Document generated on 08/05/2025 5:05 a.m.

Algorithmic Operations Research

Vertex 3-colorability of claw-free graphs

Marcin Kaminski and Vadim Lozin

Volume 2, Number 1, Summer 2007
URLI: https://id.erudit.org/iderudit/aor2_lart02

See table of contents

Publisher(s)

Preeminent Academic Facets Inc.

ISSN
1718-3235 (digital)

Explore this journal

Cite this article

Kaminski, M. & Lozin, V. (2007). Vertex 3-colorability of claw-free graphs.

Algorithmic Operations Research, 2(1), 15-21.

All rights reserved © Preeminent Academic Facets Inc., 2007

Article abstract

The 3-COLORABILITY problem is NP-complete in the class of claw-free graphs.
In this paper we study the computational complexity of the problem in
subclasses of claw-free graphs defined by forbidding finitely many additional
subgraphs (line graphs and claw-free graphs of bounded vertex degree being
examples of such classes). We prove a necessary condition for the
polynomial-time solvability of the problem in such classes and propose a
linear-time solution for an infinitely increasing hierarchy of classes that meet
the condition. To develop such a solution for the basis of this hierarchy, we
generalize the notion of locally connected graphs that has been recently
studied in the context of the 3-COLORABILITY

This document is protected by copyright law. Use of the services of Erudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.

https://apropos.erudit.org/en/users/policy-on-use/

erudit

This article is disseminated and preserved by Erudit.

Erudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec a Montréal. Its mission is to
promote and disseminate research.

https://www.erudit.org/en/


https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/aor/
https://id.erudit.org/iderudit/aor2_1art02
https://www.erudit.org/en/journals/aor/2007-v2-n1-aor_2_1/
https://www.erudit.org/en/journals/aor/

A
PN
Algorithmic Operations Research Vol.2 (2007) 15-21

Vertex 3-color ability of claw-freegraphs

Marcin Kamihski Vadim Lozin®
*RUTCOR - Rutgers University Center for Operations Resea#db Bartholomew Road, Piscataway, NJ 08854, USA.

Abstract

The 3€OLORABILITY problem is NP-complete in the class of claw-free graphshihgaper we study the computational
complexity of the problem in subclasses of claw-free grajglimed by forbidding finitely many additional subgraphsgli
graphs and claw-free graphs of bounded vertex degree beiamples of such classes). We prove a necessary condition
for the polynomial-time solvability of the problem in sudasses and propose a linear-time solution for an infinitely
increasing hierarchy of classes that meet the conditiond@eelop such a solution for the basis of this hierarchy, we
generalize the notion of locally connected graphs that hesnbrecently studied in the context of the BLORABILITY
problem.
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1. Introduction of determining whether the edges of a given graph can
be assigned colors from s¢b, 1,2} so that any two
A 3-coloring of a graplty is a mapping that assigns a  edges sharing a vertex receive different colors. Indeed,
color from sef{0, 1, 2} to each vertex of7 in such a way by associating with a grapfi its line graphL(G) (i.e.,
that any two adjacent vertices receive different colors. the graph withV'(L(G)) = E(G) and two vertices be-
The 3-COLORABILITY problem is that of determining  ing adjacentinL(G) if and only if the respective edges
if there exists &-coloring of a given graph, and if so, of G' have a vertex in common), one can transform
finding it. Alternatively, one can view 3-coloring of a the gquestion of edge 3-colorability 6f into the ques-
graph as a partitioning its vertices into three independent tion of vertex 3-colorability of L(G). In conjunction
sets, callectolor classeslf such a partition is unique, ~ with the NP-completeness &DGE 3-COLORABILITY
the graph is said to haveumique coloring [5], this implies the NP-completeness of (vertex) 3-
From an algorithmic point of vieva-COLORABILITY COLORABILITY of line graphs. It is known that every
is a difficult problem, i.e., it is NP-complete. More- line graph is claw-free. Moreover, the line graphs con-
over, the problem remains difficult even under sub- Stitute aproper subclass of claw-free graphs, which
stantial restrictions, for instance, for graphs of vertex can be characterized by 8 additional forbidden induced
degree at most four [6]. On the other hand, for graphs SuPgraphs (see e.g. [4] for the complete list of minimal
in some special classes, such as locally connectednon-line graphs). In this paper we study computational
graphs [7], the problem can be solved efficiently, i.e., complexity of the proble_m_ in other subclgsses pf claw-
in polynomial time. Recently, a number of papers in- free graphs d(_afmed by finitely many forbidden |r_1<_juced
vestigated computational complexity of the problem Subgraphs. First, we prove a necessary condition for
on graph classes defined by forbidden induced sub- Polynomial-time solvability of the problem in such
graphs (see e.g. [11-15]). In the present paper, we Classes, and then for an |nf|n!t_ely increasing h|er§1rchy
study this problem restricted to claw-free graphs, the Of classes that meet the condition, we propose a linear-
class which lately received considerable attention in time solution. To develop such a solution for the basis
the literature [1,3,8]. The-COLORABILITY problem of this hierarchy, we generalize the notion of_IochIy
in claw-free graphs includes, as a subprobl&nge connected graphs that has been recently studied in the
3-COLORABILITY of general graphs, i.e., the problem Context of the 32OLORABILITY problem.
All graphs in this paper are finite, loopless and with-

* out multiple edges. The vertex set of a graghs de-
Email: Marcin Kamihski [mkaminski@rutcor.rutgers.edu], notedV (G) and the edge sef(G). A subgraph ofG
Vadim Lozin [lozin@rutcor.rutgers.edul]. is calledinducedby a set of verticesd C V if it can
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16 Kaminski and Lozin— Vertes-colorability of claw-free graphs

be obtained fronG by deleting the vertices outsidé.
We denote such a subgraph 6yA]. If G contains no
induced subgraphs isomorphic to a graph in a/get
we say thati is M-free. Theneighborhoodf a vertex
v, denoted byV (v), is the set of all vertices adjacent to
v. The number of neighbors of a vertexs called its
degreeand is denotedleg(v). A(G) is the maximum
degree and(G) is the minimum degree of a vertex in
a graphG. If A(G) = §(G), the graph is calledreg-
ular of degreeA(G). In particular, regular graphs of
degree 3 are callecubic Theclosed neighborhoodf
v is the setN [v] := N(v) U {v}.

As usual,P,, C, and K,, stand, respectively, for a

most four is NP-complete.

The result follows by a reduction frorEDGE 3-
COLORABILITY of C3-free cubic graphs, which is an
NP-complete problem [5]. It is not difficult to ver-
ify that if G is a Cs-free cubic graph, theld(G) is
a (claw, diamond, K4)-free regular graph of degree
four. It is interesting to note that the inverse reduc-
tion is also valid: with any(claw, diamond, K,)-free
4-regular graphH, one can associate @;-free cubic
graphG such thatL(G) = H. Indeed, each maximal
cligue in H (which must be of size 3) becomes a ver-
tex of GG, and two vertices are adjacent @& if the
respecrtive cliques off share a vertex.

chordless path, a chordless cycle and a complete graph To establish more results, let us introduce more defi-

onn vertices K, ,,, is the complete bipartite graph with
parts of sizen andm. A wheel W, is obtained from a

nitions and notations. First, we introduce the following
three operations:

cycle C,, by adding a dominating vertex, i.e., a vertex e replacement of an edge by a diamond (Figure 1);

adjacent to every vertex of the cycle. For some particular

graphs we use special naméds; 3 is aclaw, K,—e
(i.e., the graph obtained frofi, by removing one edge)
is adiamond while agem is the graph obtained from
a P, by adding a dominating vertex.

Notice thatin the context &-colorability itis enough

to consider connected graphs only, since if a graph is
disconnected, then the problem can be solved for each of

Fig. 1. Replacement of an edge by a diamond

its connected components separately. Therefore, with- implantation of a diamond at a vertex (Figure 2):

out loss of generality, we assume all graphs in this paper

are connected.

We can also assume th&fG) > 3. Indeed, ifv is
a vertex of G of degree less than three, théhhas a
3-coloring if and only if the graph obtained frot by

deletingv has one. Moreover, whenever we deal with
claw-free graphs, we can restrict ourselves to graphs of
vertex degree at most four. Indeed, it is not difficult to
verify that every graph with five vertices contains either
a triangle or its complement or@;. Therefore, every
graph with a vertex of degree five or more contains
either aclaw or K, or W5. Since K, and W5 are not
3-colorable, we conclude that everjaw-free graph,
which is 3-colorable, has maximum vertex degree at
most4.

Fig. 2. Diamond implantation

e implantation of a triangle into a triangle (Figure 3)

2. NP-completeness

In this section we establish several results on the NP-
completeness of the 8oLORABILITY problem in sub-
classes oflaw-free graphs. We start by recalling the

Fig. 3. Triangle implantation

Observe that a graph obtained from a graptby

following known fact.
Lemmal The 3€OLORABILITY problem on(claw,

diamond)-free graphs of maximum vertex degree at

diamond or triangle implantation is 3-colorable if and
only if G is.
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Denote by

T, ;.1 - the graph represented in Figure 4;

Ti{j,k - the graph obtained froffy; ; 5, by replacing each
edge, which is not in the central triangle, by a diamond;
and

Tfja’? - the graph obtained fror_fTi{j,,C by implanting
into its central triangle a new triangle.

.90 N .
-1 . k—1

Sk

Fig. 4. The graptl; ; »

Finally, denote by

17

We will show thatif M N7! = or M NT? = (), then

G can be transformed in polynomial time into a graph
in X, which is 3-colorable if and only i€z is. Assume
first thatM/ N 7! = ().

Let us call a triangle ird+ privateif it is not contained
in any diamond. Also, we shall call a vertexsplittable
if the neighborhood of: can be partitioned into two
disjoint cliquesX,, X, with no edges between them.
In particular, in a(claw, gem, Wy, K4)-free graph of
degree at most 4 every vertex of a private triangle is
splittable. Also, it is not difficult to verify that in such a
graph every chordless cycle of length at least 4 contains
a splittable vertex.

Given a splittable vertex with cliguesX, X» in its
neighborhood, apply the diamond implantatiotimes,
i.e., replacer with two new vertices:; andx,, connect
x; to every vertex inX; for ¢ = 1,2, and connect;
to zo be a chain oft diamonds. Obviously the graph
obtained in this way is 3-colorable if and onlyd is.
We apply this operation to every splittable vertex(of
and denote the resulting graph B¥k). Observe that
G(k)is(Cy,...,Cy)-free and the distance between any

T - the class of graphs every connected component of two private triangles is at least

which is an induced subgraph of a graph of the form
T ik

Let us show that ift is larger than the size of any
graph inM, thenG(k) belongs toX. Assume by con-

T! - the class of graphs every connected component of tradiction thatG;(k) does not belong t&, then it must

which is an induced subgraph of a graph of the from

T} and

contain an induced subgraphe M. We know thatA
cannot contain chordless cyclés, . . . , C. Moreover,

T2 - the class of graphs every connected component of it cannot contain cycles of length greater thiarsince

which is an induced subgraph of a graph of the from
Tfj_’k.
Notice that none of the class€8' and7?2 contains
the other. Indeed] 2\ 7* contains a gem, whilg*\ 72
contains the grapilf(fo_’0 (see Figure 5 for the definition
of T2 ).
Theorem 2 Let X be a subclass oflaw-free graphs
defined by a finite sed/ of forbidden induced sub-
graphs. IfM N 7' = () or M NT? = (), then the 3-
COLORABILITY problem is NP-complete for graphs in
the classX.

Proof: We prove the theorem by a reduction from the
class of(claw, gem, Wy)-free graphs of vertex degree

A has at most vertices. For the same reason, each
connected component gf contains at most one private
triangle. But thend € 7!, contradicting our assump-
tion thatM N 7" = 0.

Now assume thaf/ N1 72 = (. In this case, we
first transformG into G(k) and then implant a new
triangle into each private triangle 6f. By analogy with
the above case, we conclude that the graph obtained in
this way belongs taX, thus completing the necessary
reduction. O

The above theorem not only proves the NP-
completeness of the problem in certain graph classes,
but also suggests what classes can have the potential

at most 4, where the problem is NP-complete, since this for accepting a polynomial-time solution. In particular,

class is an extension dtlaw, diamond)-free graphs
of maximum degree 4.
Let G be a(claw,gem,W,)-free graph of vertex

for subclasses of claw-free graphs defined by a single
additional induced subgraph we obtain the following
corollary of Theorem 2 and Lemma 1.

degree at most 4. Without loss of generality we can also Corollary 3 If X is the class ofclaw, H)-free graphs,

assume thafr is K4-free (since otherwisé/ is not 3-
colorable) and every vertex @f has degree at least 3.

then the 3cOLORABILITY problem can be solved in
polynomial time inX only if H € 7' NT2.
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The intersectior? ! N 72 includes, for instance, the  connection with the 330LORABILITY problem. Then
class7. More generally, it includes any graph every in Section 3.2. we extend this result to an infinitely
connected component of which is an induced subgraphincreasing hierarchy of subclasses of claw-free graphs.
of a graph of the forrrTA  With at least two non-zero
indices (see Figure 5). In the next section, we analyze
some of(claw, H)-free graphs withd € 7' n72 and
derive polynomial-time solutions for them. A graphG is locally connectedf for every vertex
v € V, the graphG[N (v)] induced by the neighbor-
hood ofwv is connected. The class of locally connected

3.1. Almost locally connected graphs

N/ graphs has been studied in [7] in the context of 3he
i COLORABILITY problem.
6i—1 A notion, which is closely related to 3-coloring, is
: 3-clique ordering In a connected grapfd, an ordering
0 (v1,...,v,) Of vertices is called &-clique orderingif
0 vo IS adjacent tov;, and for eachi = 3,....n, the
o 1a - vertexv; forms a triangle with two vertices preceding
1 ok v; in the ordering.
N/ \/ Itis not difficult to see that for a graph withaclique-
Y Y ordering, the 32OLORABILITY problem is solvable in
Fig. 5. The graptr;; time linear in the number of edges. (We will refer to such

running time of an algorithm alinear time) In [7], it

has been proved thatd is connected and locally con-
3. Polynomial-time results nected, therty admits a3-clique-ordering and it can be

found in linear time. Therefore, th& COLORABILITY

We start by reporting several results that are known proplem in the class of locally connected graphs can be
from the literature. It has been shown in [13] that the 3- ggved in linear time.

COLORABILITY problem can be solved in polynomial
time for (claw, T o,2)-free graphs. More generally, we
can show that

Theorem 4 The 3€OLORABILITY problem can be
solved in polynomial time in the class @law, T; ; 1.)-
free graphs for any, j, k

Now we introduce a slightly broader class and show
that the 3-colorability of graphs of vertex degree at
most 4 in the new class can be decided in linear time.
This will imply, in particular, a linear-time solution for
(claw, hourglass)-free graphs.

We say that a grapy is almost locally connecteif
the neighborhood of each vertex either induces a con-
nected graph or is isomorphic 6, UK (disjoint union
of an edge and a vertex). In other words, the neighbor-
hoods of all vertices are connected, or, if the degree of
a vertex is3, we allow the neighborhood to be discon-
nected, provided it consists of two connected compo-
nents, one of which is a single vertex.ufis a vertex
of degree 3 anab is an isolated vertex in the neighbor-
hood ofv, then we call the edgew a pendant edge

A maximal (with respect to set inclusion) subset of

Another solvable case described in [13] deals with vertices that induces a 3-clique orderable graph will be
(claw, hourglass)-free graphs, where an hourglass is called 3-clique orderable componen®ince a pendant
the graph consisting of a vertex of degree 4 and a coupleedge belongs to no triangle in an almost locally con-
of disjoint edges in its neighborhood. Unfortunately, nected graph, the endpoints of the pendant edge form
the authors of [13] do not claim any time complexity a 3-clique orderable component, in which case we call
for their solution. In Section 3.1. we show that this it trivial. For the non-trivial 3-clique orderable compo-
case can be solved in linear time by generalizing the nents we prove the following helpful claim.
notion of locally connected graphs studied recently in Claim 5 Let G be an almost locally connected graph

Proof: First, observe that 80LORABILITY is a prob-
lem solvable in polynomial time on graphs of bounded
cligue-width [2]. From the results in [10] it follows
that(claw, T; ; 1, )-free graphs of bounded vertex degree
have bounded clique-width for anyj, k. In the intro-
duction, it was observed thalaw-free graphs contain-
ing a vertex of degree 5 or more are not 3-colorable,
which provides the desired conclusionX
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with A(G) < 4 and with at least 3 vertices.

(1) Every non-trivial 3-clique orderable component

of G contains at least 3 vertices.

(2) Any two non-trivial 3-clique orderable compo-
nents are disjoint.

(3) Any edge of7 connecting two vertices in different
non-trivial 3-clique orderable components is pendant.

Proof: Tosee (1), observe thatin an almostlocally con-

Step 5. Expand the coloring of{ to a coloring ofG
and return it.

To show that the algorithmis correctand runs in linear
time, we need to prove two properties of the auxiliary
graph built in Ste of the algorithm.

Claim 6 Let H be the auxiliary graph built in Step
of the algorithm.GG is 3-colorable if and only ifH is.

Proof: If GG is 3-colorable, then each 3-clique orderable

nected graph with at least 3 vertices every non-pendantcomponent has a unique coloring. Therefore, the graph

edge belongs to a triangle.

To prove (2), supposé&’ contains two non-trivial 3-
cligue orderable componentg; and M sharing a ver-
tex v. Without loss of generality let have a neighbor
w in My — Ms. SinceM; is non-trivial, the edgew
cannot be pendant, and hence there is a vertexi/;
adjacent both tw andw. Notice thatu cannot belong
to M,, since otherwisé/, U{w} induces a 3-clique or-
derable graph contradicting maximality 8f,. On the
other hand)/>; must have a triangle containing vertex
saywv, z,y. If neitheru norw has a neighbor ifz, y},

thenG is not locally connected. If there is an edge be-

tween{u, w} and{z,y}, thenM- is not a maximal set

inducing a 3-clique orderable graph. This contradiction

proves (2), which in its turn implies (3) in an obvious
way. O

A natural corollary from the above claim is that an al-

obtained by contracting color classes of each 3-clique
orderable component (and, possibly, removing vertices
of degree2) is 3-colorable.

If H is 3-colorable, then vertices of degrgthat were
deleted in Ste can be restored and receive colors that
are not assigned to their neighbors. kdie a vertex of
a triangle in H corresponding to a 3-clique orderable
component inG. The edges thai is incident to (but
not the triangle edges) correspond to the pendant edges
of this component. Each is incident to two vertices in
different color classes ifif and will be inG. O

From the definition oB-clique-ordering one can de-
rive the following simple observation.
Claim 7 If G has a3-clique-ordering, therlE(G)| >
2|V(G)| - 3.
Claim 8 LetG be a connected and almost locally con-
nected graph of maximum vertex degree at most 4, and
H be the auxiliary graph built in Step of the algo-

most locally connected graph admits a unique partition (ithm, ThenA(H) < 3.

into 3-clique orderable components and such a partition

can be found in linear time.

Now we present a linear-time algorithm that, given a

connected, almost locally connected graghdecides
3-colorability of G and finds &-coloring, if one exists.
In the algorithm, the operation @ontractionof a set
of verticesA means substitution ofl by a new vertex
adjacent to every neighbor of the sét

ALGORITHM A

Step 1. Find the unique partitiofyy, . .
3-clique orderable components.
Step 2. If one of the graph&7[V;] is not3-colorable, re-
turn the answer 'Gs NOT 3-COLORABLE'. Otherwise,
3-color each 3-clique orderable component.

Step 3. Create an auxiliary grapH, contracting color
classes in each 3-clique orderable comporiénand
then removing vertices of degrée

Step 4. If H is isomorphic taK 4, return the answer 'G
IS NOT 3-COLORABLE'. Otherwise,3-color H.

., Vi of G into

Proof: LetT be a 3-clique orderable component®f
Denote byns, n3, ny the number of vertices of degree
2,3 and4 in G[T], respectively. Also, letn’ be the num-
ber of edges irG[T]. Then,2m' = 2ng + 3ns + 4ny.
In addition,m’ > 2(ny + n3 + n4) — 3 (by Claim 7).
Thereforen, < 3. Notice that any pendant edge Gh
is adjacent to two vertices of degr8ethat are of de-
gree2 in the graphs induced by their 3-clique orderable
components. Therefore, the number of pendant edges
of a 3-clique orderable component is at mdst

If a,b,c are vertices of a triangle corresponding to a
locally connected component, and three pendant edges
are incident taz, thenb andc are removed in Step of
the algorithm, as both have degrgeanda has degree
3in H. If a is incident to two pendant edges, ahtb
one, therc is removed (as it has degrég and bothb
andc have degree at mo8tin H. If each of the vertices
a, b, c is incident to one pendant edge only, then the
degree of each of them is at m@st O
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Theorem 9 Algorithm A decides3-colorability of a
connected, almost locally connected graphvith max-
imum vertex degree at most 4 and find$-eoloring of
G, if one exists, in linear time.

Proof: The correctness of the algorithm follows from
Claims 6, 8 and the observation that by the Brooks’
theorem the only graph of maximum degr&é¢hat is
not 3-colorable isK .

The first step of the algorithm can be implemented
as a breadth first search and performed in linear time.
3-coloring each of the locally connected components
in linear time can be done by applying the algorithm
presented in [7]. Also, building the auxiliary graph and
testing if it is isomorphic td<, are linear time tasks. As
was proved in [9], Ste@d may be performed in linear
time as well, and Step is also clearly linear. O

Corollary 10 If G is (claw, hourglass)-free, then
there exists a linear time algorithm to decid®
colorability of G, and find a3-coloring, if one exists.

Proof: If A(G) > 5, thenG is not 3-colorable and
this can be checked in linear time. Notice that the only
disconnected neighborhoods that are allowed 8- a
colorable, claw-free graph apd{, andK; U K. Since

G is hourglass-free, none of the neighborhoods is iso-
morphic to2 K»; otherwise, the graph induced by a ver-
tex together with its neighborhood would be isomorphic
to an hourglass. Hence, all neighborhoodsiirmre ei-
ther connected or isomorphic t6; U K. Therefore, the
graph is almost locally connected and by Theorem 9,
the 3-colorability problem can be solved for it in linear
time. O

The main result of this section raises the following
natural question: is it possible to extend Theorem 9
to almost locally connected graphs of higher degree.
Unfortunately, the answer is negative. This conclusion
is beyond the scope of Section 3, which is devoted to

Kaminski and Lozin— Vertes-colorability of claw-free graphs

for eachi = 1,2, 3,4, andu be adjacent to every vertex
in vy, v, v3, v4,vs. Notice thatH is a3-colorable, lo-
cally connected graph and verticess, wos, w34, wys
receive the same color in aycoloring of H.

Let G be any4-regular graph om vertices and=’

a graph obtained by taking copies ofH - one corre-
sponding to each vertex @ - and adding edges be-
tween copies off in such a way that two copies of
H are connected if and only if two vertices Gf cor-
responding to them are, and there is exactly one edge
connected to any of the verticags, was, wsg, Wys.

Itis easy to see that’ is an almost locally connected
graph withA(G) = 5. Moreover,G’ is 3-colorable if
and only if G is. Since forG, the 3-COLORABILITY
problem is NP-complete, we conclude that it is NP-
complete forG’ too. O

3.2. More general classes

In this section we extend the result of the previous
one to an infinitely increasing hierarchy of subclasses of
claw-free graphs. The basis of this hierarchy is the class
of (claw, hourglass)-free graphs. Now let us denote
by Hy, the graph obtained from a copy of &nurglass
H and a copy ofP; by identifying a vertex of degree
2 of H and a vertex of degree of Py. In particular,
H,=H.

Theorem 12 For any k > 1, there is a linear time
algorithm to decide3-colorability of a (claw, Hy)-free
graph G, and to find a3-coloring, if one exists.

Proof: Without loss of generality we consider only con-
nected K4-free graphs of vertex degree at most 4 in
the class under consideration. For those graphs that are
hourglass-free, the problem is linear-time solvable by
Corollary 10. Assume now that(alaw, Hy)-free graph

G contains an induced hourglags (which implies in
particular thatt > 1) and letv denote the center of

H. There are only finitely many connected graphs of

positve results. Nevertheless, to make the subsectionbounded vertex degree that do not have vertices of dis-

on almost locally connected graphs self-contained, we
complete it with the proof of this negative result.
Theorem 11 For almost locally connected graphs
with A(G) > 5, the3-COLORABILITY problem is NP-
complete.

Proof: Consider a graphH whose vertex set is
U, V1,02, V3, V4,V5, Wiz, W23, W34, Wss. Let H[{vy,
v2, V3, Vg, v5 }| be a pathw;, ;11 be adjacent te;, v, 41

tancek + 1 from v. Therefore, without loss of general-
ity, we may suppose th&¥ contains a vertex;, of
distancek + 1 from v, and letxgy1, xg, ..., 21,0 be a
shortest path connecting.,; to v. In particular,x; is

a neighbor ofv. SinceG is Hy-free,x5 has to be adja-
cent to at least one more vertex, sayin the neighbor-
hood ofv. If w is not adjacent ta:;, thenu, x1, z2, 23
induce a claw. Thusy is adjacent tor;, while z5 has
no neighbors inV(v) other thanx; andu.
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Let us show that, has degre8 in G. To the contrary,
assumez is the fourth neighbor of: different from
v, 1, Z2. TOo avoid the induced clad|u, v, x2, 2], z has
to be adjacent te,. This impliesz is not adjacent ta;;
(else aK, = G[x1,u, x2, 2] arises), and: is adjacent
to x3 (elsexs, x1, 2, z3 induce a claw). But now the
pathzy, ..., xs, 2, u together withv and its neighbors
induce anHy; a contradiction. By symmetry;; also
has degree 3 .

Notice that in any3-coloring of G, verticesv andxs
receive the same color. Therefore, by identifying these
two vertices (more formally, by replacing them with a
new vertex adjacent to every neighbonoéndzs) and
deletingu and x;, we obtain a new graph¥’ which
is 3-colorable if and only ifG is. Moreover, it is not
hard to see that the new graph is agéifuw, Hy)-
free. By applying this transformation repeatedly we re-
duce the initial graph to a grapfi” which is either
(claw, hourglass)-free or contains no vertices of dis-
tancek + 1 from the center of an hourglass. In both
cases the problem is linear-time solvable, which com-
pletes the proof. O

(3]

[4]
(5]
(6]

[7]

(8]

[9]
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