
All rights reserved © Preeminent Academic Facets Inc., 2006 This document is protected by copyright law. Use of the services of Érudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.
https://apropos.erudit.org/en/users/policy-on-use/

This article is disseminated and preserved by Érudit.
Érudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec à Montréal. Its mission is to
promote and disseminate research.
https://www.erudit.org/en/

Document generated on 08/03/2025 9:58 p.m.

Algorithmic Operations Research

On the Stability of Approximation for Hamiltonian Path
Problems
Luca Forlizzi, Juraj Hromkovi, Guido Proietti and Sebastian Seibert

Volume 1, Number 1, Summer 2006

URI: https://id.erudit.org/iderudit/aor1_1art03

See table of contents

Publisher(s)
Preeminent Academic Facets Inc.

ISSN
1718-3235 (digital)

Explore this journal

Cite this article
Forlizzi, L., Hromkovi, J., Proietti, G. & Seibert, S. (2006). On the Stability of
Approximation for Hamiltonian Path Problems. Algorithmic Operations
Research, 1(1), 31–45.

Article abstract
We consider the problem of finding a cheapest Hamiltonian path of a complete
graph satisfying a relaxed triangle inequality, i.e., such that for some
parameter > 1, the edge costs satisfy the inequality c({x, y}) ≤ `c({x, z}) + c({z,
y})´ for every triple of vertices x, y, z. There are three variants of this problem,
depending on the number of prespecified endpoints: zero, one, or two. For
metric graphs there exist approximation algorithms, with approximation ratio
32 for the first two variants and 53 for the latter one.
Using results on the approximability of the Travelling Salesman Problem with
input graphs satisfying the relaxed triangle inequality, we obtain for our
problem approximation algorithms with ratio min(2 + , 32 2) for zero or one
prespecified endpoints, and 53 2 for two endpoints.

https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/aor/
https://id.erudit.org/iderudit/aor1_1art03
https://www.erudit.org/en/journals/aor/2006-v1-n1-aor_1_1/
https://www.erudit.org/en/journals/aor/

Algorithmic Operations Research Vol.1 (2006) 31–45

On the Stability of Approximation for Hamiltonian Path Problems

Luca Forlizzi,a Juraj Hromkovič,b Guido Proiettia,c and Sebastian Seibertb

aDipartimento di Informatica, Università di L’Aquila, I-67010 L’Aquila, Italy
bDepartment Informatik, ETH Zentrum, CH-8092, Zürich, Switzerland

cIstituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Roma, Italy

Abstract

We consider the problem of finding a cheapest Hamiltonian path of a complete graph satisfying a relaxed triangle
inequality, i.e., such that for some parameterβ > 1, the edge costs satisfy the inequalityc({x, y}) ≤ β

`

c({x, z}) +
c({z, y})

´

for every triple of verticesx, y, z. There are three variants of this problem, depending on the number of
prespecified endpoints: zero, one, or two. For metric graphsthere exist approximation algorithms, with approximation
ratio 3

2
for the first two variants and5

3
for the latter one.

Using results on the approximability of the Travelling Salesman Problem with input graphs satisfying the relaxed
triangle inequality, we obtain for our problem approximation algorithms with ratiomin(β2 + β, 3

2
β2) for zero or one

prespecified endpoints, and5
3
β2 for two endpoints.

1. Introduction

I t often happens that the hardness of the polynomial-
time approximability of a problem varies according

to the input instance, and some hard problem becomes
relatively easy for certain subclasses of instances. Given
a hard optimization problem, and a polynomial-time ap-
proximation algorithm for a subclass of input instances,
a natural idea is trying to extend the approximation al-
gorithm to a wider class of problem instances. This idea
is captured by the notion ofstability of approximation,
which provides a formal framework to study the change
of the approximation ratio according to a small change
in the specification (some parameter, characteristics) of
the set of problem instances considered [4].

One of the most successful application of the con-
cept of stability of approximation concerns the famous
Travelling Salesman Problem (TSP). It is well known
that TSP is not only NP-hard, but also not approx-
imable in polynomial time with constant approxima-
tion ratio. But if one considers∆-TSP, namely TSP for
complete input graphs satisfying the triangle inequal-
ity (i.e., metric graphs), one can design a polynomial
time 3

2
-approximation algorithm [5]. To extend the class

of input graphs for which the TSP is approximable (in

Email: Luca Forlizzi, [forlizzi@di.univaq.it], Juraj
Hromkovič, [jh@cs.rwth-aachen.de], Guido Proietti [proi-
etti@di.univaq.it], Sebastian Seibert [seibert@cs.rwth-
aachen.de].

polynomial time, with constant approximation ratio),
one considers the so calledβ-triangle inequality. For
a givenβ ≥ 1, a graph(V, E) satisfies theβ-triangle
inequality if for all verticesu, v, x it is c({u, v}) ≤
β
(

c({u, x}) + c({x, v})
)

, wherec : E 7→ R
+ is the

cost function of the graph. For every realβ > 1, ∆β-
TSP is the restriction of the TSP to inputs satisfying the
β-triangle inequality.

In the past, several polynomial time approximation
algorithms providing constant approximation ratio for
∆β-TSP were proposed. Currently, there are three dif-
ferent algorithms which achieve the smallest approxi-
mation ratio, each for a distinct range of values ofβ:

(A) the REFINEDT 3 algorithm, providing a(β2 + β)
approximation ratio [1], which is the best for2 ≤
β ≤ 3;

(B) the Bender and Chekuri(4β)-approximation algo-
rithm [3], best forβ > 3;

(C) the Path Matching Christofides Algorithm (PMCA)
providing a3

2
β2 approximation ratio [4], best for1 <

β < 2.

In this paper, we study how these results can help to
design approximation algorithms for theHamiltonian
Path Problem(HPP), where one is required to compute
a minimum cost Hamiltonian path spanning a complete
graphG. There are three natural variants of the HPP,
differing in the constraints imposed to the endpoints
of the desired path: they can be both arbitrary vertices
(HPP0), or one of them can be constrained to be a pre-

c© 2006 Preeminent Academic Facets Inc., Canada. Online version: http://www.facets.ca/AOR/AOR.htm. All rights reserved.

32 Forlizzi et al. – On the Stability of Approximation for Hamiltonian Path Problems

specified vertexs (HPP1), or both of them can be con-
strained to be prespecified verticess andt (HPP2). The
TSP is easily reducible to any of these variants, so they
are NP-hard too. Fork ∈ {0, 1, 2}, we denote the re-
strictions of HPPk to input graphs satisfying the trian-
gle and theβ-triangle inequalities, respectively by∆-
HPPk and∆β-HPPk. In [8], Hoogeveen applied to the
HPP the approach introduced by Christofides for∆-
TSP [5], providing3

2
-approximation algorithms for∆-

HPP0 and∆-HPP1, and a5

3
-approximation algorithm

for ∆-HPP2.

In this paper, trying to extend the class of graphs for
which HPP is approximable, we consider again theβ-
triangle inequality and investigate whether each of the
three approaches for∆β-TSP is suitable also for HPP.
To this aim, we concentrate on adapting the approaches
of (A) and (C), which distinguish themselves, respec-
tively, by running timesO(n2) andO(n3), wheren is
the number of vertices inG. This is acceptable for prac-
tical purposes rather than theO(n5) running time of
(B). We just note why the approach of (B) would need
some additional considerations in order to be carried
over to HPP. The algorithm of Bender and Chekuri is
based on results by Fleischner [6,7], who proved that
the square of a 2-vertex-connected graph is Hamilto-
nian, and by Lau [9,10], who provided an effective pro-
cedure for the construction of a Hamiltonian cycle. So,
Bender and Chekuri first construct an approximation
of the minimum cost 2-vertex-connected subgraph, and
then apply, on the resulting graph, Lau’s procedure to
obtain a Hamiltonian cycle. The length of a minimum
cost 2-vertex-connected subgraph is a lower bound on
the cost of any Hamiltonian cycle, and from this fact the
bound on the cost of their solution follows. However,
the length of a minimum cost 2-vertex-connected sub-
graph is not a lower bound on the cost of a Hamiltonian
path. Hence, this approach does not lead immediately
to an approximation algorithm for the HPP.

The approaches leading to algorithms (A) and (C)
are studied in Sections 2. and 3., respectively. For∆β-
HPP0 and ∆β-HPP1, we keep with both approaches
the same ratio bounds as for the TSP, thus obtaining
min(β2 + β, 3

2
β2)-approximation algorithms. For∆β-

HPP2, using the approach of (C), we achieve a5

3
β2

approximation ratio which is a natural generalization
of the 5

3
approximation ratio known for metric graphs.

With the approach of (A), instead, we obtain approxi-
mation ratios worse than5

3
β2, for anyβ > 1. Neverthe-

less, such an approach is still somehow useful for HPP2,
since it allows to obtain anO(n2) time3-approximation

algorithm for∆-HPP2, faster than theO(n3) time pre-
viously known approximation algorithm.

Following [8], we letP ∗ denote an optimal Hamil-
tonian path without prescribed endpoints,P ∗

s denote an
optimal Hamiltonian path with a single prescribed end-
point s, andP ∗

st denote an optimal Hamiltonian path
with prescribed endpointss andt. We denote byV (G)
andE(G), respectively, the set of vertices and the set of
edges of a graphG. Given a graphG and a collection
Π of paths on the vertices ofG, we denote byG ∪ Π
the multigraph obtained by adding toG all the edges of
each path inΠ. We denote byEndP(Π) the set formed
by the endpoints of all the paths contained inΠ. Given
a graphG and edgese andf connecting vertices ofG,
we denote byG − e and G + f the graphs obtained,
respectively, by removinge from G and by insertingf
in G. An edgee ∈ E(G) is locally minimal if there is
a vertexv ∈ V (G) such thate is an edge incident onv
of minimum cost. We call an occurrence of a vertex in
a pathγ internal, if it is not an endpoint ofγ. Given a
pathγ, we say that a subpathγ′ of γ is a terminal sub-
path if one of the endpoints ofγ′ is also an endpoint of
γ. A path in a graph iselementaryif it does not contain
the same vertex more than once.

2. The REFINED T3 Algorithm for Hamiltonian
Path

In 1960, Sekanina proved that for every treeT =
(V, E) the graph

T 3 =
(

V,
{

{x, y} | x, y ∈ V, and there exists inT a

path fromx to y of length at most3
})

contains a Hamiltonian cycle. LetT be a tree and
H = (u1, u2, . . . , un) be a Hamiltonian cycle contained
in T 3. Let E(H) be the set of edges formingH . For
any edgee = {x, y} of E(H), let pe be the unique
elementary path inT havingx andy as endpoints, and
let AH = {pe | e ∈ E(H)}. Clearly, eachpe ∈ AH has
length at most 3.

Starting from Sekanina’s result, Andreae and Bandelt
designed in [2] a(3

2
β2 + 1

2
β)-approximation algorithm

for ∆β-TSP. Given a complete graphG and a mini-
mum spanning treeT of G, they were able to construct
a Hamiltonian cycleH of T 3, in such a way that each
edge ofT occurs in exactly two of the paths ofAH ,
and that it is the middle edge of at most one path ofAH

having length 3. Such properties imply that expensive
edges ofT do not occur inH more often than cheap

Forlizzi et al. – Algorithmic Operations Research Vol.1 (2006) 31–45 33

edges. Then the cost ofH is bounded by a factor times
the cost ofT , which is, in turn, a lower bound for the
cost of an optimal Hamiltonian cycle ofG. Note that the
strategy used by Andreae and Bandelt can be seen as an
enhancement, allowing to deal withβ-triangle inequal-
ity, of the well known Double-Tree 2-approximation al-
gorithm for∆-TSP, which computes a Hamiltonian cy-
cle from an Eulerian cycle of the multigraph obtained
by doubling each edge of a minimum spanning tree of
the input graph.

The result of Andreae and Bandelt has been recently
improved by Andreae [1], that presented a(β2 + β)-
approximation algorithm for∆β-TSP (see Algorithm
1). The main part of such algorithm is Procedure
HCT3(REFINED) (see Algorithm 2.), which we use
later.

Algorithm 1 : REFINEDT 3

Input: A complete graphG.
Find a minimum spanning treeT of G.
Find a Hamiltonian cycle H of T 3 calling
HCT3(REFINED) with inputsT and an arbitrary lo-
cally minimal edge ofT .

Output: A Hamiltonian cycleH of G.

Algorithm 2 Procedure HCT3(REFINED)

Input: A treeT with |V (T)| ≥ 3 and a locally min-
imal edgee∗ = {a1, a2} of T .

Let Ti be the component ofT − e∗ containingai (i =
1, 2).

For i = 1, 2 do
If |V (Ti)| ≥ 2, then pick a′

i ∈ V (Ti) so thate∗i =
{ai, a

′
i} is a locally minimal edge ofTi

else if |V (Ti)| = 1 then let a′
i = ai.

If |V (Ti)| ≥ 3, then
Recursively call HCT3(REFINED) with inputsTi

ande∗i obtaining a Hamiltonian cycleHi of T 3
i

containinge∗i .
Let pi = Hi − e∗i .

else let pi = Ti.
ConstructH by concatenatingp1, p2, e

∗ and the edge
{a′

1, a
′
2}.

Output: A Hamiltonian cycleH of T 3 containinge∗.

The core result obtained by Andreae is the following
([1], Theorem 1): for a treeT with |V (T)| ≥ 3 and a
real numberβ ≥ 1, supposeT 3 satisfies theβ-triangle
inequality. Then it is

c(H) ≤ (β2 + β)c(T)

whereH is a Hamiltonian cycle ofT 3 obtained by ap-
plication of HCT3(REFINED) to T , and this inequal-
ity is strict if β > 1. HCT3(REFINED) requiresO(n2)
time.

The fact that the cost of the constructed graph is
bounded using the cost ofT , is particularly interesting
for our purposes, since the cost ofT is a lower bound
for the cost of an optimal Hamiltonian path, too. Indeed,
using Andreae’s result, we can easily derive approxima-
tion algorithms for HPP0 and HPP1 called, respectively,
T3 HPP0 and T3 HPP1: we first execute Algorithm 1,
and then remove, from the resulting Hamiltonian cycle,
an arbitrary edge (T3 HPP0) or an edge incident ons
(T3 HPP1). It is immediate to see that T3 HPP0 and T3

HPP1 are correct and that both of them have approxi-
mation ratio(β2 + β) and requireO(n2) time.

To attack HPP2, the previous strategy needs an adap-
tation: first compute a Hamiltonian cycleHst containing
{s, t}, and then return the pathpst obtained by deleting
{s, t} from Hst. However, with this approach we con-
struct a cycle having a cost bounded against the cost of
an optimal Hamiltonian cycle containing{s, t}, while
P ∗

st doesnot contain{s, t}. This leads to an increase
of the approximation ratio, as exploited in the proof of
Theorem 1. Using this adapted strategy, we obtain Al-
gorithm 3 to approximate∆-HPP2.

Algorithm 3 T3 Metric-HPP2

Input: A complete metric graphG = (V, E) and
two verticess, t ∈ V .

1: Find a minimum spanning treeTst of G containing
{s, t}.

2: Find a Hamiltonian cycleHst of T 3
st calling HCT3

with inputsTst and{s, t}.
3: Find a Hamiltonian pathpst of G by removing edge
{s, t} from Hst.

Output: A Hamiltonian pathpst of G havings and
t as endpoints.

Note that in Algorithm 3, we use Procedure HCT3

presented in [2] instead of the improved version
HCT3(REFINED) listed in Algorithm 2.. The two pro-
cedures are similar and for a metric graphG, given a
spanning treeT and an edgee of T , they both com-
pute a Hamiltonian cycleHe containinge such that
c(He) ≤ 2c(T). There are two advantages in using
HCT3 instead of HCT3(REFINED): the former pro-
cedure does not require the input edgee to be locally
minimal, and it is also more efficient, running inO(n)
time.

34 Forlizzi et al. – On the Stability of Approximation for Hamiltonian Path Problems

Theorem 1. Algorithm 3 is a3-approximation algo-
rithm for ∆-HPP2. The algorithm runs inO(n2) time.

Proof. Let G be a metric graph. Given a Hamiltonian
cycleH̄ of G containing{s, t}, H̄ − {s, t} is a Hamil-
tonian path ofG havings andt as endpoints, and there-
fore c(P ∗

st) ≤ c(H̄ − {s, t}). It follows that H∗
st =

P ∗
st +{s, t} is an optimal Hamiltonian cycle containing

{s, t}. Let Tst be the minimum spanning tree computed
in Step 1 andHst be the Hamiltonian cycle computed
in Step 2. As shown in [2], we havec(pst)+c({s, t}) =
c(Hst) ≤ 2c(Tst). Since by deleting fromH∗

st an edge
different from{s, t} one obtains a tree containing{s, t},
it is c(Tst) < c(H∗

st) = c(P ∗
st) + c({s, t}). Then we

havec(pst) < 2c(P ∗
st) + c({s, t}) ≤ 3c(P ∗

st), where
the last inequality follows from the triangle inequality.
Since HCT3 runs inO(n) time, the time complexity of
the whole algorithm is dominated by theO(n2) time
required to computeTst.

Although Algorithm 3 has a poor approximation
guarantee, it deserves some interest being more effi-
cient than theO(n3) time algorithm derived in [8] from
Christofides’ one. We remark that straightforward adap-
tations of the Double-Tree algorithm to HPP2, construct
a graph with proper vertex degrees by doubling the
edges of a minimum spanning tree containing{s, t}.
Therefore, there are similar problems in lowering their
approximation ratios as with Algorithm 3. Hence it is
not immediate to design a linear time approximation al-
gorithm for∆-HPP2 with a better approximation ratio.

Unfortunately, Algorithm 3 does not provide an ap-
proximation guarantee if the input graph does not satisfy
the triangle inequality, because in a general graph the
cost of{s, t} can not be bounded usingc(P ∗

st). To ex-
tend Sekanina’s approach to∆β-HPP2, we need another
idea. Suppose we have a Hamiltonian pathγ spanning
G, with cost bounded by a factor timesc(P ∗

st). We can
transform it into a Hamiltonian path havings andt as
endpoints, still having a cost bounded by a factor times
c(P ∗

st). W.l.o.g., letγ = (w, . . . , s, s1, . . . , t1, t, . . . , z).
To obtain a pathγ′ having s as endpoint, we pro-
ceed as follows. Consider the terminal subpathγs =
(w, . . . , s, s1) of γ, and letGs be the subgraph ofG
induced by the vertices occurring inγs. Sinceγs is a
tree containing{s, s1}, the cost of a minimum spanning
treeTs of Gs containing{s, s1} is a lower bound for
c(γs). Using Procedure HCT3(REFINED), we compute
a Hamiltonian cycleHs of Gs containing{s, s1} such
thatc(Hs) ≤ (β2 +β)c(Ts) ≤ (β2 +β)c(γs). Then, by
replacingγs with Hs in γ, we obtain a graph wheres1

is the only vertex having degree3. By removing{s, s1},
we have the desired pathγ′. The same operations can
be repeated for the other prescribed endpointt, leading
to Algorithm 4 and the following theorem.

Algorithm 4 T3 HPP2

Input: A complete graphG = (V, E) and two ver-
ticess, t ∈ V .

1: Compute a Hamiltonian path γ =
(w, . . . , s, s1, . . . , t1, t, . . . , z) of G.

2: Let γs = (w, . . . , s, s1), γt = (t1, t, . . . , z) be ter-
minal subpaths ofγ, denote byGs andGt the sub-
graphs ofG induced by the vertices occurring, re-
spectively, inγs andγt.

3: Compute minimum spanning treesTs of Gs con-
taining{s, s1} andTt of Gt containing{t1, t}.

4: Compute Hamiltonian cyclesHs of Gs andHt of
Gt containing, respectively,{s, s1} and{t1, t}.

5: Let πs = Hs − {s, s1}, πt = Ht − {t1, t}.
6: Computeπst by replacing inγ subpathsγs with πs

andγt with πt.
Output: A Hamiltonian pathπst of G havings and

t as endpoints.

Theorem 2. For every β > 1, Algorithm 4 is a
(

(β2 +β)min(β2 +β, 3

2
β2)

)

-approximation algorithm
for ∆β-HPP2. The algorithm runs inO(n3) time.

Proof. Let G be a graph satisfying theβ-triangle in-
equality. A Hamiltonian pathγ of G can be computed
using Algorithm T3 HPP0 or the(3

2
β2)-approximation

algorithm which we present in Section 3.. Hencec(γ) ≤
min(β2 + β, 3

2
β2)c(P ∗) ≤ min(β2 + β, 3

2
β2)c(P ∗

st).
Sinceγs (resp.γt) is a tree containing{s, s1} (resp.
{t, t1}), we havec(Ts) ≤ c(γs) (resp.c(Tt) ≤ c(γt)).
The Hamiltonian cyclesHs andHt can be computed
using Algorithm 2.. Note thatπs (resp.πt) is a Hamil-
tonian path spanning the same vertices asγs (resp.γt)
and havings ands1 (resp.t and t1) as endpoints. By
Andreae’s result we havec(πs) < c(Hs) ≤ (β2 +
β)c(Ts) ≤ (β2 + β)c(γs) and, analogously,c(πt) <

(β2 + β)c(γt). In the last step,πst is obtained replac-
ing the subpathsγs andγt of γ with, respectively,πs

and πt. Hence it isc(πst) < (β2 + β)c(γ) ≤ (β2 +
β)min(β2 + β, 3

2
β2)c(P ∗

st).
In Step 1, Algorithm T3 HPP0 or the (3

2
β2)-

approximation algorithm which we present in Section
3. are used to computeγ. The former algorithm runs in
O(n2) time, while the latter inO(n3) time. Algorithm
2. used in Step 4 runs inO(n2) time, and all remaining

Forlizzi et al. – Algorithmic Operations Research Vol.1 (2006) 31–45 35

steps can be trivially performed inO(n2) time. Hence
the whole algorithm runs inO(n3) time.

3. The PMCA for Hamiltonian Path

The PMCA is a(3

2
β2)-approximation algorithm for

∆β-TSP, inspired by Christofides’ algorithm for∆-TSP.
The rough idea of both Christofides’ and PMCA algo-
rithms, is the following: first compute a multigraphH
with all vertices of even degree, having a cost bounded
by 3

2
times the cost of an optimal Hamiltonian cy-

cle, then compute an Eulerian cycle ofH (it has the
same cost), and finally transform the Eulerian cycle in
a Hamiltonian one byresolving all conflictsin it, i.e.,
by removing repeated occurrences of vertices in the cy-
cle. The final task is trivial in the case of Christofides’
algorithm, but not for the PMCA. Indeed, given theβ-
triangle inequality, withβ > 1, the bypassing of some
vertices in a path may increase the cost of the path.

To illustrate the conflict resolution performed as last
task of the PMCA we need some formal definitions.
Let G = (V, E) be a complete graph. Apath match-
ing for a set of verticesU ⊆ V is a collectionΠ of
paths having as endpoints distinct vertices ofU . The
vertices ofU which are not endpoints of some path
in Π, are said to beleft exposed byΠ. Assume that
p = (u0, u1, u2, . . . , uk−1, uk) is a path inG, not nec-
essarily simple. Abypassfor p is an edge{u, v} from
E, replacing a subpath(ui, ui+1, ui+2, . . . , uj−1, uj)
of p from u = ui to uj = v (0 ≤ i < j ≤ k). Its sizeis
the number of replaced edges, i.e.j − i. Also, we say
that the verticesui+1, ui+2, . . . , uj−1 are bypassed. A
vertex which occurs at least twice in a pathπ, or in a
cycle γ, or in a set of pathsΠ, is said to be aconflict
(respectively inπ, γ or Π). We say that a set of paths
is vertex-disjoint(resp.edge-disjoint) if the paths con-
tained in it are elementary and pairwise vertex-disjoint
(resp. edge-disjoint).

The PMCA succeeds in bounding by a factorβ2 the
cost increase due to conflict resolution, by ensuring,
with non trivial techniques, that at most 4 consecutive
edges of the Eulerian cycle are substituted with a new
one. In detail,H is the union of a minimum spanning
treeT and a path matchingΠ for the set of all vertices
of odd degree inT . The Eulerian cycleπ of H can
be seen as a sequence of pathsp1, q1, p2, q2, . . . such
that p1, p2, . . . are paths inT andq1, q2, . . . ∈ Π. The
conflict resolution process is realized in three steps:
((i)) conflicts withinΠ are resolved obtaining a vertex-

disjoint set of pathsΠ′;

((ii)) some of the conflicts within paths inT are re-
solved so that the cycleπ′ obtained by modifying
π according to steps (i) and (ii), contains at most
2 occurrences of each vertex;

((iii)) all remaining conflicts inπ′ are resolved, by by-
passing at most 2 consecutive vertices.

Combining the ideas of [8] and [4], we obtain an
approximation algorithm for the∆β-HPPk, with k ∈
{0, 1, 2} (see Algorithm 5).

Algorithm 5 PMCA-HPPk

Input: A complete graphG = (V, E) with cost func-
tion c : E 7→ R

+ and a setA of k prespecified end-
points(0 ≤ k ≤ 2).

1: Construct a minimum spanning treeT of G.
2: Let U be the set composed by vertices ofA hav-
ing even degree inT plus vertices ofV \ A having
odd degree inT ; construct a minimum (edge-disjoint)
path matchingΠ for U , leaving2 − k vertices ofU
exposed. If necessary, remove an edge fromT , so
that the multigraphT ∪Π has 2 odd degree vertices,
which we denote byw andz (observe that any pre-
specified endpoint is amongw andz).

3: Resolve conflicts inΠ (using bypasses of size 2
only), in order to obtain a vertex-disjoint path match-
ing Π′ such thatz can only occur as an endpoint of
a path inΠ′.

4: Construct an Eulerian pathπ of H = T ∪ Π′ hav-
ing w andz as endpoints (π can be considered as a
sequence of alternating paths fromT andΠ′, where
p1, p2, . . . are the paths inT andq1, q2, . . . ∈ Π′).

5: Resolve conflicts inside the pathsp1, p2, . . . obtain-
ing the modified pathsp′1, p

′
2, . . . and the modified

Eulerian pathπ′, so thatT is divided into a forestTf

of trees of degree at most 3,w andz are the endpoints
of π′, andz is not a conflict inπ′ (conflict resolution
in this step is done using bypasses of size 2 only).

6: Resolve every remaining conflicts inπ′ using by-
passes of overall size 4 (where overall means that a
bypass constructed in any previous step counts for 2
edges), obtaining a Hamiltonian pathπ′′ having w

andz as endpoints.
Output: A Hamiltonian pathπ′′ of G havingw and

z as endpoints.

Similarly to the PMCA, Algorithm 5 computes a
multigraphH with all vertices but 2 of even degree.
The 2 odd degree vertices include any prespecified end-
point. SinceΠ′ is vertex-disjoint, inH there can be at
most 2 edges between a pair of vertices, one fromT and

36 Forlizzi et al. – On the Stability of Approximation for Hamiltonian Path Problems

one from a path ofΠ′. In the following description, it
will be clear from the context whether edges we refer to
are contained inT or in a path ofΠ′. Algorithm 5 pro-
ceeds by constructing an Eulerian pathπ of H , having
the odd degree vertices as endpoints. Finally, conflicts
are resolved obtaining a Hamiltonian path.

Here, the conflict resolution process can not be real-
ized as in the PMCA. In particular, in step (iii) of the
conflict resolution process in PMCA, for each conflict
there is complete freedom in choosing which of the 2
vertex occurrences to bypass. To avoid that more than
2 consecutive vertices ofπ′ are bypassed, PMCA re-
lies exactly on this freedom. In our problem, we loose
part of such freedom, since it may happen that the end-
points of π′ are conflicts: in this case, we are not al-
lowed to bypass the occurrences which are endpoints
of π′, hence we are forced to bypass the internal ones.
Although the problem regards only two vertices, it may
render impossible to resolve all conflicts bypassing at
most 2 consecutive vertices, as the following example
shows.

In Figure 1,w1, w2, (as well asz1, z2 andv1, v2) de-
note distinct occurrences inπ of the same vertex. Since
we are forced to bypass bothw2 andz1, no matter which
one ofv1, v2 we bypass, there would be 3 consecutive
bypassed vertices in the Hamiltonian path, causing the
cost to increase more than a factorβ2. To avoid such
situations, and resolve all conflicts inπ′ by bypassing
at most 2 consecutive vertices, we have to change the
whole conflict resolution process, as described in the
following. Step 1 of Algorithm 5 is trivial, while the
remaining ones deserve a detailed description.

Step 2 For anyu, v ∈ V , let the cost of a cheapest
path betweenu andv be denoted byd(u, v). To con-
struct a path matchingΠ which leavesk vertices ex-
posed, we first compute all-pairs cheapest paths inG.
Then we define a complete graphG′ on U augmented
with 2−k dummy vertices, with a cost functionc′ spec-
ified as follows:

c′(u, v) =



















∞ if u andv are distinct

dummy vertices

0 if u ∈ U andv is dummy

d(u, v) if u, v ∈ U

Next, we compute a minimum matchingM on G′,
we remove from it edges incident on dummy vertices,
and finally we include inΠ, for each edge{u, v} of M ,
the cheapest path inG betweenu andv. Clearly, this
can be done inO(n3) time and results in a minimum

path matching onU that leaves2− k vertices exposed.
In [4] it is shown that a minimum path matchingΠ is
edge-disjoint and paths within it form a forest.

Consider the multigraphT ∪ Π. This multigraph is
connected and has two or zero odd-degree vertices. The
latter case occurs only if: there is a single prespecified
endpoints, s has even degree inT (so it belongs to
U), ands is left exposed byΠ. In this case we remove
an arbitrary edge ofT incident ons. Let w and z be
the two odd-degree vertices in the obtained multigraph.
It can be easily seen that any prespecified endpoint is
contained in{z, w}.

We now introduce some simple definitions and ob-
servations often used in the following. Given a vertex
v ∈ V we define thedistance inT of v from z, as the
number of edges in the unique elementary path existing
in T fromv to z, prior to the possible removal, discussed
above, of an edge incident ons from T . We denote byy
the unique vertex among the neighbors ofw in T before
the possible removal fromT of an edge incident ons,
having distance inT from z less than the distance inT
of w from z. In the PMCA-HPPk many paths existing
in T , in Π, or in a set of pathsS are modified bypass-
ing some of their vertices (see, for example, Algorithm
Decompose-Tree). To shorten the exposition, from now
on we say that a pathp has a bypass(resp.hask by-
passes) meaning thatp has been obtained picking a path
from T , Π, or S (it will be clear from the context) and
applying to it one bypass (resp.k bypasses).

An important observation, used several times in the
following, is that sinceT is a tree, an occurrence ofw

which belongs to a pathp in T , is not the vertex ofp
having minimum distance inT from z, if and only if
p contains the edge{w, y}. Also note that in case we
have a single prespecified vertexs and, as discussed
above, we need to remove fromT an edge incident to
s to have inT ∪ Π the 2 odd degree verticesz andw,
it is y = z and {w, y} is exactly the removed edge:
this implies that given a pathp contained inT after the
removal of{w, y}, if p containsw, thenw is the vertex
of p having minimum distance inT from z.

Step 3 To perform Step 3 of the algorithm, i.e., to
modify path matchingΠ into a vertex-disjoint one, we
use a strategy different from the one employed in the
PMCA. The reason is that we have the additional re-
quirement that at least one of the two odd-degree ver-
tices that exist inT ∪ Π after Step 2, sayz, does not
have internal occurrences on paths inΠ′. In the rest of
the description of Step 3, since we only deal withΠ, to
shorten the exposition we simply writeconflict to mean

Forlizzi et al. – Algorithmic Operations Research Vol.1 (2006) 31–45 37

w1 w2 z1 z2v1 v2

Fig. 1. Impossibility of conflict resolution bypassing at most 2 consecutive vertices

conflict in Π. Given a set of pathsS ⊆ Π we denote
by TS the graph formed by all edges contained in any
of the paths ofS. By [4] we know thatTΠ is a forest.
As in Procedure 1 of [4], we process each connected
component ofTΠ separately. To this aim, here we use
Algorithm Decompose-Tree (see Algorithm 6) which,
given an edge-disjoint set of paths, computes a new set
of paths with the same set of endpoints, such that on
each new path there is at most one bypass of size 2, and
on one of the new paths there are no bypasses. More
precisely, we prove the following lemma.

Algorithm 6 Decompose-Tree

Input: A vertexx and an edge-disjoint set of paths
S = {q1, . . . , ql} with distinct endpoints such that
TS is a tree andq1 containsx.

Let S′ = ∅ andq′1 = q1. Let C be the set of vertices
of q1 which are conflicts.

While there is at least one vertex inC do
Let v be a vertex inC having maximum distance
in q′1 from x (i.e., such that the elementary sub-
path ofq′1 havingx andv as endpoints is of max-
imum cardinality). Extractv from C. W.l.o.g. as-
sumeq′1 = (ua, . . . , x, . . . , v, ub, . . . , uc) where
ub, . . . , uc are not contained inC in the current
iteration (and in the successive ones).

Let qi1 , . . . , qih
be the paths forming the connected

component ofTS\{q1} such thatqi1 containsv.
Call recursively Decompose-Tree with vertexv and
set{qi1 , . . . , qih

} as input, obtaining as result the
set of paths{q′i1 , . . . , q

′
ih
}.

If v is internal toq′i1 then bypassv from q′i1
else assuming w.l.o.g.q′i1 = (y, . . . , y′, v) modify
q′i1 andq′1 as follows:q′i1 = (y, . . . , y′, ub, . . . , uc)
andq′1 = (ua, . . . , x, . . . , v).

Insert pathsq′i1 , . . . , q
′
ih

in S′.
Insertq′1 in S′.
Output: A set of pairwise vertex-disjoint pathsS′ =
{q′1, . . . , q

′
l} such that paths inS′ have the same set

of endpoints as those inS, andq′1 containsx.

Lemma 1. LetS be an edge-disjoint set of paths which
have distinct endpoints and form a treeTS. Let x be a
vertex occurring in some of the paths inS. Algorithm

Decompose-Tree computes a setS′ of pairwise vertex-
disjoint paths such that:
((i)) EndP(S) = EndP(S′);
((ii)) each path inS′ is obtained applying at most one

bypass to an elementary path fromTS, and the
bypass is of size 2;

((iii)) vertexx occurs on a path inS′ obtained picking an
elementary path fromTS with no bypasses applied.

Proof. We begin the proof with some easy preliminary
considerations. First, observe that at each while-loop it-
eration, one of the conflicts contained inq1 is taken into
consideration. The setC contains at any time the con-
flicts occurring inq1 and not yet taken into considera-
tion. Vertices are inserted inC only before the while-
loop begins, and at each iteration a vertex is extracted
from C. HenceC eventually becomes empty and the
algorithm halts. This also means that any vertex ofq1

which is a conflict inS, is considered in exactly one of
the iterations.

For the algorithm to be well defined, at any iteration
vertices contained inC have to occur inq′1. Such a path
at the beginning of the algorithm is a copy ofq1 (so any
vertices inC occurs in it), and can be later modified
only in the else-case of the if-then-else statement, by
removing one of its terminal subpaths. The fact that at
any iteration vertexv is chosen having maximum dis-
tance inq′1 from x, ensures that vertices removed from
q′1 are, at the moment of the removal, not contained inC

(they may have been contained inC during previous it-
erations). Hence, at any iteration, all vertices contained
in C occur onq′1. This also implies that the vertices in
q′1 are always a subset of those inq1 and that vertexv
taken under consideration at the beginning of any of the
iterations, is contained inq′1.

Since paths inS form a treeTS , paths inS \ {q1}
are partitioned in connected components of a forest.
For the same reason, there is a bijection between the
conflicts occurring inq1 and the connected compo-
nents ofTS\{q1}, relating each of these conflicts with
the connected component containing it. At each while-
loop iteration, the algorithm considers paths forming the
connected component ofTS\{q1} corresponding to the
conflict v under consideration. Therefore, any path in
S \ {q1} is considered in exactly one of the while-loop

38 Forlizzi et al. – On the Stability of Approximation for Hamiltonian Path Problems

iterations.
In the if-then-else statement,v is removed from

q′i1 . Note that in the else-case of such a statement, the
changes toq′1 andq′i1 can be considered as first moving
the terminal subpath(ub, . . . , uc) from q′1 to q′i1 and
then bypassingv from q′i1 .

To prove the lemma, we proceed by induction on the
cardinality ofS. If |S| = 1, thenS = {q1} contains no
conflicts, hence the algorithm halts and returns the input
path unmodified. Therefore, in this case the lemma is
true.

Otherwise, let us assume that the lemma is true for
sets of less than|S| paths. We first show that (i) holds.
To this aim, we prove that at the beginning of each
while-loop iteration (i.e., before the while-loop condi-
tion is evaluated) the invariantEndP(S) = EndP(S′)∪
EndP({q′1}) ∪p∈D EndP(p) holds, whereD is the set
of paths forming the connected components ofTS\{q1}

not yet considered by the algorithm. This is certainly
true at the beginning of the first iteration (S′ = ∅ and
q′1 = q1). Assume now the invariant true at the begin-
ning of a generic iteration, where the connected com-
ponent formed byqi1 , . . . , qih

is considered. By the in-
ductive hypothesis, when the recursive call returns, it is
EndP({qi1 , . . . , qih

}) = EndP({q′i1 , . . . , q
′
ih
}). Paths

q′i2 , . . . , q
′
ih

are then inserted inS′ without modifying
their endpoints. In the if-then-else statement of the itera-
tion, it may be (in the else-case) thatq′1 andq′i1 exchange
one of their endpoints, but the setEndP({q′1, q

′
i1
}) is

not modified. Thenq′i1 is inserted inS′ and no further
modified, hence the invariant holds at the beginning of
next iteration. Therefore, at the end of the last iteration
the invariant holds too. Since at that pointD = ∅, this
clearly implies that at the end of the whole algorithm it
is EndP(S) = EndP(S′).

We now prove (iii). At the beginning of the algorithm,
x occurs onq′1, which is, at that time, an exact copy of
the elementary pathq1, with no bypasses applied. At
each while-loop iteration, pathq′1 can be modified only
in the else-case of the if-then-else statement. The mod-
ification consists in removing fromq′1 a terminal sub-
path not containingx. This does not create any bypass
on q′1, andq′1 remains elementary. Hence at the end of
the algorithmx still occurs onq′1 and (iii) holds.

To prove (ii), we first observe that paths are not mod-
ified after their insertion inS′. At each iteration, paths
q′i1 , . . . , q

′
ih

are inserted inS′. By the inductive hypoth-
esis, at the end of the recursive call, pathsq′i2 , . . . , q

′
ih

are obtained applying at most one bypass to an elemen-
tary path fromTS, and the bypass is of size 2. These

paths are inserted inS′ with no further modifications.
When the recursive call returns,q′i1 does not contain
vertices ofq1 other thanv, and by the inductive hypoth-
esis, it is obtained picking an elementary path fromTS

with no bypasses applied. In the if-then-else statement,
subpath(ub, . . . , uc) is possibly appended toq′i1 , which
remains elementary sinceub, . . . , uc are vertices ofq1

different fromv. In the same statement,v is removed
from q′i1 with a single bypass of size 2. Successively,
q′i1 is inserted inS′ and no further modified. Hence any
path inserted inS′ during the while-loop satisfies con-
ditions prescribed by (ii). The only other path inserted
in S′ is q′1. Since, by (iii), it is elementary and no by-
passes are ever applied to it, (ii) holds.

Finally, we prove that the algorithm returns a setS′ of
pairwise vertex-disjoint paths. To this aim, we consider
the situation at the beginning of each while-loop itera-
tion and show that the following invariant (formed by
the conjunction of two conditions) is always satisfied:

(I1) S′ is vertex-disjoint;
(I2) for any pathp in S′, (I2.1) and (I2.2) hold, where
(I2.1) any vertexu contained inp is not contained inq′1
(I2.2) any vertexu contained inp is contained inq1 or in

the connected component ofTS\{q1} considered in
the same while-loop iteration wherep was inserted
in S′ (possiblyu is contained in both).

The invariant is certainly true at the beginning of the
first iteration (S′ = ∅). We assume that the invariant
holds at the beginning of a generic iteration where the
algorithm considers a conflictv and the correspond-
ing connected component ofTS\{q1}, formed by paths
qi1 , . . . , qih

, and we show that at the beginning of the
next iteration (i.e., before the while-loop condition is
evaluated) the invariant holds still.

We first prove that (I2) is satisfied, namely that each
path contained inS′ at the beginning of the next iter-
ation satisfies (I2.1) and (I2.2). A path̄q contained in
S′ in the previous iteration, satisfies (I2.1) and (I2.2)
by the invariant, and it is not modified during the cur-
rent iteration. Sinceq1 and the connected components
of TS\{q1} are static objects during the algorithm’s ex-
ecution,q̄ satisfies (I2.2) also at the end of the current
iteration. Pathq′1 can be modified, instead, but this is
done only by removing vertices from it, sōq satisfies
also (I2.1) at the end of current iteration.

We now show that (I2.1) and (I2.2) are satisfied also
by pathsq′i1 , . . . , q

′
ih

inserted inS′ in the current it-
eration. Using the inductive hypothesis onq′i1 , . . . , q

′
ih

Forlizzi et al. – Algorithmic Operations Research Vol.1 (2006) 31–45 39

returned by the recursive call, we have that

q′i1 , . . . , q
′
ih

are pairwise vertex-disjoint andq′i1
containsv

(A)

and that

for 1 ≤ k ≤ h, q′ik
contains a subset of the

vertices contained inqik
.

(B)

By elementary tree properties, we have that

if any of qi1 , . . . , qih
shares a vertex withq1,

then that vertex isv.
(C)

Hence, (A), (B) and (C) together imply that

q′i2 , . . . , q
′
ih

do not share vertices withq1. (D)

Pathsq′i2 , . . . , q
′
ih

are inserted inS′ exactly as they are
returned from the recursive call. Then (D) and the fact
that vertices inq′1 are a subset of those inq1, imply that
q′i2 , . . . , q

′
ih

satisfy (I2.1), while (B) implies that they
satisfy (I2.2). Pathq′i1 is instead modified before the
insertion inS′, by removingv and possibly appending
(ub, . . . , uc) to it. Then, since in the else-caseub, . . . , uc

are at the same time removed fromq′1, from (B), (C)
and the fact that vertices inq′1 are a subset of those in
q1, it follows thatq′i1 satisfies (I2.1). From (B) and the
fact that all vertices inserted inq′i1 in the else-case are
contained inq1, it follows thatq′i1 satisfies (I2.2).

To prove that (I1) holds at the beginning of next iter-
ation, we first observe that (ii) and (iii) imply that any
path inserted inS′ is elementary. Then we prove that any
two paths inS′ are vertex disjoint. Two paths contained
in S′ in a previous iteration are not modified, so they
are still vertex-disjoint. Two paths fromq′i1 , . . . , q

′
ih

are
vertex-disjoint because of (A) and, shouldub, . . . , uc

be inserted inq′i1 , because of (D). It remains to prove
that a path̄q inserted inS′ in a previous iteration does
not share vertices with any ofq′i1 , . . . , q

′
ih

. Since the in-
variant was true in previous iterations,q̄ satisfies (I2.2).
This means, since alsoq′i1 , . . . , q

′
ih

satisfy (I2.2), that
any vertex shared bȳq and one ofq′i1 , . . . , q

′
ih

has to
be contained inq1. Then, (D) implies that̄q does not
share vertices with any ofq′i2 , . . . , q

′
ih

. If the then-case
occurs,q′i1 does not contain, when inserted inS′, ver-
tices ofq1. Hence it does not share vertices withq̄, too.
If the else-case occurs,q′i1 contains verticesub, . . . , uc

of q1. But in the previous iteration such vertices were
contained inq′1. Hence they are not contained in̄q be-
cause in the previous iteration̄q satisfied (I2.1). So we
conclude that (I1) holds.

Since the invariant is true after any iteration, it is so
after the last one, too. Therefore, at that point,S′ is
vertex-disjoint and no paths in it share vertices withq′1.
SoS′ remains vertex-disjoint also in the last step of the
algorithm, whenq′1 is inserted into it.

Step 3 is realized by applying Algorithm Decompose-
Tree to each connected component of the forestTΠ (see
Algorithm 7). Property (iii) shown in Lemma 1 is used
to ensure that no internal occurrences ofz exist on any
path inΠ′.

Algorithm 7 Procedure Implementing Step 3

Input: A minimum path matchingΠ on G.
For anyS ⊆ Π such thatTS is a connected component
of TΠ

If TS containsz then
Call Decompose-Tree with inputsz andS.
Let q′1 be the unique path containingz in the
returned set of pathsS′.

If the occurrence ofz is internal toq′1, removez
from q′1 with a bypass of size 2.

else choose an arbitrary vertexx in TS and call
Decompose-Tree with inputsx andS.

Output: A conflict-free path matchingΠ′ containing
no internal occurrences ofz.

Lemma 2. Let Π′ be the set of paths computed as a
result of Step 3. ThenΠ′ is vertex-disjoint,EndP(Π′) =
EndP(Π), and there are no internal occurrences ofz

on paths inΠ′. Moreover, every path inΠ′ has at most
one bypass and every bypass is of size 2.

Proof. Algorithm 7 calls Decompose-Tree on allS ⊆ Π
forming a connected component ofTΠ. SinceEndP(Π)
is the union ofEndP(S) for all S forming a connected
component ofTΠ, the facts thatΠ′ is vertex-disjoint
and thatEndP(Π′) = EndP(Π) follow from Lemma
1. SinceTΠ is a forest, there is at most one setSz ⊆ Π
forming a connected component ofTΠ which contains
z. By Lemma 1, the call of Decompose-Tree with inputs
z andSz returns a set of vertex-disjoint paths such that
z occurs only on a pathq′1 having no bypasses. If the
occurrence ofz is internal toq′1, it is bypassed with a
bypass of size 2 andq′1 will have one bypass. By Lemma
1, all other paths returned by some Decompose-Tree
call, have at most one bypass of size 2.

Step 4 In H = T ∪Π′, w andz are the only vertices
of odd degree, hence it is possible to build an Eulerian
path ofH having such vertices as endpoints. Note that

40 Forlizzi et al. – On the Stability of Approximation for Hamiltonian Path Problems

sinceH is a multigraph, if an edgee is contained in
bothT and a path ofΠ′, there are 2 distinct instances
of e in H : for the purpose of constructing the Eulerian
path, such 2 instances are considered like distinct edges.
How to construct an Eulerian path is a well-studied task.
However, to allow the conflict resolution performed in
Steps 5 and 6 we need an Eulerian pathπ with a spe-
cific structure. In general, there are several occurrences
of z and w in an Eulerian path, but we need that the
ones which are endpoints ofπ satisfy proper conditions.
More precisely, for any ofz andw, we need that if one
of its occurrences is endpoint of a path inΠ′, then such
an occurrence is one of the endpoints ofπ. Note that
when z and w are endpoints of thesamepath in Π′,
only one of such two occurrences can be endpoint of
π, so we choose to let the occurrence ofz be endpoint
of π. In such a case, as well as ifw does not occur at
all as endpoint of a path inΠ′, the occurrence ofw as
endpoint ofπ is necessarily endpoint of a pathp in T .
Then we need that any occurrence ofw internal toπ

which is contained in a pathpi in T , is the vertex ofpi

having minimum distance inT from z.

To build a pathπ with the desired properties, we
distinguish two cases, according to whether or not there
is a path inΠ′ having bothw andz as endpoints.

(1) There existsq ∈ Π′, with q = (u0, u1, . . . , uh−1, uh),
u0 = z and uh = w. Then, bothz and w have
even degree inT . Observe that in this case, since
none ofz and w is left exposed byΠ, the edge
{w, y} has not been removed fromT during
Step 2. We need an Eulerian pathπ of the form
q, p1, . . . , pl with pl = (u, . . . , y, w), which can
be constructed as follows:
• construct an Eulerian cycleγ onT ∪ (Π′ \ {q});
• transformγ, without adding any edge, in a path

γ′ having two occurrences ofw as endpoints,
by duplicating the occurrence ofw adjacent to
y, i.e., if x is the other neighbor inγ of that
occurrence ofw, let γ′ = (w, x, . . . , y, w);

• appendq toγ′ to obtainπ = (z, u1, . . . , uh−1, w, x, . . . , y, w).
(2) w and z are not endpoints of the same path in

Π′. We build an Eulerian pathπ with the desired
properties with the following procedure:
Let B = Π′, v = z.
If there existsqz ∈ Π′ with qz = (z, . . . , uh),
uh 6= w then let B = B \ {qz} andv = uh.

If there existsqw ∈ Π′ with qw = (u, . . . , w),
u 6= z then
Construct an Eulerian pathγ onT∪(B\{qw})
havingv andu as endpoints.

Appendqw to γ obtaining an Eulerian pathγ′

on T ∪ B havingv andw as endpoints.
else (*)
If T still contains{w, y} then

Construct an Eulerian pathγ on (T ∪B)−
{w, y} havingv andy as endpoints.

Append{w, y} to γ obtaining an Eulerian
pathγ′ on T ∪ B havingv andw as end-
points.

else construct an Eulerian pathγ on T ∪ B

havingv andw as endpoints.
If v 6= z then obtain π by appendingqz to γ′

else let π = γ′.
In any of the two cases,π can be considered as an

alternating sequence of the formp1, q1, p2, q2, . . . or
q1, p1, q2, p2, . . ., wherep1, p2, . . . are paths inT and
q1, q2, . . . ∈ Π′. Note that sinceT is a tree andπ is an
Eulerian path, pathsp1, p2, . . . are elementary.

In Case 1,π has the formq, p1, . . . , pl, whereq ∈ Π′

hasz andw as endpoints,p1 = (w, x, . . .), andpl =
(u, . . . , y, w). This follows from the fact that sincew
occurs inq, no paths inΠ′ \ {q} containw, so any
occurrence ofw in the cycleγ is internal to a path
in T . Then, since{w, y} is contained inT and γ is
Eulerian, there existsx ∈ V such that the sequence of
verticesx, w, y appears inγ as subpath of a path̄p in
T . By duplicating the occurrence ofw we divide p̄ in
two pathsp1, pl, both contained inT , which become
the two terminal subpaths ofγ′. We remark that the
occurrences ofw as endpoint ofp1 andpl are the only
two occurrences ofw in π which are endpoint of a path
pi in T . Indeed, if there was a third occurrence ofw that
is endpoint of a path inT , then that occurrence would
also be endpoint of a pathqi in Π′, with qi 6= q, which
is not possible sinceΠ′ is a vertex-disjoint set of paths.
Observe also that since edge{w, y} is contained inpl

and not inp1, w is the vertex ofp1 having minimum
distance inT from z.

In case 2, ifz (resp.w) is an endpoint of a path
qz = (z, u1, . . .) (resp.qw = (u, . . . , w)) in Π′, then
π has the formqz, p1, . . . (resp.r, . . . , ph, qw with r ∈
{p1, q1}). This implies that, in this case, there can be
no occurrences ofw, internal toπ, that are endpoint of
a pathpi in T . Indeed such an occurrence would also
be endpoint of a pathqj ∈ Π′, with |j − i| ≤ 1, but by
construction if there is an occurrence ofw as endpoint
of a path inΠ′, such an occurrence is not internal toπ.

From previous observations on the structure ofπ, the
next remark follows.
Remark 1. If there exists an occurrence ofw internal

Forlizzi et al. – Algorithmic Operations Research Vol.1 (2006) 31–45 41

to π, which is at the same time endpoint of a pathp in
T , thenπ was constructed according to Case 1 of the
procedure andp = p1. Moreover,w is the vertex ofp1

having minimum distance inT from z.
The following lemma proves some properties ofπ.

Lemma 3. Let Π′ be the vertex-disjoint path matching
obtained at the end of Step 3 andπ be the Eulerian path
constructed in Step 4. Then:
• every vertexv ∈ V different fromw, occurs at most

once as endpoint of a path inT ;
• z occurs as endpoint of either a path inT or a path

in Π′;
• if the occurrence ofw which is endpoint ofπ, is

endpoint of a pathpl in T , then each occurrence ofw

internal toπ which is contained in a pathp in T , is
the vertex ofp with the minimum distance inT from
z.

Proof. An internal vertex occurrence is an endpoint of
a pathpi in T , if and only if it is also endpoint of a path
qj ∈ Π′, with |j − i| ≤ 1. SinceΠ′ is a set of vertex
disjoint paths, a vertex occurs at most once as endpoint
of a path inΠ′, hence for any vertex there can be at
most one occurrence internal toπ which is endpoint of
a path inT . Let v ∈ V \ {w, z}. Then each occurrence
of v is internal, andv occurs at most once as endpoint
of a path inT .

Consider now vertexz which, by construction, occurs
as endpoint ofπ. SinceΠ′ is a set of vertex-disjoint
paths,z occurs either once or zero times as endpoint of
a pathq ∈ Π′. If it occurs once, in Case 1 as well as in
Case 2,π is constructed so that such occurrence is an
endpoint ofπ. Thenz can not occur as endpoint of a
path inT , since that occurrence should be internal toπ,
and therefore there should be a second occurrence ofz

as endpoint of a path inΠ′, which is not possible. Ifz
does not occur as endpoint of a path inΠ′, there are also
no occurrences ofz internal toπ which are endpoint of
a path inT . But, on the other hand, the occurrence ofz

as endpoint ofπ is necessarily endpoint of a path inT .
Recall that, sinceT is a tree, an occurrence ofw

which belongs to a pathpi in T is not the vertex ofpi

having minimum distance inT from z, if and only if pi

contains the edge{w, y}. Suppose that the occurrence
of w as endpoint ofπ, is endpoint of a pathpl in T .
We analyze separately the two possible cases for the
construction ofπ. In Case 1, by construction,{w, y}
is contained inpl which is a terminal subpath ofπ. In
Case 2,w can not occur as endpoint of a pathqw ∈ Π′,
otherwise by constructionqw would be the terminal

subpath ofπ containingw, instead ofpl. This means
that in the procedure constructingπ, the case marked
as (*) applies, and the edge{w, y}, if not deleted from
T in Step 2, is contained inpl. Therefore, sinceπ is
an Eulerian path,{w, y} is not contained in a path in
T different frompl. If an occurrence ofw internal to
π is contained in a pathpi in T , it is i 6= l becausepl

is elementary and the occurrence ofw it contains is an
endpoint ofπ. Thenpi does not contain{w, y}, which
implies that the occurrence ofw in pi is the vertex of
pi having the minimum distance inT from z.

Step 5 The details of the procedure which realizes the
main part of Step 5, namely the resolution of some of
the conflicts inT , are described in Algorithm 8. Such an
algorithm derives from a similar procedure in PMCA,
with modifications in order to ensure that there is exactly
one occurrence ofz in π′, and that such an occurrence
is indeed an endpoint ofπ′. In this way, situations like
the one illustrated in Figure 1 are not possible, allowing
to complete, in Step 6, the conflict resolution process
by bypassing at most 4 consecutive edges.

Algorithm 8 is based on the following idea. First,z

is picked as root ofT . Then, we consider a pathpi in T

which, under the orientation with respect toz, will go
up and down. The two edges immediately before and
after the turning point are bypassed. One possible view
of this procedure is that the minimum spanning tree is
divided into several trees, since each bypass building
divides a tree into two.

Algorithm 8 Procedure implementing Step 5

Input: T and the pathsp1, p2, . . . computed in Step
4.

For each pathpi = (v1, . . . , vn) in T do
Let vj be the vertex inpi of minimum distance in
T from z.

If vj is not an endpoint ofpi then bypassvj .
Call the resulting pathp′i.

Output: The pathsp′1, p
′
2, . . . building a forestTf .

Lemma 4. Consider the pathπ′ obtained at the end of
Step 5. The endpoints ofπ′ are w and z. In π′, each
vertexv ∈ V occurs either once or twice, andz occurs
exactly once.

Proof. Pathπ′ is built fromπ substituting eachpi with
p′i. The endpoints ofπ arew andz. Since Algorithm 8
does not change the endpoints of the paths composing
π (neither of those inT , nor of those inΠ′), they are
also the endpoints ofπ′.

42 Forlizzi et al. – On the Stability of Approximation for Hamiltonian Path Problems

We first prove some properties of a vertexv ∈ V \
{z}. SinceΠ′ is a vertex-disjoint path matching, any
vertex can occur inπ′ at most once inside paths in
Π′. Moreover, assume that there are two distinct oc-
currences ofv ∈ V \ {z} internal to pathsp′i and
p′j in Tf . Then there exist at least four incident edges
{v, v1}, {v, v2}, {v, v3}, {v, v4} in T . Furthermore, at
most one of the verticesv1, v2, v3, v4 is closer toz than
v. Thus,v is bypassed from at least one of the paths
pi, pj during Algorithm 8, becausev is closer toz than
all other vertices of that path. This is a contradiction to
our assumption, hence for any vertexv ∈ V \{z}, there
is at most one occurrence ofv internal to a path inTf .

Considerv ∈ V \ {w, z}. SinceT is a tree, there is
a neighborv1 of v such that the distance inT of v1

from z is less than the distance inT of v from z. Since
v 6= w, then{v, v1} 6= {w, y}, so{v, v1} is surely not
removed fromT in Step 3. This implies that{v, v1}
is contained in exactly one of the pathsp1, p2, . . . in
T , saypi, becausep1, p2, . . . are part of the Eulerian
pathπ. Then, sincepi containsv1, v is not the vertex
of pi having minimum distance inT from z, hence the
occurrence ofv in pi is not bypassed during Step 5 and
there is at least one occurrence ofv in π′.

On the other hand, sincev is not an endpoint ofπ′,
if there is an occurrence ofv as endpoint of a pathp′i
in Tf , then such an occurrence is also endpoint of a
path inΠ′. Since there can be at most one occurrence
of v inside paths inΠ′, any other occurrence ofv has
to be internal to some pathp′i in Tf . Therefore, a vertex
v ∈ V \ {w, z} can have at most one occurrence in a
path inΠ′ (possibly endpoint of a path inTf , too) and
at most one occurrence internal to a path inTf , for a
total of at most two occurrences inπ′.

Consider noww. If the occurrence ofw as endpoint
of π′ is endpoint of a pathqw ∈ Π′, then any other
occurrence ofw is internal to some pathp′ in Tf . As
shown above for a generic vertex inV \ {z}, there is at
most one occurrence ofw internal to a path inTf , so
in total there are at most two occurrences ofw in π′.

On the other hand, if the occurrence ofw as endpoint
of π′ is endpoint of a pathp′l in Tf , then, after Step 4,
the occurrence ofw as endpoint ofπ is endpoint of a
pathpl in T , and Algorithm 8 transformspl in p′l. Any
occurrence ofw internal toπ is either internal to a path
pi in T , with i 6= l, or is contained in a pathq ∈ Π′. By
Lemma 3, any occurrence ofw internal to a pathpi in
T is the vertex ofpi having the minimum distance inT
from z. Hence any occurrence ofw internal to a path
pi in T is bypassed during the run of Algorithm 8, and

does not occur inπ′. SinceΠ′ is a vertex disjoint set of
paths, there can be at most one occurrence ofw inside
a path inΠ′. Therefore, there is at most one occurrence
of w internal toπ′, so, again, there are at most two
occurrences ofw in π′.

Sincez is the vertex of minimum distance from itself,
any occurrence ofz internal to a path inT is bypassed
during the run of Algorithm 8. Moreover, by Lemma
2, there are no occurrences ofz internal to a path in
Π′. By Lemma 3,z occurs exactly once as endpoint of
a path, either of one inT or of one inΠ′. This one
is the unique occurrence ofz in π′, since there are no
occurrences ofz internal to any path.

From Algorithm 8, we obtain immediately the next
observation which will be used in the following.
Remark 2. In Tf , every path has at most one bypass,
and every bypass is of size 2.

Step 6 Before describing how to realize Step 6, we
state the following lemmas, which will be used to prove
that bypasses, at the end of the whole algorithm, have
size at most 4.
Lemma 5. Let ph be one of the paths inT composing
the Eulerian pathπ, and letp′h be the path constructed
fromph by Algorithm 8. Letv ∈ V \{w} be an endpoint
of ph (and ofp′h). If v is not the vertex ofph having
minimum distance inT from z, thenv is not a conflict
in π′.

Proof. Supposev is not the vertex ofph having mini-
mum distance inT from z, which immediately implies
v 6= z. Thenv ∈ V \ {z, w}, and the occurrence ofv in
π as endpoint ofph is also endpoint of a pathqv ∈ Π′.
SinceΠ′ is a vertex disjoint set of paths, there are no
other occurrences ofv in π inside paths fromΠ′.

Suppose there is an occurrence ofv in π inside a path
pi in T , with i 6= h. By Lemma 3, the occurrence ofv

in pi is internal topi. Let u be the unique neighbor ofv
in T such thatu has distance inT from z less than that
of v. Sincev is not the vertex ofph having minimum
distance inT from z, the edge{v, u} is contained in
ph. This means that{v, u} is not contained in paths in
T other thanph, becauseπ is Eulerian. It follows thatv
is the vertex ofpi having minimum distance inT from
z. Then the occurrence ofv in pi is at the same time
internal topi and the vertex ofpi having the minimum
distance inT from z. Hencev is bypassed by Algorithm
8 in all paths other thanp′h, so it is not a conflict in
π′.

The crucial property which gives the desired bound

Forlizzi et al. – Algorithmic Operations Research Vol.1 (2006) 31–45 43

on the size of bypasses, is stated in the following lemma.
A similar result is proved in [4], but here a different
proof is needed.
Lemma 6. In the pathπ′, between each two bypasses
there is at least one vertex that is not a conflict.

Proof. Note that “between” includes the case that the
claimed vertex may be endpoint of one or both edges
used as bypass. Letpi be one of the paths inT com-
posing the Eulerian pathπ and letp′i be the path con-
structed frompi by Algorithm 8. Thenpi andp′i have
the same endpoints. An important observation is that
sinceT is a tree, at least one of the endpoints ofpi is
not the vertex ofpi having the minimum distance inT
from z, and if Algorithm 8 constructs a bypass inp′i
then both the endpoints ofpi are not the vertices ofpi

having the minimum distance inT from z. By Remark
1, we have that if an endpointv of pi is at the same
time internal toπ and not the vertex ofpi having the
minimum distance inT from z, it is v 6= w. Then we
conclude, by Lemma 5, thatv is not a conflict inπ′.

We say that two bypasses inπ′ areclose, if there are
no other bypasses between them onπ′. To show the
thesis, it is enough to consider two bypasses which are
close and to prove that, inπ′, there is at least one vertex
that is not a conflict between them.

Suppose that at least one of the two considered by-
passes was constructed by Algorithm 8 on a pathpi in
T , producingp′i ∈ Tf , and letv be the endpoint ofpi

(andp′i) between the considered bypasses. Sincep′i con-
tains a bypass, both of the endpoints ofpi are not the
vertices ofpi having the minimum distance inT from
z. But v is also internal toπ, so we conclude, as in the
above observation, thatv is not a conflict inπ′.

On the other hand, suppose that both bypasses lie
on paths fromΠ′, and letpi be a path inT which is
between the two bypasses. At least one of the endpoints
of pi, sayv, is not the vertex ofpi having the minimum
distance inT from z, and clearlyv is internal toπ.
Then, again as in the above observation, we have that
v is not a conflict inπ′.

We are now ready to describe the procedure which
realizes Step 6. It derives from a similar procedure in
algorithm PMCA, with modifications to avoid that more
than two consecutive vertices ofπ′ are bypassed. To this
aim, Algorithm 9, immediately after bypassing a vertex
v, resolves, asnot bypassed, an unresolved conflict in
π′ adjacent tov, if any.
Lemma 7. Algorithm 9 terminates after resolving all
conflicts inπ′, and it generates bypasses of size at most

Algorithm 9 Procedure implementing Step 6

Input: A pathπ′ on G wherew andz are the end-
points,z occurs once, and all the other vertices ofV

occur once or twice.
If w is a conflict inπ′ then let u be the occurrence
of w which is not endpoint ofπ′ else let u be an
arbitrary occurrence of a conflict inπ′.

Bypassu (with a bypass of size 2).
While there are conflicts remaining inπ′ do

If occurrenceu has at least one occurrence of an
unresolved conflict inπ′ as neighbor

then
Choosev between the neighbors ofu which are
unresolved conflict inπ′ so that:

If there is a bypassed vertex occurrencet such
that each vertex occurrence internal to the el-
ementary subpathp in π′ connectingu andt,
is an occurrence of an unresolved conflict in
π′

then let v be the neighbor ofu that belongs to
p

else let v be an arbitrary neighbor ofu which
is an unresolved conflict inπ′.

Bypass the other occurrence ofv in π′ (the one
not chosen by previous statement) so lettingv

be a resolved, not bypassed conflict inπ′.
else bypass an arbitrary occurrence of a conflict in
π′.

Let u be the vertex occurrence bypassed in the pre-
vious statement.

Output: A Hamiltonian pathπ′′ of G havingw and
z as endpoints.

4 overall, i.e., taking into account that some edges of
the input pathπ′ may be bypasses of size 2 themselves.
The endpoints of the returned Hamiltonian pathπ′′ are
w andz.

Proof. The only difference between Algorithm 9 and
Procedure 3 of [4] is that in the latter, the first conflict
in π′ which is resolved (outside the main loop), is an
arbitrary one. Hence the same reasoning as in the proof
of Claim 6 of [4] shows the first part of our thesis,
too. Please note that such a reasoning uses the result of
Lemma 6, which in our case needs a proof significantly
different from the one given in [4].

By Lemma 4,z andw are the endpoints ofπ′, and
z is not a conflict inπ′. This latter fact implies that the
occurrence ofz is left unaltered by Algorithm 9. Ifw is
a conflict inπ′, Algorithm 9 resolves it immediately, by

44 Forlizzi et al. – On the Stability of Approximation for Hamiltonian Path Problems

bypassing the occurrence ofw which is not an endpoint.
So z andw are the endpoints ofπ′′.

The following lemma, analyzes the quality of the ap-
proximation provided by Algorithm 5.
Lemma 8. The cost of the Hamiltonian pathπ′′ re-
turned by Algorithm 5 is less than3

2
β2 the cost ofP ∗,

at most 3
2
β2 the cost ofP ∗

s , and at most5
3
β2 the cost

of P ∗
st.

Proof. Since any spanning path ofG is a tree,c(T) ≤
c(P ∗) ≤ c(P ∗

s) ≤ c(P ∗
st). In [8] it is shown that if

G is a metric graph, the cost of a minimum matching
for U which leaves2− k vertices exposed, is less than
1

2
c(P ∗) whenk = 0, it is no more than1

2
c(P ∗

s) when
k = 1, and it is no more than2

3
c(P ∗

st) when k = 2.
Those proofs are based on the fact that in a metric graph,
the cost of an edge{u, v} is a lower bound for the
cost of any path havingu andv as endpoints. Then the
same arguments, with the only change of using shortest
paths formingΠ instead of the direct edges forming a
minimum matching, show that in our case it isc(Π) <
1

2
c(P ∗) when k = 0, c(Π) ≤ 1

2
c(P ∗

s) when k = 1,
andc(Π) ≤ 2

3
c(P ∗

st) whenk = 2. From Lemma 7 we
have that in the pathπ′′ returned by Algorithm 5 at
most 4 consecutive edges ofT ∪ Π are bypassed with
a new single edge (taking into account the combined
effects of Steps 3-6). This may increase the cost of
π′′ by a factor of at mostβ2 with respect to the cost
of T ∪ Π. Consequently, we havec(π′′) < 3

2
β2c(P ∗),

c(π′′) ≤ 3

2
β2c(P ∗

s) andc(π′′) ≤ 5

3
β2c(P ∗

st).

The following theorem summarizes the results of this
section:
Theorem 3. For every β > 1, there are (3

2
β2)-

approximation algorithms for∆β-HPP0 and∆β-HPP1,
and a (5

3
β2)-approximation algorithm for∆β-HPP2.

The algorithms run inO(n3) time.

Proof. Algorithms PMCA-HPPk, with k = 0, 1, 2, have
the properties required by the thesis. The correctness of
the algorithms is proved in Lemmas 1, 2, 3, 4, 5, 6, 7.
The claimed approximation ratios are proved in Lemma
8. The upper bound for the time complexity is proved
observing that in Step 2 the minimum path matching is
computed inO(n3) time, while the remaining steps can
be implemented inO(n2) time.

4. Conclusions

In this work, we successfully extended the class of
graphs for which HPP is approximable (with constant

approximation ratio, in polynomial time). Please note
that for every graphG, it is possible to find a suitable
value ofβ so thatG satisfies theβ-triangle inequality.
Hence HPP is approximable for every input graph, al-
though asβ grows the approximation ratio quickly be-
comes large.

The HPP0 and the HPP1 are similar to the TSP, and
we expect the three problems to exhibit the same behav-
ior with respect to approximability. Indeed, in the metric
case, the best known approximation ratios are the same
for all three problems [8]. In this paper we proved that
the same happens also when the input graph satisfies
theβ-triangle inequality for1 ≤ β ≤ 3. To extend this
result to other (possibly any) values ofβ, further stud-
ies are required, especially concerning the possibility to
carry over to HPP the approach used in [3].

The HPP2, instead, seems to have slightly different
characteristics from an approximability perspective. In-
deed, already in the metric case, the best known approx-
imation ratio for the HPP2 is higher than the one known
for the TSP. In this work, we obtained an approxima-
tion ratio for∆β-HPP2 which naturally generalizes the
one known for the metric case.

References

[1] Thomas Andreae. On the traveling salesman problem
restricted to inputs satisfying a relaxed triangle
inequality. Networks: An International Journal,
38(2):59–67, 2001.

[2] Thomas Andreae and Hans-Jürgen Bandelt. Performance
guarantees for approximation algorithms depending on
parametrized triangle inequalities.SIAM Journal on
Discrete Mathematics, 8(1):1–16, February 1995.

[3] Michael Bender and Chandra Chekuri. Performance
guarantees for the TSP with a parameterized triangle
inequality. In Frank K. H. A. Dehne, Arvind Gupta, Jörg-
Rüdiger Sack, and Roberto Tamassia, editors,Algorithms
and Data Structures, 6th International Workshop, WADS
’99, Vancouver, British Columbia, Canada, August 11-
14, 1999, Proceedings, volume 1663 ofLecture Notes in
Computer Science, pages 80–85. Springer, August 1999.

[4] Hans-Joachim Böckenhauer, Juraj Hromkovič, Ralf
Klasing, Sebastian Seibert, and Walter Unger. Towards
the notion of stability of approximation for hard
optimization tasks and the traveling salesman problem.
Theoretical Computer Science, 285(1):3–24, July 2002.

[5] Nicos Christofides. Worst-case analysis of a new
heuristic for the traveling salesman problem. Technical
report, Graduate School of Industrial Administration,
Carnegy–Mellon University, 1976.

Forlizzi et al. – Algorithmic Operations Research Vol.1 (2006) 31–45 45

[6] Herbert Fleischner. On spanning subgraphs of a
connected bridgeless graph and their application to dt
graphs. Journal of Combinatorial Theory, 16:17–28,
1974.

[7] Herbert Fleischner. The square of every two-connected
graph is hamiltonian.Journal of Combinatorial Theory,

Received 22 Dec 2004; revised 25 April 2005; accepted 10
July 2005

16:29–34, 1974.
[8] Han J. A. Hoogeveen. Analysis of christofides’ heuristic:

Some paths are more difficult than cycles.Operational
Research Letters, 10:291–295, 1991.

[9] Hang Tong Lau. Finding a Hamiltonian cycle in the
square of a block. PhD thesis, McGill University,
February 1980.

[10] Hang Tong Lau. Finding eps-graphs.Monatshefte für
Math., 92:37–40, 1981.

