Document generated on 08/06/2025 11:23 p.m.

Algorithmic Operations Research

The Abridged Nested Decomposition Method for Multistage
Stochastic Linear Programs with Relatively Complete Recourse

Christopher J. Donohue and John R. Birge

Volume 1, Number 1, Summer 2006
URI: https://id.erudit.org/iderudit/aorl_lart02

See table of contents

Publisher(s)

Preeminent Academic Facets Inc.

ISSN
1718-3235 (digital)

Explore this journal

Cite this article

Donohue, C.J. & Birge, J. R. (2006). The Abridged Nested Decomposition Method
for Multistage Stochastic Linear Programs with Relatively Complete Recourse.
Algorithmic Operations Research, 1(1), 20-30.

All rights reserved © Preeminent Academic Facets Inc., 2006

Article abstract

This paper considers large-scale multistage stochastic linear programs.
Sampling is incorporated into the nested decomposition algorithm in a manner
which proves to be significantly more efficient than a previous approach. The
main advantage of the method arises from maintaining a restricted set of
solutions that substantially reduces computation time in each stage of the
procedure.

This document is protected by copyright law. Use of the services of Erudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.

https://apropos.erudit.org/en/users/policy-on-use/

erudit

This article is disseminated and preserved by Erudit.

Erudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec a Montréal. Its mission is to
promote and disseminate research.

https://www.erudit.org/en/


https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/aor/
https://id.erudit.org/iderudit/aor1_1art02
https://www.erudit.org/en/journals/aor/2006-v1-n1-aor_1_1/
https://www.erudit.org/en/journals/aor/

A
PN
Algorithmic Operations Research Vol.1 (2006) 20-30

The Abridged Nested Decomposition M ethod for M ultistage Stochastic
Linear Programswith Relatively Complete Recour se

Christopher J. Donohte John R. Birge®

2Global Association of Risk Professionals, Jersey City, NISA
PThe University of Chicago Graduate School of Business, &ju¢ IL, USA

Abstract

This paper considers large-scale multistage stochastiedi programs. Sampling is incorporated into the nested
decomposition algorithm in a manner which proves to be §iganitly more efficient than a previous approach. The main
advantage of the method arises from maintaining a restlictet of solutions that substantially reduces computation
time in each stage of the procedure.

Dedicated to the memory of George Dantzig who inspired usitsye the challenge of finding optimal decisions
under uncertainty.

1. Multistage Stochastic Linear Programs is given as:
id ltistage dynamic decisi b -1k P ek
onsider a multistage dynamic decision process un- Ql (xt 1) = Z D Qa1 g,
der uncertainty that can be modeled as a linear meD(k) P

program. Assume that the stochastic elements of the
problem can be found in the objective coefficients, the Leth denote a-stage scenario iP(k). Then, the stage
right-hand side values, the technology matrices, or any ¢ recourse cost obtained with the stage 1 decision
combination of these. Further, assume that the stochas—*~1* and realizatiort”" € =* is another optimization
tic elements are defined over a discrete probability spaceproblem given by:

(Z,0(2),P), wherez = =2 ® --- ® ZV is the support

of the random data in stages two throug§hwith =t = Q' (x"~1F ¢y = min ¢ (€M) zth + QI (2Bh)

{€ = (D), ¢ (), TT (€D, - T (€D))}. The st Wihahl = pt(ebhy — T1=1(ghh)gt =1k
staget nodes of the scenario tree are defined by a real- Zh s

ization¢! of the stage random parameters and a history =7
of realizations £2, ... ,5;;11) of the random parame-

In stageN, it is assumed tha®@™ 1 (zN) = 0 for all
ters through stage— 1. g 20 (%)

_ o _ values ofz?.
A multistage stochastic linear programming problem Table 1
can then be formulated (Table 1).
=t support of the stage
min ¢tz + Q*(zh) t random parameters
&t realization of stage
. . t random parameters
st.Wizm =h (€%,...,€4) t-stage scenario
ghk realization of stage random
21 >0 parameters it stage scenarié
o ptk probability of ¢t stage scenarié
where for any(t —1)-stage scenario decisiafi— %, the a(k) ?nct:estor(t - 1)_?&99 scenario o
staget expected recourse or value functi t—Lk ~Stage scenarl
g P (x ) D(k) set of descendar(t + 1)-stage
Email: Christopher J. Donohue [chris.donohue @GARP.com], scenarios of-stage scenarié

John R. Birge [john.birge@ChicagoGSB.edul].
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A two-stage stochastic program is said to hase
atively complete recoursé, given any first stage fea-
sible solutionz!, there exists a feasible solution to
any realized second stage subproblem with probability
one. Similarly, a multistage stochastic linear program
is said to haverelatively complete recours#, given
any feasible solutionz?!,...,2!=1) to any (t — 1)-
stage scenari@ (defined by the sequence of realiza-
tions (£2,...,¢71) in stages 2 through — 1), there
exists a feasible solution to any realized stagescen-
dant subproblem of with probability one. Relatively
complete recourse simplifies decomposition algorithms
since feasibility is ensured.

1.1. Decomposition Methods

Decomposition algorithms have proven effective in

21

solved:

Qt(xtfl,a(k)’é-t,k) — min Ct(gt’k)wt"k + et,k
s.t. tht,k _ ht(gt,k) _ Tt—l(é-t,k)xt—l,a(k)

Df"kxt’k > dz’ki =1,...,rbF (1)
E:,kxt,k + gt:F > 61;7/@2' =1,..., bk (2)
bk >0

6** unrestricted.

Constraints (1) and (2) are feasibility and optimal-
ity cuts, respectively. The feasibility cuts constrain the
set of stage solution to those which have feasible re-
course over the remainder of the planning horizon. The
optimality cuts constrain the expected recourse approx-
imation 6** to a value which is a lower bound on the
actual expected recourse function value. Both types of

decreasing times to solve stochastic linear programscuts are generated successively during the algorithm.

over direct solution approaches (see, for example, Birge

[2], Gassmann [9], Birge et al. [3]). These algorithms

involve separating the problem into subproblems asso-

ciated with each node in the scenario tree. Given its

Both the L-Shaped and ND algorithms begin with no
feasibility or optimality cuts in any of the subproblems,
and with#** restricted to zero for all values éfandt.

The first stage subproblem is solved. Each of the second

convexity and piecewise linearity, the expected recourse stage subproblems is then considered, using the current

function Q(z) in the first stage objective function can
be replaced by an unrestricted variaBlevhich is con-
strained by a finite set of linear inequality constraints.
The goal of decomposition algorithms is to construct

first stage solution to adjust the right hand side. The
algorithm continues forward through the scenario tree
in this manner.

If a staget subproblem@?®(zt—1e(*) ¢tk) is in-

only the necessary portions of the expected recoursefeasible for a particular(t — 1)-stage scenario so-

function with linear constraints and at the same time
bound the expected recourse function for all possible

first stage decisions. The hope is that the similarities be-

lution *~1(*®) an additional constraint is added
to the staget — 1 subproblem which removes
#t~1ak) from the set of feasible solutions. By du-

tween each of the subproblems and their smaller sizesality, the infeasibility of Q*(&!~1*(*) ¢:*) implies

allow the problem to be solved more efficiently.

The L-shaped algorithm was developed for two-stage
stochastic linear problems (proposed in Dantzig [7]) by
Van Slyke and Wets [13]. This algorithm is an outer lin-

that there exists a directiori** along which the
dual problem becomes unbounded and which satis-
fies 7t F (Rt (€6F) — TH1(gbF)zt—1e(k)) > 0. Thus,
#t~1aek) js removed from the set of feasible stage

earization of the second stage primal recourse problemt — 1 solutions of Q*~'(e, &~ %2(*)) by adding the

with additional steps taken to ensure feasibility for all

possible second stage subproblems. The Nested Decom-

position algorithm (Birge [2]) extended the L-Shaped
algorithm for multistage stochastic linear programs.

As in the L-Shaped algorithm, the Nested Decompo-
sition (ND) algorithm replaces the stage 1 expected
recourse function in each subproblem with a free vari-
abled**, and then constrair®-* with successive linear
approximations of@**!(z**). The linear approxima-
tions, or optimality cuts, serve as lower bounds on the
expected recourse functions for all feasible solutions of
the stage subproblem.

At node k in staget, the following subproblem is

constraint,

t—1l,a(k) t—1,a(k t—1,a(k
Drt—lj_(l)x alk) > drt—1(_l‘_(1)7
t—1,a(k) ~t kt—1( ¢tk t—1,a(k)
where D5 FheTtL(E5R), drH+1 =

#AbFRE(EHF), andrt~1 is the current number of feasi-
bility cuts in the stage — 1 subproblem.

If the first stage subproblem is infeasible, then the
problem is infeasible and the algorithm terminates.

Typically, once the forward pass has solved each sub-
problem in the scenario tree, the process of developing
optimality cuts begins. Starting in stagé — 1, the al-
gorithm begins a backward pass through the scenario
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tree. At subproblent in staget, a lower bound on the  fast-back” procedure, involves continuing in the current
staget + 1 expected recourse functiad ™! (z**) as- direction until the process cannot proceed in that direc-
sociated with the current node is established as a lineartion. Wittrock [15] argues that by changing direction
function of 2% and the weighted sum of the optimal as seldomly as possible, the procedure most effectively
dual multipliers,(rt+1m §i+lm gi+lm) from each propogates information throughout the tree. Alternate
of the stage + 1 descendant nodes. Suppose the current strategies include the “fast-forward” procedure and the
solution at this node ig%* and the expected recourse *“fast-back” procedure. The “fast-forward” procedure
approximation value i§"*. The lower bound is formed  (Birge [2]) only proceeds from stageto staget — 1

as follows: when all current solutions in stageés..., N are op-
t4+1,m timal. The “fast-back” procedure (Gassmann [9]) only
ok >y b —— (atHh (R () proceeds from stageto staget + 1 when all current
meD(k) pe solutions in stages,...,¢ are optimal. Results from
— T M) bRy o gttm gt tm implementations of the ND algorithm (Gassmann [9],

Birge et. al. [3]) suggest that the “fast-forward, fast-
back” protocol generally works most effectively.

To improve the quality of each iteration, Birge and
Louveaux [4] propose the multicut version of the ND
algorithm. In the general decomposition algorithm men-
tioned, for a given stagedecisionz?, all possible real-

t+1,m izations in stage + 1 are optimized in order to obtain
Efk _ Z p ﬂ_t+1,mTt(€t+1,m) and ge + P

+0_t+1,met+l,m)
=g"%  forabk = bk,

A constraint of the form of (2) is then established by
letting

phk their optimal simplex multipliers. These multipliers are
meD(k) then aggregated in order to generate one cut. A single
ot = Z Pt+t1];m (ﬂ_t+1,mht+1(§t+l,m) 0 vari_able is used tq approximate the gxpected recourse
meD (k) - function value, and its value is constrained by these ag-

gregated cuts. Instead, Birge and Louveaux [4] suggest
that more information from a node’s descendants may
be gained by disaggregating optimality cuts. The result-
ing multicut version uses @variable corresponding to
then this linear constrainbptimality cuj is added to ~ €ach descendant realizationéf and constrains each
this node’s subproblem. The process continues until the PY Cuts generated from that realization multiplied by its
latest first stage optimality cut is not added to the first ProPability. The obvious disadvantage to the multicut
stage subproblem, at which point the problem is solved. Y€rsion is the much more rapid increase in the size of
Each cut can be uniquely assigned to an optimal ba- _each s_ubprobl_em, but Fhe b_'g advantage is the Increase
sis of a subproblem, which has a finite number of bases; In the information that IS being pass_ed back in _each It-
thus, both the L-Shaped and ND algorithms terminate eration. The hope in this approach is that the increase

finitely. Further, both algorithms terminate with an op- in information will decrease the number of iterations
timal solution (if one exists) since termination in bot

h Needed to converge at the first stage and that this sav-
only occurs ifg! = Q2(z') or the problem is infeasible

+§t+1,mdt+l,m 4 O_t+1,met+1,m)

fori = s“* + 1. If the current expected recourse func-
tion approximation is no longer valid (i.&%* < %),

ings will outweigh the added effort needed to solve each

or unbounded. subproblem.
For problems with stochastic elements found only in
1.2. Computational | mprovements the right hand sides and the technology matrices, the

staget recourse functio®?(z!~1, £!) is also a convex

Various techniques have been explored for improv- function of the random vectdf®; convexity of the re-
ing the computational efficiency of decomposition al- course function when the technology matrix is random
gorithms. After solving each subproblem in a particu- follows since, for the given stage— 1 solutionz’~!,
lar stage in the course of the ND algorithm, the choice the technology matrix is found in the right hand side of
of which adjacent stage to solve next does not dis- the problem. Hence, a lower bound on the stag-
rupt the convergence of the algorithm. Hence, different pected recourse functio@’(z*~!) can be established
sequencing protocols have been suggested. The protoby solving only the recourse function with the expected
col described above, referred to as the “fast-forward, value of ¢, Q*(z*~1,£%). In particular, if the random
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parameters in each stage are independently distributedeters are serially independent. Thus, the probability of
a lower bound can be established by solving the deter- a particular stage realization¢! is constant from all
ministic problem where the random parameters in each possible(t — 1)-stage scenarios.
stage are replaced by their expected values. The cuts The strategy of the Pereira and Pinto algorithm is to
generated in each stage of the expected value problemuse sampling to generate an upper bound on the ex-
are valid cuts to the true expected recourse function, pected value (over aiv-stage planning horizon) of a
and so, can be passed to each node in that stage in thgiven first stage solution and to use decomposition to
true scenario tree. Solving the original problem can then generate a lower bound. The algorithm terminates when
begin with this additional information. This helps pri- the two bounds are sufficiently close.
marily with reducing the number of iterations needed  As in the Nested Decomposition algorithm, each it-
for convergence. Computation times have been reducederation of the Pereira and Pinto algorithm begins by
by as much as 40% using this technique (Donohue et. solving the first stage subproblem. Théh N-stage
al. [8]) scenarios are sampled. Lef and¢! denote the stage
Techniques have also been developed to improvet solution vector and the stagerandom parameter
computational efficiency within subproblems by taking realization, respectively, in sampled scenakioThe
advantage of similarities. Assuming that the objective forward pass through the sampled version of the sce-

cost coefficients are not stochastic, the stagebprob- nario tree solves the following subproblem, for stages
lems only differ in their right hand sides when no cuts ¢ =2,..., N and scenario§ =1,..., H.

have been added or the same cuts have been added to b1 ot I

every problem. Two techniques have been proposed in Q'(z} ", &) = mine (&), + 0,

the literature for solving linear programs with multiple st Whah = ht(&)) — T (&) it

right hand sides, sifting (Gartska and Rutenberg [10]) Blat + 0 >et i=1,... K 3)

and bunching (Walkup and Wets [14]). After solving
a subproblem with a particular right hand side, these . '
methods identify other subproblems for which the cur- O unrestricted.
rent basis is optimal. The goal of these methods is
to minimize the number of full simplex pivots which
must be performed to solve all the subproblems in the
current stage.

zh >0

First note that since the problems under consideration
have relatively complete recourse, feasibility cuts are
not needed. The constraints (3) represent optimality cuts
which are successively added during the course of the
algorithm. These cuts represent lower bounds on the
1.3. Pereira and Pinto Method expected recourse function in stagéor all values of
zt. K denotes the number of optimality cuts that have

For multistage stochastic linear programs with rela- peen added to the stagesubproblem. In the first for-
tively complete recourse and a modestly large number \ygrd pass, there are no optimality cuts. Herdéé = 0,
of N-stage scenarios, Pereira and Pinto [11] developedandy! is constrained to equal zero. Optimality cuts are
an algorithm which incorporates sampling into the gen- pever generated for the stagesubproblems, s6” is
eral framework of the Nested Decomposition algorithm. dropped from those subproblems. The first stage sub-
The goal is to minimize the curse of dimensionality by problem also has this formulation, although the problem
eliminating a large portion of the scenario tree in the pas no stochastic elements dftl = 0.
forward pass of the algorithm. The algorithm was suc-  The total objective values for all of the sampled sce-
cessfully applied to multistage stochastic water resource parios are collected as follows to generate a confidence
problems in South America. interval for an upper bound on the actual expected re-

The multistage stochastic linear programs considered course function value. Let, denote the total objective
are assumed to have relatively complete recourse with yalue for scenarid; then,

finite optimal objective value. Assume that the stochas-

tic elements are defined over a discrete probability space SN

(Z,0(2),P), wherez = Z2 @ --- @ ZV is the support 2 =X+ ZC (&) )
of the random data in stages two throuyhwith Z¢ = =2

(& = (&), €N, T HED, - T (€D, i = Notethatz! is the same for all values f For the given

1,..., M%)}. Further, assume that the random param- first stage solution:}, the expected recourse function
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value Q*(z}) is a function of the random parameters
in stages two througlv. By assumption, the recourse
cost for anyN-stage scenario, given first stage solution
2!, is finite. Thus, the expected recourse cagt(x!),

C. J. Donohue and J. R. Birge — The Abridged Nested Deconipoditethod for

7} ;. denote the optimal dual solution vector to the stage
t subproblenQ?(z}', &!). As in the Nested Decompo-
sition algorithm, an optimality cut on the stage 1 ex-
pected recourse function is derived from these optimal

and the variance of the recourse cost are finite. Also, the dual values as follows, for each sampled scenayio
H sampled scenarios are independent observations of

these random parameters. Hence, by the Central Limit

Theorem (see, for example, [1]), fdf large enough,

a statistical estimate of the expected objective value of

the first stage solution is given by:

1H
2= —= Zk-
H;k

The uncertainty of the estimateis then measured by
the standard deviation of the estimate,

| A
o, = <ﬁ Z(E—zk)2>.

k=1

(5)

(6)

Using these values, a confidence interval for the actual

value ofz can be constructed. For example,
[Z—20,,%+ 20,] (7)

represents 85% confidence interval foe. Note thatz

M?t

Q1) =) prob(¢h)ml ),
=1

C(hE — TN ). (8)

Fort = N, the inequality follows by duality. Fot <
N, the inequality follows by duality and the inductive
argument that the stager 1 optimality cuts are lower
bounds on the stage+ 1 expected recourse function.
To generate a cut of the forfix + 0 > e, let

t—1
EKf*1+1

Mt
=" probE)at, (~THED)
=1

Mt
Chitayy = D prob(€)ml , (h'(€) +¢') .
i=1
Since the problems considered have serial indepen-

dence, the expected recourse function in all stage
subproblems is identical. This allows all cuts generated

is a statistical estimate of the first stage costs and thefOr staget (regardiess of which scenario it was gener-
expected recourse costs, given the current first stage so&t€d from) to be placed in all stagesubproblems. As

lution z!. Since the current first stage solution is feasi-

each cut is added to the stageubproblem, the value

: . > tig i
ble but not necessarily optimal, Condition 7 represents Of K" is increased by one.

a confidence interval for an upper bound on the optimal
objective value of the given stochastic program.

Once the forward pass has solved Allstages for
all H sampled scenarios and assumifig > 1 for
tl,..., N — 1, the stopping criterion is checked. From
the discussion of the Nested Decomposition algorithm,
we know that the current first stage objective value
ctz} + 6' is a lower bound on the total expected cost
over the duration of the planning horizon. Therefore, if
the currentfirst stage optimal objective valdey} +61,
lies in the confidence interval of the upper boundzon
the current solution is declared optimal, and the algo-

Once a new optimality cut has been added to the first
stage subproblem, the first iteration is completed and
the forward pass begins again.

Finite convergence of this algorithm follows from the
finite convergence of the Nested Decomposition algo-
rithm, since the scenarios from which the optimality
cuts are generated are resampled each iteration. Since
the accuracy of the optimal solution depends on the ac-
curacy of the estimated upper bound, the performance
of the algorithm depends on the number of scenarios
sampled in each iteration.

rithm terminates; otherwise, the backward pass through 2, The Abridged Nested Decomposition Algorithm

the scenario tree begins.

The backward pass proceeds as in the Nested Decom- The Pereira and Pinto algorithm does effectively re-

position algorithm. Starting in stag€ with the current
stageN — 1 solution to scenarié, 21 ', the subprob-
lem QN (zi ~*,¢V) is solvedfor all possible stageV
realizations¢”. Let M* denote the number of distinct
realizations of the stagerandom parameters, and let

solve the curse of dimensionality, especially for narrow
and long scenario trees. Pereira and Pinto considered
10-stage problems with only two possible realizations
in stages two through ten, giving a total of 512 possible
10-stage scenarios. By sampling only 50 scenarios in
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each iteration, the algorithm significantly reduced the
effort needed to solve these problems.

The algorithm does not, however, seem well-designed
for bushier trees, where the number of realizations in
each stage is, say, twenty or more. In order to get a re-
liable estimate of the true population expected recourse
function, the Central Limit Theorem generally requires
that the number of scenarios sampled be at least thirty
or more. While this presents little problem in the for-
ward pass, the amount of work required in the backward
pass to solve all realizations in each stage thirty or more
times might be exhausting, especially for problems with
four or more stages. Further, this fails to recognize that
many of the scenarios may be giving similar solutions
in staget, making the need to resolve all subproblems
in stages + 1 throughN superfluous. Finally, the end Fig. 1. Abridged Scenario Tree
result of all this work is a single optimality cut in the
first stage subproblem. Since each iteration could be solved. From the B!~! « F'*) staget solution values,
expensive, the need for several optimality cuts for the the algorithm proceeds forward from only* values.
first stage to converge could make the algorithm more Typically, the initial value ofB* will be relatively small
cumbersome than intended. (< 5) to allow a rapid forward pass.

The new protocol proposed here, which we refer to ~ Once the branching values for stalye- 1 have been
as the Abridged Nested Decomposition algorithm, also selected, the backward pass begins. For each branching
involves sampling in the forward pass, but the forward solution in stageV — 1, all possible realizations in stage
pass does not proceed forward from all solutions of the N are solved. The optimal dual values are aggregated to
realizations sampled in each stage. Instead, the gtage generate an optimality cut on the stalje- 1 expected
solutions from which to proceed are also sampled. recourse function, as in equation (8). Again, because of

The scenario tree in Figure 1 highlights the new pro- serial independence, all optimality cuts generated from
tocol. As in the Pereira and Pinto algorithm, the new the stageV subproblems are added to the stage- 1
protocol begins by solving the first stage subproblem, Subproblem. The process is repeated for all branching
again with no optimality cuts initially. From the set of ~Solutions in stages/ — 2 down to stage 1.
second stage realizations? realizations are then sam- As the second stage subproblems are solved in the
pled and these subproblems are solved. The goal is toPackward pass, ldt7, 67) denote the optimal solution
obtain a good sample of second stage solution values,for second stage realizatig in =*. Let
without solving all realizations in the second stage. The ~
darkened second stage nodes in the diagram correspond 6! = Z prob(&3)(* (&332 + 63).
to the realizations sampled and solved. From ffre g2e=?
solution values, the algorithm proceeds forward from
only B2 (< F?) values. The values, from which the al-  Sincec?(¢2)#7 is the second stage cost for solutidh
gorithm branches forward, are referred to as branching and éﬁ is a lower bound on the second stage recourse
values. A branching value may be a current stagglu- cost for solutioni?, §* represents a lower bound on
tion value or some combination of several current stage the expected recourse function value for the current first
t solution values (more details in next section). Nodes stage solutioni:'. Recall that the current first stage ap-

1 and 2 correspond to the second stage solutions fromproximation of the expected recourse function value at
which forward branching occurs. The figure is drawn 7!, 91, is also a lower bound on the expected recourse
as shown to highlight the idea that branching may not function atz!'. The value ofd' may differ from the
occur from the same node or from any specific node in value of#*, however, sincé! includes the additional
each iteration. information that has been gained in the current itera-

From each of theB*~! staget — 1 branching so- tion. This additional information also ensures thais

lutions, F'* staget realizations are again selected and always greater than or equal 6.
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The Nested Decomposition algorithm terminates sition algorithm. The hope of the algorithm, though,
when ! = 6!, since this implies that in each sub- is that significant tree expansion will not be needed,
problem, the current expected recourse approximationthereby allowing much faster iterations than those of the
value,étk, is exact at a current solution valdg. Un- Nested Decomposition algorithm, while passing back
fortunately, since the Abridged Nested Decomposition enough valuable information about the expected re-
algorithm does not consider all scenarios in each iter- course function that the number of additional iterations
ation, the same claim does not hold. The solution of a needed will not be significant.
particular second stage subproblem may not change in
the forward and backward pass of an iteration simply
because this solution is not selected as a branching
value, and so, the opportunity to evaluate the second |n order for this algorithm to be effective, the solution
stage expected recourse function value at that solutionyalues from which to branch in each stage must be
is not given. However, if that solution had been se- selected carefully. The following theorem shows that
lected as a branching solution, as it always would be in valid branching values exist which are not necessarily
the Nested Decomposition algorithm, an optimality cut current stage solution values.
might have been generated which would change that Theorem 1 Consider a multistage stochastic linear
subproblem solution. program with relatively complete recourse. L&t be

Although it cannot be used as a termination criterion, any feasible solution to the stagesubproblem with
the relative closeness éf and6' can be used as an realization¢! € =, 1 <4 < M*. Further, let
indication that the solution is converging. Hence, given
thatd® is within a relative tolerance of*, a termina- Mt At
tion test is given which employs sampling to generate 3 = wa.;zg where wa =1,0<wi <1
a statistical estimate of an upper bound. i=1 i=1

2.1. Branching Selections

An N-stage scenari¢¢?, ..., £N) is randomly se- (i=1,...,M");
lected. The current first stage subproblem is solved. Let
the solution ber}. Then, starting witht = 2, the cur- then there exists a feasible completion in stages
rent stage subproblem is solved, given sampled stage 1,...,N fromz.
realization¢! and stage — 1 solutionz’ ™. Let the so- Proof. By contradiction. Suppose that there exists a
lution be denoted?. This is repeated far=3,..., N. convex combination of the feasible solutions such that
The entire process is repeated fdrdifferent N-stage Q*1(7) = oo (i.e., there does not exist a feasible com-
scenarios. pletion fromz).

The Central Limit Theorem can be invoked againto ~ We know thatQ'™!(z) is a convex, piecewise linear
establish a statistical estimate of an upper bound on function ofz. Thus,
the optimal objective value. As in Equations (4), (5), )
and (6), the total value of each scenario is recorded, M
- . t t+1/~t t4+1 t~t
the total values are averaged, and a confidence interval Z w; Q(77) = Q (Z W),
around the average value is established by calculating *=! =1

Mt

the standard deviation. If the currentfirst stage objective by Jensen’s Inequality, convexity,
value,c!zt 461, falls within that confidence interval, the = Q'Y(#), by definition,
algorithm terminates; otherwise, the number of nodes =00, by assumption.

solved in each stage in each forward pds§,and the

number of nodes from which we branch in each stage, This implies thaQ!*!(z!) = o for at least oné value,

B!, can be increased, and a new forward pass begins. which contradicts the assumption of relatively complete
The increase in botl* and B? after each failed recourse.m

termination test helps to achieve convergence as the Thus, any convex combination of the current stage

increase in these values increases the amount of infor-solution values can be chosen as a possible branching

mation being brought back to the first stage subproblem. value, including the expected value of the current so-

Eventually, the entire scenario tree could be consideredIution values. This implies that thB*~! x F* possible

in each forward and backward pass, at which point the solution values in stagecan be gathered into several

algorithm would be identical to the Nested Decompo- groups, and the expected value of the solution values
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Step 0: Fort=1,...,N —1, setK* =0, and add the constraifif = 0 to the stage subproblem. Choose
initial values for F'* and B* fort =2,...,N — 1. Go to Step 1.

Step 1: Solve the first stage problem. L&t be the current optimal solution add be the current expected
recourse approximation value. L&t be the current optimal objective value. L&t be the first stage
branching value. Go to Step 2.

Step 22 FORWARD PASS.

Fort=2,...,N —1,
Form=1,...,B" 1,
Fork=1,...,F?
Solve stagel subproblem, given sampled realizatigh and them'" staget — 1
branching value.
SelectB? branching values.
Go to Step 3.
Step 3: BACKWARD PASS.
Fort=N,...,2,
Form=1,...,B" 1!,
Fori=1,...,M",
Solve stageﬁ subproblem given realizatio§f and them'" staget — 1 branching
value. Let(n} ,,, o} ,,,) denote the optimal dual vector values.

Compute
M? M?
Zpkﬂ-z mTt 1 §z Zpk ﬂ-z m 61 +Uz m€i )
=1

The new cut is then: Ef~'z!~! 4+ 9"~ 1 > et .
If the constrain®’~! = 0 appears in the stage-1 subproblem, then remove it. Increment
K'! by one and add the new cut to the stage 1 subproblem. Ift = 2, then the
updated first stage expected recourse function upper baudd i e' — E'z'. If 6" is
within a relative tolerance of', then go to Step 4. Otherwise, go to Step 1.
Step 4. SAMPLING STEP
Letx; = ', fork=1,..., H.
Fork=1,...,H,
GenerateN-stage sample scenaritg?, ..., £ ).
Fort=2,...,N,
Given stage — 1 solutionge}fj1 and realizatior¢s, solve the stage subproblem. Let

x} denote the optimal solution.
Using Equations (4), (5), and (6), obtain a confidence iatleon the expected objective value of the

current first stage solution. 'z + #* is in the confidence interval, stop witlt as the optimal
solution. Else, increasg™ and B* for staget = 2,..., N and go to Step 1.

Fig. 2. Abridged Nested Decomposition Algorithm for Retaty Complete Programs

within each group can be used as that group’s branch- This may be important to achieve convergence.
ing value. This method for selecting branching values
could prove effective, since the branching values would
then represent the values which stagan expect from
those stage— 1 subproblems, rather than just one pos-
sible solution value.

Finally, choosing current solution values randomly to

be branching values may also be effective. Unlike the
other selection techniques, this strategy gives an unbi-
ased sample of stagesolution values.

Other branching values might include current solu-
tion values whose distance from the current average so-3. Implementation & Results
lution value is greatest. Using these values may prove
effective, as this helps to generate optimality cuts which  In this section, the results of a computational study
restrict solution values from outlying solution values. are reported. The computational efficiency of the Pereira
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and Pinto algorithm is compared to that of the new
Abridged Nested Decomposition algorithm.

3.1. Implementation Description

The code ND.PP follows the algorithm developed
by Pereira and Pinto. The code ND.Abridged follows
the new Abridged Nested Decomposition algorithm
discussed in Section 2.. Both ND.PP and ND.Abridged
were written in C. Both work interactively with
CPLEX’s callable library for mathematical program-
ming and were run on Sun SPARC 20 workstations.

For ND.PP, the sample sizéi] is thirty for each
problem. For ND.Abridged, the number of staigeub-

problems solved in the forward pass from each stage

t — 1 branching value ¥?) is set initially between ten
and fifteen. The number of stagebranching values
selected B?) is set initially to one. The upper bound

C. J. Donohue and J. R. Birge — The Abridged Nested Deconipoditethod for

specific destination, the effective demand is, therefore,
along arcs instead of at nodes as in a transportation
problem. In the vehicle allocation literature, this is
represented as a capacity for loaded movement. In ad-
dition, the carrier can dispatch empty vehicles between
two sites in anticipation of future requests out of the
destination site. The carrier knows shipping requests
that exist in the current time period, but is uncertain
about the shipping demands in future periods; the car-
rier has information about the distribution of possible
demand scenarios, perhaps based upon past demand
realizations. Much of the work done on the DVA prob-
lem has been initiated and developed by Powell (see
[12] for a review of the problem and methods).

All of the problems tested are DVA problems of var-
ious sizes. All of the random demands are assumed to
be independent, so serial independence of the random
parameters is given. The probability distributions on de-

estimate is calculated whenever the current first stagemand between sites were derived using historical data

expected recourse approximation valifeis within a
relative tolerance of 0~ of #'. After the upper bound
is calculated, if the current first stage optimal objective
value,c'z! + 6%, fails to be within one standard devi-
ation of the statistically estimated upper bousdthen
fort = 2,...,N — 1, the value ofB? is increased by
one (if possible). IfB? is now larger tharF', F! is also
increased by one (if possible).

While B! equals one, the average solution value of the
current stage solution values is used as the branching
value. ForB? > 1, the set ofB'~! x F' current stage

t solution values are partitioned infe’%—t] groups. The

from a national transportation company. Further, note
that the carrier is not committed to take any of the loads;
thus, the option of leaving all of the vehicles stationary
for the duration of the planning horizon is a feasible
option which has finite cost. Hence, the problem has
relatively complete recourse and serially independent
random parameters, so the Abridged Nested Decompo-
sition algorithm can be used to solve these problems.

The naming convention used for all problems is
DVA.z.y.z, where x denotes the number of siteg,
denotes the number of stages, andenotes the num-
ber of distinct realizations per stage. The DVA.8,

average solution value within each group is used as oneDVA.12.y.z and DVA.16y.z problems have 16, 24,

branching value. The current solution value within each

and 32 nodes connected by 72, 168 and 244 arcs, re-

group most distant from the group’s average value is spectively, in each stage. The fleet sizes are 50, 120

used as another branching value. The remaidg-

t .
2+ [£-7 branching values are chosen randomly from all
current stage solution values, excluding those already
chosen.

3.2. Test Problem Set Description

The Dynamic Vehicle Allocation (DVA) Problem
with Uncertain Demand represents the situation which

and 140, respectively.

3.3. Results

The results of the comparison between the two al-
gorithms are given in Table 2. All times are given in
seconds. Test runs lasting longer than 40,000 seconds
(> 10 hours) were terminated with the objective value
in the last iteration reported.

arises when a carrier must manage a fleet of vehiclesin The Abridged Nested Decomposition algorithm

an environment of uncertain future demand while max-
imizing expected profits over a given planning horizon.

(ND.Abridged) significantly outperformed the Pereira
and Pinto algorithm (ND.PP) on all problems tested.

In each time period, the carrier receives requests to haveFor problems where a comparison can be made, the
loads moved between various pairs of sites. The carrier Abridged Nested Decomposition runtimes are, on av-
can accept or decline each request. Since each requestrage, twelve times faster than the Pereira and Pinto
is to have a load moved between a specific origin and a runtimes. Furthermore, as the size of the problems in-
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Table 2
ND.Abridged ND.PP | ND.Abridged ND.PP
Problem Time Time Obj. Value Obj. Value
DVA.8.4.30 46.2 121.0 -12192.81 -12298.14
DVA.8.4.45 32.0 338.9 -12395.10 -12363.43
DVA.8.4.60 89.8 485.6 -12255.98 -12251.13
DVA.8.4.75 72.0 1486.5 -12243.91 -12150.55
DVA.8.5.30 79.2 648.0 -12845.88 -12788.99
DVA.8.5.45 164.0 1480.1 -13027.60 -12961.76
DVA.8.5.60 99.3 2032.7 -12925.55 -12855.18
DVA.8.5.75 139.8 1754.3 -12938.41 -12848.27
DVA.12.4.30 131.2 755.0 -32826.07 -32855.58
DVA.12.4.45 141.7 2259.6 -32771.80 -32741.75
DVA.12.4.60 341.0 5309.9 -32773.34 -32766.86
DVA.12.4.75 258.4 5059.6 -32845.11 -32819.66
DVA.12.5.30 560.4 4139.7 -39389.62 -39384.02
DVA.12.5.45 672.7 6342.1 -39375.73 -39447.76
DVA.12.5.60 539.1 7001.2 -39435.64 -39549.73
DVA.12.5.75 1561.8 24502.1| -39499.48 -39479.29
DVA.16.4.30 1049.6 8353.2 -21663.45 -21679.82
DVA.16.4.45 1209.1 > 40000 | -21792.31 -21775.15
DVA.16.4.60 3739.1 > 40000 | -21839.29 -21981.07
DVA.16.4.75 3753.7 > 40000 | -21817.53 -21862.53
DVA.16.5.30 600.6 9712.4 -22452.53 -22557.43
DVA.16.5.45 1658.4 > 40000 | -22552.15 -22515.51)
DVA.16.5.60 3576.1 > 40000 | -22603.35 -22798.30
DVA.16.5.75 3504.0 > 40000 | -22576.36 -22705.12

CPU Time Comparison of Pereira and Pinto Algorithm and Abed Nested Decomposition Algorithm

crease, the rate of increase in runtimes for Pereira andsampled from the sample distribution that generates the
Pinto algorithm is noticeably steeper than that of the lower bound. In this case, the convergence is then with
Abridged Nested Decomposition algorithm. given confidence for the lower-bound sample distribu-
tion. As that lower bound sample increases, the overall
result then approaches an optimal value.
4. Conclusion The serial independence assumption can be relaxed
in some cases by re-formulation (e.qg., in a portfolio op-
We have presented a method for solving multi-stage timization problem, by replacing prices that depend on
stochastic programs that incorporates sampling into previous year’s values with returns that are serially in-
nested decomposition. The resulting algorithm has ad- dependent). In other cases, the recourse or value func-
vantages, as seen in the computational results, overtion O may be written as a function of the stateand
previous approaches in reducing the size of the tree a set of parameters that determine the future proba-
required to generate new value-function bounds. The bility distributions. In those cases, the Abridged Nested
convergence results require full subproblem solutions Decomposition algorithm can include separate approxi-
at each stage to ensure valid lower bounds and serialmations for different values af'. For low-dimensional
independence to ensure that the value function only de- v, this approach may remain computationally efficient.
pends on the current state and not prior history, but each
of these assumptions may be relaxed in various ways.
The complete subproblem solution requirement for
the lower bound may be relaxed to_use a Sqmple, but [1] Billinsley, P. Probability and MeasureNew York: John
the sample needs to be chosen consistently with a corre- ~ wjiley & Sons, 1995.
sponding convergence result that is somewhat different.[2] Birge, J. R. . “Decomposition and Partitioning Methods
The analysis above still applies if the upper bound is for Multi-Stage Stochastic Linear Program®perations

References



30

(3]

[4]

[5]

(6]

[7]
(8]

C. J. Donohue and J. R. Birge — The Abridged Nested Deconipoditethod for
Researci33 (1985), 989-1007. [9] Gassmann, H. I.. “MSLiP: A Computer Code for the
Birge, J. R., C. J. Donohue, D. F. Holmes, and Multistage Stochastic Linear Programming Problem.”
O. G. Svintsiski. “A Parallel Implementation of the Mathematical Programmindg7 (1990), 407—423.
Nested Decomposition Algorithm for Multistage [10] Gartska, S., and D. Rutenberg. “Computation in Diseret
Stochastic Linear Programs.” Mathematical Stochastic Programs with RecourseOperations
Programming75 (1996) 327-352. Researci?l (1973), 112-122.
Birge, J. R., and F. Louveaux. "A Multicut Algorithm  [11] Pereira, M. V. F., and L. M. V. G. Pinto. “Multistage
for Two-Stage Stochastic Linear Programgdiropean Stochastic Optimization Applied to Energy Planning.”
Journal of Operations Resear@4 (1988), 384-392. Mathematical Programming2 (1991), 359—-375.
Birge, J. R, and R. J-B. Wets. “Designing [12] Powell, W. B. “A Comparative Review of Alternative
Approximation Schemes for Stochastic Optimization Algorithms for the Dynamic Vehicle Allocation
Problems, in Particular Stochastic Programs with Problem.” InVehicle Routing: Methods and Studi&sd.
Recourse.” Mathematical Programming27 (1986), B. Golden, A. Assad. North-Holland, 1988, pp. 249-291.
54-102. _ [13] Van Slyke, R., and R. J-B. Wets. “L-Shaped Linear
Birge, J. R., and R. J-B. Wets. “Sublinear Upper Bounds Programs with Applications to Optimal Control and
for Stochastic Programs with Recoursklathematical Stochastic Programming.SIAM Journal on Applied
Programming43 (1989), 131-149. Mathematicsl7 (1969), 638—663.

Dantzig,G.B.,“L.inearprogramming under uncertaihty, [14] Wets, R. J-B. “Large Scale Linear Programming
Management Scienci(1955), 197-206. Techniques.” In Large scale linear programming

ﬁoncl)hue, C'. I J% R'h BirgNe, ar:jd IE) F. HO".n.eS' techniquesEd. Y. Ermoliev and R. J-B. Wets. Berlin:
mplementation of the este ecomposition Springer- Verlag, 1988.

Algorithm for Multistage Stochastic Linear Programs.” 1151 \wittrock, R. “Dual Nested Decomposition of Staircase

Vil Inter.natlonal . Conference  on  Stochastic Linear Programs.Mathematical Programming Stuc#
Programming, Nahariya, Israel. 28 June 1995. (1985), 65-86

Received 12 November 2005; accepted 15 December 2005



