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The Abridged Nested Decomposition Method for Multistage Stochastic
Linear Programs with Relatively Complete Recourse

Christopher J. Donohuea John R. Birgeb

aGlobal Association of Risk Professionals, Jersey City, NJ,USA
bThe University of Chicago Graduate School of Business, Chicago, IL, USA

Abstract

This paper considers large-scale multistage stochastic linear programs. Sampling is incorporated into the nested
decomposition algorithm in a manner which proves to be significantly more efficient than a previous approach. The main
advantage of the method arises from maintaining a restricted set of solutions that substantially reduces computation
time in each stage of the procedure.

Dedicated to the memory of George Dantzig who inspired us to pursue the challenge of finding optimal decisions
under uncertainty.

1. Multistage Stochastic Linear Programs

Consider a multistage dynamic decision process un-
der uncertainty that can be modeled as a linear

program. Assume that the stochastic elements of the
problem can be found in the objective coefficients, the
right-hand side values, the technology matrices, or any
combination of these. Further, assume that the stochas-
tic elements are defined over a discrete probability space
(Ξ, σ(Ξ),P), whereΞ = Ξ2 ⊗ · · · ⊗ ΞN is the support
of the random data in stages two throughN , with Ξt =
{ξt

i = (ht(ξt
i ), c

t(ξt
i ), T

t−1
·,1 (ξt

i ), . . . , T
t−1
·,nt−1(ξ

t
i ))}. The

staget nodes of the scenario tree are defined by a real-
izationξt

i of the staget random parameters and a history
of realizations (ξ2

i2 , . . . , ξ
t−1
it−1 ) of the random parame-

ters through staget − 1.
A multistage stochastic linear programming problem
can then be formulated (Table 1).

min c1x1 + Q2(x1)

s.t. W 1x1 = h1

x1 ≥ 0,

where for any(t−1)-stage scenario decisionxt−1,k, the
staget expected recourse or value functionQt(xt−1,k)

Email: Christopher J. Donohue [chris.donohue@GARP.com],
John R. Birge [john.birge@ChicagoGSB.edu].

is given as:

Qt(xt−1,k
k ) =

∑

m∈D(k)

pt,m

pt−1,k
Qt(xt−1,k, ξt,m).

Let h denote at-stage scenario inD(k). Then, the stage
t recourse cost obtained with the staget − 1 decision
xt−1,k and realizationξt,h ∈ Ξt is another optimization
problem given by:

Qt(xt−1,k, ξt,h) = min ct(ξt,h)xt,h + Qt+1(xt,h)

s.t. W txt,h = ht(ξt,h) − T t−1(ξt,h)xt−1,k

xt,h ≥ 0.

In stageN , it is assumed thatQN+1(xN ) = 0 for all
values ofxN .

Table 1

Ξt support of the stage
t random parameters

ξt
i realization of stage

t random parameters
(ξ2

i2 , . . . , ξt
it) t-stage scenario

ξt,k realization of staget random
parameters int stage scenariok

pt,k probability of t stage scenariok
a(k) ancestor(t − 1)-stage scenario of

t-stage scenariok
D(k) set of descendant(t + 1)-stage

scenarios oft-stage scenariok

c© 2006 Preeminent Academic Facets Inc., Canada. Online version: http://www.facets.ca/AOR/AOR.htm. All rights reserved.
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A two-stage stochastic program is said to haverel-
atively complete recourseif, given any first stage fea-
sible solutionx1, there exists a feasible solution to
any realized second stage subproblem with probability
one. Similarly, a multistage stochastic linear program
is said to haverelatively complete recourseif, given
any feasible solution(x1, . . . , xt−1) to any (t − 1)-
stage scenariok (defined by the sequence of realiza-
tions (ξ2, . . . , ξt−1) in stages 2 throught − 1), there
exists a feasible solution to any realized staget descen-
dant subproblem ofk with probability one. Relatively
complete recourse simplifies decomposition algorithms
since feasibility is ensured.

1.1. Decomposition Methods

Decomposition algorithms have proven effective in
decreasing times to solve stochastic linear programs
over direct solution approaches (see, for example, Birge
[2], Gassmann [9], Birge et al. [3]). These algorithms
involve separating the problem into subproblems asso-
ciated with each node in the scenario tree. Given its
convexity and piecewise linearity, the expected recourse
functionQ(x) in the first stage objective function can
be replaced by an unrestricted variableθ1 which is con-
strained by a finite set of linear inequality constraints.
The goal of decomposition algorithms is to construct
only the necessary portions of the expected recourse
function with linear constraints and at the same time
bound the expected recourse function for all possible
first stage decisions. The hope is that the similarities be-
tween each of the subproblems and their smaller sizes
allow the problem to be solved more efficiently.

The L-shaped algorithm was developed for two-stage
stochastic linear problems (proposed in Dantzig [7]) by
Van Slyke and Wets [13]. This algorithm is an outer lin-
earization of the second stage primal recourse problem
with additional steps taken to ensure feasibility for all
possible second stage subproblems. The Nested Decom-
position algorithm (Birge [2]) extended the L-Shaped
algorithm for multistage stochastic linear programs.

As in the L-Shaped algorithm, the Nested Decompo-
sition (ND) algorithm replaces the staget + 1 expected
recourse function in each subproblem with a free vari-
ableθt,k, and then constrainsθt,k with successive linear
approximations ofQt+1(xt,k). The linear approxima-
tions, or optimality cuts, serve as lower bounds on the
expected recourse functions for all feasible solutions of
the staget subproblem.

At node k in staget, the following subproblem is

solved:

Qt(xt−1,a(k), ξt,k) = min ct(ξt,k)xt,k + θt,k

s.t.W txt,k = ht(ξt,k) − T t−1(ξt,k)xt−1,a(k)

D
t,k
i xt,k ≥ d

t,k
i i = 1, . . . , rt,k (1)

E
t,k
i xt,k + θt,k ≥ e

t,k
i i = 1, . . . , st,kx (2)

xt,k ≥ 0

θt,k unrestricted.

Constraints (1) and (2) are feasibility and optimal-
ity cuts, respectively. The feasibility cuts constrain the
set of staget solution to those which have feasible re-
course over the remainder of the planning horizon. The
optimality cuts constrain the expected recourse approx-
imation θt,k to a value which is a lower bound on the
actual expected recourse function value. Both types of
cuts are generated successively during the algorithm.

Both the L-Shaped and ND algorithms begin with no
feasibility or optimality cuts in any of the subproblems,
and withθt,k restricted to zero for all values ofk andt.
The first stage subproblem is solved. Each of the second
stage subproblems is then considered, using the current
first stage solution to adjust the right hand side. The
algorithm continues forward through the scenario tree
in this manner.

If a stage t subproblemQt(x̂t−1,a(k), ξt,k) is in-
feasible for a particular(t − 1)-stage scenario so-
lution x̂t−1,a(k), an additional constraint is added
to the stage t − 1 subproblem which removes
x̂t−1,a(k) from the set of feasible solutions. By du-
ality, the infeasibility of Qt(x̂t−1,a(k), ξt,k) implies
that there exists a direction̂πt,k along which the
dual problem becomes unbounded and which satis-
fies π̂t,k(ht(ξt,k) − T t−1(ξt,k)x̂t−1,a(k)) > 0. Thus,
x̂t−1,a(k) is removed from the set of feasible stage
t − 1 solutions of Qt−1(•, ξt−1,a(k)) by adding the
constraint,

D
t−1,a(k)
rt−1+1 xt−1,a(k) ≥ d

t−1,a(k)
rt−1+1 ,

where D
t−1,a(k)
rt−1+1 = π̂t,kT t−1(ξt,k), d

t−1,a(k)
rt−1+1 =

π̂t,kht(ξt,k), andrt−1 is the current number of feasi-
bility cuts in the staget − 1 subproblem.

If the first stage subproblem is infeasible, then the
problem is infeasible and the algorithm terminates.

Typically, once the forward pass has solved each sub-
problem in the scenario tree, the process of developing
optimality cuts begins. Starting in stageN − 1, the al-
gorithm begins a backward pass through the scenario



22 C. J. Donohue and J. R. Birge – The Abridged Nested Decomposition Method for

tree. At subproblemk in staget, a lower bound on the
staget + 1 expected recourse functionQt+1(xt,k) as-
sociated with the current node is established as a linear
function of xt,k and the weighted sum of the optimal
dual multipliers,(πt+1,m, δt+1,m, σt+1,m), from each
of the staget+1 descendant nodes. Suppose the current
solution at this node is̃xt,k and the expected recourse
approximation value is̃θt,k. The lower bound is formed
as follows:

θt,k ≥
∑

m∈D(k)

pt+1,m

pt,k

(

πt+1,m(ht+1(ξt+1,m)

− T t(ξt+1,m)xt,k) + δt+1,mdt+1,m

+σt+1,met+1,m
)

= θ̄t,k for xt,k = x̃t,k.

A constraint of the form of (2) is then established by
letting

E
t,k
i =

∑

m∈D(k)

pt+1,m

pt,k
πt+1,mT t(ξt+1,m) and

et
i =

∑

m∈D(k)

pt+1,m

pt,k

(

πt+1,mht+1(ξt+1,m)

+δt+1,mdt+1,m + σt+1,met+1,m
)

for i = st,k + 1. If the current expected recourse func-
tion approximation is no longer valid (i.e.,θ̃t,k < θ̄t,k),
then this linear constraint (optimality cut) is added to
this node’s subproblem. The process continues until the
latest first stage optimality cut is not added to the first
stage subproblem, at which point the problem is solved.

Each cut can be uniquely assigned to an optimal ba-
sis of a subproblem, which has a finite number of bases;
thus, both the L-Shaped and ND algorithms terminate
finitely. Further, both algorithms terminate with an op-
timal solution (if one exists) since termination in both
only occurs ifθ1 = Q2(x1) or the problem is infeasible
or unbounded.

1.2. Computational Improvements

Various techniques have been explored for improv-
ing the computational efficiency of decomposition al-
gorithms. After solving each subproblem in a particu-
lar stage in the course of the ND algorithm, the choice
of which adjacent stage to solve next does not dis-
rupt the convergence of the algorithm. Hence, different
sequencing protocols have been suggested. The proto-
col described above, referred to as the “fast-forward,

fast-back” procedure, involves continuing in the current
direction until the process cannot proceed in that direc-
tion. Wittrock [15] argues that by changing direction
as seldomly as possible, the procedure most effectively
propogates information throughout the tree. Alternate
strategies include the “fast-forward” procedure and the
“fast-back” procedure. The “fast-forward” procedure
(Birge [2]) only proceeds from staget to staget − 1
when all current solutions in stagest, . . . , N are op-
timal. The “fast-back” procedure (Gassmann [9]) only
proceeds from staget to staget + 1 when all current
solutions in stages1, . . . , t are optimal. Results from
implementations of the ND algorithm (Gassmann [9],
Birge et. al. [3]) suggest that the “fast-forward, fast-
back” protocol generally works most effectively.

To improve the quality of each iteration, Birge and
Louveaux [4] propose the multicut version of the ND
algorithm. In the general decomposition algorithm men-
tioned, for a given staget decisionxt, all possible real-
izations in staget + 1 are optimized in order to obtain
their optimal simplex multipliers. These multipliers are
then aggregated in order to generate one cut. A single
θ variable is used to approximate the expected recourse
function value, and its value is constrained by these ag-
gregated cuts. Instead, Birge and Louveaux [4] suggest
that more information from a node’s descendants may
be gained by disaggregating optimality cuts. The result-
ing multicut version uses aθ variable corresponding to
each descendant realization ofξt+1 and constrains each
by cuts generated from that realization multiplied by its
probability. The obvious disadvantage to the multicut
version is the much more rapid increase in the size of
each subproblem, but the big advantage is the increase
in the information that is being passed back in each it-
eration. The hope in this approach is that the increase
in information will decrease the number of iterations
needed to converge at the first stage and that this sav-
ings will outweigh the added effort needed to solve each
subproblem.

For problems with stochastic elements found only in
the right hand sides and the technology matrices, the
staget recourse functionQt(xt−1, ξt) is also a convex
function of the random vectorξt; convexity of the re-
course function when the technology matrix is random
follows since, for the given staget − 1 solutionxt−1,
the technology matrix is found in the right hand side of
the problem. Hence, a lower bound on the staget ex-
pected recourse functionQt(xt−1) can be established
by solving only the recourse function with the expected
value of ξt, Qt(xt−1, ξ̄t). In particular, if the random
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parameters in each stage are independently distributed,
a lower bound can be established by solving the deter-
ministic problem where the random parameters in each
stage are replaced by their expected values. The cuts
generated in each stage of the expected value problem
are valid cuts to the true expected recourse function,
and so, can be passed to each node in that stage in the
true scenario tree. Solving the original problem can then
begin with this additional information. This helps pri-
marily with reducing the number of iterations needed
for convergence. Computation times have been reduced
by as much as 40% using this technique (Donohue et.
al. [8])

Techniques have also been developed to improve
computational efficiency within subproblems by taking
advantage of similarities. Assuming that the objective
cost coefficients are not stochastic, the staget subprob-
lems only differ in their right hand sides when no cuts
have been added or the same cuts have been added to
every problem. Two techniques have been proposed in
the literature for solving linear programs with multiple
right hand sides, sifting (Gartska and Rutenberg [10])
and bunching (Walkup and Wets [14]). After solving
a subproblem with a particular right hand side, these
methods identify other subproblems for which the cur-
rent basis is optimal. The goal of these methods is
to minimize the number of full simplex pivots which
must be performed to solve all the subproblems in the
current stage.

1.3. Pereira and Pinto Method

For multistage stochastic linear programs with rela-
tively complete recourse and a modestly large number
of N -stage scenarios, Pereira and Pinto [11] developed
an algorithm which incorporates sampling into the gen-
eral framework of the Nested Decomposition algorithm.
The goal is to minimize the curse of dimensionality by
eliminating a large portion of the scenario tree in the
forward pass of the algorithm. The algorithm was suc-
cessfully applied to multistage stochastic water resource
problems in South America.

The multistage stochastic linear programs considered
are assumed to have relatively complete recourse with
finite optimal objective value. Assume that the stochas-
tic elements are defined over a discrete probability space
(Ξ, σ(Ξ),P), whereΞ = Ξ2 ⊗ · · · ⊗ ΞN is the support
of the random data in stages two throughN , with Ξt =
{ξt

i = (ht(ξt
i ), c

t(ξt
i ), T

t−1
·,1 (ξt

i ), . . . , T
t−1
·,nt−1(ξ

t
i ), i =

1, . . ., M t)}. Further, assume that the random param-

eters are serially independent. Thus, the probability of
a particular staget realizationξt

i is constant from all
possible(t − 1)-stage scenarios.

The strategy of the Pereira and Pinto algorithm is to
use sampling to generate an upper bound on the ex-
pected value (over anN -stage planning horizon) of a
given first stage solution and to use decomposition to
generate a lower bound. The algorithm terminates when
the two bounds are sufficiently close.

As in the Nested Decomposition algorithm, each it-
eration of the Pereira and Pinto algorithm begins by
solving the first stage subproblem. ThenH N -stage
scenarios are sampled. Letxt

k andξt
k denote the stage

t solution vector and the staget random parameter
realization, respectively, in sampled scenariok. The
forward pass through the sampled version of the sce-
nario tree solves the following subproblem, for stages
t = 2, . . . , N and scenariosk = 1, . . . , H.

Qt(xt−1
k , ξt

k) = min ct(ξt
k)xt

k + θt
k

s.t. W txt
k = ht(ξt

k) − T t−1(ξt
k)xt−1

k

Et
ix

t
k + θt

k ≥ et
i i = 1, . . . , Kt, (3)

xt
k ≥ 0

θt
kunrestricted .

First note that since the problems under consideration
have relatively complete recourse, feasibility cuts are
not needed. The constraints (3) represent optimality cuts
which are successively added during the course of the
algorithm. These cuts represent lower bounds on the
expected recourse function in staget for all values of
xt. Kt denotes the number of optimality cuts that have
been added to the staget subproblem. In the first for-
ward pass, there are no optimality cuts. Hence,Kt = 0,
andθt

k is constrained to equal zero. Optimality cuts are
never generated for the stageN subproblems, soθN is
dropped from those subproblems. The first stage sub-
problem also has this formulation, although the problem
has no stochastic elements andT 0 = 0.

The total objective values for all of the sampled sce-
narios are collected as follows to generate a confidence
interval for an upper bound on the actual expected re-
course function value. Letzk denote the total objective
value for scenariok; then,

zk = c1x1
k +

N
∑

t=2

ct(ξt
k)xt

k. (4)

Note thatx1
k is the same for all values ofk. For the given

first stage solutionx1
k, the expected recourse function
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valueQ2(x1
k) is a function of the random parameters

in stages two throughN . By assumption, the recourse
cost for anyN -stage scenario, given first stage solution
x1, is finite. Thus, the expected recourse cost,Q2(x1),
and the variance of the recourse cost are finite. Also, the
H sampled scenarios are independent observations of
these random parameters. Hence, by the Central Limit
Theorem (see, for example, [1]), forH large enough,
a statistical estimate of the expected objective value of
the first stage solution is given by:

z̄ =
1

H

H
∑

k=1

zk. (5)

The uncertainty of the estimatēz is then measured by
the standard deviation of the estimate,

σz =

√

√

√

√

(

1

H2

H
∑

k=1

(z̄ − zk)2

)

. (6)

Using these values, a confidence interval for the actual
value ofz̄ can be constructed. For example,

[z̄ − 2σz, z̄ + 2σz] (7)

represents a95% confidence interval for̄z. Note thatz̄
is a statistical estimate of the first stage costs and the
expected recourse costs, given the current first stage so-
lution x1. Since the current first stage solution is feasi-
ble but not necessarily optimal, Condition 7 represents
a confidence interval for an upper bound on the optimal
objective value of the given stochastic program.

Once the forward pass has solved allN stages for
all H sampled scenarios and assumingKt ≥ 1 for
t1, . . . , N − 1, the stopping criterion is checked. From
the discussion of the Nested Decomposition algorithm,
we know that the current first stage objective value
c1x1

k + θ1 is a lower bound on the total expected cost
over the duration of the planning horizon. Therefore, if
the current first stage optimal objective value,c1x1

k+θ1,
lies in the confidence interval of the upper bound onz̄,
the current solution is declared optimal, and the algo-
rithm terminates; otherwise, the backward pass through
the scenario tree begins.

The backward pass proceeds as in the Nested Decom-
position algorithm. Starting in stageN with the current
stageN − 1 solution to scenariok, xN−1

k , the subprob-
lem QN (xN−1

k , ξN ) is solvedfor all possible stageN
realizationsξN . Let M t denote the number of distinct
realizations of the staget random parameters, and let

πt
i,k denote the optimal dual solution vector to the stage

t subproblemQt(xt−1
k , ξt

i ). As in the Nested Decompo-
sition algorithm, an optimality cut on the staget−1 ex-
pected recourse function is derived from these optimal
dual values as follows, for each sampled scenariok,

Qt(xt−1) ≥

Mt

∑

i=1

prob(ξt
i )π

t
i,k

(

ht(ξt
i ) − T t−1(ξt

i)x
t−1 + et

)

. (8)

For t = N , the inequality follows by duality. Fort <

N , the inequality follows by duality and the inductive
argument that the staget + 1 optimality cuts are lower
bounds on the staget + 1 expected recourse function.
To generate a cut of the formEx + θ ≥ e, let

Et−1
Kt−1+1 =

Mt

∑

i=1

prob(ξt
i )π

t
i,k

(

−T t−1(ξt
i)
)

,

et−1
Kt−1+1 =

Mt

∑

i=1

prob(ξt
i )π

t
i,k

(

ht(ξt
i ) + et

)

.

Since the problems considered have serial indepen-
dence, the expected recourse function in all staget

subproblems is identical. This allows all cuts generated
for staget (regardless of which scenario it was gener-
ated from) to be placed in all staget subproblems. As
each cut is added to the staget subproblem, the value
of Kt is increased by one.

Once a new optimality cut has been added to the first
stage subproblem, the first iteration is completed and
the forward pass begins again.

Finite convergence of this algorithm follows from the
finite convergence of the Nested Decomposition algo-
rithm, since the scenarios from which the optimality
cuts are generated are resampled each iteration. Since
the accuracy of the optimal solution depends on the ac-
curacy of the estimated upper bound, the performance
of the algorithm depends on the number of scenarios
sampled in each iteration.

2. The Abridged Nested Decomposition Algorithm

The Pereira and Pinto algorithm does effectively re-
solve the curse of dimensionality, especially for narrow
and long scenario trees. Pereira and Pinto considered
10-stage problems with only two possible realizations
in stages two through ten, giving a total of 512 possible
10-stage scenarios. By sampling only 50 scenarios in
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each iteration, the algorithm significantly reduced the
effort needed to solve these problems.

The algorithm does not, however, seem well-designed
for bushier trees, where the number of realizations in
each stage is, say, twenty or more. In order to get a re-
liable estimate of the true population expected recourse
function, the Central Limit Theorem generally requires
that the number of scenarios sampled be at least thirty
or more. While this presents little problem in the for-
ward pass, the amount of work required in the backward
pass to solve all realizations in each stage thirty or more
times might be exhausting, especially for problems with
four or more stages. Further, this fails to recognize that
many of the scenarios may be giving similar solutions
in staget, making the need to resolve all subproblems
in stagest + 1 throughN superfluous. Finally, the end
result of all this work is a single optimality cut in the
first stage subproblem. Since each iteration could be
expensive, the need for several optimality cuts for the
first stage to converge could make the algorithm more
cumbersome than intended.

The new protocol proposed here, which we refer to
as the Abridged Nested Decomposition algorithm, also
involves sampling in the forward pass, but the forward
pass does not proceed forward from all solutions of the
realizations sampled in each stage. Instead, the staget

solutions from which to proceed are also sampled.
The scenario tree in Figure 1 highlights the new pro-

tocol. As in the Pereira and Pinto algorithm, the new
protocol begins by solving the first stage subproblem,
again with no optimality cuts initially. From the set of
second stage realizations,F 2 realizations are then sam-
pled and these subproblems are solved. The goal is to
obtain a good sample of second stage solution values,
without solving all realizations in the second stage. The
darkened second stage nodes in the diagram correspond
to the realizations sampled and solved. From theF 2

solution values, the algorithm proceeds forward from
only B2 (≤ F 2) values. The values, from which the al-
gorithm branches forward, are referred to as branching
values. A branching value may be a current staget solu-
tion value or some combination of several current stage
t solution values (more details in next section). Nodes
1 and 2 correspond to the second stage solutions from
which forward branching occurs. The figure is drawn
as shown to highlight the idea that branching may not
occur from the same node or from any specific node in
each iteration.

From each of theBt−1 staget − 1 branching so-
lutions, F t staget realizations are again selected and
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Fig. 1. Abridged Scenario Tree

solved. From the(Bt−1 ∗ F t) staget solution values,
the algorithm proceeds forward from onlyBt values.
Typically, the initial value ofBt will be relatively small
(< 5) to allow a rapid forward pass.

Once the branching values for stageN −1 have been
selected, the backward pass begins. For each branching
solution in stageN−1, all possible realizations in stage
N are solved. The optimal dual values are aggregated to
generate an optimality cut on the stageN − 1 expected
recourse function, as in equation (8). Again, because of
serial independence, all optimality cuts generated from
the stageN subproblems are added to the stageN − 1
subproblem. The process is repeated for all branching
solutions in stagesN − 2 down to stage 1.

As the second stage subproblems are solved in the
backward pass, let(x̃2

k, θ̃2
k) denote the optimal solution

for second stage realizationξ2
k in Ξ2. Let

θ̄1 =
∑

ξ2

k
∈Ξ2

prob(ξ2
k)(c2(ξ2

k)x̃2
k + θ̃2

k).

Sincec2(ξ2
k)x̃2

k is the second stage cost for solutionx̃2
k

and θ̃2
k is a lower bound on the second stage recourse

cost for solutionx̃2
k, θ̄1 represents a lower bound on

the expected recourse function value for the current first
stage solution,̃x1. Recall that the current first stage ap-
proximation of the expected recourse function value at
x̃1, θ̃1, is also a lower bound on the expected recourse
function at x̃1. The value ofθ̄1 may differ from the
value of θ̃1, however, sincēθ1 includes the additional
information that has been gained in the current itera-
tion. This additional information also ensures thatθ̄1 is
always greater than or equal tõθ1.
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The Nested Decomposition algorithm terminates
when θ̄1 = θ̃1, since this implies that in each sub-
problem, the current expected recourse approximation
value, θ̃t

k, is exact at a current solution valuẽxt
k. Un-

fortunately, since the Abridged Nested Decomposition
algorithm does not consider all scenarios in each iter-
ation, the same claim does not hold. The solution of a
particular second stage subproblem may not change in
the forward and backward pass of an iteration simply
because this solution is not selected as a branching
value, and so, the opportunity to evaluate the second
stage expected recourse function value at that solution
is not given. However, if that solution had been se-
lected as a branching solution, as it always would be in
the Nested Decomposition algorithm, an optimality cut
might have been generated which would change that
subproblem solution.

Although it cannot be used as a termination criterion,
the relative closeness of̄θ1 and θ̃1 can be used as an
indication that the solution is converging. Hence, given
that θ̃1 is within a relative tolerance of̄θ1, a termina-
tion test is given which employs sampling to generate
a statistical estimate of an upper bound.

An N -stage scenario(ξ2
1 , . . . , ξN

1 ) is randomly se-
lected. The current first stage subproblem is solved. Let
the solution bex1

1. Then, starting witht = 2, the cur-
rent staget subproblem is solved, given sampled staget

realizationξt
1 and staget− 1 solutionxt−1

1 . Let the so-
lution be denotedxt

1. This is repeated fort = 3, . . . , N .
The entire process is repeated forH differentN -stage
scenarios.

The Central Limit Theorem can be invoked again to
establish a statistical estimate of an upper bound on
the optimal objective value. As in Equations (4), (5),
and (6), the total value of each scenario is recorded,
the total values are averaged, and a confidence interval
around the average value is established by calculating
the standard deviation. If the current first stage objective
value,c1x̃1+θ̃1, falls within that confidence interval, the
algorithm terminates; otherwise, the number of nodes
solved in each stage in each forward pass,F t, and the
number of nodes from which we branch in each stage,
Bt, can be increased, and a new forward pass begins.

The increase in bothF t and Bt after each failed
termination test helps to achieve convergence as the
increase in these values increases the amount of infor-
mation being brought back to the first stage subproblem.
Eventually, the entire scenario tree could be considered
in each forward and backward pass, at which point the
algorithm would be identical to the Nested Decompo-

sition algorithm. The hope of the algorithm, though,
is that significant tree expansion will not be needed,
thereby allowing much faster iterations than those of the
Nested Decomposition algorithm, while passing back
enough valuable information about the expected re-
course function that the number of additional iterations
needed will not be significant.

2.1. Branching Selections

In order for this algorithm to be effective, the solution
values from which to branch in each stage must be
selected carefully. The following theorem shows that
valid branching values exist which are not necessarily
current staget solution values.
Theorem 1 Consider a multistage stochastic linear
program with relatively complete recourse. Letx̃t

i be
any feasible solution to the staget subproblem with
realizationξt

i ∈ Ξt, 1 ≤ i ≤ M t. Further, let

x̃ =

Mt

∑

i=1

wt
i x̃

t
i where

Mt

∑

i=1

wt
i = 1, 0 ≤ wt

i ≤ 1

(i = 1, . . . , M t);

then there exists a feasible completion in stagest +
1, . . . , N from x̃.

Proof. By contradiction. Suppose that there exists a
convex combination of the feasible solutions such that
Qt+1(x̃) = ∞ (i.e., there does not exist a feasible com-
pletion fromx̃).

We know thatQt+1(x) is a convex, piecewise linear
function ofx. Thus,

Mt

∑

i=1

wt
iQ

t+1(x̃t
i) ≥ Qt+1(

Mt

∑

i=1

wt
i x̃

t
i),

by Jensen’s Inequality, convexity,

= Qt+1(x̃), by definition,

= ∞, by assumption.

This implies thatQt+1(x̃t
i) = ∞ for at least onei value,

which contradicts the assumption of relatively complete
recourse.

Thus, any convex combination of the current staget

solution values can be chosen as a possible branching
value, including the expected value of the current so-
lution values. This implies that theBt−1 ∗ F t possible
solution values in staget can be gathered into several
groups, and the expected value of the solution values
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Step 0: For t = 1, . . . , N − 1, setKt = 0, and add the constraintθt = 0 to the staget subproblem. Choose
initial values forF t andBt for t = 2, . . . , N − 1. Go to Step 1.

Step 1: Solve the first stage problem. Letx̃1 be the current optimal solution and̃θ1 be the current expected
recourse approximation value. Letz̃1 be the current optimal objective value. Letx̃1 be the first stage
branching value. Go to Step 2.

Step 2: FORWARD PASS.
For t = 2, . . . , N − 1,

For m = 1, . . . , Bt−1,
For k = 1, . . . , F t,

Solve staget subproblem, given sampled realizationξt
k and themth staget − 1

branching value.
SelectBt branching values.

Go to Step 3.
Step 3: BACKWARD PASS.

For t = N, . . . , 2,
For m = 1, . . . , Bt−1,

For i = 1, . . . , M t,
Solve staget subproblem, given realizationξt

i and themth staget − 1 branching
value. Let(πt

i,m, σt
i,m) denote the optimal dual vector values.

Compute

E
t−1 =

Mt

X

i=1

p
t
kπ

t
i,mT

t−1(ξt
i), e

t−1 =

Mt

X

i=1

p
t
k

`

π
t
i,mh

t(ξt
i) + σ

t
i,me

t
i

´

The new cut is then: Et−1xt−1 + θt−1 ≥ et−1.
If the constraintθt−1 = 0 appears in the staget−1 subproblem, then remove it. Increment
Kt−1 by one and add the new cut to the staget − 1 subproblem. Ift = 2, then the
updated first stage expected recourse function upper bound is: θ̄

1 = e
1
− E

1
x̃

1. If θ̃1 is
within a relative tolerance of̄θ1, then go to Step 4. Otherwise, go to Step 1.

Step 4: SAMPLING STEP
Let x1

k = x̃1, for k = 1, . . . , H .
For k = 1, . . . , H ,

GenerateN -stage sample scenario,(ξ2

k, . . . , ξN
k ).

For t = 2, . . . , N ,
Given staget− 1 solutionxt−1

k and realizationξt
k, solve the staget subproblem. Let

xt
k denote the optimal solution.

Using Equations (4), (5), and (6), obtain a confidence interval on the expected objective value of the
current first stage solution. Ifc1x̃1 + θ̃1 is in the confidence interval, stop with̃x1 as the optimal
solution. Else, increaseF t andBt for staget = 2, . . . , N and go to Step 1.

Fig. 2. Abridged Nested Decomposition Algorithm for Relatively Complete Programs

within each group can be used as that group’s branch-
ing value. This method for selecting branching values
could prove effective, since the branching values would
then represent the values which staget can expect from
those staget−1 subproblems, rather than just one pos-
sible solution value.

Other branching values might include current solu-
tion values whose distance from the current average so-
lution value is greatest. Using these values may prove
effective, as this helps to generate optimality cuts which
restrict solution values from outlying solution values.

This may be important to achieve convergence.

Finally, choosing current solution values randomly to
be branching values may also be effective. Unlike the
other selection techniques, this strategy gives an unbi-
ased sample of staget solution values.

3. Implementation & Results

In this section, the results of a computational study
are reported. The computational efficiency of the Pereira
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and Pinto algorithm is compared to that of the new
Abridged Nested Decomposition algorithm.

3.1. Implementation Description

The code ND.PP follows the algorithm developed
by Pereira and Pinto. The code ND.Abridged follows
the new Abridged Nested Decomposition algorithm
discussed in Section 2.. Both ND.PP and ND.Abridged
were written in C. Both work interactively with
CPLEX’s callable library for mathematical program-
ming and were run on Sun SPARC 20 workstations.

For ND.PP, the sample size (H) is thirty for each
problem. For ND.Abridged, the number of staget sub-
problems solved in the forward pass from each stage
t − 1 branching value (F t) is set initially between ten
and fifteen. The number of staget branching values
selected (Bt) is set initially to one. The upper bound
estimate is calculated whenever the current first stage
expected recourse approximation valueθ̃1 is within a
relative tolerance of10−3 of θ̄1. After the upper bound
is calculated, if the current first stage optimal objective
value,c1x̃1 + θ̃1, fails to be within one standard devi-
ation of the statistically estimated upper bound,z̄, then
for t = 2, . . . , N − 1, the value ofBt is increased by
one (if possible). IfBt is now larger thanF t, F t is also
increased by one (if possible).

WhileBt equals one, the average solution value of the
current staget solution values is used as the branching
value. ForBt > 1, the set ofBt−1 ∗ F t current stage
t solution values are partitioned into⌈Bt

3 ⌉ groups. The
average solution value within each group is used as one
branching value. The current solution value within each
group most distant from the group’s average value is
used as another branching value. The remainingBt −

2∗⌈Bt

3 ⌉ branching values are chosen randomly from all
current staget solution values, excluding those already
chosen.

3.2. Test Problem Set Description

The Dynamic Vehicle Allocation (DVA) Problem
with Uncertain Demand represents the situation which
arises when a carrier must manage a fleet of vehicles in
an environment of uncertain future demand while max-
imizing expected profits over a given planning horizon.
In each time period, the carrier receives requests to have
loads moved between various pairs of sites. The carrier
can accept or decline each request. Since each request
is to have a load moved between a specific origin and a

specific destination, the effective demand is, therefore,
along arcs instead of at nodes as in a transportation
problem. In the vehicle allocation literature, this is
represented as a capacity for loaded movement. In ad-
dition, the carrier can dispatch empty vehicles between
two sites in anticipation of future requests out of the
destination site. The carrier knows shipping requests
that exist in the current time period, but is uncertain
about the shipping demands in future periods; the car-
rier has information about the distribution of possible
demand scenarios, perhaps based upon past demand
realizations. Much of the work done on the DVA prob-
lem has been initiated and developed by Powell (see
[12] for a review of the problem and methods).

All of the problems tested are DVA problems of var-
ious sizes. All of the random demands are assumed to
be independent, so serial independence of the random
parameters is given. The probability distributions on de-
mand between sites were derived using historical data
from a national transportation company. Further, note
that the carrier is not committed to take any of the loads;
thus, the option of leaving all of the vehicles stationary
for the duration of the planning horizon is a feasible
option which has finite cost. Hence, the problem has
relatively complete recourse and serially independent
random parameters, so the Abridged Nested Decompo-
sition algorithm can be used to solve these problems.

The naming convention used for all problems is
DVA.x.y.z, where x denotes the number of sites,y

denotes the number of stages, andz denotes the num-
ber of distinct realizations per stage. The DVA.8.y.z,
DVA.12.y.z and DVA.16.y.z problems have 16, 24,
and 32 nodes connected by 72, 168 and 244 arcs, re-
spectively, in each stage. The fleet sizes are 50, 120
and 140, respectively.

3.3. Results

The results of the comparison between the two al-
gorithms are given in Table 2. All times are given in
seconds. Test runs lasting longer than 40,000 seconds
(> 10 hours) were terminated with the objective value
in the last iteration reported.

The Abridged Nested Decomposition algorithm
(ND.Abridged) significantly outperformed the Pereira
and Pinto algorithm (ND.PP) on all problems tested.
For problems where a comparison can be made, the
Abridged Nested Decomposition runtimes are, on av-
erage, twelve times faster than the Pereira and Pinto
runtimes. Furthermore, as the size of the problems in-
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Table 2

ND.Abridged ND.PP ND.Abridged ND.PP
Problem Time Time Obj. Value Obj. Value
DVA.8.4.30 46.2 121.0 -12192.81 -12298.14
DVA.8.4.45 32.0 338.9 -12395.10 -12363.43
DVA.8.4.60 89.8 485.6 -12255.98 -12251.13
DVA.8.4.75 72.0 1486.5 -12243.91 -12150.55
DVA.8.5.30 79.2 648.0 -12845.88 -12788.99
DVA.8.5.45 164.0 1480.1 -13027.60 -12961.76
DVA.8.5.60 99.3 2032.7 -12925.55 -12855.18
DVA.8.5.75 139.8 1754.3 -12938.41 -12848.27
DVA.12.4.30 131.2 755.0 -32826.07 -32855.58
DVA.12.4.45 141.7 2259.6 -32771.80 -32741.75
DVA.12.4.60 341.0 5309.9 -32773.34 -32766.86
DVA.12.4.75 258.4 5059.6 -32845.11 -32819.66
DVA.12.5.30 560.4 4139.7 -39389.62 -39384.02
DVA.12.5.45 672.7 6342.1 -39375.73 -39447.76
DVA.12.5.60 539.1 7001.2 -39435.64 -39549.73
DVA.12.5.75 1561.8 24502.1 -39499.48 -39479.29
DVA.16.4.30 1049.6 8353.2 -21663.45 -21679.82
DVA.16.4.45 1209.1 > 40000 -21792.31 -21775.15
DVA.16.4.60 3739.1 > 40000 -21839.29 -21981.07
DVA.16.4.75 3753.7 > 40000 -21817.53 -21862.53
DVA.16.5.30 600.6 9712.4 -22452.53 -22557.43
DVA.16.5.45 1658.4 > 40000 -22552.15 -22515.51
DVA.16.5.60 3576.1 > 40000 -22603.35 -22798.30
DVA.16.5.75 3504.0 > 40000 -22576.36 -22705.12

CPU Time Comparison of Pereira and Pinto Algorithm and Abridged Nested Decomposition Algorithm

crease, the rate of increase in runtimes for Pereira and
Pinto algorithm is noticeably steeper than that of the
Abridged Nested Decomposition algorithm.

4. Conclusion

We have presented a method for solving multi-stage
stochastic programs that incorporates sampling into
nested decomposition. The resulting algorithm has ad-
vantages, as seen in the computational results, over
previous approaches in reducing the size of the tree
required to generate new value-function bounds. The
convergence results require full subproblem solutions
at each stage to ensure valid lower bounds and serial
independence to ensure that the value function only de-
pends on the current state and not prior history, but each
of these assumptions may be relaxed in various ways.

The complete subproblem solution requirement for
the lower bound may be relaxed to use a sample, but
the sample needs to be chosen consistently with a corre-
sponding convergence result that is somewhat different.
The analysis above still applies if the upper bound is

sampled from the sample distribution that generates the
lower bound. In this case, the convergence is then with
given confidence for the lower-bound sample distribu-
tion. As that lower bound sample increases, the overall
result then approaches an optimal value.

The serial independence assumption can be relaxed
in some cases by re-formulation (e.g., in a portfolio op-
timization problem, by replacing prices that depend on
previous year’s values with returns that are serially in-
dependent). In other cases, the recourse or value func-
tion Qt may be written as a function of the statext and
a set of parametersvt that determine the future proba-
bility distributions. In those cases, the Abridged Nested
Decomposition algorithm can include separate approxi-
mations for different values ofvt. For low-dimensional
vt, this approach may remain computationally efficient.
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