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Abstract

We consider the problem of finding a cheapest Hamiltoniam jpdta complete graph satisfying a relaxed triangle
inequality, i.e., such that for some parameter> 1, the edge costs satisfy the inequality{z,y}) < 8(c({z, z}) +
c({z,y})) for every triple of verticesr, y, z. There are three variants of this problem, depending on tixaber of
prespecified endpoints: zero, one, or two. For metric grajitese exist approximation algorithms, with approximation

ratio g for the first two variants antg for the latter one.

Using results on the approximability of the Travelling Saf@n Problem with input graphs satisfying the relaxed
triangle inequality, we obtain for our problem approxinai algorithms with ratiomin(3? + 3, %ﬂQ) for zero or one

prespecified endpoints, an§d82 for two endpoints.

polynomial time, with constant approximation ratio),

one considers the so callgtitriangle inequality For

I t often happens that the hardness of the polynomial- & given > 1, a graph(V; E) satisfies the-triangle
time approximability of a problem varies according inequality if for all verticesu,v,z it is ¢({u,v}) <

1. Introduction

to the input instance, and some hard problem becomesﬂ(c({uaiﬂ}.) + c({z,v})), wherec : E — R* is the
relatively easy for certain subclasses of instances. GivenC0st function of the graph. For every real> 1, Ap-
a hard optimization problem, and a polynomial-time ap- TSP is the restriction of the TSP to inputs satisfying the

proximation algorithm for a subclass of input instances, A-triangle inequality.

a natural idea is trying to extend the approximation al-

In the past, several polynomial time approximation

gorithm to a wider class of problem instances. This idea algorithms providing constant approximation ratio for

is captured by the notion adtability of approximation

Ag-TSP were proposed. Currently, there are three dif-

which provides a formal framework to study the change ferent algorithms which achieve the smallest approxi-
of the approximation ratio according to a small change mation ratio, each for a distinct range of valuesiof

in the specification (some parameter, characteristics) of

the set of problem instances considered [4].

One of the most successful application of the con-
cept of stability of approximation concerns the famous
Travelling Salesman Problem (TSP). It is well known
that TSP is not only NP-hard, but also not approx-
imable in polynomial time with constant approxima-
tion ratio. But if one considerA-TSP, namely TSP for
complete input graphs satisfying the triangle inequal-
ity (i.e., metric graph$, one can design a polynomial
time %—approximation algorithm [5]. To extend the class
of input graphs for which the TSP is approximable (in

Email: Luca Forlizzi, [forlizzi@di.univaq.it], Juraj
Hromkovi€, [jh@cs.rwth-aachen.de], Guido Proietti [pro
etti@di.univaq.it], Sebastian Seibert [seibert@cs.rwth
aachen.de].

(A) the REFINEDT* algorithm, providing &3% + 3)
approximation ratio [1], which is the best f@r <
B <3

(B) the Bender and Chekufi3)-approximation algo-
rithm [3], best forg > 3;

(C) the Path Matching Christofides Algorithm (PMCA)
providing a%ﬁQ approximation ratio [4], best far <
0 < 2.

In this paper, we study how these results can help to
design approximation algorithms for thdamiltonian
Path Problem(HPP), where one is required to compute
a minimum cost Hamiltonian path spanning a complete
graphG. There are three natural variants of the HPP,
differing in the constraints imposed to the endpoints
of the desired path: they can be both arbitrary vertices
(HPR,), or one of them can be constrained to be a pre-

(© 2006 Preeminent Academic Facets Inc., Canada. Onlineoversttp://www.facets.ca/AOR/AOR.htm. All rights reseds



32 Forlizzi et al. — On the Stability of Approximation for Hartwhian Path Problems

specified vertex (HPP,), or both of them can be con-  algorithm forA-HPR,, faster than thé&(n?) time pre-
strained to be prespecified verticeandt (HPR,). The viously known approximation algorithm.

TSP is easily reducible to any of these variants, so they  Following [8], we let P* denote an optimal Hamil-
are NP-hard too. Fok € {0, 1,2}, we denote the re-  tonian path without prescribed endpoini, denote an
strictions of HPR to input graphs satisfying the trian-  optimal Hamiltonian path with a single prescribed end-
gle and thes-triangle inequalities, respectively hi- point s, and P, denote an optimal Hamiltonian path
HPP, and Ag-HPP. In [8], Hoogeveen applied to the  with prescribed endpointsand¢. We denote by (G)
HPP the approach introduced by Christofides for andE(Q), respectively, the set of vertices and the set of

TSP [5], providing3 -approximation algorithms fof\- edges of a graplt’. Given a graphG and a collection
HPR) and A-HPP;, and ag-approximation algorithm  II of paths on the vertices ¥, we denote byG U II
for A-HPR,. the multigraph obtained by adding €dall the edges of

In this paper, trying to extend the class of graphs for €ach path ifl. We denote bjEndP(II) the set formed
which HPP is approximab|e, we consider again /ﬁqe by the endeintS of all the paths containedlinGiven
triangle inequality and investigate whether each of the @ graphG and edges and f connecting vertices af,
three approaches fak;-TSP is suitable also for HPP.  we denote byG — e and G + f the graphs obtained,
To this aim, we concentrate on adapting the approachesrespectively, by removing from G and by insertingf
of (A) and (C), which distinguish themselves, respec- in G. An edgee € E(G) is locally minimalif there is
tively, by running times0(n2?) andO(n?), wheren is a vertexv € V(G) such thatk is an edge incident on
the number of vertices i@ This is acceptable for prac-  Of minimum cost. We call an occurrence of a vertex in
tical purposes rather than th@(n°) running time of @ pathy internal, if it is not an endpoint ofy. Given a
(B). We just note why the approach of (B) would need Pathy, we say that a subpatff of  is aterminal sub-
some additional considerations in order to be carried Pathif one of the endpoints of’ is also an endpoint of
over to HPP. The algorithm of Bender and Chekuri is 7- A path in a graph iglementaryf it does not contain
based on results by Fleischner [6,7], who proved that the same vertex more than once.
the square of a 2-vertex-connected graph is Hamilto-
nian, and by Lau [9,10], who provided an effective pro-
cedure for the construction of a Hamiltonian cycle. So,
Bender and Chekuri first construct an approximation
of the minimum cost 2-vertex-connected subgraph, and
then apply, on the resulting graph, Lau’s procedure to
obtain a Hamiltonian cycle. The length of a minimum
cost 2-vertex-connected subgraph is a lower bound on 3 _ (V, {{z,y} | z,y € V, and there exists ifl a
the cost of any Hamiltonian cycle, and from this fact the
bound on the cost of their solution follows. However,
the length of a minimum cost 2-vertex-connected sub-  contains a Hamiltonian cycle. L&F be a tree and
graph is not a lower bound on the cost of a Hamiltonian 7 — (v, u,, ..., u,) be a Hamiltonian cycle contained

path. Hence, this approach does not lead immediatelyin 73, Let E(H) be the set of edges forming. For
to an approximation algorithm for the HPP. any edgee = {z,y} of E(H), let p. be the unique
The approaches leading to algorithms (A) and (C) elementary path ifi’ havingz andy as endpoints, and
are studied in Sections 2. and 3., respectively. &gt let Ay = {p. | e € E(H)}. Clearly, eachp, € Ay has
HPR, and Az-HPP,, we keep with both approaches length at most 3.
the same ratio bounds as for the TSP, thus obtaining Starting from Sekanina’s result, Andreae and Bandelt
min(5? + 3, 3 3)-approximation algorithms. Fah - designed in [2] & 2 3% + 1 3)-approximation algorithm
HPR,, using the approach of (C), we achievegﬁ2 for Ag-TSP. Given a complete grapi and a mini-
approximation ratio which is a natural generalization mum spanning tre&' of GG, they were able to construct
of theg approximation ratio known for metric graphs. a Hamiltonian cyclel of T3, in such a way that each
With the approach of (A), instead, we obtain approxi- edge ofT" occurs in exactly two of the paths ofy,
mation ratios worse thaglﬁz, foranyg > 1. Neverthe- and that it is the middle edge of at most one pattl gf
less, such an approach is still somehow useful for5JPP  having length 3. Such properties imply that expensive
since it allows to obtain a@®(n?) time 3-approximation edges ofl" do not occur inH more often than cheap

2. The REFINED T3 Algorithm for Hamiltonian
Path

In 1960, Sekanina proved that for every tr€e=
(V, E) the graph

path fromz to y of length at mos8 })
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edges. Then the cost éf is bounded by a factor times
the cost ofT", which is, in turn, a lower bound for the
cost of an optimal Hamiltonian cycle 6f. Note that the

33

whereH is a Hamiltonian cycle of™ obtained by ap-
plication of HCT*(REFINED) to T, and this inequal-
ity is strict if 3 > 1. HCT*(REFINED) requires)(n?)

strategy used by Andreae and Bandelt can be seen as atime.

enhancement, allowing to deal withtriangle inequal-

ity, of the well known Double-Tree 2-approximation al-
gorithm for A-TSP, which computes a Hamiltonian cy-
cle from an Eulerian cycle of the multigraph obtained

The fact that the cost of the constructed graph is
bounded using the cost d@f, is particularly interesting
for our purposes, since the costBfis a lower bound
for the cost of an optimal Hamiltonian path, too. Indeed,

by doubling each edge of a minimum spanning tree of using Andreae’s result, we can easily derive approxima-

the input graph.

tion algorithms for HPRand HPR called, respectively,

The result of Andreae and Bandelt has been recently T3 HPR, and T HPP;: we first execute Algorithm 1,

improved by Andreae [1], that presented @ + 3)-
approximation algorithm forAg-TSP (see Algorithm
1). The main part of such algorithm is Procedure
HCT3(REFINED) (see Algorithm 2.), which we use
later.

Algorithm 1 : REFINED T3

I nput : A complete graplG.

Find a minimum spanning treE of G.

Find a Hamiltonian cycle H of T3 calling
HCT3(REFINED) with inputsT” and an arbitrary lo-
cally minimal edge off".

Qut put : A Hamiltonian cycleH of G.

Algorithm 2 Procedure HCT(REFINED)

I nput: AtreeT with |V(T)| > 3 and a locally min-
imal edgee* = {ay,as} of T.
LetT; be the component &f — e* containinga; (i =
1,2).
Fori=1,2do
If |V(T3)] > 2, then pick o, € V(T;) so thate} =
{a;,al} is a locally minimal edge of;
eseif |V(T;)| = 1 then leta = a;.
If |V(T;)] > 3, then
Recursively call HCF(REFINED) with inputsT;
ande; obtaining a Hamiltonian cycléf; of 77
containinge;.
Letpz- =H, — 6;‘.

dseletp; = T;.
ConstructH by concatenating, p2, ¢* and the edge
{a1, as}.

Qut put : A Hamiltonian cycleH of T3 containinge*.

The core result obtained by Andreae is the following
([1], Theorem 1): for a tre@ with |V(T)| > 3 and a
real numbeB > 1, supposel™ satisfies the3-triangle
inequality. Then it is

o(H) < (B + Be(T)

and then remove, from the resulting Hamiltonian cycle,
an arbitrary edge (THPR)) or an edge incident os

(T3 HPP). It is immediate to see that®THPR, and T°
HPP, are correct and that both of them have approxi-
mation ratio(3% + 3) and requireD(n?) time.

To attack HPR, the previous strategy needs an adap-
tation: first compute a Hamiltonian cyclé,; containing
{s,t}, and then return the path; obtained by deleting
{s,t} from H,,. However, with this approach we con-
struct a cycle having a cost bounded against the cost of
an optimal Hamiltonian cycle containings, ¢}, while
P doesnot contain{s,t}. This leads to an increase
of the approximation ratio, as exploited in the proof of
Theorem 1. Using this adapted strategy, we obtain Al-
gorithm 3 to approximaté\-HPR,.

Algorithm 3 T? Metric-HPR,

I nput: A complete metric grapliz = (V, E) and
two verticess,t € V.
1: Find a minimum spanning trég,; of G containing
{s,t}.
2: Find a Hamiltonian cycléf,; of T3 calling HCT®
with inputsT,; and{s,t}.
3: Find a Hamiltonian path,, of G by removing edge
{s,t} from Hg;.
Qut put: A Hamiltonian pathp,; of G havings and
t as endpoints.

Note that in Algorithm 3, we use Procedure HCT
presented in [2] instead of the improved version
HCT?(REFINED) listed in Algorithm 2.. The two pro-
cedures are similar and for a metric graphgiven a
spanning treel” and an edge of T', they both com-
pute a Hamiltonian cycléd. containinge such that
c¢(H.) < 2¢(T). There are two advantages in using
HCT? instead of HCP(REFINED): the former pro-
cedure does not require the input edgt be locally
minimal, and it is also more efficient, running @(n)
time.
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Theorem 1. Algorithm 3 is a3-approximation algo-
rithm for A-HPP,. The algorithm runs irO(n?) time.

Proof. Let G be a metric graph. Given a Hamiltonian
cycle H of G containing{s, t}, H — {s,t} is a Hamil-
tonian path ofZ havings andt as endpoints, and there-
fore c(P) < c(H — {s,t}). It follows that H}, =
P+ {s,t} is an optimal Hamiltonian cycle containing

{s,t}. LetTy; be the minimum spanning tree computed

in Step 1 andH; be the Hamiltonian cycle computed
in Step 2. As shown in [2], we havép,;)+c({s,t}) =
c(Hgst) < 2¢(Tt). Since by deleting frond;, an edge
differentfrom{s, ¢} one obtains a tree containifg, t},
itis ¢(Ts) < c(HY) = c(P%) + c({s,t}). Then we
havec(ps:) < 2¢(Pf) + c({s,t}) < 3c(P), where
the last inequality follows from the triangle inequality.
Since HCP runs inO(n) time, the time complexity of
the whole algorithm is dominated by t@(n?) time
required to computé,. O

Although Algorithm 3 has a poor approximation

guarantee, it deserves some interest being more effi-

cient than the)(n?) time algorithm derived in [8] from

Christofides’ one. We remark that straightforward adap-

tations of the Double-Tree algorithm to HPRonstruct

is the only vertex having degr8eBy removing{s, s1 },
we have the desired patfi. The same operations can
be repeated for the other prescribed endpgitgading
to Algorithm 4 and the following theorem.

Algorithm 4 T2 HPR,

| nput : A complete graphG = (V, E) and two ver-
ticess,t € V.

1: Compute a Hamiltonian path~ =
(w,...,8,81,...,t1,t,...,2) of G.
2: Lety, = (w,...,s,51), 7 = (t1,t,...,2) be ter-

minal subpaths ofy, denote byG, andG; the sub-
graphs ofG induced by the vertices occurring, re-
spectively, iy, and-y,.

3: Compute minimum spanning tre@$ of G, con-
taining { s, s1} andT; of G; containing{t,t}.

4: Compute Hamiltonian cycleH; of G, and H; of
G, containing, respectivelys, s1 } and{ty, t}.

5. Letn, = Hg — {S,Sl}, = Hy — {tl,t}.

6: Computer,; by replacing iny subpathsy, with 7,
and% with Tt

Qut put : A Hamiltonian pathr,; of G havings and

t as endpoints.

a graph with proper vertex degrees by doubling the Theorem 2. For every 3 > 1, Algorithm 4 is a

edges of a minimum spanning tree containifxgt}.

((8*+ 3) min(B% + 3, 3 3%))-approximation algorithm

Therefore, there are similar problems in lowering their for A-HPP,. The algorithm runs irO(n?) time.

approximation ratios as with Algorithm 3. Hence it is

not immediate to design a linear time approximation al- Proof. Let G be a graph satisfying thg-triangle in-

gorithm for A-HPR, with a better approximation ratio.

equality. A Hamiltonian path of G can be computed

Unfortunately, Algorithm 3 does not provide an ap- using Algorithm P HPR, or the (2 3%)-approximation
proximation guarantee if the input graph does not satisfy algorithm which we presentin Section 3.. Hen¢e) <
the triangle inequality, because in a general graph the min(3% + 3, 35?)c(P*) < min(8% + 8, 38%)c(P}).

cost of{s, ¢} can not be bounded usingP:;). To ex-
tend Sekanina’'s approach4g;-HPR,, we need another
idea. Suppose we have a Hamiltonian patipanning
G, with cost bounded by a factor timegP,). We can
transform it into a Hamiltonian path havingandt as

endpoints, still having a cost bounded by a factor times

c(P%).Wlo.g., lety = (w,...,s,81,...,t1,t,...,2).
To obtain a pathy’ having s as endpoint, we pro-
ceed as follows. Consider the terminal subpath=
(w,...,s,s1) of v, and letG, be the subgraph off
induced by the vertices occurring in. Since~, is a
tree containing s, s1 }, the cost of a minimum spanning
tree T, of G, containing{s, s1} is a lower bound for
c(vs). Using Procedure HCTREFINED), we compute
a Hamiltonian cycleH; of G, containing{s, s;} such
thate(H,) < (82 +B8)c(Ts) < (8% + B)c(vs). Then, by
replacingys with H, in +, we obtain a graph wherg

Since v, (resp.v;) is a tree containinds, s1} (resp.
{t,t1}), we havec(Ts) < c(vs) (resp.c(Ty) < c(y4))-
The Hamiltonian cycledi; and H, can be computed
using Algorithm 2.. Note that (resp.m,;) is a Hamil-
tonian path spanning the same verticeg agresp.v;)
and havings ands; (resp.t andt;) as endpoints. By
Andreae’s result we have(r;) < c¢(Hs) < (3% +
B)e(Ts) < (8% + B)e(vs) and, analogously;(m;) <
(8% + B)c(4). In the last stepr; is obtained replac-
ing the subpaths, and~; of v with, respectivelys,
and ;. Hence it isc(rs) < (6% + B)e(y) < (8% +
B)min(52 + 3, 252)c(Py).

In Step 1, Algorithm T HPR, or the (23?)-
approximation algorithm which we present in Section
3. are used to compute The former algorithm runs in
O(n?) time, while the latter irD(n?) time. Algorithm
2. used in Step 4 runs iR(n?) time, and all remaining
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steps can be trivially performed if(n?) time. Hence
the whole algorithm runs i@ (n?) time. O

3. The PMCA for Hamiltonian Path

The PMCA is a(%ﬁQ)—approximation algorithm for
Ap-TSP, inspired by Christofides’ algorithm f&-TSP.
The rough idea of both Christofides’ and PMCA algo-
rithms, is the following: first compute a multigragth

with all vertices of even degree, having a cost bounded

by % times the cost of an optimal Hamiltonian cy-
cle, then compute an Eulerian cycle &f (it has the
same cost), and finally transform the Eulerian cycle in
a Hamiltonian one byesolving all conflictan it, i.e.,

by removing repeated occurrences of vertices in the cy-

cle. The final task is trivial in the case of Christofides’
algorithm, but not for the PMCA. Indeed, given the
triangle inequality, with > 1, the bypassing of some
vertices in a path may increase the cost of the path.
To illustrate the conflict resolution performed as last
task of the PMCA we need some formal definitions.
Let G = (V, E) be a complete graph. path match-
ing for a set of verticed/ C V is a collectionII of
paths having as endpoints distinct verticeslbf The
vertices of U which are not endpoints of some path
in II, are said to bdeft exposed byI. Assume that
p = (ug, u1,us,...,ur—1,ux) is a path inG, not nec-
essarily simple. Abypasdor p is an edge{u, v} from
E, replacing a subpatfiu;, wit1, wit2, ..., uj—1,u;)
of pfromu =u; tou; =v (0 <i < j<k). Itssizeis
the number of replaced edges, ije- i. Also, we say
that the vertices; 1, uit2, ..., u;—1 are bypassedA
vertex which occurs at least twice in a pathor in a
cycle~, or in a set of path$l, is said to be aonflict
(respectively inm, ~ or IT). We say that a set of paths
is vertex-disjoint(resp.edge-disjoint if the paths con-
tained in it are elementary and pairwise vertex-disjoint
(resp. edge-disjoint).
The PMCA succeeds in bounding by a factsrthe
cost increase due to conflict resolution, by ensuring,
with non trivial techniques, that at most 4 consecutive

edges of the Eulerian cycle are substituted with a new

one. In detail,H is the union of a minimum spanning
treeT and a path matching for the set of all vertices
of odd degree inl". The Eulerian cycler of H can
be seen as a sequence of pathsgs, ps, g2, - .. such
thatp,, ps,... are paths irl’ andq, g2, ... € II. The
conflict resolution process is realized in three steps:
((i)) conflicts withinII are resolved obtaining a vertex-
disjoint set of pathdI’;
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((i)) some of the conflicts within paths ifi" are re-

solved so that the cycle’ obtained by modifying
m according to steps (i) and (ii), contains at most
2 occurrences of each vertex;

((ii)) all remaining conflicts inz’ are resolved, by by-

passing at most 2 consecutive vertices.
Combining the ideas of [8] and [4], we obtain an
approximation algorithm for theé\ g-HPP,, with & €
{0, 1,2} (see Algorithm 5).

Algorithm 5 PMCA-HPR,

I nput : Acomplete grapléz = (V, E') with cost func-
tionc: E — RT and a setd of k prespecified end-
points (0 < k < 2).

1: Construct a minimum spanning tréeof G.

2: Let U be the set composed by verticesAdthav-
ing even degree ifi" plus vertices of’ \ A having
odd degree iff’; construct a minimum (edge-disjoint)
path matchindl for U, leaving2 — k vertices ofU
exposed. If necessary, remove an edge ffBnso
that the multigrapty” U IT has 2 odd degree vertices,
which we denote by andz (observe that any pre-
specified endpoint is among andz).

3: Resolve conflicts idl (using bypasses of size 2
only), in order to obtain a vertex-disjoint path match-
ing IT" such that: can only occur as an endpoint of
a path inIl’.

4: Construct an Eulerian pathof H = T U I’ hav-
ing w andz as endpointsA can be considered as a
sequence of alternating paths frémandII’, where
p1,pe, ... are the paths i" andqy, ¢s, . .. € IT').

5: Resolve conflicts inside the paths p-, . . . obtain-
ing the modified pathg/, p,,... and the modified
Eulerian patht’, so thatT’ is divided into a foresTy
of trees of degree at most@d,andz are the endpoints
of 7/, andz is not a conflict int’ (conflict resolution
in this step is done using bypasses of size 2 only).

6: Resolve every remaining conflicts i using by-
passes of overall size 4 (where overall means that a
bypass constructed in any previous step counts for 2
edges), obtaining a Hamiltonian pattf having w
andz as endpoints.

Qut put: A Hamiltonian pathr” of G havingw and
z as endpoints.

Similarly to the PMCA, Algorithm 5 computes a
multigraph H with all vertices but 2 of even degree.
The 2 odd degree vertices include any prespecified end-
point. Sincell’ is vertex-disjoint, inH there can be at
most 2 edges between a pair of vertices, one fioand
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one from a path ofI'. In the following description, it path matching o/ that leave® — k vertices exposed.

will be clear from the context whether edges we referto In [4] it is shown that a minimum path matchidg is

are contained ifT” or in a path ofiI’. Algorithm 5 pro- edge-disjoint and paths within it form a forest.

ceeds by constructing an Eulerian patiof 4, having Consider the multigrapi® U II. This multigraph is

the odd degree vertices as endpoints. Finally, conflicts connected and has two or zero odd-degree vertices. The

are resolved obtaining a Hamiltonian path. latter case occurs only if: there is a single prespecified
Here, the conflict resolution process can not be real- endpoints, s has even degree ifi (so it belongs to

ized as in the PMCA. In particular, in step (iii) of the ), ands is left exposed byl. In this case we remove

conflict resolution process in PMCA, for each conflict an arbitrary edge of incident ons. Let w and z be

there is complete freedom in choosing which of the 2 the two odd-degree vertices in the obtained multigraph.

vertex occurrences to bypass. To avoid that more than|t can be easily seen that any prespecified endpoint is

2 consecutive vertices of’ are bypassed, PMCA re-  contained in{z, w}.

lies eXaCtly on this freedom. In our problem, we loose We now introduce some Simp'e definitions and ob-

part of such freedom, since it may happen that the end- servations often used in the following. Given a vertex

points of 7’ are conflicts: in this case, we are not al- , ¢ v we define thadistance inT" of v from z, as the

lowed to bypass the occurrences which are endpointsnymber of edges in the unique elementary path existing

of n’, hence we are forced to bypass the internal ones. in 7 fromw to z, prior to the possible removal, discussed

Although the problem regards only two vertices, it may

above, of an edge incident arirom 7. We denote by

render impossible to resolve all conflicts bypassing at the unique vertex among the neighborsah T before
most 2 consecutive vertices, as the following example the possible removal frori’ of an edge incident o,

shows.

In Figure 1,w;, ws, (as well asx1, zo andvy, v9) de-
note distinct occurrences inof the same vertex. Since
we are forced to bypass baih andz;, no matter which
one ofvy, v, we bypass, there would be 3 consecutive

having distance i’ from z less than the distance if

of w from z. In the PMCA-HPR many paths existing

in 7', in 11, or in a set of paths are modified bypass-
ing some of their vertices (see, for example, Algorithm
Decompose-Tree). To shorten the exposition, from now

bypassed vertices in the Hamiltonian path, causing the on we say that a path has a bypasg¢resp.hask by-

cost to increase more than a facter. To avoid such
situations, and resolve all conflicts i by bypassing

passepmeaning thap has been obtained picking a path
from 7', 11, or S (it will be clear from the context) and

at most 2 consecutive vertices, we have to change thegpplying to it one bypass (resp.bypasses).

whole conflict resolution process, as described in the

following. Step 1 of Algorithm 5 is trivial, while the
remaining ones deserve a detailed description.

Step 2 For anyu,v € V, let the cost of a cheapest
path between, andv be denoted byi(u,v). To con-
struct a path matchingl which leavesk vertices ex-
posed, we first compute all-pairs cheapest paths.in
Then we define a complete graph on U augmented
with 2 — k& dummy vertices, with a cost functiehspec-
ified as follows:

00 if v andv are distinct

, dummy vertices

c(u,v) = ) )
0 if w € U andv is dummy
d(u,v) fuvelU

Next, we compute a minimum matching on G’,
we remove from it edges incident on dummy vertices,
and finally we include ifl, for each edgéu, v} of M,
the cheapest path i@ betweenu andv. Clearly, this
can be done irO(n?) time and results in a minimum

An important observation, used several times in the
following, is that sincel is a tree, an occurrence of
which belongs to a path in T, is not the vertex op
having minimum distance ifi’ from z, if and only if
p contains the edgé¢w, y}. Also note that in case we
have a single prespecified vertexand, as discussed
above, we need to remove frofhan edge incident to
s to have inT U 1I the 2 odd degree verticesandw,
itis y = z and{w, y} is exactly the removed edge:
this implies that given a path contained inl” after the
removal of{w, y}, if p containsw, thenw is the vertex
of p having minimum distance ifi" from z.

Step 3 To perform Step 3 of the algorithm, i.e., to
modify path matchindI into a vertex-disjoint one, we
use a strategy different from the one employed in the
PMCA. The reason is that we have the additional re-
guirement that at least one of the two odd-degree ver-
tices that exist i’ U II after Step 2, say, does not
have internal occurrences on pathdih In the rest of
the description of Step 3, since we only deal withto
shorten the exposition we simply writenflictto mean
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Fig. 1. Impossibility of conflict resolution bypassing at $h@ consecutive vertices

conflict in 1. Given a set of paths C II we denote

Decompose-Tree computes a S€bf pairwise vertex-

by Ts the graph formed by all edges contained in any disjoint paths such that:

of the paths ofS. By [4] we know thatTt; is a forest.

(()) EndP(S) = EndP(S");

As in Procedure 1 of [4], we process each connected((ii)) each path inS’ is obtained applying at most one

component off; separately. To this aim, here we use

Algorithm Decompose-Tree (see Algorithm 6) which,

bypass to an elementary path frofiy, and the
bypass is of size 2;

given an edge-disjoint set of paths, computes a new sd{iii)) vertexz occurs on a path ir$’ obtained picking an

of paths with the same set of endpoints, such that on

elementary path frorft’s with no bypasses applied.

each new path there is at most one bypass of size 2, and . _ o
on one of the new paths there are no bypasses. MoreProof. We begin the proof with some easy preliminary

precisely, we prove the following lemma.

Algorithm 6 Decompose-Tree

I nput : A vertexxz and an edge-disjoint set of paths
S = {q,...,q} with distinct endpoints such that
Ts is a tree andy; containse.

Let S’ = () andg; = ¢1. Let C be the set of vertices
of ¢; which are conflicts.
While there is at least one vertex @i do

Let v be a vertex inC' having maximum distance
in ¢; from z (i.e., such that the elementary sub-
path ofgq; havingz andv as endpoints is of max-
imum cardinality). Extract from C. W.l.0.g. as-
sumeq; = (Uay. -y Ty..., U, Up, ..., u:.) Where
up, ..., Uc are not contained i in the current
iteration (and in the successive ones).

Letg,,,...,q, be the paths forming the connected
component off’s\ (4,3 such thaig;, containsv.

Call recursively Decompose-Tree with verteand
set{q,,...,q:, } as input, obtaining as result the
set of pathgq; ,...,q;, }-

If v is internal tog;, then bypassy from ¢;,

else assuming w.l.o.gq;, = (v,...,y’,v) modify
q;, andq; as follows:q;, = (y,..., vy, up, .-, ue)
andg) = (ug,...,&,...,0).
Insert pathsy; ,...,q;, inS"
Insertq] in S".

Qut put : A set of pairwise vertex-disjoint patht =
{q1,...,q;} such that paths i5” have the same set
of endpoints as those i, andg¢| containsz.

Lemmal. LetS be an edge-disjoint set of paths which
have distinct endpoints and form a trég. Letz be a
vertex occurring in some of the paths $h Algorithm

considerations. First, observe that at each while-loop it-
eration, one of the conflicts containedgnis taken into
consideration. The sé&f contains at any time the con-
flicts occurring ing; and not yet taken into considera-
tion. Vertices are inserted i@ only before the while-
loop begins, and at each iteration a vertex is extracted
from C. HenceC' eventually becomes empty and the
algorithm halts. This also means that any vertexof
which is a conflict inS, is considered in exactly one of
the iterations.

For the algorithm to be well defined, at any iteration
vertices contained i’ have to occur iry;. Such a path
at the beginning of the algorithm is a copyg@f(so any
vertices inC occurs in it), and can be later modified
only in the else-case of the if-then-else statement, by
removing one of its terminal subpaths. The fact that at
any iteration vertex is chosen having maximum dis-
tance ing; from z, ensures that vertices removed from
qy are, at the moment of the removal, not contained in
(they may have been containedGhduring previous it-
erations). Hence, at any iteration, all vertices contained
in C occur ong;. This also implies that the vertices in
q; are always a subset of thosedgnand that vertex
taken under consideration at the beginning of any of the
iterations, is contained ig, .

Since paths inS form a treeTs, paths inS \ {¢:}
are partitioned in connected components of a forest.
For the same reason, there is a bijection between the
conflicts occurring ing; and the connected compo-
nents ofTs\ (4,3, relating each of these conflicts with
the connected component containing it. At each while-
loop iteration, the algorithm considers paths forming the
connected component @fs\ (,,1 corresponding to the
conflict v under consideration. Therefore, any path in
S\ {1} is considered in exactly one of the while-loop
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iterations.
In the if-then-else statement, is removed from
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paths are inserted I8’ with no further modifications.
When the recursive call returng; does not contain

q,,- Note that in the else-case of such a statement, thevertices ofg;, other tharv, and by the inductive hypoth-

changes t@; andg;, can be considered as first moving
the terminal subpatftus, ..., u.) from ¢; to ¢;, and
then bypassing from ¢;. .

To prove the lemma, we proceed by induction on the
cardinality of S. If |S| = 1, thenS = {¢;} contains no

esis, it is obtained picking an elementary path frém
with no bypasses applied. In the if-then-else statement,
subpath(uy, . . ., u.) is possibly appended tg, , which
remains elementary sinas,, . . ., u. are vertices ofy
different fromw. In the same statement,is removed

conflicts, hence the algorithm halts and returns the input from ¢;, with a single bypass of size 2. Successively,
path unmodified. Therefore, in this case the lemma is ¢;, is inserted inS” and no further modified. Hence any

true.

path inserted i’ during the while-loop satisfies con-

Otherwise, let us assume that the lemma is true for ditions prescribed by (i). The only other path inserted

sets of less thaff5| paths. We first show that (i) holds.
To this aim, we prove that at the beginning of each
while-loop iteration (i.e., before the while-loop condi-
tion is evaluated) the invariaRndP(S) = EndP(S")U
EndP({q}}) Upep EndP(p) holds, whereD is the set

of paths forming the connected componentd'ef,,

not yet considered by the algorithm. This is certainly
true at the beginning of the first iteratios’(= ¢ and

in S” is ¢}. Since, by (iii), it is elementary and no by-
passes are ever applied to it, (ii) holds.

Finally, we prove that the algorithm returns a Séof
pairwise vertex-disjoint paths. To this aim, we consider
the situation at the beginning of each while-loop itera-
tion and show that the following invariant (formed by
the conjunction of two conditions) is always satisfied:

¢, = q1). Assume now the invariant true at the begin{l1) 5’ is vertex-di_sjoir/wt;
ning of a generic iteration, where the connected confl2) for any pathp in 5’, (12.1) and (12.2) hold, where

ponent formed by, , . ..

,qi, is considered. By the in- (12.1) any vertex: contained irp is not contained iny;

ductive hypothesis, when the recursive call returns, it i§2-2) any vertex: contained irp is contained iny; or in

EndP({¢;,,---, 4, }) = EndP({q;,,...,q;, }). Paths
i, -+ q;, are then inserted is” without modifying
their endpoints. In the if-then-else statement of the itera
tion, it may be (in the else-case) thgtandg;, exchange
one of their endpoints, but the sehdP({q;,q;, }) is
not modified. Thery; is inserted inS” and no further

the connected component®f, (,,} considered in
the same while-loop iteration whepewvas inserted
in S’ (possiblyu is contained in both).

The invariant is certainly true at the beginning of the
first iteration &’ = 0). We assume that the invariant
holds at the beginning of a generic iteration where the

modiﬁed, hence the invariant holds at the beginning of a|gorithm considers a confliet and the Correspond_

next iteration. Therefore, at the end of the last iteration
the invariant holds too. Since at that poibt= (), this
clearly implies that at the end of the whole algorithm it
is EndP(S) = EndP(5’).

We now prove (iii). At the beginning of the algorithm,
x occurs ony, which is, at that time, an exact copy of
the elementary path;, with no bypasses applied. At
each while-loop iteration, patff can be modified only
in the else-case of the if-then-else statement. The mo
ification consists in removing frony, a terminal sub-
path not containing:. This does not create any bypass
on ¢}, andg} remains elementary. Hence at the end of
the algorithmz still occurs ong) and (iii) holds.

To prove (ii), we first observe that paths are not mod-
ified after their insertion irt’. At each iteration, paths
4, --»q;, areinserted irt’. By the inductive hypoth-
esis, at the end of the recursive call, paihis. .., q;,

are obtained applying at most one bypass to an elemen-by pathsg; , ...

tary path fromT’s, and the bypass is of size 2. These

ing connected component @k, ¢,,}, formed by paths
gi,,---,q,, and we show that at the beginning of the
next iteration (i.e., before the while-loop condition is
evaluated) the invariant holds still.

We first prove that (12) is satisfied, namely that each
path contained irt’ at the beginning of the next iter-
ation satisfies (12.1) and (12.2). A pathcontained in

d_S’ in the previous iteration, satisfies (12.1) and (12.2)

by the invariant, and it is not modified during the cur-
rent iteration. Since; and the connected components
of Ts\f4,) are static objects during the algorithm’s ex-
ecution,q satisfies (12.2) also at the end of the current
iteration. Pathy) can be modified, instead, but this is
done only by removing vertices from it, gpsatisfies
also (12.1) at the end of current iteration.

We now show that (12.1) and (12.2) are satisfied also
,q;, inserted inS’ in the current it-
eration. Using the inductive hypothesis gfy, .. ., q;,
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returned by the recursive call, we have that

,q;, are pairwise vertex-disjoint angj,
containsy

/
Qiys - - -
(A)

and that

for 1 <k < h, ¢;_ contains a subset of the
vertices contained ig;, .

(B)

By elementary tree properties, we have that

if any of ¢;,, ..., ¢, shares a vertex witly,

then that vertex i.

(©)

Hence, (A), (B) and (C) together imply that

,q;, do not share vertices witfy .

(D)

Pathsy; ,...,q;, areinsertedi$’ exactly as they are
returned from the recursive call. Then (D) and the fact
that vertices iy} are a subset of those in, imply that
¢, --»q;, satisfy (12.1), while (B) implies that they
satisfy (12.2). Pathy; is instead modified before the
insertion inS’, by removingv and possibly appending
(up, ..., u.)toit. Then, sinceinthe else-casg . . . , u.
are at the same time removed frafp from (B), (C)
and the fact that vertices iff are a subset of those in
q1, it follows thatg;, satisfies (12.1). From (B) and the
fact that all vertices inserted igf, in the else-case are
contained ing,, it follows thatq; satisfies (12.2).

To prove that (11) holds at the beginning of next iter-
ation, we first observe that (ii) and (iii) imply that any
pathinserted iy’ is elementary. Then we prove that any
two paths inS’ are vertex disjoint. Two paths contained
in S’ in a previous iteration are not modified, so they
are still vertex-disjoint. Two paths frogj , ..., q;, are
vertex-disjoint because of (A) and, shoulg, ..., u.
be inserted iny; , because of (D). It remains to prove
that a pathy inserted inS’ in a previous iteration does
not share vertices with any of , ..., g;, . Since the in-
variant was true in previous iteratiorjssatisfies (12.2).
This means, since alsg , .. .,q;, satisfy (12.2), that
any vertex shared by and one ofg; ,...,q;, has to
be contained iry;. Then, (D) implies that; does not
share vertices with any af , ..., ¢;, . If the then-case
occurs,q; does not contain, when inserted $, ver-
tices ofg;. Hence it does not share vertices withoo.

If the else-case occurg; contains verticesy, . . ., u.

of ¢;. But in the previous iteration such vertices were
contained ing;. Hence they are not containedjrbe-
cause in the previous iteratignsatisfied (12.1). So we
conclude that (11) holds.

/
Qi - - -
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Since the invariant is true after any iteration, it is so
after the last one, too. Therefore, at that poisit,is
vertex-disjoint and no paths in it share vertices with
So0.5’ remains vertex-disjoint also in the last step of the
algorithm, wheny; is inserted into it.

O

Step 3 is realized by applying Algorithm Decompose-
Tree to each connected component of the fdfgsfsee
Algorithm 7). Property (iii) shown in Lemma 1 is used
to ensure that no internal occurrences @xist on any
path inII'.

Algorithm 7 Procedure Implementing Step 3

I nput: A minimum path matchingI on G.
For anyS C II such thafls is a connected component
of To
If T's containsz then
Call Decompose-Tree with inputsand S.
Let ¢ be the unique path containingin the
returned set of paths’.
If the occurrence of is internal tog], removez
from ¢} with a bypass of size 2.
else choose an arbitrary vertex in Ts and call
Decompose-Tree with inputsand.S.
Qut put : A conflict-free path matchin§l’ containing
no internal occurrences of

Lemma 2. Let II' be the set of paths computed as a
result of Step 3. Thell’ is vertex-disjointEnd P (I1')
EndP(II), and there are no internal occurrences of
on paths inll’. Moreover, every path ifil’ has at most
one bypass and every bypass is of size 2.

Proof. Algorithm 7 calls Decompose-Tree on AlIC TI
forming a connected componentBf. SinceEndP (1)

is the union ofEndP(.S) for all S forming a connected
component offy, the facts thafll’ is vertex-disjoint
and thatEndP(IT") = EndP(II) follow from Lemma

1. SinceTr is a forest, there is at most one st C 11
forming a connected component6f; which contains

z. By Lemma 1, the call of Decompose-Tree with inputs
z andS, returns a set of vertex-disjoint paths such that
z occurs only on a path; having no bypasses. If the
occurrence ot is internal togj, it is bypassed with a
bypass of size 2 ang will have one bypass. By Lemma
1, all other paths returned by some Decompose-Tree
call, have at most one bypass of size 2. O

Step 4In H = TUII', w andz are the only vertices
of odd degree, hence it is possible to build an Eulerian
path of H having such vertices as endpoints. Note that
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since H is a multigraph, if an edge is contained in
bothT and a path ofI’, there are 2 distinct instances
of e in H: for the purpose of constructing the Eulerian

path, such 2 instances are considered like distinct edges.
How to construct an Eulerian path is a well-studied task.

However, to allow the conflict resolution performed in
Steps 5 and 6 we need an Eulerian patvith a spe-

cific structure. In general, there are several occurrences
of z andw in an Eulerian path, but we need that the

ones which are endpoints ofsatisfy proper conditions.
More precisely, for any of andw, we need that if one
of its occurrences is endpoint of a pathlif, then such

an occurrence is one of the endpointsmofNote that

when z andw are endpoints of theamepath inIT’,
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Appendg,, to v obtaining an Eulerian pati/
onT U B havingv andw as endpoints.
else
If T still contains{w, y} then
Construct an Eulerian pathon (T'U B) —
{w, y} havingv andy as endpoints.
Append{w, y} to v obtaining an Eulerian
path~’ onT U B havingv andw as end-
points.
else construct an Eulerian pathon T U B
havingv andw as endpoints.
If v # 2 then obtaint by appending;. to +'
eseletT =+
In any of the two cases; can be considered as an

*)

only one of such two occurrences can be endpoint of alternating sequence of the form, ¢, p2,q2,... Or

m, SO we choose to let the occurrencezdfe endpoint
of 7. In such a case, as well asuf does not occur at
all as endpoint of a path ifl’, the occurrence ofy as
endpoint ofr is necessarily endpoint of a paphin 7.
Then we need that any occurrencewfinternal tor
which is contained in a path; in 7', is the vertex ob;
having minimum distance iff’ from z.

To build a pathmr with the desired properties, we

q1,P1,492, P2, - - .» Wherepy, ps, ... are paths ifl" and
qi,qe, ... € II'. Note that sincd is a tree andr is an
Eulerian path, pathgy, po, . .. are elementary.

In Case 1 has the formy, p1, ..., p;, whereq € IT'
hasz andw as endpointsp; = (w,z,...), andp, =
(u,...,y,w). This follows from the fact that since
occurs ing, no paths inll’ \ {¢} containw, so any
occurrence ofw in the cycle~ is internal to a path

distinguish two cases, according to whether or not there in T'. Then, since{w, y} is contained inT" and~ is

is a path inll’ having bothw andz as endpoints.

(1) Thereexistg € I, withq = (ug, u1, - -, up—1,un),
ug = z andwu;, = w. Then, bothz andw have
even degree iff". Observe that in this case, since
none ofz and w is left exposed by, the edge
{w,y} has not been removed frod during
Step 2. We need an Eulerian pathof the form
q,p1,--.,p With p; = (u,...,y,w), which can
be constructed as follows:

e construct an Eulerian cycteon T U (I’ \ {¢});

o transfornry, without adding any edge, in a path
~" having two occurrences aff as endpoints,
by duplicating the occurrence af adjacent to
y, i.e., if z is the other neighbor iny of that
occurrence ofv, lety = (w, z, ..., y, w);

e append;to+’ to obtainr = (2, uq, . .
(2) w and z are not endpoints of the same path in
IT'. We build an Eulerian path with the desired

properties with the following procedure:
LetB=1I',v = 2.

If there existyy, € TI' with ¢, = (z,...,un),
up, # w then let B = B\ {¢.} andv = uy,.
If there existsy,, € II' with ¢, = (u,...,w),
u # z then
Construct an Eulerian pathonTU(B\{q. })
havingv andu as endpoints.

S UR—1,W, T, .. .q,zy,rwlz,uh .-

Eulerian, there exists € V' such that the sequence of
verticesx, w, y appears iny as subpath of a pathin
T. By duplicating the occurrence af we dividep in
two pathsps, p;, both contained ifil’, which become
the two terminal subpaths of. We remark that the
occurrences ofv as endpoint op; andp; are the only
two occurrences ab in = which are endpoint of a path
p; in T. Indeed, if there was a third occurrencewothat
is endpoint of a path ifl’, then that occurrence would
also be endpoint of a path in I, with ¢; # ¢, which
is not possible sincH’ is a vertex-disjoint set of paths.
Observe also that since edge, y} is contained irp;
and not inp,, w is the vertex ofp; having minimum
distance inl" from z.
In case 2, ifz (resp.w) is an endpoint of a path
.) (resp.qw = (u,...,w)) in IT', then
« has the formy,, p1,... (resp.r,...,pn, qw With r €
{p1,q1}). This implies that, in this case, there can be
no occurrences ab, internal tor, that are endpoint of
a pathp; in T'. Indeed such an occurrence would also
be endpoint of a path; € IT', with |j — i| < 1, but by
construction if there is an occurrencewfas endpoint
of a path inIT’, such an occurrence is not internakto
From previous observations on the structure athe
next remark follows.
Remark 1. If there exists an occurrence of internal
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to 7, which is at the same time endpoint of a patimn

T, thenw was constructed according to Case 1 of the
procedure angh = p;. Moreover,w is the vertex op,
having minimum distance i’ from z.

The following lemma proves some propertiesnof
Lemma 3. LetIIl’ be the vertex-disjoint path matching
obtained at the end of Step 3 andbe the Eulerian path
constructed in Step 4. Then:
every vertex € V different fromw, occurs at most
once as endpoint of a path if;

z occurs as endpoint of either a pathfor a path
in IT';

if the occurrence ofw which is endpoint ofr, is
endpoint of a pathy; in T', then each occurrence of
internal to = which is contained in a path in T, is
the vertex of with the minimum distance i from
Z.

Proof. An internal vertex occurrence is an endpoint of
a pathp; in T', if and only if it is also endpoint of a path

g; € I', with |j — 4| < 1. SinceIl’ is a set of vertex
disjoint paths, a vertex occurs at most once as endpoint
of a path inII’, hence for any vertex there can be at
most one occurrence internal owhich is endpoint of

a pathinT. Letv € V' \ {w, z}. Then each occurrence
of v is internal, and» occurs at most once as endpoint
of a path inT".

Consider now vertex which, by construction, occurs
as endpoint ofr. Sincell’ is a set of vertex-disjoint
paths,z occurs either once or zero times as endpoint of
a pathg € IT'. If it occurs once, in Case 1 as well as in
Case 2. is constructed so that such occurrence is an
endpoint ofr. Thenz can not occur as endpoint of a
path inT', since that occurrence should be internatto
and therefore there should be a second occurrenge of
as endpoint of a path ifl’, which is not possible. I£
does not occur as endpoint of a patfilif there are also
no occurrences of internal tor which are endpoint of
a path inT. But, on the other hand, the occurrence of
as endpoint ofr is necessarily endpoint of a path’ln

Recall that, sincel’ is a tree, an occurrence af
which belongs to a patp; in T" is not the vertex op;
having minimum distance ift’ from z, if and only if p;
contains the edgéw, y}. Suppose that the occurrence
of w as endpoint ofr, is endpoint of a pathy; in T.

We analyze separately the two possible cases for the
construction ofr. In Case 1, by constructioduw, y}

is contained inp; which is a terminal subpath of. In
Case 2w can not occur as endpoint of a path € 1T,
otherwise by constructiog,, would be the terminal
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subpath ofr containingw, instead ofp;. This means
that in the procedure constructing the case marked
as (*) applies, and the eddev, y}, if not deleted from
T in Step 2, is contained ip;. Therefore, sincer is
an Eulerian path{w, y} is not contained in a path in
T different fromp,. If an occurrence ofv internal to
m is contained in a patp; in T, it is i # [ becausey,
is elementary and the occurrencewft contains is an
endpoint ofr. Thenp; does not contaidw, y}, which
implies that the occurrence af in p; is the vertex of
p; having the minimum distance A from z. O

Step 5 The details of the procedure which realizes the
main part of Step 5, namely the resolution of some of
the conflicts inl’, are described in Algorithm 8. Such an
algorithm derives from a similar procedure in PMCA,
with modifications in order to ensure that there is exactly
one occurrence of in 7/, and that such an occurrence
is indeed an endpoint of’. In this way, situations like
the one illustrated in Figure 1 are not possible, allowing
to complete, in Step 6, the conflict resolution process
by bypassing at most 4 consecutive edges.

Algorithm 8 is based on the following idea. First,
is picked as root of'. Then, we consider a path in T’
which, under the orientation with respect4pwill go
up and down. The two edges immediately before and
after the turning point are bypassed. One possible view
of this procedure is that the minimum spanning tree is
divided into several trees, since each bypass building
divides a tree into two.

Algorithm 8 Procedure implementing Step 5

| nput : T and the pathg;, po, ..
4,
For each pattp; = (v1,...,v,) InT do
Let v; be the vertex irp; of minimum distance in
T from z.
If v; is not an endpoint op; then bypassy;.
Call the resulting pathp;.
Qut put : The pathg,p), ..

. computed in Step

. building a forestT’;.

Lemma 4. Consider the pathr’ obtained at the end of
Step 5. The endpoints af are w and z. In «/, each
vertexv € V occurs either once or twice, andoccurs
exactly once.

Proof. Pathr’ is built from 7 substituting eaclp; with

p%. The endpoints ofr arew andz. Since Algorithm 8
does not change the endpoints of the paths composing
« (neither of those iril", nor of those inll’), they are
also the endpoints of'.
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We first prove some properties of a vertexc V' \
{z}. Sincell’ is a vertex-disjoint path matching, any
vertex can occur int’ at most once inside paths in
IT'. Moreover, assume that there are two distinct oc-
currences ofv € V \ {z} internal to pathsp, and
p; in Ty. Then there exist at least four incident edges
{v,v1}, {v,v2},{v,v3},{v,vs} in T. Furthermore, at
most one of the vertices , vo, v3, v4 is closer toz than
v. Thus,v is bypassed from at least one of the paths
pi, p; during Algorithm 8, because s closer toz than
all other vertices of that path. This is a contradiction to
our assumption, hence for any vertex V'\ {z}, there
is at most one occurrence ofinternal to a path irff’;.

Considerv € V' \ {w, z}. SinceT is a tree, there is
a neighborv; of v such that the distance il of v,
from z is less than the distance Thof v from z. Since
v # w, then{v,v1} # {w,y}, so{v,v1} is surely not
removed fromT in Step 3. This implies thafv, v, }
is contained in exactly one of the pathsg, po,... in
T, sayp;, becauseyy, ps, ... are part of the Eulerian
pathz. Then, sincep; containsvy, v is not the vertex
of p; having minimum distance ifi" from z, hence the
occurrence of in p; is not bypassed during Step 5 and
there is at least one occurrencewon «'.

On the other hand, sinaeis not an endpoint oft’,
if there is an occurrence of as endpoint of a path;

in T, then such an occurrence is also endpoint of a .

path inII’. Since there can be at most one occurrence
of v inside paths iflI’, any other occurrence af has

to be internal to some paglj in Ty. Therefore, a vertex

v € V'\ {w, 2z} can have at most one occurrence in a
path inII’ (possibly endpoint of a path i, too) and

at most one occurrence internal to a pattiin for a
total of at most two occurrences iri.

Consider noww. If the occurrence ofv as endpoint
of 7’ is endpoint of a pathy,, € II', then any other
occurrence ofw is internal to some patp’ in Ty. As
shown above for a generic vertexin\ {z}, there is at
most one occurrence af internal to a path irff’y, so
in total there are at most two occurrenceswoin ='.

On the other hand, if the occurrencewofis endpoint
of n’ is endpoint of a path; in Ty, then, after Step 4,
the occurrence ofv as endpoint ofr is endpoint of a
pathp; in T', and Algorithm 8 transformsg; in p;. Any
occurrence ofv internal tor is either internal to a path
p; in T, with 4 #£ [, or is contained in a patlpe IT'. By
Lemma 3, any occurrence af internal to a path; in
T is the vertex op; having the minimum distance ifi
from z. Hence any occurrence af internal to a path
p; in T is bypassed during the run of Algorithm 8, and
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does not occur im’. Sincell’ is a vertex disjoint set of
paths, there can be at most one occurrence ofside

a path inll’. Therefore, there is at most one occurrence
of w internal ton’, so, again, there are at most two
occurrences ofv in 7.

Sincez is the vertex of minimum distance from itself,
any occurrence of internal to a path iff" is bypassed
during the run of Algorithm 8. Moreover, by Lemma
2, there are no occurrences ofinternal to a path in
IT'. By Lemma 3,z occurs exactly once as endpoint of
a path, either of one if" or of one inII’. This one
is the unique occurrence afin #’, since there are no
occurrences of internal to any path. O

From Algorithm 8, we obtain immediately the next
observation which will be used in the following.
Remark 2. In T, every path has at most one bypass,
and every bypass is of size 2.

Step 6 Before describing how to realize Step 6, we
state the following lemmas, which will be used to prove
that bypasses, at the end of the whole algorithm, have
size at most 4.

Lemma 5. Letp;, be one of the paths i composing
the Eulerian pathr, and letp}, be the path constructed
frompy, by Algorithm 8. Let € V'\ {w} be an endpoint
of p;, (and ofp},). If v is not the vertex opy, having
minimum distance iff” from z, thenw is not a conflict
in 7.

Proof. Supposev is not the vertex o, having mini-
mum distance if” from z, which immediately implies
v # z. Thenv € V'\ {z,w}, and the occurrence ofin
7 as endpoint opy, is also endpoint of a path, € IT'.
Sincell’ is a vertex disjoint set of paths, there are no
other occurrences af in 7 inside paths frondI’.
Suppose there is an occurrence @ 7 inside a path
p; in T, with ¢ £ h. By Lemma 3, the occurrence of
in p; is internal top;. Letu be the unique neighbor of
in T such that: has distance ifi"’ from z less than that
of v. Sincew is not the vertex op;, having minimum
distance inT from z, the edge{v, u} is contained in
pr. This means thafv, u} is not contained in paths in
T other tharp;,, becauser is Eulerian. It follows that
is the vertex ofp; having minimum distance iff" from
z. Then the occurrence af in p; is at the same time
internal top; and the vertex op; having the minimum
distance iril" from z. Hencev is bypassed by Algorithm
8 in all paths other tham/,, so it is not a conflict in
. O

The crucial property which gives the desired bound
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on the size of bypasses, is stated in the following lemma. Algorithm 9 Procedure implementing Step 6
A similar result is proved in [4], but here a different
proof is needed.

Lemma 6. In the pathrn’, between each two bypasses
there is at least one vertex that is not a conflict.

I nput: A pathzn’ on G wherew andz are the end-
points,z occurs once, and all the other verticesiof
occur once or twice.

If w is a conflict in7’ then let u be the occurrence

Proof. Note that “between” includes the case that the  of w which is not endpoint ofr’ else let u be an

claimed vertex may be endpoint of one or both edges arbitrary occurrence of a conflict i

used as bypass. Let be one of the paths i com- Bypassu (with a bypass of size 2).

posing the Eulerian path and letp) be the path con- While there are conflicts remaining iff do

structed fromp; by Algorithm 8. Thenp; andp) have If occurrenceu has at least one occurrence of an

the same endpoints. An important observation is that unresolved conflict inr” as neighbor

sinceT is a tree, at least one of the endpointgpis then

not the vertex ofp,; having the minimum distance i Choosev between the neighbors af which are

from z, and if Algorithm 8 constructs a bypass jf unresolved conflict inr’ so that:

then both the endpoints @f are not the vertices qf; If there is a bypassed vertex occurrehsech

having the minimum distance ifi from 2. By Remark that each vertex occurrence internal to the el-

1, we have that if an endpoint of p; is at the same ementary subpathin 7’ connectingu andt,

time internal tor and not the vertex op; having the is an occurrence of an unresolved conflict in

minimum distance ifl" from z, it is v # w. Then we 7’

conclude, by Lemma 5, thatis not a conflict inz’. then let v be the neighbor ofi that belongs to
We say that two bypassesit areclose if there are D

no other bypasses between themn To show the else let v be an arbitrary neighbor af which

thesis, it is enough to consider two bypasses which are is an unresolved conflict in’.

close and to prove that, i, there is at least one vertex Bypass the other occurrence ofin 7’ (the one

that is not a conflict between them. not chosen by previous statement) so letting
Suppose that at least one of the two considered by- be a resolved, not bypassed conflictrih

passes was constructed by Algorithm 8 on a patim else bypass an arbitrary occurrence of a conflict in

T, producingp; € Ty, and letv be the endpoint op; .

(andp!) between the considered bypasses. Siio®n- Let u be the vertex occurrence bypassed in the pre-

tains a bypass, both of the endpointsppfare not the vious statement.

vertices ofp; having the minimum distance i\ from Cut put : A Hamiltonian patht” of G havingw and

z. Butw is also internal tar, so we conclude, as in the z as endpoints.

above observation, thatis not a conflict inx’.

On the other hand, suppose that both bypasses lie4 overall, i.e., taking into account that some edges of
on paths fromIl’, and letp; be a path inT” which is the input pathr’ may be bypasses of size 2 themselves.
between the two bypasses. At least one of the endpointsThe endpoints of the returned Hamiltonian pathare
of p;, saywv, is not the vertex of; having the minimum w and z.

distance inT' from z, and clearlyv is internal tor. . .
Then, again as in the above observation, we have thatP0f- The only difference between Algorithm 9 and
v is not a conflict inr. Procedure 3 of [4] is that in the latter, the first conflict

in 7" which is resolved (outside the main loop), is an

We are now ready to describe the procedure which arbitrary one. Hence the same reasoning as in the proof
realizes Step 6. It derives from a similar procedure in of Claim 6 of [4] shows the first part of our thesis,
algorithm PMCA, with modifications to avoid that more too. Please note that such a reasoning uses the result of
than two consecutive verticesofare bypassed. Tothis Lemma 6, which in our case needs a proof significantly
aim, Algorithm 9, immediately after bypassing a vertex different from the one given in [4].
v, resolves, asot bypassed, an unresolved conflict in By Lemma 4,z andw are the endpoints of’, and
7' adjacent to, if any. z is not a conflict in’. This latter fact implies that the
Lemma 7. Algorithm 9 terminates after resolving all  occurrence of is left unaltered by Algorithm 9. v is
conflicts in7/, and it generates bypasses of size at most a conflict inz’, Algorithm 9 resolves it immediately, by
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bypassing the occurrencewofwhich is not an endpoint.
Soz andw are the endpoints af”. O

The following lemma, analyzes the quality of the ap-

proximation provided by Algorithm 5.

Lemma 8. The cost of the Hamiltonian path” re-

turned by Algorithm 5 is less tha%ﬁQ the cost ofP*,

at most3 3? the cost ofP;, and at most 32 the cost
of PJ,.

Proof. Since any spanning path 6f is a treec(T') <
c(P*) < ¢(PF) < ¢(P). In [8] it is shown that if

G is a metric graph, the cost of a minimum matching
for U which leave2 — k vertices exposed, is less than

1c(P*) whenk = 0, it is no more thargc(P;) when
k =1, and it is no more tharc(P;;) whenk = 2.

approximation ratio, in polynomial time). Please note
that for every graplts, it is possible to find a suitable
value of 3 so thatG satisfies thes-triangle inequality.
Hence HPP is approximable for every input graph, al-
though as3 grows the approximation ratio quickly be-
comes large.

The HPR and the HPP are similar to the TSP, and
we expect the three problems to exhibit the same behav-
ior with respect to approximability. Indeed, in the metric
case, the best known approximation ratios are the same
for all three problems [8]. In this paper we proved that
the same happens also when the input graph satisfies
the g-triangle inequality forl < g < 3. To extend this
result to other (possibly any) values of further stud-
ies are required, especially concerning the possibility to

Those proofs are based on the fact that in a metric graph,carry over to HPP the approach used in [3].

the cost of an edgéu, v} is a lower bound for the

cost of any path having andv as endpoints. Then the

The HPRB, instead, seems to have slightly different
characteristics from an approximability perspective. In-

same arguments, with the only change of using shortestdeed, already in the metric case, the best known approx-

paths formingII instead of the direct edges forming a

minimum matching, show that in our case itdl) <
tc(P*) whenk = 0, ¢(IT) < $c¢(P;) whenk = 1,
andc(IT) < 2¢(P;) whenk = 2. From Lemma 7 we
have that in the path” returned by Algorithm 5 at
most 4 consecutive edges BfU II are bypassed with

imation ratio for the HPRis higher than the one known
for the TSP. In this work, we obtained an approxima-
tion ratio for Az-HPPR, which naturally generalizes the
one known for the metric case.
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