Document generated on 08/05/2025 5:05 a.m.

Algorithmic Operations Research

Job Shop Scheduling with Unit Length Tasks: Bounds and

Algorithms

Juraj Hromkovic, Tobias Momke, Kathleen Steinhofel and Peter Widmayer

Volume 2, Number 1, Summer 2007
URI: https://id.erudit.org/iderudit/aor2_1lart01

See table of contents

Publisher(s)

Preeminent Academic Facets Inc.

ISSN
1718-3235 (digital)

Explore this journal

Cite this article

Hromkovig, J.,, Momke, T., Steinhofel, K. & Widmayer, P. (2007). Job Shop
Scheduling with Unit Length Tasks: Bounds and Algorithms. Algorithmic
Operations Research, 2(1), 1-14.

All rights reserved © Preeminent Academic Facets Inc., 2007

Article abstract

We consider the job shop scheduling problem unit-Jm, where each job is
processed once on each of m given machines. Every job consists of a
permutation of tasks for all machines. The execution of any task on its
corresponding machine takes exactly one time unit. The objective is to
minimize the overall completion time, called makespan. The contribution of
this paper are the following results: (i) For any input instance of unit-Jm with d
jobs, the makespan of an optimum schedule is at most m + o(m), for d =
o(m1/2). This improves on the upper bound O(m + d) given in [5] where O hides
a constant equal to two as shown in [7]. For d = 2 the upper bound is improved
tom + [v m . (ii) There exist input instances of unit-Jm with d = 2 such that
the makespan of an optimum schedule is at least m + [v/ m], i.e., our upper
bound for d = 2, see result (i), cannot be improved. (iii) We present a
randomized on-line approximation algorithm for unit-Jm with the best known
approximation ratio for d = o(m1/2). (iv) There is no deterministic on-line
algorithm with a competitive ratio better than 4/3 for unit-Jm with two jobs,
and for three or more jobs, there is no deterministic on-line algorithm which is
better than 1.5 competitive. Compared with the expected competitive ratio of
(iii) which tends to 1, this shows that for unit-Jm randomization is very
powerful compared with determinism. For two and three jobs, deterministic
on-line algorithms with competitive ratios tending to 4/3 and 1.5 respectively
are presented. (v) A deterministic approximation algorithm for unit-Jm is
described that works in quadratic time for constant d and has an
approximation ratio of 1 + 2d/| v m | for d < 2log2 m.

This document is protected by copyright law. Use of the services of Erudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.

https://apropos.erudit.org/en/users/policy-on-use/

erudit

This article is disseminated and preserved by Erudit.

Erudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec a Montréal. Its mission is to
promote and disseminate research.

https://www.erudit.org/en/

https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/aor/
https://id.erudit.org/iderudit/aor2_1art01
https://www.erudit.org/en/journals/aor/2007-v2-n1-aor_2_1/
https://www.erudit.org/en/journals/aor/

A
PN
Algorithmic Operations Research Vol.2 (2007) 1-14

Job Shop Scheduling with Unit Length Tasks: Boundsand Algorithms

Juraj Hromkovi& Tobias Momke Kathleen Steinhofél Peter Widmayet

2Department of Informatics, ETH Zurich, ETH Zentrum, CH-20Birich, Switzerland.
bKing’s College London, Department of Computer Sciencear8tr WC2R 2LS London, UK

and FIRST — Fraunhofer Institut fiir Rechnerarchitektud @oftwaretechnik, KekuléstraBe 7, 12489 Berlin, Germany

Abstract

We consider the job shop scheduling problem uhjf-where each job is processed once on eachh@fiven machines.
Every job consists of a permutation of tasks for all machiffése execution of any task on its corresponding machine
takes exactly one time unit. The objective is to minimizeottegall completion time, called makespan. The contributio
of this paper are the following results: (i) For any input taace of unitd,, with d jobs, the makespan of an optimum
schedule is at most + o(m), for d = o(m'/?). This improves on the upper boux#(m + d) given in [5] whereO
hides a constant equal to two as shown in [7]. Fbe= 2 the upper bound is improved te + [\/m]. (ii) There exist
input instances of unitk, with d = 2 such that the makespan of an optimum schedule is at teast[v/m 1, i.e.,
our upper bound ford = 2, see result (i), cannot be improved. (iii) We present a ranided on-line approximation
algorithm for unit-J,,, with the best known approximation ratio fdr= o(m1/2). (iv) There is no deterministic on-line
algorithm with a competitive ratio better thaty3 for unit—J,, with two jobs, and for three or more jobs, there is no
deterministic on-line algorithm which is better than 1.5rmquetitive. Compared with the expected competitive rati@ipf
which tends to 1, this shows that for unity randomization is very powerful compared with determinisor.two and
three jobs, deterministic on-line algorithms with comfiedi ratios tending to4/3 and 1.5 respectively are presented.
(v) A deterministic approximation algorithm for unitz is described that works in quadratic time for constanand
has an approximation ratio of + 2%/|y/m | for d < 2log, m.

Key words: Scheduling, Makespan, Multiple machines, Approximatidgokithms, Online Algorithms, Competitive ratio

1. Introduction

Minimizing the makespan for general job shop
scheduling is one of the fundamental optimization
problems. It is NP-hard, and Williamson et al. [9]
proved that the minimum makespan is not even ap-
proximable in polynomial time withis /4 — ¢ for any
€. Moreover, no constant approximation algorithm is
known, see Goldberg et al. [3] and Shmoys et al. [8].

Many job shop scheduling models have been identi-
fied as having a number of practical applications. But
even severely restricted models remain strongly NP-

hard. In this paper, we consider a problem setting that

relates to finding optimum schedules for routing pack-
ets through a network, see [5]. It is a well-studied ver-
sion of job shop scheduling withu different machines
and unit length tasks, denoted byit-J,,,. There arei
jobs Jy, Jo, ..., Jg for some integerl > 2. Each job
consists of a sequence of tasks, such that each ma-

* Supported in part by SNF grant 200021-107327/1

chine processes exactly one task of the job. Therefore,
for each job the order of the tasks, o9, . . . , o, deter-
mines a permutation of thex machines, where; re-
quires processing on thieh machine. As in the general
job shop, each machine can process only one task at a
time and each job must be executed on the machines in
the order given by its permutation. A feasible schedule
is an assignment of starting times to tasks that satis-
fies all stated restrictions. The makespan of a schedule
is the maximum over the completion times of all jobs.
The objective is to minimize the makespan over all fea-
sible schedules. The probleamit-J,,, is NP-hard for

m > 3, see Lenstra and Rinnooy Kan [6].

The algorithm of Goldberg et al. [3] improved a result
of Shmoys et al. [8] and provides an approximation ra-
tio O((log, m)/(log, log, m)?) for unit-J,,,. Instances
with two jobs have been shown by Brucker [1] to be
solvable in linear time. Later, we shall see that a straight-
forward extension of this algorithm leads to @tm?)
time algorithm for any input instance ahit-J,, with
d jobs. Leighton et al. [4,5] proved that there exists al-
ways a schedule with makespér{m + d). This pro-

(© 2007 Preeminent Academic Facets Inc., Canada. Onlineovetsitp://journals.hil.unb.ca/index.php/AOR. All righreserved.

vides a randomized constant approximation algorithm

for this problem. The constant is equal to two and was

determined by Scheideler [7]. Feige and Scheideler [2]

proved that the bound does not extend to the case of
arbitrary task lengths.

In this paper, we analyze the hardest input instances
of unit-J,,,. As already mentioned, finding the optimal
makespan of job shop instances with two jobs is solvable
in linear time. Therefore, in this paper, the term hard
instance is used in the sense of makespan length only.
Our observations lead to the design of a randomized on-
line algorithm that solveanit-J,,, with d jobs in linear
time with expected approximation ratio that tends to 1
for d = o(m'/?). The contributions of this paper can
be formulated as follows.

(1) The makespan of an optimum schedule is at most

m + 2dv/m;

this amounts ton + o(m) for every problem in-
stance ofunit-J,, with d = o(m'/?) jobs, and
thus, for this case, improves on the upper bound
O(m+ d) derived by Leighton et al. [5], whei@
hides a constant of two as shown in [7]. Fb& 2

we prove the stronger upper bound+ [/m].

There exist input instances ohit-J,,, with two

jobs such that every schedule has a makespan of
at least

)

m—|—\/E.

Hence, the result forl = 2, see (i), cannot be
improved.

For every positive integen, there is a randomized
on-line approximation algorithm that solvasit—
Jmn inlinear time with an expected approximation
ratio of

®3)

2d
1+ =

Jm

this amounts td+o(1) ford = o(m'/?). These re-

)

sults demonstrate an extreme power of randomness

for unit-J,, for several reasons. First of all our
randomized on-line algorithm is competitive with
respect to the makespan of an optimum solution.
Ford = o(m'/?) the algorithm is the best approx-
imation algorithm forunit-J,,. We do not know
any off-line polynomial-time approximation algo-
rithm with an approximation ratio that would tend
to 1 for d = o(m'/?) with growingm. Moreover,

no deterministic on-line algorithm can achieve a
makespan better thah- (m — 1)/ log, d [5].

Hromkovic, Steinhofel, Widmayer and Mémke —Job Shopesteting with Unit Length Tasks

(4) For every on-line algorithm fownit-J,,, we
present an input instance with = 2 such that
the algorithm results in a makespan of at least
m + m/3. We also present a deterministic 4/3-
competitive on-line algorithm for input instances
of unit-J,,, with d = 2. Similarly, for every deter-
ministic on-line algorithm withi = 3, we present
an input instance such that the algorithm results in
a makespan of at least +m/2 and we present a
deterministic on-line algorithm that has a compet-
itive ratio tending to 1.5 withn growing for input
instances ofinit—J,, with d = 3. We show that
there is no deterministic on-line algorithm with
d = 2 and a competitive ratio better thdpi3, and

for d > 3, the competitive ratio of every deter-
ministic on-line algorithm is at least 1.5. This is
significantly worse than the expected competitive
ratio tending to 1 of the randomized on-line al-
gorithm of (iii). This clearly shows the power of
randomization for the on-line version ofit-J,,.

We present a deterministic approximation algo-
rithm that is efficient at least for smalls in com-
parison withm. Its run-time isO(d?>m?), and it
has an approximation ratio of at most

(®)

2d
[v/m]

which tends to 1 with growingm for d

o(logy m).
The paper is organized as follows. Section 2. presents
a geometrical representation of the input instances of
unit-J,,, that is essential for a transparent analysis of
unit—J,,,. In Section 3. we present some hard input in-
stances with two jobs only. Section 4. shows the ex-
istence of efficient schedules for all input instances of
unit-J,,. In Section 5. the randomized algorithm with
the properties as described in (iii) is given. In Section
6. we give hard instances and algorithms for on-line
unit-J,,, and compare them with the previous random-
ized results. Our deterministic approximation algorithm
is presented in Section 7.

1+

2. A geometrical representation of instances

We start with the representation of input instances
with two jobs that was employed in [1] to design a linear
time algorithm for this special case ohit—J,,,.

Let (i1, ... ,im)@nd(ji, ... ,jm) be two permuta-
tions of(1,2, ... ,m) that represent the input instance

Hromkovic, Steinhéfel, Widmayer and Mémke — Algoritler®@perations Research \Vol.2 (2007) 1-14 3

(ail,crh, . ,O'im), (O'jl,O'j2, - ,O'jm) of Unit—Jm.

We consider a grid+,, of sizem x m, where for all
k.l € {1, ... ,m} the k-th row of G,, is labeled by
jr and thel-th column ofG,, by i;. A pair (k,1), i.e.,

the intersection of thé-th row and thd-th column, is
called anobstacle, if and only if i; = j,. The corre-
sponding square is depicted by a black box.

12 3 45 6 7 8 9 1 2 3 45 6 7 8 9

© N © A OO N W R

© N 0 B~ N W R

() (b)

Fig. 1. A hard input instance afnit-J,, with two jobs and
nine machines.

Fig. la illustrates theGy of the input instance
with two jobs that are given by the two permutations
(1,2,3,4,5,6,7,8,9) and (1, 3,2,6,5,4,8,7,9). The
term obstacle is motivated by the following observa-
tion. Assume that the first job has executed its first
[— 1 tasks and the second job its fifsst— 1 tasks. If
iy = jk, then both tasks;, ando;, require the same
machine and therefore, only one of the two jobs can
continue its execution in the next time unit and the
other one iglelayed. Otherwise, both jobs can proceed
simultaneously.

We assign to the grid+,, the GraphG,,)=(V, E),
whereV consists of all vertices of the grid and the set
E includes all orthogonal edges of the grid. Addition-

from the upper-left corner to the lower-right corneb.

The bold polygonal line in Fig. 1 represents an optimum
schedule of our example. In the schedule, there are 6
delays that are equally distributed between the two jobs.
Therefore, the makespan of the illustrated schedule is
m+6/2=9+3=12.

Let S be a schedule of an instance with two jobs.
The number of vertical edges of the path representing
S is called thedelay of the first job according t&,
and the number of horizontal edges $fis called the
delay of the second job according $o Thedelay of S
is the maximum over these two delays. Obviously, the
makespan of is exactly the sum ofr and the delay of
S. For later use, we denote Isym-delay(S) the sum
of the delays of jobs according 1%.

We outline the extension of this representation for an
arbitrary number of jobs. In this case we have &
dimensional gridG¢, that containgn? d-dimensional
grid cells. Again, the unit intervals of each axis are la-
beled by the tasks according to the sequence of ma-
chines of the corresponding job. Fixing a labef some
axis results in gd — 1)-dimensional subgrid of¢ .

The intersection of two such different subgrids with
labelsi is a(d — 2)-dimensional subgrid of2?~2 grid
hypercubes that are obstacles in the following sense. Let
d’ andd” be the subgrids resulting from a common label
1 on two axes:’ anda’. Any diagonal of a grid square
Q in the intersection ofl’ andd” whose projection in
the two dimensional subspace determined:bgnda”
is a diagonal corresponds to the execution of 2 tasks on
the same machine. Therefore, any such diagonal cannot
be part of a path determining the makespan and will be
calledforbidden All other diagonals are allowed w.r.t
this intersection. In particular, the main diagonal of such
a squaré) (that corresponds to the execution of all tasks
determined by the coordinates of this grid squ@jas
forbidden, and so are the diagonals on the surfacg of

ally, E contains diagonal edges that connect the upper-that is defined by:" anda”. For instance, iiQ is part

left corner with the lower-right corner of a grid square

of the intersection of; (d — 1)-dimensional subgrids

that is not an obstacle. Fig. 1b shows the correspondingdetermined by the same labebn ¢ different axes, then

Graph(Gy) of Gy given in Fig. 1a. Any feasible sched-

to go from the “lowest” corner of) to the opposite

ule is represented by a path from the upper-left corner corner ofQ, requires at least time units: Since in this

of G to the lower-right corner of7y. The path consists
of edges of Graplt{y), where each edge represents one
unit of time. A vertical grid edge indicates that in this
time unit, a task of the first job idelayed; a horizontal
grid edge indicates delay of a task of the second job;

caseq tasks request the same machine, this congestion
can be resolved by subsequent steps only. Fig. 2 gives
an example of such an obstacle in the 3-dimensional
case.

Again, any optimum schedule corresponds to a short-

a diagonal edge tells that both jobs are processed at theest path between the two extreme corners of the grid.

same time with no delay.

Therefore, for any constadtwe get a polynomial-time

An optimum schedule corresponds to a shortest path algorithm for input instances with jobs. The notions

4 Hromkovic, Steinhofel, Widmayer and Mémke —Job Shopesteting with Unit Length Tasks

and hence

J : wl =) +i, () +i—1, o, (2 +2, () +1].
Observe thatw; is a sequence of integers, fori =
1, ... ,k,and that/; = 1,2, ... ,m. An example for

m=10= () is
Ji = [1]5 [25 3]5 [45 5, 6]7 [77 8,9, 10]1
and

Js = [1],[3,2],[6,5,4],[10,9,8, 7).

43 . Clearly, if no delay occurs among the two jobs the
makespan would be:. Therefore, we show that every
schedule o/} contains at least delays, i.e., every
(o shortest path contains at ledsbrthogonal grid edges.
: Every of these orthogonal edges delays either of the
, ~1|_ two jobs. Therefore, we have at least an overall delay of
k/2,i.e., the makespan must be at least- k/2. Note
Fig. 2. An obstacle in the 3-dimensional case. that it is sufficient to prove that/2 > /m/v/2 — 1/2
because itimpliesiakespan(Ig) > m++/m/2—1/2.

We prove by induction ori + 1 that any schedule for

delay ofS andsum-delay§) can be extended fat > 0 the jobs (w1, ws, ... ,w;) and (wi', wf, ... ;wf)

jobs in a straightforward way. causes at leastdelays. To do so, we use the following
induction hypothesis:
_(i+1
Any schedule I‘OLS%2), where one job is completed
and for the other job a prefix of lengtfit') — r, for

The aim of this section is to construct some of the ” < @ is already processedr(is called therelative
hardest problem instances with two jobs, i.e., instances €&y, uses at leastorthogonal grid edges (sum-delay
where the optimum schedule has a maximum number 'S at leasti), and it uses at least+ 1 orthogonal grid
of delays. Letmakespan(l) denote the length of an edges if the parities of and+ differ (i.e.,r is odd and
optimum schedule for the problem instantén what

3. Some hard instances

1 is even, orr is even and is odd).

follows. Obviously, this is true foi = 1. Let the hypothesis
Lemma 1 For everym = (*}'),k a positive integer, be true fori’ =i — 1. e

there exists an input instanck; of two job unit-J,, Now, consider a prefix of a scheduiefor I,* 7,7 >
such that 1, and: is odd. The case thatis even is left to the

reader. Let us consider the last time urbefore the first
makespan(Ig) > m + fm. task ofw; or of wf_% _vyi_ll be execgted. We disti_nguish
2 between two possibilities according to the relative delay
r of the executions of the prefixes up t®f J; to J,

Proof: Let I} = (Ji,J2), where (i.e., the distance to the diagonal) in Gratp‘l?(gl)).

(1) Letthe relative delay be at leasti.e., the distance
to the main diagonalis > /. If r > i'+1 = i, we
are done. Ifr = 4/, then one can use the diagonal
edges only to execute; or w?, but because of the
same parity of- andi’, the induction hypothesis
is satisfied. Since any change of the relative delay
during the work onw; or w!* causes a new delay,

wi= () + 1, () +2, ..., (&) +i—1,(2) +1] the hypothesis is true after processingor w?,

N~

J1 = wy,wa, ... ,w, andJsy :wf,wf, ,w,}f,
with w; denoting a subsequence of machine indices in-
duced by the tasks, and?® denoting the reverse af;.
The subsequences, andw’, withi =1, ... ,k, are
defined as

Hromkovic, Steinhéfel, Widmayer and Mémke — Algoritler®@perations Research Vol.2 (2007) 1-14 5

too.

(2) Let the relative delay be at most’. Then, fol-
lowing the induction hypothesis, the schedule con-
tains in this moment at leastdelays ifr is even,
and at least’ + 1 delays ifr is odd. Ifr is even,
then it is sufficient to observe that it is impossi-
ble to reach the border of the gr'(d(igl) by us-
ing diagonal edges only. This is becausg =

7 7 3 R _ (12 3 [3
Q)+1,”.,Q)+ZJ% _(944,”.,Q)+L
Therefore, the execution of the taslfé)ﬂ, is an
obstacle for the following sequence of diagonal
edges running parallel to the main diagonal in the
distance —2j+ 1 (corresponding to relative delay
i—2j+1)forj=1, ... ,|i/2]. Hence, at least
1 additional delay is necessary, and two additional
delays are necessary if the schedule finishes in the
same distance from the diagonal.

If r is odd, and the schedulexecutesy; or w’

by using diagonal edges only, we hav®ld” de-
lays (induction hypothesis) and we are done. Ob-
viously, if the distance to the diagonal changes, at
least one additional delay occurs.

Consider an input instand%” = (m1,m2), form =
k2, k a positive integer, where

T =W1, W2y o, Wy Uk—1, Uk—2, .., UL,
_ R R R , R R R
MY =W, Wa yevny,Wh , Up 1, Upgy -y UL,

where thew,; have the same meaning as before, and

is a sequence dftasks forl = 1, ... ,k — 1, with

uft denoting the reverse of; . The example of% for

m =1,2,...,mis givenin Fig. 1. An extension of the
analysis presented in Lemma 1 leads to the following
result.

Lemma 2 For everym = k2, k a positive integer,

makespan(I) > m+vm=m+ k.

Proof: To prove the Lemma we show that every short-
est path between the two opposite corners of the grid
contains at least- k orthogonal grid edges; this implies
that at least one of the two jobs is delayed by at least
k = y/m time units and therefore, the makespan must
be at leasin + /m.

We use the induction of the proof of Lemma 1 in the
following way. The prefixesr; = w1, ws, .
andmh = wit,wl, .. wl |
' . MY . . :
fine an instancd’, considered in Lemma 1, with
k' =k — 1. The suffixest! = ug_1,ux—2,...,u; and

c Wk
of the instancef% de-

7 =ul uf,, ... uf define the same instance in
a symmetric way. We distinguish two cases.
k41
(1) The relative delay caused by the prefii’g%)
isr < k' and the parities ok’ andr are the same.
Then we know from Lemma 1 that any schedule of
this prefix use&’ orthogonal grid edges. However,
in the case that the parities &f andr are the

same it is impossible to reach the border of the
grid G(k+1) by using diagonal edges only. This

is because ofu;, andw! and hence, at least 1
additional delay is necessary, and two additional
delays are necessary if the schedule finishes in the
same distancefrom the diagonal. After executing
the tasks ofw; and w,’f the schedule uses either
k' +1 = k orthogonal grid edges and changes the
parity of r or it usesk’ + 2 = k + 1 orthogonal
grid edges and does not change the parity.of

(*3)

The relative delay caused by the prefiX’),
isr < k' and the parities ok’ andr differ. Then
we know from Lemma 1 that any schedule of this
prefix usesk’ + 1 orthogonal grid edges. In this
case, the schedule can execute the tasks;of
and wf by using diagonal grid edges only and
therefore, does not need to change the parity. of
Now, if the parities ofr andk’ are the same and the
schedule uses two additional delays to exeayteand
wk then we havé:’ delays for the prefix ané’ delays
for the suffix, i.e., the sum-delay equald: — 1) +2 =
2k. If the schedule uses only one additional delay to
executewy, andwfj then the parities of andk’ for the
suffix differ. Hence, we havk’ delays for the prefix and
k' + 1 delays for the suffix, i.e., the sum-delay equals
k+k—1+1=2k. The case that the parities ofand
k' differ for the prefix are symmetrical.

2

)

4. Upper bounds on the number of delays

In this section, we show that any input instance of
unit-J,, can be scheduled with - m!'~—¢ delays for
d < m!'/?~¢, as compared with the lower bound on the
makespan. This improves on the upper boGte: +d)
[5] for d = o(m).

First, we give the upper bound for two jobs. Note that
this upper bound meets the lower bound of Lemma 2.
Lemma 3 For every positive integem, any two job

problem instancd of unit-J,, satisfies

makespan(I) < m + [vm].

6 Hromkovic, Steinhofel, Widmayer and Mémke —Job Shopesteting with Unit Length Tasks

Proof: For simplicity we present the proof for the case there must exist a schedule that has delay at Ryest
m = k2 only. To do this we use the geometric repre-

sentation. In what follows fot = 0,1, ... ,+/m, the Now, we extend Lemma 3 to all input instances, i.e.,
diagonalD; of the gridG,,, is the diagonal going from any number of jobs.
the position(0, 7) to the position(m — i, m); similarly, Theorem 4 For every positive integern, and every
diagonalD _; goes from(i, 0) to (m, m —1), see Fig. 3. instancel of unit-/,, with d = o(m'/2) jobs, the
length of any optimum schedule can be bounded from
above by
/m ©9) makespan(I) < m + 2dv/m = m + o(m).

Jm i
{ { Proof: The idea of the proof is to generalize the case
D with d = 2 to any dimension. We can view thé&
dimensionaln xm x...xm grid G, ¢(I) as a subgrid
of an infinite d-dimensional grid. We consider the fol-
(m,m) lowing setD of diagonals that are parallel to the main
diagonal ofG,,, (1) that starts in the poir(0, 0, ..., 0)
Fig. 3. The considered diagonals Gf,,. and ends in(m,m,...,m): We take every diagonal
with a starting point(iy, iz, . . ., iq), Where there is ex-
actlyonej € {1,...,d} suchthag; =0, and0 > i, >
, —r, forb e {1,...,d} — {j} and somen > r > 0.
Foreachi € {—/m, ... ,0, ... ,\/m}, we asso- | et (4, iy, ..., iq) denote the diagonal starting in the
ciate a schedul&(D;) to diagonalD;. The schedule point with the coordinatesiy, i, ..., iq) that ends in

S(D;) uses firstli| orthogonal grid edges to reach the ¢ POINt (i1 + m + a,is + m + a,. .., iq + m + a)
beginning of the diagondD;, then it runs via this diag- | hereq — max{[i,| | ’C < c’l}} ,< ' Every di,-
onal and avoids each obstacle on this diagonal by ON€agonalD(iy, is, . . . ,ia) corre’spo’nds to a job schedule
horizontal move and one vertical move. Finally, it uses \ynere thejt}ch;b is7postponed by, time units with re-
|i| grid edges on the border @, in order to reach gpect to jobs starting with the delay 0. If this schedule
(m,m). Observe that the makespan of this schedule is (g5ches the final POirfty +m+a,is+m+a,...,iq+
exactly m+ a) then all jobs were completely executed because
ij+m+a>mforallje{l,... d}.

Obviously, the number of all such diagonals is exactly

o
N i

m + |i| + the number of obstacles &

because the length dP, is m — |i| and the schedule
uses?2 - |i| steps to reach and to leave this diagonal.
Therefore, the delay of the scheduléD;) is |i|+ the
number of obstacles d?;. The sum of all delays over
all 2y/m + 1 considered schedulds; is at most

d-rit. 1)

Note, that one could consider also diagonals with
starting points containing sever@lelements, but this
makes the calculation more complex and the achieved

Jm Jm gain is negligible.
0) L) Similarly, as in the 2-dimensional case we calculate
m Z__Z\/E il =m+2 ;Z mtVm- (Vm+1) an upper bound on the total delay of @lr¢~! sched-
ules. This bound can be obtained as the sum of an upper

because the number of all obstacles in the wiigleis bound on the sum of the lengths of all diagonals and of
exactlym, the number of machinés Since the average an upper bound on the number of all delays occurring
delay over all2 - /m + 1 considered schedules is on these diagonals.
The starting points of all diagonals i lie on the
m+ym - (ym+1) < \/ﬁ—i—l boundary of a grid that is mirrored om diagonally
2-ym+1 N 2’ (note, that the coordinates of such a starting point are

- all negative except for exactly one being equal to zero).
! Therefore, in the worst case, all obstacles¥f lie on the At the end at most extra diagonal steps are added to
2k + 1 diagonals, see Fig. 3. reach the end point &ty + m+a,is+m-+a,...,iq+

Hromkovic, Steinhéfel, Widmayer and Mémke — Algoritrer®@perations Research Vol.2 (2007) 1-14 7

m+a). Therefore, the length of each described diagonal ~ Thus, we count the number of diagonals fréhwith
is bounded from above by + r. Because of (1) and the relative delay — i between thé'" and thea'” job.
to make later calculations easier, the sum of the lengths SinceD is the union of allD,’s, whereD,, contains all

of all diagonals is at most diagonals with the!" element equal t6 andD,,ND,, =
1 (0 for u # v, u,v € {1,2,...,d}, we count the number
d-r®" - (m+2r). (2) of such diagonals i, for everyp separately.

. Letp € {1,2,...,d}—{a, b}. The intersection oD,
Now, we count the number of possible delays. The ;ih G, meets all the diagonals with (c1, cs, . . . , cq),
axes of the subgriq;myd(l) are labeled by the jpbs. wherec, = 0 ande, = ¢, + j — i. One has' possible
Alabel o; on an axis determines(d — 1)-dimensional cpgices for every position from thé— 3 positions of
subgrid of G, 4(I) of md=1 d-dimensional unit grid 1,2,...,d} — {p,a,b}, and at most — (j — i) < r
cubes. An intersection of two such subgrids determined hpices for theit” axis. Theb' axis is unambigugusly

by the same labet; on two different axes is & — 2)- determined by the:” position. So, we have at most
dimensional subgrid ofn¢=2 d-dimensional unit grid 4=2 grid cubes in the intersection 6, andD, for p €
cubes. Observe that the inner diagonal of any unit grid {1,2,...,d} — {a,b}. G, meets exactly thepdiagonals

cube induced by this intersection subgrid as well as the D(t1,ts,. .., tq) Of Dy, that hag, = 0 andt, = i — .

corresponding diagonal on the surface of this unit grid The number of such diagondlisis exactlyr?—2. G,
cube are forbidden, for any schedule. Therefore, any of yqes not intersect any diagonal from, because the
our diagonal schedules containing such a unit grid cube diagonalsD(s1, sa, ..., s4) in D, haves, > s, for
will get a delay. Obviously, ify (d — 1)-dimensional everyu € {1,2,...,d}, i.e., thea'™ job is executed as

subgrids labeled by; meet in one unit grid cube, the {he first one and so it cannot be delayed with respect to
diagonal schedule containing such a grid cube must USeany other job (including the** job). Thus, all together
q — 1 additional steps to avoid this obstacle. G, intersects at most

We calculate the total number of delays as the sum (d-1) pd—2
of the number of delays caused by pairs(df— 1)-)
dimensional subgrids with the same label. We start with diagonals.

the following technical fact: Since we haven tasks in each of the jobs and(%)
Fact 5 The intersection of every pair ofd — 1)- pairs of axes (jobs), the number of schedule delays on
dimensional subgrids determined by the same task all d-r*~" diagonals is at most
affects at most d
(d—1) .72 m (2) (d—1)-ri2 (3)
diagonals ofD, each of them in exactly one unit grid)
cube. Therefore, the average number of delays per diagonal
is at most
Proof: Itis obvious that everyd—1)-dimensional sub- m- d»(d2—1) (d=1)-72 e (d—1)2

grid determined by a task intersects each of the di- RS < 5y
agonals ofD in exactly one unit grid cubk. Thus, it
remains to bound the number of diagonals intersecting ~ Since the length of every diagonal is boundediby-
the (d — 2)-dimensional subgrid considered. 2r, the average makespan over all diagonal strategies in
The intersectiorG,, of two subgrids labeled by the D is bounded by
same taskr corresponds to a fixed relative delay be- 5 o
tween the execution of two jobs. If the taskis at the m -+ 2r + M <m+2r+ % (4)
it" position on theat"-axis and at thg*" position on 2r 2r
the bth aXiS,j <7, then the relative delay between the Choosingr — d\/ﬁ/Q we obtain an average makespan
execution of thé" job and thea"" job is j — i for all over ourdr?=! diagonal strategies of at most
diagonals intersectingy,.
m + 2dv/m.

! This is the cube that corresponds to the execution of the

tasko in the job determined by the considered axis. 2

with 2 fixed positions

Hromkovic, Steinhofel, Widmayer and Mémke —Job Shopesteting with Unit Length Tasks

Thus, there must exist at least one diagonal strategy solutionsOpt(x) for every valid inputc. The competi-

with a makespan of at most + 2d/m = m + o(m)
for d = o(m'/?).

Corollary 6 For every positive integefn and every
instancel of unit-J,, with d < m!/2~< jobs, with

0 < € < 1/2, the makespan of any optimal schedule
can be bounded from above by

makespan(l) < m + omli—e,

Proof: We choose

ml_EJ,

r:Lz

and insert it into (4). Then we have

m]+ 2[%m1*5J <

m+2L2

tive ratio of an on-line algorithm for minimization prob-
lems is defined as

comp 4 () := costa(z)/Opt(x).

An algorithm A is calleds-competitive, if the competi-
tive ratio is at mosd for every valid inputc. In random-
ized algorithms, the competitive ratio may vary depend-
ing on the random decisions. Therefore, in this case we
need the expected competitive ratio.

Let Z, denote the random variable which measures
the cost of the solution calculated blyon inputx. We
define the expected competitive ratio 4fon x as

_ ElZ)]
~ Opt(x)
A randomized algorithmd is Exp[d]-competitive, if

Exp—Comp 4 (z) < ¢ for a real numbeé and for every
valid inputz.

Exp—Comp 4 ()

Since the best known upper bound on the makespan We propose a randomized on-line algorittigo-

is 2(m+d) > 2m, our upper bound is an improvement
for d = o(m).

5. A Randomized On-line Approximation Algo-
rithm

In this section we consider the on-line version of our
minimization problem which completely changes the

scenario. In the classical scenario, one knows the whole

input instance of an optimization problem and looks for
a good solution. In the on-line scenario, one has to deal
with the following tasks. One obtains only part of the
input, and is forced to process this part. After one has
solved it, one gets another part of the input that also

has to be immediately processed. The input may be ar-

bitrarily long. These kinds of tasks are called on-line
problems, and the algorithms solving on-line problems
are called on-line algorithms. The fundamental question
posed in this framework is the following: How good can
an on-line algorithm (that does not know the future) be
in comparison to an algorithm that knows the whole in-
put from the beginning? In our case, a good algorithm is
an algorithm which computes a short schedule. Hence,
one has a similar situation when dealing with optimiza-

rithm OLR,,, that is given below, founit-J,,. The
number of jobsd and the number of machines are
known initially, with d = o(m'/?). When the algorithm

is executed, initially only the first task of each job is
known. Every time the processing of a task is finished,
the next task of the job is revealed. Thus at any time,
the on-line algorithm only knows the next task of each
job (and of course the completed tasks). Tasks occur in
the order determined by their job and in arbitrary order
across all jobs. The algorithm will choose uniformly at
random a schedule, i.e. a particular distribution of ini-
tial delays among jobs.

Algorithm OLR,,,

Input: The number of jobg and the number of ma-
chinesm are known initially andi = o(m'/?). The
tasks of the jobs are presented one by one, within
each job in the order of their occurrence, and in ar-
bitrary order across the jobs.

Step 1: Choose uniformly a diagondD at random
from D, i.e., generate the start coordinates of a diag-
onal fromD at random by following Theorem 1.

Step 2: Apply the schedule of the diagonal ran-
domly determined by Step 1 by avoiding the obsta-
cles as they appear.

tion problems. In order to get a reasonable measure of Theorem 7 The randomized on-line algorithMLR,,,

the quality of on-line algorithms, we use the compet-
itive ratio which essentially consists of comparing the
costscost 4 (x) of solutions computed by an on-line al-
gorithm A with the cost of the corresponding optimal

for unit—J,,
(1) has an expected competitive ratio of at mbst
2d/+/m, thatis, 1 + o(1) if d = o(m'/?), and
(2) runs in linear time.

Hromkovic, Steinhéfel, Widmayer and Mémke — Algoritrer®@perations Research Vol.2 (2007) 1-14 9

Proof: First we prove (ii). We have an input of length calculate a schedule with a large delay. We also show
m - d. A numberd - [log, (d\/m/2)] of random bitsis that for two and three dimensions, it is not possible to
sufficient to determine a diagonal and therefore, Step substantially improve our results.

1 can be executed in linear time. It is straightforward In a grid G,,,, we define theborder as the set of

to follow a given path for actual jobs (using diagonals vertices{(,j) : ¢ = m V j = m} in GraphG,,).

whenever possible) in linear time. Further,diag denotes the number of diagonal steps out
Now, we prove (i). Since the average makespan over of the steps already taken by an algorithm while it is
all schedules determined by the diagonals frbrs at running. Analogously we will usert for the number
mostm + 2d+/m, and the optimum makespan is at least of orthogonal steps taken.
m, the expected approximation ratio@f. R is at most The strategy of the adversary is quite simple. He
wants to create an instance such that at least every sec-
m+ 2dy/m 14 2d ond step taken by the algorithm is not a diagonal one
vm (see Fig. 4).
Adversary 1 (Unit—J,,, d = 2)
Therefore, OLR is(1 + 2d/y/m) competitive Input : A deterministic on-line algorithrat for unit—

w.r.t. optimum schedules. Note that no (randomized) j and the number of machines.

polynomial-time algorithm with an approximation ra- step 1: Place task 1 at the beginning of both jobs.
tio tending to 1 ford = o(m'/2) with growingm has Step 2: While AlgorithmA takes orthogonal steps and

been known before. Fat < m'/?~ our algorithm is the border is not reached, place the available task
better than the-approximation algorithm of Leighton with lowest order into the corresponding job, i.e., in
et al. [5]. Moreover,OLR,, shows nicely the power the job in which a new task has to be revealed.

of randomization, because every deterministic on-line Step 3: If the last step of4 corresponds to a diagonal

algorithm forunit-J,,, has its competitive ratio at least step and the border is not reached then choose, for

Q(d / log, d) [5]. both jobs, the minimum task (according to its name)
which is simultaneously available for both jobs (i.e.
force one job to wait), and jump to Step 2.

Step 4: If a border is reached, fill up the job which
is still not completely processed with the remaining

In this section we compare the expected competitive ~ (@Sks in an arbitrary order and end. _
ratio of our randomized algorithm with the best compet- L€mma 8 For every deterministic on-line algorithu,
itive ratio achievable with deterministic algorithms. In Adversary 1 constructs an input instante such that
order to analyze the competitive ratio of algorithms, it the schedule computed Y1) contains at leastn/3
is common to treat an on-line problem as a game played 9elays.
by the algorithm designer against an adversary. The ad-
versary knows the on-line algorithm and, if the algo- Proof: First we show that Adversary 1 creates a valid
rithm is randomized, its probability distribution. Based instance. Assume that there is a positiary) where the
on that, the adversary creates an input instance for theon-line algorithm advances diagonally (see Fig. 4) and
algorithm. Since in the deterministic case the knowl- at(i+1,j+1)itis not possible to place an obstacle (i.e.
edge about the on-line algorithm enables the adversaryto choose two identical tasks) and no border is reached.
to determine the decisions of the deterministic on-line For all4’, j/, tasks starting ati + 1, j') or (', j+1) can
algorithms step by step, one can view the game betweenbe excluded because of the monotonicity of advancing.
the algorithm designer and the adversary as follows. The only remaining possibility is that there is no task
The adversary constructs an input instance for a given left which is available on both axes (i.e. for both jobs).
on-line algorithm. As on-line algorithms have to solve But this cannot be becauseyifis the next task in one
parts of the solution in order to get more input, the input job andg the next one in the other and> ¢, thenp is
instance is revealed piece by piece. Thus in the on-line available for both jobs. This is a contradiction.
version ofunit-J,,,, the adversary chooses the order of In order to bound the number of steps, we show that
the tasks in the jobs. diag /(diag + ort) < 1/2 holds. The first step is forced

For every deterministic on-line algorithm we design to be orthogonal. The second is orthogonal or diagonal.
a successful adversary which causes the algorithm to Therefore after one and after two steps the inequality

6. Randomization is more powerful than deter min-
ism in the on-line case

10 Hromkovic, Steinhofel, Widmayer and Mémke —Job Shopesteting with Unit Length Tasks

start a r
el i
b « columnii : ’ '
I
r X | el
Fig. 5. Beside and under obstacles, diagonal steps areopssi
(unless the border is reached).
0 destination
row j

IS

. . COMPGreedy—2d—Unit—,, (1) <
Fig. 4. After a diagonal step, Adversary 1 always forces an ey nt

orthogonal step. Proof: We analyze the relative number of steps before

a border is reached for an even number of steps. We
will show diag/(diag + ort) > 1/2.
holds. If at position(0, 0) there is no obstacle, the algorithm
Let n the number of all diagonals before the actual starts with a diagonal step. An arbitrary second step
position such that the inequality holds. Then the next suffices to reach the ratio. If at positigf, 0) there is
step is blocked and an orthogonal step is forced. Let an obstacle, the second step is a diagonal one, because
[> 0 be the number of steps until the next diagonal each row (and so the first row, too) may contain only
is used. For the actual position and the next diagonal one obstacle.
we havel/(1+ 1+ 1) < 1/2. If no further diagonals Let n be an even number such that aftesteps the
follow, the ratio is0. ratio holds. The next step either is taken diagonally or
When (m,m) is reached, the number of horizontal blocked (see Fig. 5). In the second case the second step
steps equals the number of vertical steps which implies is a diagonal one. In both cases after 2 steps the ratio
m = diag + ort/2. Therefore we getiag < 2/3m and still holds. In order to complete the proof, we also have

ort > 2/3m. The number of steps increases witémg to show that the computed schedule is always close to
shrinks. Therefore at leagtn steps are necessary. the middle diagonal. Therefore we show that for each
position (¢, j) reached by the algorithm,i — j |< 1
On the other hand the following deterministic on-line Nolds. o _
algorithm almost reaches this bound. . At position (0,0) this is obviously the ca;e.'Let the
inequality hold for the first» steps and leti’, ;') be
Algorithm Greedy-2d-Unit-J,,, the position reached after steps. If the next step is
Input: An instance ounit-J,,, with d = 3. a diagonal, the next position i§ + 1,5 + 1) and |
Step 1: Whenever possible take a diagonal step. t+1—j—1|=|i—j|. Otherwise the next step is an
Step 2: If an advance on both axes is possible, orthogonal one. If i — 1 |= 0, after an orthogonal step

Step 2.1: If the actual position is not on the main the difference is one. Ifi — 1 |= 1 the next orthogonal
diagonal, then take an orthogonal step towards the step is taken in the direction of the main diagonal. After

main diagonal. the step the difference is zero. At the border, only steps
Step 2.2: Else take a horizontal step. to the main diagonal are possible.
Step 3: Otherwise, when one of the jobs was com- Because of the limited distance to the middle diag-
pletely processed, take the only possible step. (This onal, the schedule can only reach the border at one of
is the case at the border.) the positions in{(m —2,m —2),(m—1,m—2), (m —

Lemma 9 For every input instancé, 1,m —1),(m,m — 1), (m,m)}. In all cases, only the

Hromkovic, Steinhéfel, Widmayer and Mémke — Algoritter®perations Research Vol.2 (2007) 1-14 11

last step my be at the border. Apart from that, the ratio Proof: Step 1 and Step 2 only require that the sets of
from above always holds and thus at most one addi- available tasks are not empty. This property is given

tional step is needed. because otherwise the corresponding axis is nat.in
On the other hand, if makespdn = m, then ob- It remains to show that it is always possible to place

viously also Greedy-2dnit-.J,,(I) = m. In all other three tasks in Step 3. We do not have to consider the

cases, border because reaching the border imp|iBs to be

smaller than 3. We show by induction over the number
of 3d-steps that after a 3d-step, the most advanced job
has been processed by all machine$iin2, ..., j} for
some;j < m and no other machine. Thus either task
Now we analyze the casé= 3. Let A be a deter- j -+ 1 is available for all jobs or the most advanced job
ministic on-line algorithm fomunit-J,,. We design the ~ has reached the border.
following adversary forA: From the first step to the first 3d-step, the tasks are
Adversary 2 (Unit-J,,, d = 3) placed in increasing order. Thus the most advanced job
Let 7,, 7, and 7. be the sets of all tasks that are not has been processed exactly on the firstachines for
yet in the jobsr, y and = respectively. Placing a task ~somej < m and if j < m, taskj + 1 is available for
into a job also implies to delete it from the set. Further all jobs.
let R be the set of jobs for which a new task has to be Let i be the number of 3d-steps already taken, and
revealed. The sek is updated with each step taken by let j' be the number of tasks already processed from

4
Tm—l-l
m—+1

<

[SCRREN

CompGreedy—Qd—Unit— Im (I) S

Algorithm A which is part of the input. the most advanced job directly after thwh 3d-step.
Input : A deterministic on-line algorithra for unit— After the (i + 1)-th 3d-step, at leasf’ + 1 tasks of
J,, and the number of machines. the most advanced job have been processed because a

Step 1: Place task 1 at the beginning of all three jobs. 3d-step advances on all 3 axes. All other tasks have
Step 2: While |R| # 3 and 7, UT, U7, # 0, for been added in increasing order. Thus, if the new most

all « € R place the minimum task (according to its advanced job is another one than before, all missing

name) ofr, in job a. tasks of{1,2,..., 4} have been added to the job before
Step 3: If |R| = 3, place tasknin 1, 5, 7. in all jobs new tasks are placed. In any case, all new tasks are

in R. placed in increasing order. Therefore, after 1 3d-
Step 4: If 7, UT, UT, # 0, jump to 2. steps, task’ + 1 is available for all jobs or the border

Informally, after an orthogonal step a 3 dimensional di- S reached.
agonal step can be accepted and directly after a 3 dimen- It only remains to show that the average number of
sional diagonal step, an obstacle follows that blocks all @xis-steps per step is at least 2. The first stepia$
3 dimensions and thus only orthogonal steps are possi-forced to be a 1d-step, and after all 3d-steps, a 1d-step
ble. follows or the border is reached. Let, s, andss be

On every axis;n steps have to be performed. Here the number qf performled 1d-steps, 2d-steps and 3d-
we consider the sum of all steps taken on all axes. We Steps respectively. Obviously; < s holds. Then the

call the steps performed on an axis of the gaids- average number of axis-steps per step is
steps to distinguish them from the steps taken by the

) . 2. 3- 2. 3-
on-line algorithm. Thus every schedule has to perform S T B APt e R T) 2

3 - m axis-steps. S1+ s2 + S3 T s1+ s+ 81

We call the different types of obstacléd-obstacle,
wherei is the number of jobs which have to process the
same task. Thus aid-obstacle in the grid means that
d—i+1 steps can be taken simultaneously. Analogously Algorithm Greedy-3d-Unit-J,,,

Analogous to the previous case, we present the follow-
ing deterministic on-line algorithm:

we useid-step for steps i dimensions at once. The Input: An instance ofunit-J,,, with d = 3.

axes are numbered from 1 #b Rule 1: If no obstacle is in the way, proceed on all
Lemma 10 For every deterministic on-line algorithm three axes.

A, Adversary 2 constructs an input instanfg such Rule 2: Avoid 2d-obstacles by proceeding simultane-
that the schedule computed By7,4) contains at least ously on the non-affected axis and on the less ad-

m/2 delays. vanced axis of the remaining two, or the first of the

12 Hromkovic, Steinhofel, Widmayer and Mémke —Job Shopesteting with Unit Length Tasks

remaining axes, if both corresponding jobs have com-
pleted the same number of tasks.

Rule 3: Avoid 3d-obstacles by processing the least ad-
vanced jobs. If there are more than one least advanced
jobs, proceed with first of them.

Lemma 11 For every input instancé,

COIanlreedy—3d—Unit—Jm (I) < +

6
s

N W

Proof: We will analyze the number of axis-steps per-
formed in one time unit. Then we will show that the
schedule keeps close to the main diagonal.

First we assume that no border is reached.

(a) After a 3d-obstacle (1d-step) a 2d-step is possible.
Let: be the axis of this 1d-step. Then in the next step,
on axisi a new machines has to process while on all
axesj € {1,...,d} — {i} still the old machine has
to process.

(b) After a 2d-obstacle a 2d-step is possible, i.e., no
3d-obstacle is possible. Létand j be the two axes
with the same machine. Further lebe the axis on
which A advances. In the next step, the machines
f;sr{(essfmj‘i'r;gztggg;elsa;izshls;f;g;g’cess differentyq Greedy-3dunit-/,, reaches(i + 2,i + 2,i + 2) or

)) (i+ 3,7+ 2,7+ 1) within 3 steps, if an arbitrary sequence
(c) Between two 3q-obstacles at least one 3d-step CaNgt 2d-obstacles has to be passed. The axes of the grid are
be performed. This follows from (a) and (b) because genominatedr, y and =. Note that two consecutive 2d-ob-
the series of 2d-obstacles has to be interrupted. stacle cannot be caused by the same pair of axes. The edges
Now we show that the distance between the most ad- are labelled with those pairs of axes on which the schedule
vanced job and the least advanced job is at most 2 stepscannot proceed simultaneously.
First we show that for the case where only 2d-obstacles
are used. If 2d-steps are taken, each two consecutive(a), (b) and (c) are applicable for all remaining steps.
2d-obstacles cannot block the same two axes. FurtherThus for each of these steps the average number of axis-
there are always two possible steps when a 2d-obstaclesteps performed is at least two. After 4+ m/2 time
is reached because one of the two blocked tasks can beunits, at leasgm — 6 axis-steps are performed.
chosen. A simple induction shows the result: At posi-
tion (0,0,0), the distance to the main diagonal is zero.
By distinguishing all possible sequences of 2d-obstacles
(see Fig. 6, it follows that from any positidi, i,) or
(@ +.1’H._ 1)’.W'th'.n 3 steps e|the(’z+2,z+2,z+2) Theorem 12 There is no deterministic on-line algo-
or (i+3,i+2,i+1)is reachable. The distance between . . : L .
the schedule and the main diagonal never exceeds twomhm for unit-J,, with a competitive ratio better than
steps. 4/3 for d = 2 or better than 1.5 fod > 2.

If a 3d-obstacle is used, the direction of the first step
is free selectable. Therefore every second 3d-obstacleProof: As we have seen above, for an increasing
gives the possibility to correct the distance to the main OLR,, results in a makespan tendingstq i.e., the ex-
diagonal again. At the border, the most advanced job is pected competitive ratio of this on-line algorithm tends
finished. At most one additional step is caused by an to 1. This means that for eveeythere is am such that
odd number of 3d-obstacles. Altogether at most 3 stepsthe competitive ratio of every deterministic on-line al-
are missing for each of the two remaining jobs to finish gorithm forunit-J,,, is at leas4/3 — ¢ for d = 2 and
which means at most 6 additional steps. The properties1.5 — ¢ for d > 3. This directly implies the theorem.

Fig. 6. From positions(i,i,4) and (i + 1,4,4 — 1),

For d > 3 we can assign the first three axes as in the
cased = 3. Thus the lower bound on the makespan of
m + m/2 holds for every input instance with> 3.

Hromkovic, Steinhéfel, Widmayer and Mémke — Algoritter®perations Research Vol.2 (2007) 1-14 13

Thus randomization yields significantly better results

according to the input instandd;, Jy).

for on-lineunit-J,, than all deterministic approaches. (2.d-1) Choose the best diagonal strat&gyrom S;_;

7. A deterministic approximation algorithm

As we already observed our grid representation pro-

vides anO(m?) algorithm for input instances witm
machines and jobs. The complexity of this algorithm

is too large even for constadts and it is not polyno-
mial for d growing withm. The aim of this section is
to present an efficient approximation algorithm at least
for smalld in comparison withm.

The idea is again to find a diagonal strategy, but in a
deterministic way by looking on théﬁ) 2-dimensional
surfaces ofG,, «(I) only. Remember that fixing a di-
agonal strategy is nothing else than fixing the relative
delays between all pairs of jobs.

Algorithm SURFACE(T)

Input: I = (J1,Jo,...,Jq), Where J; is the it?
job, i.e., a permutation of1,2,...,m), andd <
1/2 logy m.

Step 1: If d = 2 take the best diagonal strategy from
the 2./m + 1 diagonal strategies with the relative
delay between/; and J, bounded byy/m. If d >
2, then apply SURFACEL, Jo, . .., J4—1) in order
to find a diagonal strategy for (J1, Ja, ..., J4—1),
that contains at mog?~—!,/m delays and for every
j € 2,...,d—1 the relative delay betwee;, and
J; is at most,/m. (Observe, thaD fixes the delay
between any two of the firgt — 1 jobs.)

Step 2: Fix consecutively the relative delays between
Jq and the jobsly, Jo, Js, ..., Jg—1 in the following
way:

(2.1) SetS; as the set of the best |\/m] diago-
nal strategies from the - |\/m] + 1 diagonal
strategies for the input instande/, J4). (S1
can be viewed as a set of relative delays from
{|l-vm],...,|v/m]|} betweenJ; and.J,; and
together withD it determines|/m| diagonal
strategies fo.Jy, Ja, ..., Jq)).

(2.2) SetS; as the set of the be$t/m|/2 diagonal
strategies from the diagonal strategiesSefac-
cording to the input instance/z, J;).

(2.i) SetS; as the set of the bept/m | /2i~! diagonal
strategies from the diagonal strategies%Hf ;

3 with respect to the number of obstacles

according to(Jy—1, J4).

Output: The diagonal strategy determined Hy

andD.
Theorem 13 For every inputinstancé = (Jy, Jo, . . .,
Jq) of unit=J,, with d < 2log,m, the algorithm
SURFACE])

(i) runsin timeO(d*m?), and

(i) has an approximation ratio of at most4 j—;

Proof: SURFACE() does nothing else than looking on
all (‘21) 2-dimensional surfaces @,, (1) in order to
choose a set of convenient delays with respect to every
pair of jobs. The size of each surfacerig and the
choice of a group of the best diagonals from a given
set of diagonals can be donedr(m?) time. Thus, the
overall time is inO(d?m?).
To prove (ii) we first prove
(i)’ The diagonal strategy computed by the algorithm
SURFACE() contains at mos2¢[,/m | delays.
We prove (i)’ by induction ond. For d = 2
Lemma 3 guarantees at mosym | delays. Let(ii)’
be true ford — 1, i.e., the strategyD computed for
(J1,J2,...,Ja—1) in the first step of SURFACH]
contains at mosk?~! - [\/m] delays between the
first d — 1 jobs. In Step (2.1) we look on the surface
determined by(J1, J4). Following Lemma 3 the av-
erage number per diagonal of obstacles on the main
2 - |v/m | + 1 diagonals of this surface is at most

m [V]
ANTIET

So, there must exist a séf of | /m | diagonals such
that every diagonal of; has at most/m] obsta-
cles, i.e., at most twice the average. Observe, that
each of these diagonals fro together withD de-
termines a diagonal strategy for the whole instance
I = (J,J2,...,Jq4), whereJ; and J; have at most
[vm] delays. Thus, we have S; |= [\/m] can-
didates for the output. In Step (2.2) we choose the
best|\/m |/2 from these candidates with respect to
the obstacles for, and J,. Since thesd/m | can-
didates can contain together at mastobstacles, the
average number of obstacles [ig/m], and so there
exist |/m | /2 diagonals each with at mo&t- [/m]
obstacles. In general, in Step (2.i)) for< i < d — 2

we choose from the remaining,/m |/2¢=2 candi-
dates the best,/m |/2¢~! candidates with respect to

14

the number of obstacles on the surface determined by
J; and Jy. Each of the candidates ¢f; has at most
2i=1.1,/m] obstacles betweeh and.J,. The last Step
(2.d-1) corresponds to the choice of the best diagonal
D’ (with respect to the relation betweel_; and.J,)
from |/m | /293 candidates. The number of obstacles
betweenj;_; and.J; on D’ is bounded by the average

— 2975 [/,

m

[v/m] /2073

Let D be the resulting strategy fdr. Thus, the overall
number of obstacles betweédp and all other jobs iD

is at most
d—2

2 27t [ym] =292 - 1) [Vm]
< (297 =2)- [Vm].

By the induction hypothesis the number of obstacles
between the firstl — 1 jobs is at mosR¢—! - [\/m],
and therefore, the overall number of obstacles o(@ll
2-dimensional surfaces is at most

(27 =2)-[vm].

Obviously, these obstacles together cause at most
(29—-2)[y/m] delays when following the diagonal strat-
egy D. The length ofD is at mostm + 2 - |\/m | be-
causeD was constructed in such a way that no relative
delay between/; and any other job would be greater
than |\/m | (i.e., the relative delay between any pair
of jobs is at mos® - |/m |). Thus, the schedule that
follows D has a makespan of at most

m+2-[vVm|+29=-2)-[Vm] <m+2-[Vm].

Since the optimum makespan is at leastthe ap-
proximation ratio is at most

2d
LVm |

The main point is that SURFACE works in quadratic
time for constant/ and can provide a good approxima-
tion ratio in that case. Observe, that the approximation
ratio of SURFACE() tends to 1 with growingn for
d = o(logy m).

1+

8. Conclusions

For the job shop schedule problamit-J,, we de-
rived an upper bound on the makespan of optimum

Received 8 February 2006; revised 25 July 2006; accepted 28
August 2006

Hromkovic, Steinhofel, Widmayer and Mémke —Job Shopesteting with Unit Length Tasks

schedules that improves on the result given in [5] for
d = o(m'/?). We presented a competitive w.r.t. the
makespan of an optimum solution, randomized on-line
approximation algorithm that solvasnit—J,,, in lin-
ear time with an expected approximation ratiolof
2d/+/m which amounts td+o(1) ford = o(m'/2). For

d = o(m'/?) the algorithm is the best approximation
algorithm forunit-J,,,. We showed that every determin-
istic on-line algorithm fowunit-J,, yields significantly
worse results than our randomized algorithmulfs ar-
bitrarily large, the competitive ratio w.r.t the makespan
is at least 1.5 for every deterministic on-line algorithm,
if d > 3. Our deterministic approximation algorithm is
efficient at least for small's in comparison withm. Its
run-time isO(d?m?), and it has an approximation ra-

tio of at mostl + L%ﬂ which tends to 1 with growing

m for d = o(log, m). For the special case ohit-J,,

with two jobs, which is solvable in linear time, we have
shown that there exist input instances such that every
schedule has a makespan of at least- \/m. There-
with, we proved that our upper bound on the makespan
for m + [/m], for d = 2 cannot be improved.

References
(1]
(2]

Brucker, P.: An Efficient Algorithm for the Job Shop
Problem with Two JobsComputing 40:353—-359, 1988.
Feige U., Scheideler, C.: Improved Bounds for Acyclic
Job Shop SchedulingProc. 28th ACM Symposium on
Theory of Computingpp. 624-233, 1998.

Goldberg, L.A., Paterson, M., Srinivasan, A., Sweedyk,
E.. Better Approximation Guarantees for Job-shop
Scheduling. Proc. 8th ACM-SIAM Symposium on
Discrete Algorithmspp. 599-608, 1997.

Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet
Routing and Job-Shop Scheduling@{Congestion +
Dilation) steps.Combinatorica 14:167-186, 1994.
Leighton, F.T., Maggs, B.M., Richa, A.W.: Fast
Algorithms for Finding O(Congestion + Dilation)
Packet Routing ScheduleSombinatorica 19:375-401,
1999.

Lenstra, J.K., Rinnooy Kan A.H.G.: Computational
Complexity of Discrete Optimization Problem&nnals

of Discrete Mathemati¢s4:121-140, 1979.

Scheideler, C.: Universal Routing Strategies for
Interconnection Networkd ecture Notes in Computer
Science 1390, Springer Verlag, 1998.

Shmoys, D.B., Stein, C., Wein, J.: Improved
Approximation Algorithms for Shop Scheduling
Problems.SIAM J. on Computing23:617—632, 1994.
Williamson, D.P., Hall, L.A., Hoogeveen, J.A., Hurkens
C.A.J., Lenstra, J.K., Sevast’janov, S.V., Shmoys, D.B.:
Short Shop Schedule©perations Researchd5:288—
294, 1997.

(3]

[4]

(5]

(6]

[7]

(8]

[9]

