af relative tor depends
only on the density matri of C™ and we denote it by
D(%). Let F be the set of all orderings of the elements
of S. We define,

D[S] = mln{D(ﬁ“ o ﬁiz O---0 ﬁlk) :

(ilaiQa"'aik)eF}' (2)
Observation 2. Forany.S C {1,2,...,n—1}, let(S;U
SaU---USy) be its natural partition. (That is, for any
xe{l,2,...,4}, S, isofthe form{i,, i, +1,...,j.}
andforallz € {1,2,...,4—1}, jo+1 <'iz41.) Then
DIS| = i, DISi]

3. GG-scheme : A generalization of the Gilmore-
Gomory patching scheme

The following generalization, of the Gilmore-

25

permutationl* on N such thatD is the density matrix
of CT, the GG-scheme witl" as the suitable starting
permutation will produce an optimal tour.

The most generally known such polynomially
testable sufficiency condition oP is the one given in
[2,15] and is a special case of the condition in Theorem
3 below, which is a minor modification of a theorem in
[2,15].

For anyn x n matrix C, with a density matrixD and
anyl <i,j <nandl < u,v < n, we denote

v g
D _
MP =D duy.

Yy=u r=1

®3)

From the definition of a density matrix, it follows
that,

Ciw+1 T Cjt1u — Ciu — Cj+1,0+1,
if i <jandu <w
otherwise

MP

idu

0,

Definition 7. For any permutationt on N with non-

Gomory patching scheme (called the GG-scheme) is trivial subtours

studied in [2,4,5,11,15,16]. (See also [8,14].)
Algorithm 1 GG-Scheme

Input: Ann x n cost matrixC' and a suitable permuta-
tonTonN ={1,2,...,n}

Step 1: IfT" is a tour, then stop witi® as the output.
Otherwise, let be the number of subtours bBfand let
N1, Ns, ..., Ny, be the node sets of these subtours.
Step 2: Construct the patching pseudograph

GT = [NT, ET] of T

Step 3: Compute the density matdx of CT. Find a
spanning tree i), with an edge set, safe; : i € T*},
such thatD[T™*] is minimum.

Let (i1, 12,...,i¢—1) be an ordering of the elements of
T* such thatD[T*] = D(f;, o Bi, ©---0 (3;,_, ). Let
U = 3;,008,0---00;, ,.Construct the tour* = I'o .
OutputI™ and stop.

4. Existing sufficiency results for the validity of the
GG-scheme

As shown in [14], checking if, for a given p&i€, T'),
the GG-scheme, with as the suitable permutation, pro-

duces an optimal tour is NP-hard even for the special

casel’ = £. Hence, it seems unlikely that one will be
able to find polynomially testable necessary and suffi-
cient conditions on afin — 1) x (n — 1) matrix D un-
der which, for any pai(C,T") of a cost matrix”' and a

¢1,¢&,,...,&, having respective rangds,, j; — 1],
liz,j2 —1],...,[is, jo — 1], the intersection graph of the
non-trivial subtours ofl is the graph

GL =[Ny, EL], whereNy = {1,2,...,¢} and

EL ={(i,j) : 1 <i,j < {,i # j; ranges of the sub-
tours¢; and¢; intersect}.

Theorem 2 [14] Suppose thafl'c ¥ is a tour. Sup-
poseV has/ non-trivial subtours and71, hasr con-
nected components. L&t,, N2...., N% be the node
sets of ther connected components 6f,. For each
i € {1,2,...,r}, let [N}| = ¢; and let X}, be the
union of the node sets of all the non-trivial subtours of
¥ corresponding to the nodes iMg,. Then, there exists
S C{1,2,...,n—1} and a partition{Sy, S, ..., S, }
of its elements such that:

(i) ES[S] = {e; € E} : i € S} is the edge set of a
spanning tree oty .

(i) For 1 < i < r, every element d; lies in the range
of X,; and where every region of, contains, at most,
one element of;; and where|S;| < (| X&| — ¢;).

(i) |S] = (Zi, X)) — O)moe.

Theorem 3 SupposeD is an(n — 1) x (n — 1) matrix
satisfying the following condition:

Let ¥ be any arbitrary permutation ofW. Suppose
¥ has/ non-trivial subtours and>%, hasr connected
components of sizés, (s, ..., ¢,. Let
X1 X2 ..., Xy be the unions of the node sets of the
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non-trivial subtours of¥ corresponding, respectively, Example J14]: Let D be a2 x 2 matrix withd; ; = —1
to nodes of the: connected components 6f,. Let S with each of the other three entries equabtdhen it is
be any subset oV with a partition {51, Sa, ..., S}, easy to see that for aryx 3 matrix C and permutation
such that (i) for anyl < i < r, every element of; I on{1,2,3}, such thatD is the density matrix of>",
lies in the rangeX; and where every region ok, T"o 31 is the unique optimal solution to the Assignment
contains, at most, one element$t and wherg|.S;| < problem ornC' and the GG-scheme, withas the suitable
(|1X%5| = €); and (i) |S] = (25—, |XE]) — ¢)modd. permutation, produces an optimal tour.
ThenD(¥) > DI[S]. Example 2 Consider a TSP with the following cost

Under this condition, for any cost matriX and any ~ matrix C: ) )
permutation” on N such thatD is the density matrix 3 0159 11
of CT, the GG-scheme with as the suitable starting 0 2171113
permutation produces an optimal solution to the corre- 4 16 0 2
sponding TSP. 179 4 3 0

13320 0 9 1 |

Proof: Let D be an(n — 1) x (n — 1) matrix satis- Consider a non-optimal assignmént= (1,1) (2, 2)
fying the condition of the theorem and let a cost ma- (3,4,5,3). The permuted matriX'" is shown below:
trix C and a permutatio on N be such thatD is (3 0 9 1115]
the density matrix ofC'. Let T be an optimal tour 0 2 111317
to the corresponding instance of the TSP. Net= 4 1 0 2 6
't o Y. Suppose¥ has ¢ non-trivial subtours and 179 3 0 4
G1, hasr connected components of sizgs/s, . . ., ¢,. 13320 9 1 0 |
Let X}, X2,..., X% be the unions of the node sets The density matrixD of CT is shown below:
of the non-trivial subtours o¥ corresponding respec- 5000
tively to ther connected components 6f;. Then, by 5 1000
Theorem 2, there exist a subsetof N with partition 5 5 50
{S1,52,...,5,} such that:(i) for each < i < r, ev- 5 555
ery element of9; lies in the rangeX,; and where ev- The optimal assignmenf* = (1,2,1)(3,4,5,3)

ery region of Xy, contains, at most, one element of g non-diagonal, unique and has two subto{ir2, 1)

Si; and wherelS;| < (|X§| — £); (i) E;[S]is the  and (3,4,5,3). The cost of the optimal assignment
edge-set of a spanning tree of the patching pseudographs 0. The GG subtour patching scheme, starting with
Gy,; and, therefore, (iii)S| = (-, [ Xg|) —£)moa2. optimal assignmenkF*, finds only one candidate tour
Let (i1,i9,...,4,) be an ordering of the elements of (1,2,4,5,3,1), which has a cost of 15. However, the
S for which D(8;, o Bi, o --- 0 ;) = D[S]. Then,  GG-scheme starting with the non-optimal assignnient
7 =Tof 0B, o0---0f is atour onN; and finds two candidate tours and picks the unique optimal

o(r*) —e(Y) = (c(7) — CEFF_)) = (e(T) —el)) = tour(1,4,5,3,2,1), which has a cost of 10. Thus, the
D[S] — D(¥) < 0. Hence,r" is an optimal tour. This  example shows that the GG-scheme may fail to obtain
proves the Theorem. an optimal tour when the initial assignment is an opti-

mal assignment. But, the GG-scheme obtains an opti-
5. Some necessary conditions for the validity of the mal tour when the initial assignment is not an optimal
GG-scheme assignment at all.
Theorem 4 Each of the following conditions on an
In this section, we investigate necessary conditions (n — 1) x (n — 1) matrix D is a necessary condition
on an(n — 1) x (n — 1) matrix D, for which, for any for the GG-scheme, with a permutatibnon N as the
cost matrixC, and any permutatiofl on NV such that suitable permutation, to produce an optimal tour for an
D is the density matrix o€", the GG-scheme with, instance of the TSP with a cost matfix whereC and
as the suitable permutation, produces an optimal tour. I are such thatD is the density matrix of":
The following examples dispel acommonly held false (1) V1 <4,j <n—1,suchthati—j| > 1,d;;+d;; > 0;

belief that it is a necessary condition foto be anopti- (i) V1 <i <n—2, D[{i,i+1}] > 0;
mal solution to the corresponding Assignment problem (i) V1 <i <j <n—1, M/, > dy¥i < u < j;
onC. (V)Vi<i<j<n—1,MP,  >0;
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VMVI<i<j<j+1<k<n-—1

D D
M5+ M g i+ m0in (Mz‘,j,j+1,kv Mj+1,k,i,j)

> djj + djt1j41 + min (dj 11, djt,5) = 0;
W)Vi<i<j<j+1<k<n-1

ME, ;54 MP i ptmin (MP 0 M5 )
>dyy +dpw > Vi <u<j<j+1 <0<k,
Yu+1<w;

(vii) For any circuit with its non-trivial cycle on node
set{i,u,u+1,...,v,j} 1 <i<u<v<j<n,and
any optimal pyramidal and dense permutatipwith its
non-trivial cycle on node séu— 1, u,u+1,...,v,v+
1}, D(p) > D(8) >0

(viii) For any principal submatrixD’ of D on a con-

27

matrix of CT, the GG-scheme witli" as the suitable
starting permutation produces the tdor 3, as the
output. But the toul” o «; ; has a strictly lower cost
thanT o 3,. We thus have a contradiction.

(iv) Supposel < i < j <n—1, such thatM

0. Then it follows from (i) and (iii) thatj = z + 1
NOW: by (||), dz,z+1 > (du + dH—l z+1) anddz+1,z =
—(d;i + diy1,i41)- Therefore ME drtiirr > —(di +
dit1,i+1) > 0. We thus have a contradiction.

(v) Supposd <i <j<j+1<k<n-1,suchthat
M5 +MP g+ min (MZ%J’-HJ@’ Mfil,k,m)
< dJJ —|—dj+1 j+1 + min (dj j+1adj+1,j)- Definel as
follows: I'(j) = L;I(j +1) = j + 1; T'(n) = j + 2;

secutive subset of its rows and columns, and any COStr(y) = ¢+ 1 for all otherl < ¢ < n. Then, for any cost

matrix C' having D’ as its density matrix, the TSP on
C'is pyramidally solvable;
(ixX) At most, two diagonal entries are negative. If two

diagonal entries are negative, they must be consecutive.

If di; < 0andd;y1,41 < 0 for somei, then at least
one of"o B; and T o ;1 is an optimal assignment.
If exactly one diagonal entry is negativié,c 3; is an
optimal assignment, wherd,; < 0 for somes. If all
d;; > 0, thenT is an optimal assignment.

Proof: Consider afn—1) x (n—1) matrix D for which
for any C andT", such thatD is the density matrix of
C", the GG-scheme witl as the suitable permutation
produces an optimal tour.

() Supposel < i < j—1 < n—2,such thatd;; +
d;; < 0. DefineI as follows:I'(¢) = j; I'(j) =i+ 1,
I'(j—1)=7+1;T(n)=1;andl'(¢) = £+ 1 for all
otherl < ¢ < n. Let C be any cost matrix such th#&l
is the density matrix o™, ThenT is a tour onN and
therefore the GG-scheme will terminate withas the
output. Butl" o §; o §; is a tour having a strictly lower
cost than". We thus have a contradiction.

(i) Supposel < i < n—2,suchthatD[{i,i+1}] < 0.
DefineT as follows:I'(n) = 1; andT'(j) = j + 1 for
all 1 < j < n. LetC be any cost matrix such th&?
is the density matrix o€, ThenT is a tour onN and
therefore the GG-scheme will terminate withas the
output. But at least one of the tourso 3; o ;4.1 and
T' o B;41 o B; has a strictly lower cost thah. We thus
have a contradiction.

(i) Supposel < i< j<n-1,7i <u < j such
that M ; ; < d,.. DefineT as follows:T'(u) = 1;

I'(n) =u+1; T(¢) = ¢+ 1 for all otherl < ¢ < n.
Then, for any cost matrix’ such thatD is the density

matrix C' such thatD is the density matrix o2, the
GG-scheme with" as the suitable starting permutation
produces the toull o 8 o 3,41 or "o 811 0 B; as the
output. But at least one of the toulso «; j o a1,k

or I o o411 © 5 has a strictly lower cost than both
toursT" o 3; o 811 andl' o 3,41 o 3;. We thus have a
contradiction. The non-negativitiy part of condition (v)
follows from (ii).

(vi) Supposeé < i < j<j+1<k<n-1, i<
u<j<j+1<v<ku+1<wvsuchthatM

1 YN
+Mj+1,k,j+1,k +min (Mi,j,j+1,k7Mj+1,k,i,j) < duu
+dyy. Definel as follows:T'(u) = 1;T(v) = u + 1;
I'(n) =v+1; T(¢) = ¢+ 1 for all otherl < ¢ < n.
Then, for any cost matriK’, such thatD is the density
matrix of CT, the GG-scheme witfi" as the suitable
starting permutation produces the tdue 3, o 3, or
T o 3, o B, as the output. But at least one of the tours
Toa; joajq1, OrT o yq 00y ; has a strictly lower
cost than both tour§ o 3, o 3, andI' o 3, o 3,. We
thus have a contradiction. The non-negativitiy part of
condition (vi) follows from (i).

(vii) Suppose there exists a circyitwith its non-trivial
cycle on node sefi,u,u + 1,...,v,5}, 1 < i <

u < v < j <mn,and an optimal pyramidal and dense
permutationg with its non-trivial cycle on node set
{uv—1,u,u+1,...,v,0+1}, suchthatD(p) < D(S).
Definel’ as followsT'(u—1) = 1;T'(n) = v+1;T(¢) =
(Vu < ¢ <wv;T(¢) =£¢+ 1 forall otherl < ¢ < n.
Then, for any cost matrig’, such thatD is the density
matrix of CT, the GG-scheme witfi" as the suitable
starting permutation produces the tdus 3 as the out-
put. But the toull’ o ¢ has a strictly lower cost than the
tourI" o 5. We thus have a contradiction. Now suppose
D(B) < 0.1f (v —u) is odd, there exists at least ohe
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such that(u — 1) < k < v anddg > 0. DefineT" as
follows: T'(k) = 1; T'(n) = (k+1); andT'(¢) = £ + 1
forall1 < ¢ < n. LetC be any cost matrix such thax
is the density matrix o€". Then the GG-scheme, with The sufficiency condition of Theorem 3 does not
I" as the suitable starting permutation, produces the tourseem to be polynomially testable in general. The only
T" o 3B as the output. But the todr o 5 has a strictly polynomially testable sufficieny conditions on the den-
lower cost tharl" o ;. We thus have a contradiction.  Sity matrix D, for which for any instance of the TSP,

If (v—u) is not odd, defind” as follows:T'(n) = 1; with cost matrixC' and a permutatiol’, such thatD
andl'(¢) = ¢+ 1forall1 < /¢ <n. LetC be any cost is the density matrix o€CT, the GG-scheme witl' as
matrix such thatD is the density matrix of>T. Then the starting permutation produces an optimal solution,
the GG-scheme, witlh' as the suitable starting permu- are those reported in [2,4,5,11,15,16]. (See also [14].)
tation, will terminate withl" as the output. But the tour  In [4], it is proved that the non-negativity @ is a suf-

I' o 3 has a strictly lower cost thai. We thus have a  ficient condition. From Equation 1, it follows that the
contradiction. Gilmore-Gomory case [7] is of this type. A minor gen-
(viii) For any 1 < i < j < n — 1, consider the set eralization of the non—negati\_/e case is obta@ned in [5].
S ={i,i+1,...,j}. Let D’ be the principal submatrix Both these cases can be easily shown to satisfy the con-
of D on row/column ses. Define a permutatiofi on ~ dition of Theorem 3. The most generally known such
N as follows:T(i) = 1; T(n) = j + 1; T(¢) = ¢ polynomially Festable suff|C|ency_ <_:on_d|t|on dh_|s the

Vi < € < j; T(¢) = £+ 1 for all other¢ € N. Let Y one report_edm [2,15]. This condlpon is a special case of
be the tour produced by the GG-schemel@mith T the conqun of Theorem 3 and it prpperly ggnerahzes
as the initial suitable permutation. Théh=T"10 T the results in [4,5]. However, even this condition seems
is a circuit with its only non-trivial subtour a pyramidal  Nighly constrained. For example, consider Examples 1

one on the node s€t, i+ 1,...,j + 1}. Furthermore & 2 of the previous section. Both examples satisfy the
it is easy to see that for f:my ,circu,ii on N with its _condition of Theorem 3. Hence the GG-scheme is valid

only nontrivial subtour on node sét, i +1,...,j+1} for both cases. However, the density matrices shown
T'o o is a tour. Since the GG-scheme workéane in these two examples do not satisfy the polynomially

must haveD(92) < D(y). Hence 2 is an optimal tour  testable sufficiency condition in [2,15].
for any cost matrixC” with D’ as its density matrix. We give below a more general special case of The-

) I th h di | . . orem 3, which can be polynomially tested and which
() t. ereare more t an two diagona entru_as ne_gauve, properly generalizes the polynomially testable suffi-
there is at least one pair of non-consecutive diagonal _; - :
. . ciency conditions in [2,15].

entries and (i) does not hold. Hence, there may be, at 7. o
most, two consecutive negative diagonal entries or just D€finition 8. For a positive integer. and ann x n
one negative diagonal entry or none. If condition (ix) Matix A, and anyl <i,j < ¢ < u,v <n —1such
is false, there exists a permutatidnsuch thafo ¥ is that|{7, j, 4.t v} = 2, " A

1 i F (Zaqvua.]vq’v) = M +M j,qg— l
an optimal assignment antl has at least one subtour U iyu,q,v q,u,5,4—1
¢ such thatD(¢) < 0. It follows from (i)-(iv) that
|€] > 3. For somel < i1 < ig < ... < i < n, let
S = {iy,1i9,...,ix} be the node set of subtodir Define
I' as follows:T'(i1) = 1; I'(n) = ix—1 + 1; T'(i5) =
ij—1+1V2<j<(k—-1);(¢) =¢+1 for all other

6. A general sufficiency condition for the validity of
the GG-scheme

and

F i q u,j,q,0) = MA, 5 + M7 4
Lemma 5 SupposeD is an(n — 1) x (n — 1) matrix
satisfying the following two conditions:
() V1<ij<gq< uv <n-—1such that

1 < /¢ < n. Let 8 be an optimal pyramidal and dense
permutation on node s€t,is,...,ix—1}. Then, for
any cost matrixC, such thatD is the density matrix
of CT, the GG-scheme witl" as the suitable starting
permutation produces the toliro 3 as the output. But
the tourT'o € has a strictly lower cost than the tour
I" o 5. We thus have a contradiction.

This proves the theorem.

I{i,4,q,u,v}| > 2, except for the
case{u = v = gqandi = j # ¢q — 1},
FR(i,q,u,j,q,v) > 0; and
(i) v1<ij<gq<uv < n-—1such that
{4, j, q,u,v}| > 2, except for the
case{i = j = g andu =
FLD(i,q,u,j,q,v) 2 0.
Let a circuity on N with its unigue non-trivial sub-
tour C and a setf) = S C N be such that each ele-
ment of S lies in the range ofC and every region of

v £ q+ 1},



M. F. Baki and S. N. Kabadi— Algorithmic Operations Researoh2 (2007) 22—-32 29

C contains, at most, one element$fThen, there ex-
ists a permutatiord on NV that is dense oty such that

D(g) = D(Q).

Proof: Let the node set of' be X and let its range be
[a,b—1]. Let (b — a) = r and|S| = m. We prove the
result by induction o andm.

Forr = 1, the result is obviously true.

Suppose, for some > 1, the resultis tru&’ » < k and
V¥ 1 <m <r. Letus now consider the case= k.
Case 1:X = {a,b}: Let S = {z} for somea < z <
b—1.

If £ = 2 then let us consider the case= a. (The case
x = b—1 follows similarly.) Letw be the circuit with its
unique non-trivial subtour on node set,b—1}. Then
D(p)—D(w) = FP(a,a+1,a+1,a,a+1,a+1) > 0.
If k= 3 andz = a+ 1, then letw be the circuit with its
unique non-trivial subtour on node sgt + 1,a + 2}.
ThenD(¢) — D(w) = Ff(a,a +2,a+2,a+ 1,a +
2,a+2)+ FP(a,a,a+2,a,a,a+ 1) > 0 and in all
other caseswheve> 3, z—a > 20rb—1—xz > 2. Let
us consider the case— a > 2. (The other case follows
similarly.) Let w be the circuit with its unique non-
trivial subtour on node sdtz, b}. ThenD(¢) — D(w) =
FP(a,x—1,b—1,a,z—1,b—1) > 0. In each of the
above cases, the permutatiorhas smaller value of.

Hence, the result follows by the induction hypothesis.

Case 2]X| > 2: Supposer ¢ S. Letu = p~1(a). If
(a+1) e X, thenletw = poa,, andif(a+1) ¢ X,
then letw = ¢ o ag . © ag41,.- IN either casew is

a circuit with (X U {a + 1}) — {a} as the node set
of its unique, nontrivial subtou€’. In the first case,
D(p) — D(w) = F¥(a,a,u — 1,a,a,¢(a) — 1) > 0;
and in the second casB(y) — D(w) = FP(a,a,u —
1,a,a,p(a) —1) > 0. In either case, the range 6f is

k —1; andw and.sS satisfy the conditions of the lemma.

Hence, by the induction hypothesis, the result follows.

The case whef — 1) ¢ S follows similarly.

Now, if m = 1, then eithera ¢ S or (b—1) ¢ S,
and the result follows from the above.

Suppose the result is triem < ¢, for somek > ¢ >
1. Let us consider the case = t.

If t = k, thenyp is dense ort and the result follows
trivially. If eithera ¢ S or (b — 1) ¢ .S, then the result

we traverse the subtodr and such that; > ¢. Let
W = Q0 Ay, uy Oy, - ThUSw is obtained fromp by
replacing subtout”’ by two subtoursC' on node set
Xt C(Xn{i:i<q})U{q} andC? on node set
X2 =X — XY andD(¢) — D(w) = FP (ve,q,u1 —
1,v1,q,us — 1) > 0.

Let St = SN X! andS? =S — S!. Let the ranges
of X! and X2 be[a!, q] and[a?, b] respectively. Then
St = pandifb—a? > 0thenS? # (). Letw! andw? be
circuits onN with unique non-trivial subtour§’' and
C?, respectively. Thus, the paifs'!, S') and(w?, 5?)
satisfy the conditions of the lemma af@— a!) < &,
(b —a®) < k and|S?| < t. Hence, by the induction
hypothesis, there exists a permutatigndense ons*
such thatD(¢!') < D(w!), and a permutatiog?® dense
on S? such thatD(¢?) < D(w?). Let ¢ = ¢t o (%
Then( is dense onS and D(¢) = D(¢Y) + D(¢?) <
D(w!) + D(w?) < D(p).

Subcase (ii)g € X: Let (u1,v1) and (ve,us2) be a
pair of arcs crossing encountered consecutively when
we traverse the subtod such that (i)u; > ¢ and (ii)
the directed path it , from nodev; to nodev, contains
the nodeg. If (¢ + 1) € X, then letw = ¢ o ayy 4,5
else, letw = ¢ o A, 4y © Ag41,4,- Thusw is obtained
from ¢ by replacing the subtou? by two subtoursC!
on node setsaX' C X N{i:i < ¢} andC? on node
setX? = (XU{¢g+1})— X"

In the first case,

D(¢) = D(w)
[ FP(va,v1,u1 — 1,v1,01,u2 — 1) > 0if v < 0y,
- F[]D(U27'U27u1—1,1)1,1)2711,2—1) ZOOtherWise.

In the second casd)(yp) — D(w) = FP(ve,q,u1 —
1,v1,q,us — 1) > 0.

Let S' = SN X! andS? = S — S!. Let the ranges
of X! and X? be [a', ¢ and [a?, b] respectively. Let
w' andw? be circuits onN with unique non-trivial
subtoursC! and C?, respectively. Ifg — a* > 0, then
Sl £ 0. Also, b — a? > 0 and S? # (. Thus, the
pairs(w?, S1) and(w?, S?) satisfy the conditions of the
lemma. Sinceq — a') < k, it follows by the induction
hypothesis that there exists a permutatidrdense on
St such thatD(¢!) < D(w?). Also, (b — a?) < k and

follows as shown above. So let us consider the case|S?| < ¢. If |S?| < t, then by induction hypothesis,

when {a,b — 1} C S, andt < k. Let ¢ = min{i :
a<i<b-—1;i¢ S} We say that an ar@i, j) € E,
crosses; if eitheri <g<jorj<g<i.

Subcase (i)y ¢ X: Let (u1,v;) and (v2,us) be a
pair of arcs crossing encountered consecutively when

there exists a permutatiof?, dense onS? such that
D(¢?) < D(w?). If |S?| = t, then(b — a?) = k and
q ¢ X2 Hence, by Subcase (i) above, there exists a
permutation(? dense or5? such thatD(¢?) < D(w?).
In either case, lef = ¢! o (2. Then( is dense or$ and
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D(¢) = D(¢') + D(¢?) < D(w'
This proves the lemma.

)+ D(w?) < D(e).

Lemma 6 SupposeD is an(n — 1) x (n — 1) matrix
satisfying the following three conditions:
HVvV1<ij<gqg< uv < n—1such that
1{i,4,q,u,v}| > 2, except for the case
{u=v=gqandi=j#q—1}, F(i,q u,j.q,v) > 0
(i) v1<ij<gq<uv < n-—1such that
{4, 4, q,u,v}| > 2, except for the casgi = j = ¢ and
u=wv#q+1}, FP(i,q,u,5,q,v) > 0;
(iiiy forany 1 <i <n—2, D[{i,i+1}] > 0.

Let ¢ be the circuit onN with a unique non-trivial
subtourC. Suppose the node s&t of C is not of the
type{i,i+ 1}. ThenD(p) > 0

Proof: We prove the result by induction on the size
| X | = r of the subtoulC'.
If X ={4,j} with |i —j| > 1, then

D(p) = FF(i,i,j—1,i,i,j —1) > 0.

If X = {i,j,k} W|th i <j<k andif(j —i) =
(k — j) = 1, the result follows from the condition (iii)
of the lemma.

Otherwise, ifj > i+ 1, then letp(i) = z andy~1(i) =
y. Letw = poajy oty

The node set of the unique subtallf of w is {i +
1,7,k} and

D(p) — D(w) = FP(i,i,y — 1,4,i,2 — 1) > 0.

If j =i+1, thenwe musthave > j+1. Letp(k) =«
andp~(k) = y; and letw = @ o ayy 0 vy 1. The
node set of the unique subtadf of wis {7, j,k—1} and
D(p)-D(w) = FP(y,k—1,k—1,2,k—1,k—1) > 0.

In either of the above cases, by repeating this ar-

gument withw, we end up with a circuit such that
D(y¢) > D(¢) and the node set of the unique subtour
C of ¢ is of the form{¢, ¢ + 1, ¢ + 2}, which implies,
by condition (iii) of the lemma, thab(¢) > 0

Now suppose the result is true for all < k& and
for somek > 3. Let us consider the case= k. Let
X = {iy,i9,- -+ ,ix} wherei; < iy < --- < 4. Let
o(i1) =i, and~1(i1) = 4,. Letw = poay, ;,. The
node set of the unique subtoQf of w is {iz, - - ,ix};
and

D((p)—D( ) FU (il,il,iv 1 il,il,iu ) 0.
Thus, by the induction hypothe3|s we g&(p) >
D(w) > 0.

Lemma 7 SupposeD is an(n — 1) x (n — 1) matrix
satisfying the following three conditions:
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() V1<ij<
{i. . q,u, v}l 2,
andi = j #q— 1}, F7 (i,
(i) V1<ij<gqg<uv < n-—1such that
I{i,7,q,u,v}| > 2, except for the case{i = j = ¢
andu=v # q+ 1}, FP(i,q,u, j,q,v) > 0;

(iii) forany 1 < i <n—2, D[{i,i + 1}] > 0.

Let ¢ be an arbitrary circuit. Let the node set and
range of its unique subtou€ be X and [p,m — 1],
respectively. LefS C N be such that each element of
S lies in the range ofC; every region ofC' contains,
at most, one element &f; and there exists a region
[a,b—1] of C that contains no element 6f Then there
existsp <i<a<q¢g<b-1<j<m-1,anda
permutation¢ that is dense oi$ such that

D(p) = D(Q)+M[ , s orD(p) = D(O)+M, ;

4,5,4,q" q,9,%,7"

qg < wu,v < n — 1 such that
xeptfor the case{u = v = ¢

q,u,J,q,v) > 0;

Proof: Let (s1,t1) and(tz, s2) be a pair of arcs cross-
ing nodea that are encountered consecutively when we
traverse the subtour, such that (i}s; > b and (ii) the
directed path in&, from nodet; to nodet, contains
the nodea. Letw = ¢ o a4, 5,. Thusw is obtained
from ¢ by replacing subtou€ with two subtoursC!
on node setX* C X N {i:i < a} andC? on node set
X? =X — X' Itis readily seen that

D(p) = D(w)

. FUD(t27t1751 -
T FR (ta,ta, 51 —

17t17t1752 - 1) 2 0 if t2 S tlv
1,t1,t2,50 — 1) > 0 otherwise.

or MP . for

q,9,%,J

In either caseD(¢) — D(w) > MJ
somep<i<a<qg<b-1<j<v-1.

Let w' and w? be the circuits onV with unique
subtoursC! andC?, respectively.
Let X' = {i1,ia,...,ir = a}; let S* = {z; : z; is the
unigue element of' in the region ofX having lower
limit i;;1 < j < ¢}; and letS? = S — S'. Then,
every element of! (S?) lies in the range of* (X?)
and every region of{! (X?) contains, at most, one
element ofS* (S2). Hence, by Lemma 5, there exist
permutations’’ and¢2 dense, respectively, ofi' and
S2, such thatD(w!) > D(¢') and D(w?) > D(¢?).
Let ¢ = ¢! o (2 Then( is dense onS and D(¢) =

D(¢') +D(¢?) < D(w') + D(w?) < D(p) = M5,
or D(p) — MP, ;i forsomep <i<a<qg<b-1<

j <m — 1. This proves the lemma.

Theorem 8 SupposeD is an(n — 1) x (n — 1) matrix
satisfying the following five conditions:
() V1<ij<gq< uv < n-—1such that
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1{i,4,q,u,v}| > 2, except for the cas¢u = v = ¢
andi = j # q— 1}, 7 (i,q,u,j,q,v) > 0.
(i) V1<ij<gqg<uv < n—1such that
1{i,5,q,u,v}| > 2, except for the cas¢i = j = q
andu=v # q+ 1}, FP(i,q,u, j,q,v) > 0.
(iiiy forany 1 <i <n—2, D[{i,i+1}] > 0.
(iv) Foranyl <i<u<j<mnandanyl <k <ior
J<k<n, ]\/fi%,mu-f—dkk > Oandeu’m—kdk,k > 0.
(v) For any principal submatrixD’ of D on a consec-
utive subset of its rows/columns, the corresponding
instance of the TSP is pyramidally solvable.

Then, for any cost matrixC’ and any permutation
I" on N, such thatD is the density matrix o™, the
GG-scheme witl' as the suitable starting permutation
produces an optimal solution to the corresponding TSP.

Proof: Let D be a matrix satisfying the conditions of
the theorem. We shall show that it satisfies the condi-
tions of Theorem 3.

Thus let U be any arbitrary permutation ofV.
Suppose?¥ has ¢ non-trivial subtours and=l, has
r connected components of sizés, (s, ...,¢,.. Let
X1, X2, ..., X% be the unions of the node sets of the
non-trivial subtours of corresponding, respectively, to
the node sets of theconnected components 6. Let
S be any subset oV with a partition{.S, Sa, ..., S, }
such that (i) for anyl < i < r, every element of; lies
in the rangeX,; every region ofX}, contains, at most,
one element of5;; and where S;| < (| X&| — ¢;); and
where (i) [S| = ((X_, |X4]) — ) mocR.

We shall, first of all, produce a permutatidr? on
N with D(¥%) < D(¥), such thatl® has precisely
r non-trivial subtours, one on each of the node sets
XL X2, ... Xy If £=r,then¥® = V. Else, letC!
andC? be two non-trivial subtours of such that their
ranges,[i1, j1] and [ig, j2], intersect. Without loss of
generality, let us assume that< i> < j;. Then there
exist nodes: andv of subtoursC! andC?, respectively,
such that; < u < iy <vand¥(u) > i; and¥(v) =
is. Let U/ = Wo a,,. In ¥, the two subtourg’!
and C? of ¥ are combined into one, while the other
subtours of¥’ are precisely those o¥. Furthermore,
D(W) = D(W) = M2, |, g1 = FF (wyiz, 0 -
1,129,149, ¥(u) — 1) > 0. By repeating the process, we
get the desired permutatiok’.

U0 hasr non-trivial subtours, sag';, Cs, . .
the node sets
X1 X2 ... Xy, respectively. For eache {1,2,...,
r}, let ¢* be the circuit onN with C; as its unique
non-trivial subtour. Let” C {1,2,...,r} be such that

., Cr,on
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Y jeY, X} is of the type{i,i + 1} andS; = 0. Let
Y| =k.
Case ()k = 0: In this case,D(¥) > D(¥°) =
Si_.D(¢Y) > >i_, D[Si], (by Lemma 5 and condi-
tion (v) of the Theorem}= DIS].
Case (ii)k = 1: Let C; be the only subtour with a
node set of the typéi, i + 1} andS; = 0. In this case,
since|S| = ((X_, | X)) — O)mod2 andV 1 < i <r,
1Si| < (|XE| — ¢:), there exists somé < j < r, such
that the setX7, is not of the type{i,i + 1} and some
region ofX-ZI', contains no element df;. Let the range
of X\{, bela,b — 1]. Then, by Lemma 7, there exists a
permutation¢ that is dense ot$; and some < a <
u < b—1< jsuch thatD(¢?) > D(¢) + M[, , or
D(¢?) = D(¢) + M7, , ;. Delete subtour€’;, andC;
from ¥° and add to them the non-trivial subtours¢of
to get a new permutatiod®. Then, by condition (iv)
of the theorem,
D(¥°) — D(W') = D(¢Y) + D(¢) — D(C)
or
D(¢") + Mf,)u,i,j >0

Now, D(¥') = D(()+>{D(¢") i € {2,3,...,r};
i # j}. By condition (v) of the theorenD)({) > D[S,]
and by Lemma 5 and condition (v) of the theo-
rem, D(¢*) > D[S;] V2 < i < r i # j. Hence,
D(vY) > D[9].
Case (ii) k > 1 and even: LetY = {1,2,...,k}
and let &' be the permutation with non-trivial sub-
tours {C; : i € {k+ 1,k + 2,...,7}}. Then by
condition (iv) of the theoremD(¢?) + D(¢H!) >
0Vi=1,3,...,k—1}; and henceD(¥!) < D(¥?).
By Lemma 5 and condition (v) of the theorem,
DY =5{D(¢) :ie{k+1,k+2,...,r}} >
S{D[S;]:ie{k+1,k+2,...,7}} = D[S].
Case (iv)k > 1 and odd: LetY = {1,2,...,k} and
let U' be the permutation with non-trivial subtours
{C; :ie{k,k+2,...,r}}. By condition (iv) of the
theorem,D(¢*) + D(¢*TY) > 0Vi=1,3,...,k —2};
and hence,D(¥!) < D(¥). By Case (ii) above,
D(¥Y) > D[S].

Thus, the matrixD satisfies the sufficiency condition
of Theorem 3. The result now follows from Theorem 3.

>

Examples 1 and 2 in Section 5 satisfy the conditions
of Theorem 8. Thus, the theorem properly generalizes
the sufficiency conditions in [2,15].

Conditions (i), (i), (iii) and (iv) of Theorem 8 can
be trivially tested inO(n*) time. Testing, in general,
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whether for a given density matri¥ the corresponding
instance of the TSP is pyramidally solvable, is Co-NP-
hard [14]. However, we do not know if a polynomial [6]
testing scheme exists if the matrix also satisfies condi-
tion (i)-(iv) of the theorem. In general, we can replace
condition (v) of the Theorem by any one of the poly-
nomially testable sufficiency conditions for pyramidal
solvability of the TSP [14] to get a general, polynomi- i8]
ally testable sufficiency condition for the validity of the
GG-scheme.
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